ml4gw 0.6.3__py3-none-any.whl → 0.7.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of ml4gw might be problematic. Click here for more details.

@@ -0,0 +1,78 @@
1
+ Metadata-Version: 2.3
2
+ Name: ml4gw
3
+ Version: 0.7.0
4
+ Summary: Tools for training torch models on gravitational wave data
5
+ Author: Alec Gunny
6
+ Author-email: alec.gunny@ligo.org
7
+ Requires-Python: >=3.9,<3.13
8
+ Classifier: Programming Language :: Python :: 3
9
+ Classifier: Programming Language :: Python :: 3.9
10
+ Classifier: Programming Language :: Python :: 3.10
11
+ Classifier: Programming Language :: Python :: 3.11
12
+ Classifier: Programming Language :: Python :: 3.12
13
+ Requires-Dist: jaxtyping (>=0.2,<0.3)
14
+ Requires-Dist: numpy (<2.0.0)
15
+ Requires-Dist: torch (>=2.0,<3.0)
16
+ Requires-Dist: torchaudio (>=2.0,<3.0)
17
+ Description-Content-Type: text/markdown
18
+
19
+ # ML4GW
20
+ ![PyPI - Version](https://img.shields.io/pypi/v/ml4gw)
21
+ ![PyPI - Python Version](https://img.shields.io/pypi/pyversions/ml4gw)
22
+ ![GitHub License](https://img.shields.io/github/license/ML4GW/ml4gw)
23
+ ![Test status](https://github.com/ML4GW/ml4gw/actions/workflows/unit-tests.yaml/badge.svg)
24
+ ![Coverage badge](https://raw.githubusercontent.com/ML4GW/ml4gw/python-coverage-comment-action-data/badge.svg)
25
+
26
+ Torch utilities for training neural networks in gravitational wave physics applications.
27
+
28
+ ## Documentation
29
+ Please visit our [documentation page](https://ml4gw.github.io/ml4gw/) to see descriptions and examples of the functions and modules available in `ml4gw`.
30
+ We also have an interactive Jupyter notebook that demonstrates much of the core functionality available in the `examples` directory.
31
+
32
+ ## Installation
33
+ ### Pip installation
34
+ You can install `ml4gw` with pip:
35
+
36
+ ```console
37
+ pip install ml4gw
38
+ ```
39
+
40
+ To build with a specific version of PyTorch/CUDA, please see the PyTorch installation instructions [here](https://pytorch.org/get-started/previous-versions/) to see how to specify the desired torch version and `--extra-index-url` flag. For example, to install with torch 2.5.1 and CUDA 11.8 support, you would run
41
+
42
+ ```console
43
+ pip install ml4gw torch==2.5.1--extra-index-url=https://download.pytorch.org/whl/cu118
44
+ ```
45
+
46
+ ### Poetry installation
47
+ `ml4gw` is also fully compatible with use in Poetry, with your `pyproject.toml` set up like
48
+
49
+ ```toml
50
+ [tool.poetry.dependencies]
51
+ python = "^3.9" # python versions 3.9-3.12 are supported
52
+ ml4gw = "^0.6"
53
+ ```
54
+
55
+ To build against a specific PyTorch/CUDA combination, consult the PyTorch installation documentation above and specify the `extra-index-url` via the `tool.poetry.source` table in your `pyproject.toml`. For example, to build against CUDA 11.6, you would do something like:
56
+
57
+ ```toml
58
+ [tool.poetry.dependencies]
59
+ python = "^3.9"
60
+ ml4gw = "^0.6"
61
+ torch = {version = "^2.0", source = "torch"}
62
+
63
+ [[tool.poetry.source]]
64
+ name = "torch"
65
+ url = "https://download.pytorch.org/whl/cu118"
66
+ priority = "explicit"
67
+ ```
68
+
69
+ ## Contributing
70
+ If you come across errors in the code, have difficulties using this software, or simply find that the current version doesn't cover your use case, please file an issue on our GitHub page, and we'll be happy to offer support.
71
+ We encourage users who encounter these difficulties to file issues on GitHub, and we'll be happy to offer support to extend our coverage to new or improved functionality.
72
+ We also strongly encourage ML users in the GW physics space to try their hand at working on these issues and joining on as collaborators!
73
+ For more information about how to get involved, feel free to reach out to [ml4gw@ligo.mit.edu](mailto:ml4gw@ligo.mit.edu).
