ml4gw 0.7.5__py3-none-any.whl → 0.7.7__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of ml4gw might be problematic. Click here for more details.

@@ -23,9 +23,9 @@ class TimeDomainCBCWaveformGenerator(torch.nn.Module):
23
23
  frequency-domain approximants.
24
24
 
25
25
  Frequency domain waveforms are conditioned as done by lalsimulation.
26
- Specifically, waveforms are generated with a starting frequency `fstart`
27
- slightly below the requested `f_min`, so that they can be tapered from
28
- `fstart` to `f_min` using a cosine window.
26
+ Specifically, waveforms are generated with a starting frequency ``fstart``
27
+ slightly below the requested ``f_min``, so that they can be tapered from
28
+ ``fstart`` to ``f_min`` using a cosine window.
29
29
 
30
30
  Please see https://lscsoft.docs.ligo.org/lalsuite/lalsimulation/group___l_a_l_sim_inspiral__c.html#gac9f16dab2cbca5a431738ee7d2505969
31
31
  for more information
@@ -34,11 +34,11 @@ class TimeDomainCBCWaveformGenerator(torch.nn.Module):
34
34
  approximant:
35
35
  A callable that returns hplus and hcross polarizations
36
36
  given requested frequencies and relevant set of parameters.
37
- See `ml4gw.waveforms.cbc` for implemented approximants.
37
+ See ``ml4gw.waveforms.cbc`` for implemented approximants.
38
38
  sample_rate:
39
39
  Rate at which returned time domain waveform will be
40
- sampled in Hz. This also specifies `f_max` for generating
41
- waveforms via the nyquist frequency: `f_max = sample_rate // 2`.
40
+ sampled in Hz. This also specifies ``f_max`` for generating
41
+ waveforms via the nyquist frequency: ``f_max = sample_rate // 2``.
42
42
  f_min:
43
43
  Lower frequency bound for waveforms
44
44
  duration:
@@ -126,18 +126,18 @@ class TimeDomainCBCWaveformGenerator(torch.nn.Module):
126
126
  **parameters:
127
127
  Dictionary of parameters for waveform generation where key is
128
128
  the parameter name and value is a tensor of parameters.
129
- It is required that `parameters` contains `mass_1`, `mass_2`,
130
- `s1z`, and `s2z` keys, which are used for determining
129
+ It is required that ``parameters`` contains ``mass_1``, ``mass_2``,
130
+ ``s1z``, and ``s2z`` keys, which are used for determining
131
131
  parameters of data conditioning.
132
132
 
133
133
  If the specified approximant takes other parameters for
134
- waveform generation, like `chirp_mass` and `mass_ratio`, the
135
- utility functions in `ml4gw.waveforms.conversion`may be useful
134
+ waveform generation, like ``chirp_mass`` and ``mass_ratio``, the
135
+ utility functions in ``ml4gw.waveforms.conversion`` may be useful
136
136
  for populating the parameters dictionary with these
137
137
  additional parameters.
138
138
 
139
- Note that, if using an approximant from `ml4gw.waveforms.cbc`,
140
- any additional keys in `parameters` not ingested by the
139
+ Note that, if using an approximant from ``ml4gw.waveforms.cbc``,
140
+ any additional keys in ``parameters`` not ingested by the
141
141
  approximant will be ignored.
