ml4gw 0.5.0__py3-none-any.whl → 0.5.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of ml4gw might be problematic. Click here for more details.

@@ -1,9 +1,12 @@
1
1
  from typing import Dict, Tuple
2
2
 
3
3
  import torch
4
- from torchtyping import TensorType
4
+ from jaxtyping import Float
5
+ from torch import Tensor
6
+
7
+ from ml4gw.constants import MPC_SEC, MTSUN_SI, PI
8
+ from ml4gw.types import BatchTensor, FrequencySeries1d
5
9
 
6
- from ..constants import MPC_SEC, MTSUN_SI, PI
7
10
  from .phenom_d import IMRPhenomD
8
11
 
9
12
 
@@ -13,19 +16,19 @@ class IMRPhenomPv2(IMRPhenomD):
13
16
 
14
17
  def forward(
15
18
  self,
16
- fs: TensorType,
17
- chirp_mass: TensorType,
18
- mass_ratio: TensorType,
19
- s1x: TensorType,
20
- s1y: TensorType,
21
- s1z: TensorType,
22
- s2x: TensorType,
23
- s2y: TensorType,
24
- s2z: TensorType,
25
- dist_mpc: TensorType,
26
- tc: TensorType,
27
- phiRef: TensorType,
28
- incl: TensorType,
19
+ fs: FrequencySeries1d,
20
+ chirp_mass: BatchTensor,
21
+ mass_ratio: BatchTensor,
22
+ s1x: BatchTensor,
23
+ s1y: BatchTensor,
24
+ s1z: BatchTensor,
25
+ s2x: BatchTensor,
26
+ s2y: BatchTensor,
27
+ s2z: BatchTensor,
28
+ dist_mpc: BatchTensor,
29
+ tc: BatchTensor,
30
+ phiRef: BatchTensor,
31
+ incl: BatchTensor,
29
32
  f_ref: float,
30
33
  ):
31
34
  """
@@ -184,18 +187,18 @@ class IMRPhenomPv2(IMRPhenomD):
184
187
 
185
188
  def PhenomPCoreTwistUp(
186
189
  self,
187
- fHz: TensorType,
188
- hPhenom: TensorType,
189
- eta: TensorType,
190
- chi1_l: TensorType,
191
- chi2_l: TensorType,
192
- chip: TensorType,
193
- M: TensorType,
194
- angcoeffs: Dict[str, TensorType],
195
- Y2m: TensorType,
196
- alphaoffset: TensorType,
197
- epsilonoffset: TensorType,
198
- ) -> Tuple[TensorType, TensorType]:
190
+ fHz: FrequencySeries1d,
191
+ hPhenom: BatchTensor,
192
+ eta: BatchTensor,
193
+ chi1_l: BatchTensor,
194
+ chi2_l: BatchTensor,
195
+ chip: BatchTensor,
196
+ M: BatchTensor,
197
+ angcoeffs: Dict[str, BatchTensor],
198
+ Y2m: BatchTensor,
199
+ alphaoffset: BatchTensor,
200
+ epsilonoffset: BatchTensor,
201
+ ) -> Tuple[BatchTensor, BatchTensor]:
199
202
  assert angcoeffs is not None
200
203
  assert Y2m is not None
201
204
  f = fHz * MTSUN_SI * M.unsqueeze(1) # Frequency in geometric units
@@ -354,8 +357,11 @@ class IMRPhenomPv2(IMRPhenomD):
354
357
  # Utility functions
355
358
 
356
359
  def interpolate(
357
- self, x: TensorType, xp: TensorType, fp: TensorType
358
- ) -> TensorType:
360
+ self,
361
+ x: Float[Tensor, " new_series"],
362
+ xp: Float[Tensor, " series"],
363
+ fp: Float[Tensor, " series"],
364
+ ) -> Float[Tensor, " new_series"]:
359
365
  """One-dimensional linear interpolation for monotonically
360
366
  increasing sample points.
361
367
 