74
+ By bringing in new users with new use cases, we hope to develop this library into a truly general-purpose tool that makes deep learning more accessible for gravitational wave physicists everywhere.
75
+
76
+ ## Funding
77
+ We are grateful for the support of the U.S. National Science Foundation (NSF) Harnessing the Data Revolution (HDR) Institute for <a href="https://a3d3.ai">Accelerating AI Algorithms for Data Driven Discovery (A3D3)</a> under Cooperative Agreement No. <a href="https://www.nsf.gov/awardsearch/showAward?AWD_ID=2117997">PHY-2117997</a>.
78
+
@@ -0,0 +1,55 @@
1
+ ml4gw/__init__.py,sha256=81quoggCuIypZjZs3bbf1Ty70KHdva5RGEJxi0oC57E,25
2
+ ml4gw/augmentations.py,sha256=pZH9tjEpXV0AIqvHHDkpUE-BorG02beOz2pmSipw2EY,1232
3
+ ml4gw/constants.py,sha256=RQPXwavlw_cWu3ByltvTejPsi6EWXHDJQ1HaV9iE3Lg,850
4
+ ml4gw/dataloading/__init__.py,sha256=EHBBqU7y2-Np5iQ_xyufxamUEM1pPEquqFo7oaJnaJE,149
5
+ ml4gw/dataloading/chunked_dataset.py,sha256=j96Rd67cRpsvotR_dzgfbrqxcoGDWnTV5cmfN038cb8,5256
6
+ ml4gw/dataloading/hdf5_dataset.py,sha256=bVcXzS1LHVj7zMeMtRkxx1Q76MQS6wEApJJlUAI6iC8,7879
7
+ ml4gw/dataloading/in_memory_dataset.py,sha256=1oUchfNBq3rx1NgNqrcg6AGdJ-dvm56o-TGFwPn5wm8,9546
8
+ ml4gw/distributions.py,sha256=tUuaOiX5enjKLYWD7uiN8rdRVQcrIKps64xBkTl8fMs,4991
9
+ ml4gw/gw.py,sha256=aUPSXgwyqJUBGGaKtUa-O3qkSbRYZwhhXIlkhvjgJgI,17684
10
+ ml4gw/nn/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
11
+ ml4gw/nn/autoencoder/__init__.py,sha256=ZaT1XhJTHpMuPQqu5E__Jezeh9uwtjcXlT7IZ18byq4,161
12
+ ml4gw/nn/autoencoder/base.py,sha256=eSWrDdpblI609oqa7RDSvZiY3YcV8WfhTioWKFn_7eE,3205
13
+ ml4gw/nn/autoencoder/convolutional.py,sha256=VCemfNtzleIaKZHtzfxFDhYBLHdHEODy4-LRA9GiDhY,5359
14
+ ml4gw/nn/autoencoder/skip_connection.py,sha256=9PKoCCvCUj5di9tuFM0Cl1v6gtcOK1bDeE_fS_R__FE,1391
15
+ ml4gw/nn/autoencoder/utils.py,sha256=m_ivYGNwdrhA7cFxJVD4gqM8AHiWIGmlQI3pFNRklXQ,355
16
+ ml4gw/nn/norm.py,sha256=JIOMXQbUtoWlrhncGsqW6f1-DiGDx9zQH2O3CvQml3U,3594
17
+ ml4gw/nn/resnet/__init__.py,sha256=vBI0IftVP_EYAeDlqomtkGqUYE-RE_S4WNioUhniw9s,64
18
+ ml4gw/nn/resnet/resnet_1d.py,sha256=C0H-GuY3-bradnSvUNtkD-o8j3-3uQDhUK4DKbOOrzk,13211
19
+ ml4gw/nn/resnet/resnet_2d.py,sha256=fVzYRuO0xR9yGjjQExv30mouokvupOAW-Kfdbs5WYDA,13294
20
+ ml4gw/nn/streaming/__init__.py,sha256=zgjGR2L8t0txXLnil9ceZT0tM8Y2FC8yPxqIKYH0o1A,80
21
+ ml4gw/nn/streaming/online_average.py,sha256=_nrul4ygTC_ln4wpSWGRWTgWlfGeOUGXxeGrhU4oJms,4716
22
+ ml4gw/nn/streaming/snapshotter.py,sha256=1vWDpebRQBZIUVeksbXoqngqMnlSzQFkcsgYNrHB9tc,4473
23
+ ml4gw/spectral.py,sha256=lLpnho02i-0zPSi96b0xOPEIgQMnBrmO8JiV1KvPGEw,19811
24
+ ml4gw/transforms/__init__.py,sha256=OaTQJD4GFkDkcxt0DIwt2AzeEcv9t21ciKXxQnqDiuI,447
25