142
142
  """ # noqa: E501
143
143
  # convert masses to kg, make sure
@@ -257,8 +257,8 @@ class TimeDomainCBCWaveformGenerator(torch.nn.Module):
257
257
  hc_spectrum[..., -1], hp_spectrum[..., -1] = 0.0, 0.0
258
258
 
259
259
  # apply time translation in (i.e. phase shift in frequency domain)
260
- # that will translate the coalescense time such that it is `right_pad`
261
- # seconds from the right edge of the window
260
+ # that will translate the coalescense time such that it is
261
+ # ``right_pad`` seconds from the right edge of the window
262
262
  tshift = round(self.right_pad * self.sample_rate) / self.sample_rate
263
263
  kvals = torch.arange(num_freqs, device=device)
264
264
  phase_shift = torch.exp(1j * 2 * torch.pi * df * tshift * kvals)
@@ -277,24 +277,25 @@ class TimeDomainCBCWaveformGenerator(torch.nn.Module):
277
277
  Conditioning is based onhttps://git.ligo.org/lscsoft/lalsuite/-/blob/master/lalsimulation/python/lalsimulation/gwsignal/core/waveform_conditioning.py?ref_type=heads#L248
278
278
 
279
279
  A frequency domain waveform is generated, conditioned
280
- (see `generate_conditioned_fd_waveform`) and fft'd into the time-domain
281
-
282
- **parameters:
283
- Dictionary of parameters for waveform generation where each key is
284
- the parameter name and each value is a tensor of parameters.
285
- It is required that `parameters` contains `mass_1`, `mass_2`,
286
- `s1z`, and `s2z` keys, which are used for determining parameters
287
- of data conditioning.
288
-
289
- If the specified approximant takes other parameters for waveform
290
- generation, like `chirp_mass` and `mass_ratio`, the utility
291
- functions in `ml4gw.waveforms.conversion` may be useful for
292
- populating the parameters dictionary with these additional
293
- parameters.
294
-
295
- Note that, if using an approximant from `ml4gw.waveforms.cbc`,
296
- any additional keys in `parameters` not ingested by the
297
- approximant will be ignored.
280
+ (see ``generate_conditioned_fd_waveform``) and fft'd into the time-domain
281
+
282
+ Args:
283
+ **parameters:
284
+ Dictionary of parameters for waveform generation where each key is
285
+ the parameter name and each value is a tensor of parameters.
286
+ It is required that ``parameters`` contains ``mass_1``, ``mass_2``,
287
+ ``s1z``, and ``s2z`` keys, which are used for determining parameters
288
+ of data conditioning.