@@ -385,7 +391,7 @@ class IMRPhenomPv2(IMRPhenomD):
385
391
 
386
392
  return interpolated.reshape(original_shape)
387
393
 
388
- def ROTATEZ(self, angle: TensorType, x, y, z):
394
+ def ROTATEZ(self, angle: BatchTensor, x, y, z):
389
395
  tmp_x = x * torch.cos(angle) - y * torch.sin(angle)
390
396
  tmp_y = x * torch.sin(angle) + y * torch.cos(angle)
391
397
  return tmp_x, tmp_y, z
@@ -395,7 +401,11 @@ class IMRPhenomPv2(IMRPhenomD):
395
401
  tmp_z = -x * torch.sin(angle) + z * torch.cos(angle)
396
402
  return tmp_x, y, tmp_z
397
403
 
398
- def L2PNR(self, v: TensorType, eta: TensorType) -> TensorType:
404
+ def L2PNR(
405
+ self,
406
+ v: BatchTensor,
407
+ eta: BatchTensor,
408
+ ) -> BatchTensor:
399
409
  eta2 = eta**2
400
410
  x = v**2
401
411
  x2 = x**2
@@ -412,25 +422,25 @@ class IMRPhenomPv2(IMRPhenomD):
412
422
 
413
423
  def convert_spins(
414
424
  self,
415
- m1: TensorType,
416
- m2: TensorType,
425
+ m1: BatchTensor,
426
+ m2: BatchTensor,
417
427
  f_ref: float,
418
- phiRef: TensorType,
419
- incl: TensorType,
420
- s1x: TensorType,
421
- s1y: TensorType,
422
- s1z: TensorType,
423
- s2x: TensorType,
424
- s2y: TensorType,
425
- s2z: TensorType,
428
+ phiRef: BatchTensor,
429
+ incl: BatchTensor,
430
+ s1x: BatchTensor,
431
+ s1y: BatchTensor,
432
+ s1z: BatchTensor,
433
+ s2x: BatchTensor,
434
+ s2y: BatchTensor,
435
+ s2z: BatchTensor,
426
436
  ) -> Tuple[
427
- TensorType,
428
- TensorType,
429
- TensorType,
430
- TensorType,
431
- TensorType,
432
- TensorType,
433
- TensorType,
437
+ BatchTensor,
438
+ BatchTensor,
439
+ BatchTensor,
440
+ BatchTensor,
441
+ BatchTensor,
442
+ BatchTensor,
443
+ BatchTensor,
434
444
  ]:
435
445
  M = m1 + m2
436
446
  m1_2 = m1 * m1
@@ -591,8 +601,12 @@ class IMRPhenomPv2(IMRPhenomD):
591
601
  )
592
602
 
593
603
  def WignerdCoefficients(
594
- self, v: TensorType, SL: TensorType, eta: TensorType, Sp: TensorType
595
- ) -> Tuple[TensorType, TensorType]:
604
+ self,
605
+ v: BatchTensor,
606
+ SL: BatchTensor,
607
+ eta: BatchTensor,
608
+ Sp: BatchTensor,
609
+ ) -> Tuple[BatchTensor, BatchTensor]:
596
610
  # We define the shorthand s := Sp / (L + SL)
597
611
  L = self.L2PNR(v, eta)
598
612
  s = (Sp / (L + SL)).mT
@@ -604,8 +618,11 @@ class IMRPhenomPv2(IMRPhenomD):
604
618
  return cos_beta_half, sin_beta_half
605
619
 
606
620
  def ComputeNNLOanglecoeffs(
607
- self, q: TensorType, chil: TensorType, chip: TensorType
608
- ) -> Dict[str, TensorType]:
621
+ self,
622
+ q: BatchTensor,
623
+ chil: BatchTensor,
624
+ chip: BatchTensor,
625
+ ) -> Dict[str, BatchTensor]:
609
626
  m2 = q / (1.0 + q)
610
627
  m1 = 1.0 / (1.0 + q)
611
628
  dm = m1 - m2
@@ -730,12 +747,12 @@ class IMRPhenomPv2(IMRPhenomD):
730
747
 