+ ml4gw/transforms/iirfilter.py,sha256=RwgC3DWgYmBnHe7bYjvr9njM1WrRZ9EjBJsZNmtOY8s,3186
26
+ ml4gw/transforms/pearson.py,sha256=CM9FTRxI4384-36FIaJFOcMZwsA7BkgberToJkMU1PA,3227
27
+ ml4gw/transforms/qtransform.py,sha256=5S9y3PxkOmqMAarQmme0Tiy58vRvberpqhg6IeyDJLI,20675
28
+ ml4gw/transforms/scaler.py,sha256=K5mp4w2zGZbpH1AcBUfpQS4n3aVSNzkaGWXedwk2LXs,2508
29
+ ml4gw/transforms/snr_rescaler.py,sha256=XHKTeJXM3F_VOmjWOZetQuVZ6PMum8pEBPaOVbS16-w,2327
30
+ ml4gw/transforms/spectral.py,sha256=4uCLNEcDff4kLheUA5v64L0y_MSOvUTJ92IH4TVcEys,4385
31
+ ml4gw/transforms/spectrogram.py,sha256=8HDStoup7vlwpw9qTKshAuEpa85-lw5_SwYxjxxu1sQ,6158
32
+ ml4gw/transforms/spline_interpolation.py,sha256=oXih-gLMbIbI36DPKLTk39WcjiNUJN_rcQia_k3OrMY,13527
33
+ ml4gw/transforms/transform.py,sha256=lu5ukcOCOYYZDZCM_0amS9AY2bJgkbLpXmZ9DpnSK9I,2504
34
+ ml4gw/transforms/waveforms.py,sha256=koWOuHuUpQWmTT1yawSWa_MOuLfDBuugy91KIyuklOo,3189
35
+ ml4gw/transforms/whitening.py,sha256=8ADmM52lrHt_2yvjX51x0bFxAloKbS7s2owJgrVD5uc,10294
36
+ ml4gw/types.py,sha256=CcctqDcNajR7khGT6BD-WYsfRKpiP0udoSAB0k1qcFw,863
37
+ ml4gw/utils/interferometer.py,sha256=lRS0N3SwUTknhYXX57VACJ99jK1P9M19oUWN_i_nQN0,1814
38
+ ml4gw/utils/slicing.py,sha256=V9tbEzHnukg16-e8jdIFsZIZ1oICF9zBE2sjUsBXW-s,13538
39
+ ml4gw/waveforms/__init__.py,sha256=QVUzBx_y8A9_AsRuTJruPvL9mqGnBt11Iw1MOYjXyE4,40
40
+ ml4gw/waveforms/adhoc/__init__.py,sha256=XVwP4t8TMUj87WY3yMGRTkXsv7_lVr1w8p8iKBW8iKE,71
41
+ ml4gw/waveforms/adhoc/ringdown.py,sha256=m8IBQTxKBBGFqBtWGEO4KG3DEYR8TTnNyGVdVLaMKa8,3316
42
+ ml4gw/waveforms/adhoc/sine_gaussian.py,sha256=-MtrI7ydwBTk4K0O4tdkC8-w5OifQszdnWN9__I4XzY,3569
43
+ ml4gw/waveforms/cbc/__init__.py,sha256=hGbPsFNAIveYJnff8qKY8RWeBPFtZoYcnGHxraPWtWI,99
44
+ ml4gw/waveforms/cbc/coefficients.py,sha256=PMr0IBALEQ38eAvZqYg-w_FE_sS1mH2FWr9soQ5MRfU,1106
45
+ ml4gw/waveforms/cbc/phenom_d.py,sha256=b586PbpBGAA1DO55X0D35_dAJXIGVwUBrNhmPgCBbwU,48983
46
+ ml4gw/waveforms/cbc/phenom_d_data.py,sha256=WA1FBxUp9fo1IQaV_OLJ_5g5gI166mY1FtG9n25he9U,53447
47
+ ml4gw/waveforms/cbc/phenom_p.py,sha256=LBtGVUjBjROcYBPLldFnF6T1jZV6ZyuZEnkn9-oTKpQ,27620
48
+ ml4gw/waveforms/cbc/taylorf2.py,sha256=2ga_lG_xkYOsF-BdxgjbU0pgLDjeAO0p5IWuCPvibvQ,10504
49
+ ml4gw/waveforms/cbc/utils.py,sha256=CvZ79PQygb-zwulMV-wRuBcGEsHbVOtJz60UnOJFKoM,3051
50
+ ml4gw/waveforms/conversion.py,sha256=MyADWEZVoEkRkKaHk1ZuQDsGfPYx5xUTtyApj5P3ueQ,6895
51
+ ml4gw/waveforms/generator.py,sha256=yCMsL55HRYHh6AVLWKA9Pmd6AoAyO7pe1VdrxzxxOzE,11975
52
+ ml4gw-0.7.0.dist-info/LICENSE,sha256=OXLcl0T2SZ8Pmy2_dmlvKuetivmyPd5m1q-Gyd-zaYY,35149
53
+ ml4gw-0.7.0.dist-info/METADATA,sha256=NsQW99R6S6MYDLoq_cFdgTK-lEZZBK8a-5S09RJIhZo,3904
54
+ ml4gw-0.7.0.dist-info/WHEEL,sha256=IYZQI976HJqqOpQU6PHkJ8fb3tMNBFjg-Cn-pwAbaFM,88
55