289
+
290
+ If the specified approximant takes other parameters for waveform
291
+ generation, like ``chirp_mass`` and ``mass_ratio``, the utility
292
+ functions in ``ml4gw.waveforms.conversion`` may be useful for
293
+ populating the parameters dictionary with these additional
294
+ parameters.
295
+
296
+ Note that, if using an approximant from ``ml4gw.waveforms.cbc``,
297
+ any additional keys in ``parameters`` not ingested by the
298
+ approximant will be ignored.
298
299
  """ # noqa: E501
299
300
 
300
301
  hc, hp = self.generate_conditioned_fd_waveform(**parameters)
@@ -1,9 +1,8 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: ml4gw
3
- Version: 0.7.5
3
+ Version: 0.7.7
4
4
  Summary: Tools for training torch models on gravitational wave data
5
5
  Author-email: Ethan Marx <emarx@mit.edu>, Will Benoit <benoi090@umn.edu>, Deep Chatterjee <deep1018@mit.edu>, Alec Gunny <alec.gunny@ligo.org>
6
- License-File: LICENSE
7
6
  Classifier: License :: OSI Approved :: GNU General Public License v3 (GPLv3)
8
7
  Classifier: Programming Language :: Python :: 3.9
9
8
  Classifier: Programming Language :: Python :: 3.10
@@ -11,12 +10,14 @@ Classifier: Programming Language :: Python :: 3.11
11
10
  Classifier: Programming Language :: Python :: 3.12
12
11
  Classifier: Programming Language :: Python :: 3.13
13
12
  Requires-Python: <3.13,>=3.9
13
+ Description-Content-Type: text/markdown
14
+ License-File: LICENSE
14
15
  Requires-Dist: jaxtyping<0.3,>=0.2
16
+ Requires-Dist: torch~=2.0
17
+ Requires-Dist: torchaudio~=2.0
15
18
  Requires-Dist: numpy<2.0.0
16
19
  Requires-Dist: scipy<1.15,>=1.9.0
17
- Requires-Dist: torchaudio~=2.0
18
- Requires-Dist: torch~=2.0
19
- Description-Content-Type: text/markdown
20
+ Dynamic: license-file
20
21
 
21
22
  # ML4GW
22
23
  ![PyPI - Version](https://img.shields.io/pypi/v/ml4gw)
@@ -0,0 +1,56 @@
1
+ ml4gw/__init__.py,sha256=81quoggCuIypZjZs3bbf1Ty70KHdva5RGEJxi0oC57E,25
2
+ ml4gw/augmentations.py,sha256=4tSWO-I4Eg2QJWzdcLFg9QcOLlvRjNHvnjLCZS8K-Wc,1270
3
+ ml4gw/constants.py,sha256=RQPXwavlw_cWu3ByltvTejPsi6EWXHDJQ1HaV9iE3Lg,850
4
+ ml4gw/distributions.py,sha256=B3heOf_x-71UJBExkmaiqBfjTHiGDds_bYo62wydddU,12832
5
+ ml4gw/gw.py,sha256=bJ-GCZxanqrhbm373h9muOSZpam7wM-dJBZroy_pVNQ,20291
6
+ ml4gw/spectral.py,sha256=Mx_zRjZ9tD7N-wknv35oA3fk2X0rDJxQdQzRyuCFryw,19982
7
+ ml4gw/types.py,sha256=CcctqDcNajR7khGT6BD-WYsfRKpiP0udoSAB0k1qcFw,863