731
748
  def FinalSpin_inplane(
732
749
  self,
733
- m1: TensorType,
734
- m2: TensorType,
735
- chi1_l: TensorType,
736
- chi2_l: TensorType,
737
- chip: TensorType,
738
- ) -> TensorType:
750
+ m1: BatchTensor,
751
+ m2: BatchTensor,
752
+ chi1_l: BatchTensor,
753
+ chi2_l: BatchTensor,
754
+ chip: BatchTensor,
755
+ ) -> BatchTensor:
739
756
  M = m1 + m2
740
757
  eta = m1 * m2 / (M * M)
741
758
  eta2 = eta * eta
@@ -751,7 +768,7 @@ class IMRPhenomPv2(IMRPhenomD):
751
768
 
752
769
  def phP_get_fRD_fdamp(
753
770
  self, m1, m2, chi1_l, chi2_l, chip
754
- ) -> Tuple[TensorType, TensorType]:
771
+ ) -> Tuple[BatchTensor, BatchTensor]:
755
772
  # m1 > m2 should hold here
756
773
  finspin = self.FinalSpin_inplane(m1, m2, chi1_l, chi2_l, chip)
757
774
  m1_s = m1 * MTSUN_SI
@@ -770,7 +787,7 @@ class IMRPhenomPv2(IMRPhenomD):
770
787
  ) / (1.0 - Erad)
771
788
  return fRD / M_s, fdamp / M_s
772
789
 
773
- def get_Amp0(self, fM_s: TensorType, eta: TensorType) -> TensorType:
790
+ def get_Amp0(self, fM_s: BatchTensor, eta: BatchTensor) -> BatchTensor:
774
791
  Amp0 = (
775
792
  (2.0 / 3.0 * eta.unsqueeze(1)) ** (1.0 / 2.0)
776
793
  * (fM_s) ** (-7.0 / 6.0)
@@ -1,9 +1,8 @@
1
1
  import numpy as np
2
2
  import torch
3
3
 
4
- from ml4gw.types import ScalarTensor
5
-
6
- from ..constants import PI, C, G, m_per_Mpc
4
+ from ml4gw.constants import PI, C, G, m_per_Mpc
5
+ from ml4gw.types import BatchTensor
7
6
 
8
7
 
9
8
  class Ringdown(torch.nn.Module):
@@ -27,12 +26,12 @@ class Ringdown(torch.nn.Module):
27
26
 
28
27
  def forward(
29
28
  self,
30
- frequency: ScalarTensor,
31
- quality: ScalarTensor,
32
- epsilon: ScalarTensor,
33
- phase: ScalarTensor,
34
- inclination: ScalarTensor,
35
- distance: ScalarTensor,
29
+ frequency: BatchTensor,
30
+ quality: BatchTensor,
31
+ epsilon: BatchTensor,
32
+ phase: BatchTensor,
33
+ inclination: BatchTensor,
34
+ distance: BatchTensor,
36
35
  ):
37
36
  """
38
37
  Generate ringdown waveform based on the damped sinusoid equation.
@@ -1,7 +1,7 @@
1
1
  import torch
2
2
  from torch import Tensor
3
3
 
4
- from ml4gw.types import ScalarTensor
4
+ from ml4gw.types import BatchTensor
5
5
 
6
6
 
7
7
  def semi_major_minor_from_e(e: Tensor):
@@ -32,11 +32,11 @@ class SineGaussian(torch.nn.Module):
32
32
 
33
33
  def forward(
34
34
  self,
35
- quality: ScalarTensor,
36
- frequency: ScalarTensor,
37
- hrss: ScalarTensor,
38
- phase: ScalarTensor,
39
- eccentricity: ScalarTensor,
35
+ quality: BatchTensor,
36
+ frequency: BatchTensor,
37
+ hrss: BatchTensor,
38
+ phase: BatchTensor,
39
+ eccentricity: BatchTensor,
40
40
  ):
41
41
  """
42
42
  Generate lalinference implementation of a sine-Gaussian waveform.
@@ -1,8 +1,9 @@
1
1
  import torch
2
- from torchtyping import TensorType
2
+ from jaxtyping import Float
3
3
 
