mlimputer 1.0.40__py3-none-any.whl → 1.0.50__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of mlimputer might be problematic. Click here for more details.

@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: mlimputer
3
- Version: 1.0.40
3
+ Version: 1.0.50
4
4
  Summary: MLimputer - Null Imputation Framework for Supervised Machine Learning
5
5
  Home-page: https://github.com/TsLu1s/MLimputer
6
6
  Author: Luís Santos
@@ -24,7 +24,7 @@ Classifier: Programming Language :: Python :: 3.10
24
24
  Description-Content-Type: text/markdown
25
25
  License-File: LICENSE
26
26
  Requires-Dist: scikit-learn (>=1.0.2)
27
- Requires-Dist: atlantic (>=1.1.0)
27
+ Requires-Dist: atlantic (>=1.1.25)
28
28
  Requires-Dist: catboost (>=1.1.1)
29
29
  Requires-Dist: xgboost (>=1.7.3)
30
30
  Requires-Dist: lightgbm (>=3.3.5)
@@ -116,17 +116,17 @@ hparameters["RandomForest"]["n_estimators"] = 30
116
116
 
117
117
  # Imputation Example 1 : KNN
118
118
 
119
- mli = MLimputer(imput_model = "KNN", imputer_configs = hparameters)
120
- mli.fit_imput(X = train)
121
- train_knn = mli.transform_imput(X = train)
122
- test_knn = mli.transform_imput(X = test)
119
+ mli_knn = MLimputer(imput_model = "KNN", imputer_configs = hparameters)
120
+ mli_knn.fit_imput(X = train)
121
+ train_knn = mli_knn.transform_imput(X = train)
122
+ test_knn = mli_knn.transform_imput(X = test)
123
123
 
124
124
  # Imputation Example 2 : RandomForest
125
125
 
126
- mli = MLimputer(imput_model = "RandomForest", imputer_configs = hparameters)
127
- mli.fit_imput(X = train)
128
- train_rf = mli.transform_imput(X = train)
129
- test_rf = mli.transform_imput(X = test)
126
+ mli_rf = MLimputer(imput_model = "RandomForest", imputer_configs = hparameters)
127
+ mli_rf.fit_imput(X = train)
128
+ train_rf = mli_rf.transform_imput(X = train)
129
+ test_rf = mli_rf.transform_imput(X = test)
130
130
 
131
131
  #(...)
132
132
 
@@ -136,18 +136,18 @@ from sklearn.linear_model import LinearRegression
136
136
  from sklearn.ensemble import RandomForestRegressor
137
137
  from catboost import CatBoostRegressor
138
138
 
139
- leaderboard_knn_imp=ms.cross_validation(X = train_knn,
140
- target = "Target_Name_Col",
141
- test_size = 0.2,
142
- n_splits = 3,
143
- models = [LinearRegression(), RandomForestRegressor(), CatBoostRegressor()])
139
+ leaderboard_rf_imp=ms.cross_validation(X = train_rf,
140
+ target = "Target_Name_Col",
141
+ test_size = 0.2,
142
+ n_splits = 3,
143
+ models = [LinearRegression(), RandomForestRegressor(), CatBoostRegressor()])
144
144
 
145
145
  ## Export Imputation Metadata
146
146
 
147
- # KNN Imputation Metadata
147
+ # Imputation Metadata
148
148
  import pickle
149
- output = open("imputer_knn.pkl", 'wb')
150
- pickle.dump(imputer_knn, output)
149
+ output = open("imputer_rf.pkl", 'wb')
150
+ pickle.dump(mli_rf, output)
151
151
 
152
152
  ```
153
153
 
@@ -2,8 +2,8 @@ mlimputer/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
2
2
  mlimputer/imputation.py,sha256=ZKn907nYvO42fII-dGCcQzqlbPIonm3c2fAYJO74irQ,5174
3
3
  mlimputer/model_selection.py,sha256=O3uqHyb9_uIsFLRMFBz8Jwl8-pxA3HKVG_XW1Px3fMk,6344
4
4
  mlimputer/parameters.py,sha256=mLyBajvX2CJ3HWMArmu1_2Jsot59qrVv7jyMGoT4iqs,1240
5
- mlimputer-1.0.40.dist-info/LICENSE,sha256=BMKwnVd_OgrW1_Ls-_WlfHpr-s7KFtcT6t9t9tfFk8g,1090
6
- mlimputer-1.0.40.dist-info/METADATA,sha256=xpMTzXXKaQPQw3K_ghL5BISKJjydHDQyWlrG0vx0s8g,7006
7
- mlimputer-1.0.40.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
8
- mlimputer-1.0.40.dist-info/top_level.txt,sha256=6qseujMDdh0A5GoDaKPU6kp9vnXciE1XKZIvz88dVzE,10
9
- mlimputer-1.0.40.dist-info/RECORD,,
5
+ mlimputer-1.0.50.dist-info/LICENSE,sha256=BMKwnVd_OgrW1_Ls-_WlfHpr-s7KFtcT6t9t9tfFk8g,1090
6
+ mlimputer-1.0.50.dist-info/METADATA,sha256=y4oN8ZhrnzmXaoBGvcwO-lObLayWGO66kPylc8jVFEY,7019
7
+ mlimputer-1.0.50.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
8
+ mlimputer-1.0.50.dist-info/top_level.txt,sha256=6qseujMDdh0A5GoDaKPU6kp9vnXciE1XKZIvz88dVzE,10
9
+ mlimputer-1.0.50.dist-info/RECORD,,