8
+ ml4gw/dataloading/__init__.py,sha256=EHBBqU7y2-Np5iQ_xyufxamUEM1pPEquqFo7oaJnaJE,149
9
+ ml4gw/dataloading/chunked_dataset.py,sha256=exvhC0zbEkd3SnDidClQRhxY713cY68wQmEQ__3vRLI,5316
10
+ ml4gw/dataloading/hdf5_dataset.py,sha256=pKf_0UmwZ3UPOCDrwCuFxpcLbMihU2AKpjT_igmv87k,7935
11
+ ml4gw/dataloading/in_memory_dataset.py,sha256=7eDHq365XXBy1NywU72FOdHxSksK7UZYHFc3kvhNp8c,9597
12
+ ml4gw/nn/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
13
+ ml4gw/nn/norm.py,sha256=JIOMXQbUtoWlrhncGsqW6f1-DiGDx9zQH2O3CvQml3U,3594
14
+ ml4gw/nn/autoencoder/__init__.py,sha256=ZaT1XhJTHpMuPQqu5E__Jezeh9uwtjcXlT7IZ18byq4,161
15
+ ml4gw/nn/autoencoder/base.py,sha256=RfDEeD6Ni1EJtQni5JTrLOWPr-zzDSWztO-DijKCgLQ,3226
16
+ ml4gw/nn/autoencoder/convolutional.py,sha256=tSFIgIZ0XUvdUaPQ-vJ2AeJ9g5FrwcBy_Py5IP6ezRw,5365
17
+ ml4gw/nn/autoencoder/skip_connection.py,sha256=9PKoCCvCUj5di9tuFM0Cl1v6gtcOK1bDeE_fS_R__FE,1391
18
+ ml4gw/nn/autoencoder/utils.py,sha256=m_ivYGNwdrhA7cFxJVD4gqM8AHiWIGmlQI3pFNRklXQ,355
19
+ ml4gw/nn/resnet/__init__.py,sha256=vBI0IftVP_EYAeDlqomtkGqUYE-RE_S4WNioUhniw9s,64
20
+ ml4gw/nn/resnet/resnet_1d.py,sha256=dNWD8vGBiwF8qbQfjNEXDIEUgWRgrEoq__XUU-XN2uA,13268
21
+ ml4gw/nn/resnet/resnet_2d.py,sha256=MAbXtkSrP4aWGtY-QC8ox3-y5jDHJrzRPL5ryQ4RBvM,13367
22
+ ml4gw/nn/streaming/__init__.py,sha256=zgjGR2L8t0txXLnil9ceZT0tM8Y2FC8yPxqIKYH0o1A,80
23
+ ml4gw/nn/streaming/online_average.py,sha256=YSFUHhwNfQjUJbzQCqaCVApSueswzYB4yel981Omiqw,4718
24
+ ml4gw/nn/streaming/snapshotter.py,sha256=vEQLFi-fEH-o7TO9SmYXy5whxFxXQBDeOQOFhSnofSg,4503
25
+ ml4gw/transforms/__init__.py,sha256=sREcTsJYPOHBk_QEvhlwvLeoR61Th8LVGaBicWngmv4,470
26
+ ml4gw/transforms/iirfilter.py,sha256=HcdsjcSaSi2xe65ojxnaqeSdbYvSQVFIkHKon3nW238,3194
27
+ ml4gw/transforms/pearson.py,sha256=sFyHD6IdskbRS8V1fY0Kt9N8R2_EhnuL6UjFa6fnmTU,3244
28
+ ml4gw/transforms/qtransform.py,sha256=2GtPyY5DPhoUMDs68juLIzmxbelfsS4CpI0HyTPe3Oo,20636
29
+ ml4gw/transforms/scaler.py,sha256=BKn4RQ_TNArdwPI_j5nAe7H2jOH_-MrZPsNByE-8Pl8,2518
30
+ ml4gw/transforms/snr_rescaler.py,sha256=lfuwdwMY117gB-emmn0_22gsK_A9xnkHJv2-76HFWc4,2728
31
+ ml4gw/transforms/spectral.py,sha256=ebAuPSdQqha6J3MMzxqJqR31XPKUDrSz3iJaHM3orpk,4449
32
+ ml4gw/transforms/spectrogram.py,sha256=NIyTD8kZRe8rjMUTy1_-wpFyvAswzTfYwD4TJJcPqgs,6369
33
+ ml4gw/transforms/spline_interpolation.py,sha256=_D_P2jNIOL8-XiSSjsGClxuVwthO-CxcoqNwvrBWQpk,18668