+ ml4gw-0.7.0.dist-info/RECORD,,
@@ -1,4 +1,4 @@
1
1
  Wheel-Version: 1.0
2
- Generator: poetry-core 2.0.0
2
+ Generator: poetry-core 2.0.1
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
@@ -1,154 +0,0 @@
1
- Metadata-Version: 2.3
2
- Name: ml4gw
3
- Version: 0.6.3
4
- Summary: Tools for training torch models on gravitational wave data
5
- Author: Alec Gunny
6
- Author-email: alec.gunny@ligo.org
7
- Requires-Python: >=3.9,<3.13
8
- Classifier: Programming Language :: Python :: 3
9
- Classifier: Programming Language :: Python :: 3.9
10
- Classifier: Programming Language :: Python :: 3.10
11
- Classifier: Programming Language :: Python :: 3.11
12
- Classifier: Programming Language :: Python :: 3.12
13
- Requires-Dist: jaxtyping (>=0.2,<0.3)
14
- Requires-Dist: numpy (<2.0.0)
15
- Requires-Dist: torch (>=2.0,<3.0)
16
- Requires-Dist: torchaudio (>=2.0,<3.0)
17
- Description-Content-Type: text/markdown
18
-
19
- # ML4GW
20
-
21
- Torch utilities for training neural networks in gravitational wave physics applications.
22
-
23
- ## Installation
24
- ### Pip installation
25
- You can install `ml4gw` with pip:
26
-
27
- ```console
28
- pip install ml4gw
29
- ```
30
-
31
- To build with a specific version of PyTorch/CUDA, please see the PyTorch installation instructions [here](https://pytorch.org/get-started/previous-versions/) to see how to specify the desired torch version and `--extra-index-url` flag. For example, to install with torch 1.12 and CUDA 11.6 support, you would run
32
-
33
- ```console
34
- pip install ml4gw torch==1.12.0 --extra-index-url=https://download.pytorch.org/whl/cu116
35
- ```
36
-
37
- ### Poetry installation
38
- `ml4gw` is also fully compatible with use in Poetry, with your `pyproject.toml` set up like
39
-
40
- ```toml
41
- [tool.poetry.dependencies]
42
- python = "^3.8" # python versions 3.8-3.11 are supported
43
- ml4gw = "^0.3.0"
44
- ```
45
-
46
- To build against a specific PyTorch/CUDA combination, consult the PyTorch installation documentation above and specify the `extra-index-url` via the `tool.poetry.source` table in your `pyproject.toml`. For example, to build against CUDA 11.6, you would do something like:
47
-
48
- ```toml
49
- [tool.poetry.dependencies]
50
- python = "^3.8"
51
- ml4gw = "^0.3.0"
52
- torch = {version = "^1.12", source = "torch"}
53
-
54
- [[tool.poetry.source]]
55
- name = "torch"
56
- url = "https://download.pytorch.org/whl/cu116"
57
- secondary = true
58
- default = false
59
- ```
60
-
61
- Note: if you are building against CUDA 11.6 or 11.7, make sure that you are using python 3.8, 3.9, or 3.10. Python 3.11 is incompatible with `torchaudio` 0.13, and the following `torchaudio` version is incompatible with CUDA 11.7 and earlier.