4
- from ..constants import MPC_SEC, MTSUN_SI, PI
5
- from ..constants import EulerGamma as GAMMA
4
+ from ml4gw.constants import MPC_SEC, MTSUN_SI, PI
5
+ from ml4gw.constants import EulerGamma as GAMMA
6
+ from ml4gw.types import BatchTensor, FrequencySeries1d
6
7
 
7
8
 
8
9
  class TaylorF2(torch.nn.Module):
@@ -11,14 +12,14 @@ class TaylorF2(torch.nn.Module):
11
12
 
12
13
  def forward(
13
14
  self,
14
- f: TensorType,
15
- chirp_mass: TensorType,
16
- mass_ratio: TensorType,
17
- chi1: TensorType,
18
- chi2: TensorType,
19
- distance: TensorType,
20
- phic: TensorType,
21
- inclination: TensorType,
15
+ f: FrequencySeries1d,
16
+ chirp_mass: BatchTensor,
17
+ mass_ratio: BatchTensor,
18
+ chi1: BatchTensor,
19
+ chi2: BatchTensor,
20
+ distance: BatchTensor,
21
+ phic: BatchTensor,
22
+ inclination: BatchTensor,
22
23
  f_ref: float,
23
24
  ):
24
25
  """
@@ -75,15 +76,15 @@ class TaylorF2(torch.nn.Module):
75
76
 
76
77
  def taylorf2_htilde(
77
78
  self,
78
- f: TensorType,
79
- mass1: TensorType,
80
- mass2: TensorType,
81
- chi1: TensorType,
82
- chi2: TensorType,
83
- distance: TensorType,
84
- phic: TensorType,
79
+ f: FrequencySeries1d,
80
+ mass1: BatchTensor,
81
+ mass2: BatchTensor,
82
+ chi1: BatchTensor,
83
+ chi2: BatchTensor,
84
+ distance: BatchTensor,
85
+ phic: BatchTensor,
85
86
  f_ref: float,
86
- ):
87
+ ) -> Float[FrequencySeries1d, " batch"]:
87
88
  mass1_s = mass1 * MTSUN_SI
88
89
  mass2_s = mass2 * MTSUN_SI
89
90
  M_s = mass1_s + mass2_s
@@ -103,8 +104,13 @@ class TaylorF2(torch.nn.Module):
103
104
  return h0
104
105
 
105
106
  def taylorf2_amplitude(
106
- self, Mf: TensorType, mass1, mass2, eta, distance
107
- ) -> TensorType:
107
+ self,
108
+ Mf: BatchTensor,
109
+ mass1: BatchTensor,
110
+ mass2: BatchTensor,
111
+ eta: BatchTensor,
112
+ distance: BatchTensor,
113
+ ) -> Float[FrequencySeries1d, " batch"]:
108
114
  mass1_s = mass1 * MTSUN_SI
109
115
  mass2_s = mass2 * MTSUN_SI
110
116
  v = (PI * Mf) ** (1.0 / 3.0)
@@ -126,12 +132,12 @@ class TaylorF2(torch.nn.Module):
126
132
 
127
133
  def taylorf2_phase(
128
134
  self,
129
- Mf: TensorType,
130
- mass1: TensorType,
131
- mass2: TensorType,
132
- chi1: TensorType,
133
- chi2: TensorType,
134
- ) -> TensorType:
135
+ Mf: BatchTensor,
136
+ mass1: BatchTensor,
137
+ mass2: BatchTensor,
138
+ chi1: BatchTensor,
139
+ chi2: BatchTensor,
140
+ ) -> Float[FrequencySeries1d, " batch"]:
135
141
  """
136
142
  Calculate the inspiral phase for the TaylorF2.
137
143
  """
@@ -1,19 +1,20 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: ml4gw
3
- Version: 0.5.0
3
+ Version: 0.5.1
4
4
  Summary: Tools for training torch models on gravitational wave data
5
5
  Author: Alec Gunny
6
6
  Author-email: alec.gunny@ligo.org
7
- Requires-Python: >=3.8,<3.12
7
+ Requires-Python: >=3.8,<3.13
8
8
  Classifier: Programming Language :: Python :: 3
9
9
  Classifier: Programming Language :: Python :: 3.8
10
10
  Classifier: Programming Language :: Python :: 3.9
11
11
  Classifier: Programming Language :: Python :: 3.10
12
12
  Classifier: Programming Language :: Python :: 3.11
13
+ Classifier: Programming Language :: Python :: 3.12
14
+ Requires-Dist: jaxtyping (>=0.2,<0.3)
13
15
  Requires-Dist: numpy (<2.0.0)
14
16
  Requires-Dist: torch (>=2.0,<3.0)
15
17
  Requires-Dist: torchaudio (>=2.0,<3.0)
16
- Requires-Dist: torchtyping (>=0.1,<0.2)
17
18
  Description-Content-Type: text/markdown
18
19
 