34
+ ml4gw/transforms/transform.py,sha256=lpHQbM4PhdijvNBsZigPX-mS04aiVVq5q3HMfxvpFg0,2506
35
+ ml4gw/transforms/waveforms.py,sha256=koWOuHuUpQWmTT1yawSWa_MOuLfDBuugy91KIyuklOo,3189
36
+ ml4gw/transforms/whitening.py,sha256=UyFustRhu3zv0ynJBvvxekWA-YOMwEIOYDNpoD5r_qQ,10400
37
+ ml4gw/utils/interferometer.py,sha256=lRS0N3SwUTknhYXX57VACJ99jK1P9M19oUWN_i_nQN0,1814
38
+ ml4gw/utils/slicing.py,sha256=kQ0xIW5Ojko4uKS1VI5i7PMUk7Fk81dT6p6tuQ0nyBI,13763
39
+ ml4gw/waveforms/__init__.py,sha256=QVUzBx_y8A9_AsRuTJruPvL9mqGnBt11Iw1MOYjXyE4,40
40
+ ml4gw/waveforms/conversion.py,sha256=vF8u_4FWwXAXJEtWZ_N0GhbEnt6snsyW-9fasGLaCok,6948
41
+ ml4gw/waveforms/generator.py,sha256=Ml23ZoxyN4FDYty5the13rQ_HO4bnnvxInORKJqMkBk,12298
42
+ ml4gw/waveforms/adhoc/__init__.py,sha256=XVwP4t8TMUj87WY3yMGRTkXsv7_lVr1w8p8iKBW8iKE,71
43
+ ml4gw/waveforms/adhoc/ringdown.py,sha256=m8IBQTxKBBGFqBtWGEO4KG3DEYR8TTnNyGVdVLaMKa8,3316
44
+ ml4gw/waveforms/adhoc/sine_gaussian.py,sha256=-MtrI7ydwBTk4K0O4tdkC8-w5OifQszdnWN9__I4XzY,3569
45
+ ml4gw/waveforms/cbc/__init__.py,sha256=hGbPsFNAIveYJnff8qKY8RWeBPFtZoYcnGHxraPWtWI,99
46
+ ml4gw/waveforms/cbc/coefficients.py,sha256=PMr0IBALEQ38eAvZqYg-w_FE_sS1mH2FWr9soQ5MRfU,1106
47
+ ml4gw/waveforms/cbc/phenom_d.py,sha256=FS4XBbhCicqYqaZnb3itqBZrjFex6wNoFMEMfClsW68,46908
48
+ ml4gw/waveforms/cbc/phenom_d_data.py,sha256=WA1FBxUp9fo1IQaV_OLJ_5g5gI166mY1FtG9n25he9U,53447
49
+ ml4gw/waveforms/cbc/phenom_p.py,sha256=tOUBoYfr0ub6OGRjDQbquGoW8AnThiGjJvbHhyGnAnk,27680
50
+ ml4gw/waveforms/cbc/taylorf2.py,sha256=emWbl3vjsCzBOooHOVO7pPlPcj05r4up6InlMkO5m_E,10422
51
+ ml4gw/waveforms/cbc/utils.py,sha256=LT1ky10_6ZrbwTcxIrWP1O75GUEuU5q2ZE2yYDhadQE,3037
52
+ ml4gw-0.7.7.dist-info/licenses/LICENSE,sha256=OXLcl0T2SZ8Pmy2_dmlvKuetivmyPd5m1q-Gyd-zaYY,35149
53
+ ml4gw-0.7.7.dist-info/METADATA,sha256=C3IsV7-AGBWfid4FvE1xuGL0HFX_wzRii0Wzb4aSOiM,3402
54
+ ml4gw-0.7.7.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
55
+ ml4gw-0.7.7.dist-info/top_level.txt,sha256=JnWLyPXJ3_WUcjr6fRV0ZTXj8FR0x4vBzjkg-1bl2tw,6
56
+ ml4gw-0.7.7.dist-info/RECORD,,
@@ -1,4 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: hatchling 1.27.0
2
+ Generator: setuptools (80.9.0)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
+
@@ -0,0 +1 @@
1
+ ml4gw
@@ -1,55 +0,0 @@
1
- ml4gw/__init__.py,sha256=81quoggCuIypZjZs3bbf1Ty70KHdva5RGEJxi0oC57E,25
2