62
-
63
- ## Use cases
64
- This library provided utilities for both data iteration and transformation via dataloaders defined in `ml4gw/dataloading` and transform layers exposed in `ml4gw/transforms`. Lower level functions and utilies are defined at the top level of the library and in the `utils` library.
65
-
66
- For example, to train a simple autoencoder using a cost function in frequency space, you might do something like:
67
-
68
- ```python
69
- import numpy as np
70
- import torch
71
- from ml4gw.dataloading import InMemoryDataset
72
- from ml4gw.transforms import SpectralDensity
73
-
74
- SAMPLE_RATE = 2048
75
- NUM_IFOS = 2
76
- DATA_LENGTH = 128
77
- KERNEL_LENGTH = 4
78
- DEVICE = "cuda" # or "cpu", wherever you want to run
79
-
80
- BATCH_SIZE = 32
81
- LEARNING_RATE = 1e-3
82
- NUM_EPOCHS = 10
83
-
84
- dummy_data = np.random.randn(NUM_IFOS, DATA_LENGTH * SAMPLE_RATE)
85
-
86
- # this will create a dataloader that iterates through your
87
- # timeseries data sampling 4s long windows of data randomly
88
- # and non-coincidentally: i.e. the background from each IFO
89
- # will be sampled independently
90
- dataset = InMemoryDataset(
91
- dummy_data,
92
- kernel_size=KERNEL_LENGTH * SAMPLE_RATE,
93
- batch_size=BATCH_SIZE,
94
- batches_per_epoch=50,
95
- coincident=False,
96
- shuffle=True,
97
- device=DEVICE # this will move your dataset to GPU up-front if "cuda"
98
- )
99
-
100
-
101
- nn = torch.nn.Sequential(
102
- torch.nn.Conv1d(
103
- in_channels=2,
104
- out_channels=8,
105
- kernel_size=7
106
- ),
107
- torch.nn.ConvTranspose1d(
108
- in_channels=8,
109
- out_channels=2,
110
- kernel_size=7
111
- )
112
- ).to(DEVICE)
113
-
114
- optimizer = torch.optim.Adam(nn.parameters(), lr=LEARNING_RATE)
115
-
116
- spectral_density = SpectralDensity(SAMPLE_RATE, fftlength=2).to(DEVICE)
117
-
118
- def loss_function(X, y):
119
- """
120
- MSE in frequency domain. Obviously this doesn't
121
- give you much on its own, but you can imagine doing
122
- something like masking to just the bins you care about.
123
- """
124
- X = spectral_density(X)
125
- y = spectral_density(y)
126
- return ((X - y)**2).mean()
127
-
128
-
129
- for i in range(NUM_EPOCHS):
130
- epoch_loss = 0
131
- for X in dataset:
132
- optimizer.zero_grad(set_to_none=True)
133
- assert X.shape == (32, NUM_IFOS, KERNEL_LENGTH * SAMPLE_RATE)
134
- y = nn(X)
135
-
136
- loss = loss_function(X, y)
137
- loss.backward()
138
- optimizer.step()
139
-
140
- epoch_loss += loss.item()
141
- epoch_loss /= len(dataset)
142
- print(f"Epoch {i + 1}/{NUM_EPOCHS} Loss: {epoch_loss:0.3e}")
143
- ```
144
-
145
- ## Development
146
- As this library is still very much a work in progress, we anticipate that novel use cases will encounter errors stemming from a lack of robustness.
147
- We encourage users who encounter these difficulties to file issues on GitHub, and we'll be happy to offer support to extend our coverage to new or improved functionality.
148
- We also strongly encourage ML users in the GW physics space to try their hand at working on these issues and joining on as collaborators!
149
- For more information about how to get involved, feel free to reach out to [ml4gw@ligo.mit.edu](mailto:ml4gw@ligo.mit.edu) .
150
- By bringing in new users with new use cases, we hope to develop this library into a truly general-purpose tool which makes DL more accessible for gravitational wave physicists everywhere.
151
-
152
- ## Funding
153
- We are grateful for the support of the U.S. National Science Foundation (NSF) Harnessing the Data Revolution (HDR) Institute for <a href="https://a3d3.ai">Accelerating AI Algorithms for Data Driven Discovery (A3D3)</a> under Cooperative Agreement No. <a href="https://www.nsf.gov/awardsearch/showAward?AWD_ID=2117997">PHY-2117997</a>.