19
20
  # ML4GW
@@ -0,0 +1,47 @@
1
+ ml4gw/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
2
+ ml4gw/augmentations.py,sha256=pZH9tjEpXV0AIqvHHDkpUE-BorG02beOz2pmSipw2EY,1232
3
+ ml4gw/constants.py,sha256=W9beA9RDRdIug1I2H7VLPEPv_DFsQWWoYRmzxv7FWgM,891
4
+ ml4gw/dataloading/__init__.py,sha256=EHBBqU7y2-Np5iQ_xyufxamUEM1pPEquqFo7oaJnaJE,149
5
+ ml4gw/dataloading/chunked_dataset.py,sha256=FpDc4gFxt-PMyXs5qSWLuTGXMTuS1B-hH8gUOCOGxZk,5260
6
+ ml4gw/dataloading/hdf5_dataset.py,sha256=UB1Eog8l7m4M78Owst7oYQZICb0DRJer9WVLVn4hl_I,6645
7
+ ml4gw/dataloading/in_memory_dataset.py,sha256=kleMA9ABUKA6J0tCdz78tbX9lM6uxVSLhqgHbSa1iWY,9550
8
+ ml4gw/distributions.py,sha256=tUuaOiX5enjKLYWD7uiN8rdRVQcrIKps64xBkTl8fMs,4991
9
+ ml4gw/gw.py,sha256=To_hQz9tUp02ADllGLxFCPsNcfbb-kbvfgGpooxcOII,17693
10
+ ml4gw/nn/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
11
+ ml4gw/nn/autoencoder/__init__.py,sha256=ZaT1XhJTHpMuPQqu5E__Jezeh9uwtjcXlT7IZ18byq4,161
12
+ ml4gw/nn/autoencoder/base.py,sha256=4d5Ej30IUzZh3XbldzWlCpp3p0_91YUvKeRID8ZEZGA,3225
13
+ ml4gw/nn/autoencoder/convolutional.py,sha256=2BXDuPWYC-151RO_FL0ogdrqSVTfo4YNrY80lPwrmFA,5419
14
+ ml4gw/nn/autoencoder/skip_connection.py,sha256=fpXxxIIl0CXY4mAfUZQuvI542pEBSwpg90TNG2rbZY8,1411
15
+ ml4gw/nn/autoencoder/utils.py,sha256=m_ivYGNwdrhA7cFxJVD4gqM8AHiWIGmlQI3pFNRklXQ,355
16
+ ml4gw/nn/norm.py,sha256=JIOMXQbUtoWlrhncGsqW6f1-DiGDx9zQH2O3CvQml3U,3594
17
+ ml4gw/nn/resnet/__init__.py,sha256=vBI0IftVP_EYAeDlqomtkGqUYE-RE_S4WNioUhniw9s,64
18
+ ml4gw/nn/resnet/resnet_1d.py,sha256=IQ-EIIzAXd-NWuLwt7JTXLWg5bO3FGJpuFAZwZ78jaI,13218
19
+ ml4gw/nn/resnet/resnet_2d.py,sha256=aK4I0FOZk62JxnYFz0t1O0s5s7J7yRNYSM1flRypvVc,13301
20
+ ml4gw/nn/streaming/__init__.py,sha256=zgjGR2L8t0txXLnil9ceZT0tM8Y2FC8yPxqIKYH0o1A,80
21
+ ml4gw/nn/streaming/online_average.py,sha256=aI8hkT7I3thXkda9tsXxYrzump9swelSXPdSTwPlJWY,4719
22
+ ml4gw/nn/streaming/snapshotter.py,sha256=B9qtbHxnPszAHQ5WQppWJLRuMnnYIxGk7MRUlgja7Is,4476
23
+ ml4gw/spectral.py,sha256=Mt3-yz4a83z0X7M1sVp00_vB947w-9OjU0iNdEkbQcU,19145
24