- ml4gw/augmentations.py,sha256=pZH9tjEpXV0AIqvHHDkpUE-BorG02beOz2pmSipw2EY,1232
3
- ml4gw/constants.py,sha256=RQPXwavlw_cWu3ByltvTejPsi6EWXHDJQ1HaV9iE3Lg,850
4
- ml4gw/distributions.py,sha256=YbkPqeYBDC91aM59R7-n6NpBMgvMZcZoOAW_U-Jgrdo,12420
5
- ml4gw/gw.py,sha256=0ovW_HJ3j2b5Yq3mduYtGLSl2RrvFyNNcOsZFf7koHY,19794
6
- ml4gw/spectral.py,sha256=sao_D0ceeMEatABfiabpqb-xxRfQO8Tz7yk9N7ciOAU,19858
7
- ml4gw/types.py,sha256=CcctqDcNajR7khGT6BD-WYsfRKpiP0udoSAB0k1qcFw,863
8
- ml4gw/dataloading/__init__.py,sha256=EHBBqU7y2-Np5iQ_xyufxamUEM1pPEquqFo7oaJnaJE,149
9
- ml4gw/dataloading/chunked_dataset.py,sha256=yjJ_T7YFDErnLm-TmjXnZtT6GNPdPxj5njljWHr07Y0,5308
10
- ml4gw/dataloading/hdf5_dataset.py,sha256=IwOUYjjeUWPDL6HvPAfHrN5wK3qCrDdkH1OZFsecZnQ,7917
11
- ml4gw/dataloading/in_memory_dataset.py,sha256=7307LxdDGKxcy5_WNJp4f5J92AtV8gFT-B6P0QcWUfs,9545
12
- ml4gw/nn/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
13
- ml4gw/nn/norm.py,sha256=JIOMXQbUtoWlrhncGsqW6f1-DiGDx9zQH2O3CvQml3U,3594
14
- ml4gw/nn/autoencoder/__init__.py,sha256=ZaT1XhJTHpMuPQqu5E__Jezeh9uwtjcXlT7IZ18byq4,161
15
- ml4gw/nn/autoencoder/base.py,sha256=eSWrDdpblI609oqa7RDSvZiY3YcV8WfhTioWKFn_7eE,3205
16
- ml4gw/nn/autoencoder/convolutional.py,sha256=prj5Sat_yN15q-T7q9Uym8Hw6gjh7b8zimAVwT2Q85g,5357
17
- ml4gw/nn/autoencoder/skip_connection.py,sha256=9PKoCCvCUj5di9tuFM0Cl1v6gtcOK1bDeE_fS_R__FE,1391
18
- ml4gw/nn/autoencoder/utils.py,sha256=m_ivYGNwdrhA7cFxJVD4gqM8AHiWIGmlQI3pFNRklXQ,355
19
- ml4gw/nn/resnet/__init__.py,sha256=vBI0IftVP_EYAeDlqomtkGqUYE-RE_S4WNioUhniw9s,64
20
- ml4gw/nn/resnet/resnet_1d.py,sha256=qNiPNyT2Gracj0PvvRSwXiskqghZ22se5KYnlxcjzEw,13254
21
- ml4gw/nn/resnet/resnet_2d.py,sha256=xgEyraxgvAOM6OqEtpciRCa20U_fyClLG-A8oaIr2UQ,13337
22
- ml4gw/nn/streaming/__init__.py,sha256=zgjGR2L8t0txXLnil9ceZT0tM8Y2FC8yPxqIKYH0o1A,80
23
- ml4gw/nn/streaming/online_average.py,sha256=_nrul4ygTC_ln4wpSWGRWTgWlfGeOUGXxeGrhU4oJms,4716
24
- ml4gw/nn/streaming/snapshotter.py,sha256=1vWDpebRQBZIUVeksbXoqngqMnlSzQFkcsgYNrHB9tc,4473
25
- ml4gw/transforms/__init__.py,sha256=OaTQJD4GFkDkcxt0DIwt2AzeEcv9t21ciKXxQnqDiuI,447
26
- ml4gw/transforms/iirfilter.py,sha256=0FQ2HfXiYuvRzNmMz-SxkocTTrrKuJpxob0NGgkalBA,3188
27
- ml4gw/transforms/pearson.py,sha256=CM9FTRxI4384-36FIaJFOcMZwsA7BkgberToJkMU1PA,3227
28
- ml4gw/transforms/qtransform.py,sha256=Kntl3MlZvL5Ae4A4Vskfq-uIHKhue_USnEHLG9Cf-Pw,20724
29