154
-
@@ -1,51 +0,0 @@
1
- ml4gw/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
2
- ml4gw/augmentations.py,sha256=pZH9tjEpXV0AIqvHHDkpUE-BorG02beOz2pmSipw2EY,1232
3
- ml4gw/constants.py,sha256=RQPXwavlw_cWu3ByltvTejPsi6EWXHDJQ1HaV9iE3Lg,850
4
- ml4gw/dataloading/__init__.py,sha256=EHBBqU7y2-Np5iQ_xyufxamUEM1pPEquqFo7oaJnaJE,149
5
- ml4gw/dataloading/chunked_dataset.py,sha256=FpDc4gFxt-PMyXs5qSWLuTGXMTuS1B-hH8gUOCOGxZk,5260
6
- ml4gw/dataloading/hdf5_dataset.py,sha256=UB1Eog8l7m4M78Owst7oYQZICb0DRJer9WVLVn4hl_I,6645
7
- ml4gw/dataloading/in_memory_dataset.py,sha256=kleMA9ABUKA6J0tCdz78tbX9lM6uxVSLhqgHbSa1iWY,9550
8
- ml4gw/distributions.py,sha256=tUuaOiX5enjKLYWD7uiN8rdRVQcrIKps64xBkTl8fMs,4991
9
- ml4gw/gw.py,sha256=To_hQz9tUp02ADllGLxFCPsNcfbb-kbvfgGpooxcOII,17693
10
- ml4gw/nn/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
11
- ml4gw/nn/autoencoder/__init__.py,sha256=ZaT1XhJTHpMuPQqu5E__Jezeh9uwtjcXlT7IZ18byq4,161
12
- ml4gw/nn/autoencoder/base.py,sha256=4d5Ej30IUzZh3XbldzWlCpp3p0_91YUvKeRID8ZEZGA,3225
13
- ml4gw/nn/autoencoder/convolutional.py,sha256=2BXDuPWYC-151RO_FL0ogdrqSVTfo4YNrY80lPwrmFA,5419
14
- ml4gw/nn/autoencoder/skip_connection.py,sha256=fpXxxIIl0CXY4mAfUZQuvI542pEBSwpg90TNG2rbZY8,1411
15
- ml4gw/nn/autoencoder/utils.py,sha256=m_ivYGNwdrhA7cFxJVD4gqM8AHiWIGmlQI3pFNRklXQ,355
16
- ml4gw/nn/norm.py,sha256=JIOMXQbUtoWlrhncGsqW6f1-DiGDx9zQH2O3CvQml3U,3594
17
- ml4gw/nn/resnet/__init__.py,sha256=vBI0IftVP_EYAeDlqomtkGqUYE-RE_S4WNioUhniw9s,64
18
- ml4gw/nn/resnet/resnet_1d.py,sha256=IQ-EIIzAXd-NWuLwt7JTXLWg5bO3FGJpuFAZwZ78jaI,13218
19
- ml4gw/nn/resnet/resnet_2d.py,sha256=aK4I0FOZk62JxnYFz0t1O0s5s7J7yRNYSM1flRypvVc,13301
20
- ml4gw/nn/streaming/__init__.py,sha256=zgjGR2L8t0txXLnil9ceZT0tM8Y2FC8yPxqIKYH0o1A,80
21
- ml4gw/nn/streaming/online_average.py,sha256=aI8hkT7I3thXkda9tsXxYrzump9swelSXPdSTwPlJWY,4719
22
- ml4gw/nn/streaming/snapshotter.py,sha256=B9qtbHxnPszAHQ5WQppWJLRuMnnYIxGk7MRUlgja7Is,4476
23
- ml4gw/spectral.py,sha256=0UPgbqGay-xP-3uJ7orZCb9fSO4eVbu6JTjzZJOFqj4,19160
24
- ml4gw/transforms/__init__.py,sha256=-DLdjD4usIi0ttSw61ZV7HieCTgHz1vTwfAlRgzbuDw,414
25
- ml4gw/transforms/pearson.py,sha256=Ep3mMsY15AF55taRaWNjpHRTvtr1StShUDfqk0dN-qo,3235
26
- ml4gw/transforms/qtransform.py,sha256=TWQsBeKhRoqJdkc4cPt58pKozgb_6-jZivn8u0AzQyQ,20695