+ ml4gw/transforms/__init__.py,sha256=24pdP_hIg1wfrtZxxRBPhcEXsCbvVKtNKp7JL8SEogE,362
25
+ ml4gw/transforms/pearson.py,sha256=Ep3mMsY15AF55taRaWNjpHRTvtr1StShUDfqk0dN-qo,3235
26
+ ml4gw/transforms/qtransform.py,sha256=umBSpykfmPftjfyMqbniiP2mTh62q4hoYPA55qneJ4o,17702
27
+ ml4gw/transforms/scaler.py,sha256=fLZo-m6_yFY3UDoLEaS_YgCnYggxlcKstXcM7749TiU,2433
28
+ ml4gw/transforms/snr_rescaler.py,sha256=3XXCTaXc2dzzpXRZx7iqRwImvYtRSJLM5fHdBGfpoUs,2351
29
+ ml4gw/transforms/spectral.py,sha256=gTHUeC0gGYbzgBZHb_FxC_4zdhl5H-XCiLg1hrvKB70,4393
30
+ ml4gw/transforms/spectrogram.py,sha256=HS3Rf5iB7JjhlSESRDdFGUwCtIBdvUaJUDulkB4Lmos,6162
31
+ ml4gw/transforms/transform.py,sha256=BuzTbPFxp18OEGP9Tu9jBGtvqy3len1cqvqg5X37DiY,2512
32
+ ml4gw/transforms/waveforms.py,sha256=LkYCvxPqYhHa2yYZTvPE6j0E4HFy16b5ndCRQb7WfcA,3196
33
+ ml4gw/transforms/whitening.py,sha256=Aw_ogq93CYCATiHWBqSZ-qsUtaHAMA3k009ZRtQTtHA,9596
34
+ ml4gw/types.py,sha256=CcctqDcNajR7khGT6BD-WYsfRKpiP0udoSAB0k1qcFw,863
35
+ ml4gw/utils/interferometer.py,sha256=lRS0N3SwUTknhYXX57VACJ99jK1P9M19oUWN_i_nQN0,1814
36
+ ml4gw/utils/slicing.py,sha256=ilRz_5sJzwmd5VyBlrj81tvyC3uCnXYjd0TO2fzFMr8,13563
37
+ ml4gw/waveforms/__init__.py,sha256=dnxfRGX_B3zQPB3_3srLyjZXRxTn4miZqYIRe7PYyrU,170
38
+ ml4gw/waveforms/generator.py,sha256=dO6RQ96EC87p2q0tEkxA62XkkJc1xARFO1SKcGvyDhM,1272
39
+ ml4gw/waveforms/phenom_d.py,sha256=vA60SjOvWSIcsU83-KEw2hnU3ATo4eW8A2mMmuMXo7Y,46941
40
+ ml4gw/waveforms/phenom_d_data.py,sha256=WA1FBxUp9fo1IQaV_OLJ_5g5gI166mY1FtG9n25he9U,53447
41
+ ml4gw/waveforms/phenom_p.py,sha256=VybpPlc2_yMGywnPz5B79QAygAj-WAeHZTPiZHets28,26951
42
+ ml4gw/waveforms/ringdown.py,sha256=m8IBQTxKBBGFqBtWGEO4KG3DEYR8TTnNyGVdVLaMKa8,3316
43
+ ml4gw/waveforms/sine_gaussian.py,sha256=-MtrI7ydwBTk4K0O4tdkC8-w5OifQszdnWN9__I4XzY,3569
44
+ ml4gw/waveforms/taylorf2.py,sha256=ySYLGTT_c3k4NzPDsQ9v822kzvU6TwYpELJEWlCDGQE,10428
45
+ ml4gw-0.5.1.dist-info/METADATA,sha256=P2uoQtMX_K5SSwAzTY5tyNvWYszxaDADTS54iDOQYKw,5785
46
+ ml4gw-0.5.1.dist-info/WHEEL,sha256=sP946D7jFCHeNz5Iq4fL4Lu-PrWrFsgfLXbbkciIZwg,88
47
+ ml4gw-0.5.1.dist-info/RECORD,,