- ml4gw/transforms/scaler.py,sha256=K5mp4w2zGZbpH1AcBUfpQS4n3aVSNzkaGWXedwk2LXs,2508
30
- ml4gw/transforms/snr_rescaler.py,sha256=lfuwdwMY117gB-emmn0_22gsK_A9xnkHJv2-76HFWc4,2728
31
- ml4gw/transforms/spectral.py,sha256=4uCLNEcDff4kLheUA5v64L0y_MSOvUTJ92IH4TVcEys,4385
32
- ml4gw/transforms/spectrogram.py,sha256=fpI0vypB5seBA05a979KKsSL9go0FHGI_-BVzRJ9ATA,6218
33
- ml4gw/transforms/spline_interpolation.py,sha256=CDfHX2Cd0KqNgo2JXNk2QgFNYtDfEXCMIFZ7bDqo6po,13573
34
- ml4gw/transforms/transform.py,sha256=lu5ukcOCOYYZDZCM_0amS9AY2bJgkbLpXmZ9DpnSK9I,2504
35
- ml4gw/transforms/waveforms.py,sha256=koWOuHuUpQWmTT1yawSWa_MOuLfDBuugy91KIyuklOo,3189
36
- ml4gw/transforms/whitening.py,sha256=XyBAAsTkW5O4K06ET6a9mb0809yDkMcVZJjkB1X1vY4,10295
37
- ml4gw/utils/interferometer.py,sha256=lRS0N3SwUTknhYXX57VACJ99jK1P9M19oUWN_i_nQN0,1814
38
- ml4gw/utils/slicing.py,sha256=WkY9biz6V8FWUmqCq9QpYZv67kp0yEjdKfkI8CcK4Dc,13653
39
- ml4gw/waveforms/__init__.py,sha256=QVUzBx_y8A9_AsRuTJruPvL9mqGnBt11Iw1MOYjXyE4,40
40
- ml4gw/waveforms/conversion.py,sha256=YMyjxzPlLAay66oNABCU98VnvhyjTNbGJ36R5sX3MVo,6945
41
- ml4gw/waveforms/generator.py,sha256=RuVO9FL3IwmzTb10JkQ4iR8u2-0edy8DiZhZ_leHAPc,12169
42
- ml4gw/waveforms/adhoc/__init__.py,sha256=XVwP4t8TMUj87WY3yMGRTkXsv7_lVr1w8p8iKBW8iKE,71
43
- ml4gw/waveforms/adhoc/ringdown.py,sha256=m8IBQTxKBBGFqBtWGEO4KG3DEYR8TTnNyGVdVLaMKa8,3316
44
- ml4gw/waveforms/adhoc/sine_gaussian.py,sha256=-MtrI7ydwBTk4K0O4tdkC8-w5OifQszdnWN9__I4XzY,3569
45
- ml4gw/waveforms/cbc/__init__.py,sha256=hGbPsFNAIveYJnff8qKY8RWeBPFtZoYcnGHxraPWtWI,99
46
- ml4gw/waveforms/cbc/coefficients.py,sha256=PMr0IBALEQ38eAvZqYg-w_FE_sS1mH2FWr9soQ5MRfU,1106
47
- ml4gw/waveforms/cbc/phenom_d.py,sha256=GdBdSfUIze2KUfKBS44A4kfYpG27aA5FYknaBqL0q8c,48984
48
- ml4gw/waveforms/cbc/phenom_d_data.py,sha256=WA1FBxUp9fo1IQaV_OLJ_5g5gI166mY1FtG9n25he9U,53447
49
- ml4gw/waveforms/cbc/phenom_p.py,sha256=RZzzKQzqZW3rQuWZ41htTZOwwulYP61ow87HRRrel5A,27612
50
- ml4gw/waveforms/cbc/taylorf2.py,sha256=cmYrVL29dwX2Icp7I6SXqRIjtPmoljK5DP_ofx2heiM,10505
51
- ml4gw/waveforms/cbc/utils.py,sha256=LT1ky10_6ZrbwTcxIrWP1O75GUEuU5q2ZE2yYDhadQE,3037
52
- ml4gw-0.7.5.dist-info/METADATA,sha256=KI_oVRLxKfCFsBESasNrDh2QfMR4lsriRZwCCAYFt4c,3380
53
- ml4gw-0.7.5.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
54
- ml4gw-0.7.5.dist-info/licenses/LICENSE,sha256=OXLcl0T2SZ8Pmy2_dmlvKuetivmyPd5m1q-Gyd-zaYY,35149
55
- ml4gw-0.7.5.dist-info/RECORD,,