27
- ml4gw/transforms/scaler.py,sha256=souOt-hOO4M6dqPNXOspfmeU2V9622yGoIMNvju5JZI,2524
28
- ml4gw/transforms/snr_rescaler.py,sha256=3XXCTaXc2dzzpXRZx7iqRwImvYtRSJLM5fHdBGfpoUs,2351
29
- ml4gw/transforms/spectral.py,sha256=gTHUeC0gGYbzgBZHb_FxC_4zdhl5H-XCiLg1hrvKB70,4393
30
- ml4gw/transforms/spectrogram.py,sha256=HS3Rf5iB7JjhlSESRDdFGUwCtIBdvUaJUDulkB4Lmos,6162
31
- ml4gw/transforms/spline_interpolation.py,sha256=oXih-gLMbIbI36DPKLTk39WcjiNUJN_rcQia_k3OrMY,13527
32
- ml4gw/transforms/transform.py,sha256=BuzTbPFxp18OEGP9Tu9jBGtvqy3len1cqvqg5X37DiY,2512
33
- ml4gw/transforms/waveforms.py,sha256=LkYCvxPqYhHa2yYZTvPE6j0E4HFy16b5ndCRQb7WfcA,3196
34
- ml4gw/transforms/whitening.py,sha256=Aw_ogq93CYCATiHWBqSZ-qsUtaHAMA3k009ZRtQTtHA,9596
35
- ml4gw/types.py,sha256=CcctqDcNajR7khGT6BD-WYsfRKpiP0udoSAB0k1qcFw,863
36
- ml4gw/utils/interferometer.py,sha256=lRS0N3SwUTknhYXX57VACJ99jK1P9M19oUWN_i_nQN0,1814
37
- ml4gw/utils/slicing.py,sha256=ilRz_5sJzwmd5VyBlrj81tvyC3uCnXYjd0TO2fzFMr8,13563
38
- ml4gw/waveforms/__init__.py,sha256=QVUzBx_y8A9_AsRuTJruPvL9mqGnBt11Iw1MOYjXyE4,40
39
- ml4gw/waveforms/adhoc/__init__.py,sha256=XVwP4t8TMUj87WY3yMGRTkXsv7_lVr1w8p8iKBW8iKE,71
40
- ml4gw/waveforms/adhoc/ringdown.py,sha256=m8IBQTxKBBGFqBtWGEO4KG3DEYR8TTnNyGVdVLaMKa8,3316
41
- ml4gw/waveforms/adhoc/sine_gaussian.py,sha256=-MtrI7ydwBTk4K0O4tdkC8-w5OifQszdnWN9__I4XzY,3569
42
- ml4gw/waveforms/cbc/__init__.py,sha256=hGbPsFNAIveYJnff8qKY8RWeBPFtZoYcnGHxraPWtWI,99
43
- ml4gw/waveforms/cbc/phenom_d.py,sha256=0pcVAt7b1cjTbphdClPCjenv2sC8bp6oXGGlEUyW-mY,48973
44
- ml4gw/waveforms/cbc/phenom_d_data.py,sha256=WA1FBxUp9fo1IQaV_OLJ_5g5gI166mY1FtG9n25he9U,53447
45
- ml4gw/waveforms/cbc/phenom_p.py,sha256=bXh1ohqzVQw-UUqc02uNoIMb9oCaT8-WlEWIrnuab-0,27602
46
- ml4gw/waveforms/cbc/taylorf2.py,sha256=_s-faE8yWMULMxGd4VvzPI54R3G-O2TF2G4-T2m2rDM,10510
47
- ml4gw/waveforms/conversion.py,sha256=zPkaGkMVqsdrF0fS3ZscyP-2jX8YK40d4smUoJb4gj4,6903
48
- ml4gw/waveforms/generator.py,sha256=dO6RQ96EC87p2q0tEkxA62XkkJc1xARFO1SKcGvyDhM,1272
49
- ml4gw-0.6.3.dist-info/METADATA,sha256=6Kpi5UqMguD4hdv_5FUhx36qc_8hoDkoT4IBo6ydwcg,5735
50
- ml4gw-0.6.3.dist-info/WHEEL,sha256=RaoafKOydTQ7I_I3JTrPCg6kUmTgtm4BornzOqyEfJ8,88
51
- ml4gw-0.6.3.dist-info/RECORD,,