@@ -1,47 +0,0 @@
1
- ml4gw/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
2
- ml4gw/augmentations.py,sha256=UEwNxdjzIQUqUgtAdrstptTZ73ay5sLc3imQY1DVUqs,1027
3
- ml4gw/constants.py,sha256=W9beA9RDRdIug1I2H7VLPEPv_DFsQWWoYRmzxv7FWgM,891
4
- ml4gw/dataloading/__init__.py,sha256=EHBBqU7y2-Np5iQ_xyufxamUEM1pPEquqFo7oaJnaJE,149
5
- ml4gw/dataloading/chunked_dataset.py,sha256=jy-y5xhMJqRZIA_pjrc4QHhqpAcpM9aJi2omT24riXY,5195
6
- ml4gw/dataloading/hdf5_dataset.py,sha256=D6cWBtF5_nox89SO4M9so2GDhkfkhdkc0EUpPhyvEyE,6643
7
- ml4gw/dataloading/in_memory_dataset.py,sha256=8bHOB7GreoLWcb_IYEQd2-BXfaYCO1EonD6MHFVPAzA,9429
8
- ml4gw/distributions.py,sha256=sTaiRkHEuNVP0l5qt3J3BlH1Xvow2RZWdua7LKIrddY,4922
9
- ml4gw/gw.py,sha256=RlG8Vj9GCcv0wpKWz9XlbRattls1A-FCCN1RiIhSE_w,17914
10
- ml4gw/nn/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
11
- ml4gw/nn/autoencoder/__init__.py,sha256=ZaT1XhJTHpMuPQqu5E__Jezeh9uwtjcXlT7IZ18byq4,161
12
- ml4gw/nn/autoencoder/base.py,sha256=PLr26Cn5DHmgDYX1qj4idfrLehHVeiJqer065ea8_QM,3098
13
- ml4gw/nn/autoencoder/convolutional.py,sha256=JTMpTJVdFju9HPPAh9UDdXG1MsFbADrqUIKM8_xg74E,5316
14
- ml4gw/nn/autoencoder/skip_connection.py,sha256=bOKBLzMqZDh9w8s9G5U93LCESjTSFUHzQGo0hLDOeSk,1304
15
- ml4gw/nn/autoencoder/utils.py,sha256=whTnWPvdKuVDlxg52azJeM1d9YjiYFWoqIOzJVDGups,326
16
- ml4gw/nn/norm.py,sha256=IQIiXDnKxzK-3BcA4UgHxLDmy_N89BTj-FENj9y4u7E,3447
17
- ml4gw/nn/resnet/__init__.py,sha256=vBI0IftVP_EYAeDlqomtkGqUYE-RE_S4WNioUhniw9s,64
18
- ml4gw/nn/resnet/resnet_1d.py,sha256=IQ-EIIzAXd-NWuLwt7JTXLWg5bO3FGJpuFAZwZ78jaI,13218
19
- ml4gw/nn/resnet/resnet_2d.py,sha256=aK4I0FOZk62JxnYFz0t1O0s5s7J7yRNYSM1flRypvVc,13301
20
- ml4gw/nn/streaming/__init__.py,sha256=zgjGR2L8t0txXLnil9ceZT0tM8Y2FC8yPxqIKYH0o1A,80
21
- ml4gw/nn/streaming/online_average.py,sha256=T-wWw7eEufbUVPRNnLAXIq0cedAyJWEE9tdZ6CTi3cs,4561
22
- ml4gw/nn/streaming/snapshotter.py,sha256=-l_YsWby7ZnEzGIAlLAV2mtR0daLMtLCxovtt4OI3Z0,4432
23
- ml4gw/spectral.py,sha256=5GfKAV_1vw5yyzTD2u_myjT5jIlAyAHDX6TXj9ynL_o,19021
24
- ml4gw/transforms/__init__.py,sha256=24pdP_hIg1wfrtZxxRBPhcEXsCbvVKtNKp7JL8SEogE,362
25
- ml4gw/transforms/pearson.py,sha256=bJ77lO4wBY6y1R1aESN_bcUEMbc55hWCIaCBdbIj4CY,3133
26
- ml4gw/transforms/qtransform.py,sha256=hvCzdGROLoW1nJYR_ZZWDnafJpX4kD1os3CZ2jQJ7IU,17328
27
- ml4gw/transforms/scaler.py,sha256=5VGov0M80NZostRzccViC3HNftx4ZVu0kOKTDmiLrR4,2327
28
- ml4gw/transforms/snr_rescaler.py,sha256=ocYr6UjpHW7t5TvruV7fyY8KuuDfGOJyvxEulmiFA6o,2275
29
- ml4gw/transforms/spectral.py,sha256=WgRkS-QVbZEKa8Dwgst5I6NM6kVhbsY5c7ZmYqpcecE,4178
30
- ml4gw/transforms/spectrogram.py,sha256=R3O8eUB6NHdBFx89v8e_WdJIvXl4qwVeGWZnPyLhHHQ,6024
31
- ml4gw/transforms/transform.py,sha256=jEr9OFj4u7Wjeh_rpRq90jMpK_TfzcIelbBmt30DxQU,2408
32
- ml4gw/transforms/waveforms.py,sha256=iyEDSRqK_1zZrxxJenJFbwGUWqbE-alVTXhvjaGl1ww,3060
33
- ml4gw/transforms/whitening.py,sha256=TmvFCCeTOcSEWo5Pt_JQRJ23X5byiJ91q5jHgBRy0rc,9428
34
- ml4gw/types.py,sha256=XbxunX8zRF95Fp1mZ9jEbixb63bwDQMoayRMMxT9Lzo,429
35
- ml4gw/utils/interferometer.py,sha256=Ei9fJoNxjtFNZcMZIs5MG2yj2n-wrlSlWwi-ELRv7Nc,1806
36
- ml4gw/utils/slicing.py,sha256=Cbwcpk_0hsfN4zczFVM2YbDRjeirA7jFvApM4Jy0U8s,13535
37
- ml4gw/waveforms/__init__.py,sha256=dnxfRGX_B3zQPB3_3srLyjZXRxTn4miZqYIRe7PYyrU,170
38
- ml4gw/waveforms/generator.py,sha256=HYTAbih5y-i4v5iV4twTo2DPSADUrrsuz2m9WDqJoH4,1067
39
- ml4gw/waveforms/phenom_d.py,sha256=6wV_NYH8iNQcJ_uuB2cB00m8_2wfkVz3Hu7NTY4hBQg,46823
40
- ml4gw/waveforms/phenom_d_data.py,sha256=WA1FBxUp9fo1IQaV_OLJ_5g5gI166mY1FtG9n25he9U,53447
41
- ml4gw/waveforms/phenom_p.py,sha256=qZXhDexcSedCP8UwEk1Jw2YoBy9Uxp0zWg1ltXu-guk,26615
42
- ml4gw/waveforms/ringdown.py,sha256=1-KAzfe2EOv0y9MY-DOB8Qv--9wS8fYIa6xTLcKI4i4,3320
43
- ml4gw/waveforms/sine_gaussian.py,sha256=LlSgPwd-_HPrkpVhdqZbMReepAn4BQgsMP4Ei33IWAA,3575
44
- ml4gw/waveforms/taylorf2.py,sha256=-5q52p0Ie5oZJhhfJwdKXR9RNeTLW1QJxsRKMGi1w-c,10160
45
- ml4gw-0.5.0.dist-info/METADATA,sha256=psK8lqAVUUCfJV6uI4XX9EFrXa2-h8Eyt-KWcO6gDmI,5736
46
- ml4gw-0.5.0.dist-info/WHEEL,sha256=sP946D7jFCHeNz5Iq4fL4Lu-PrWrFsgfLXbbkciIZwg,88
47
- ml4gw-0.5.0.dist-info/RECORD,,
File without changes