ml4gw 0.5.0__py3-none-any.whl → 0.5.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of ml4gw might be problematic. Click here for more details.
- ml4gw/augmentations.py +8 -2
- ml4gw/dataloading/chunked_dataset.py +4 -2
- ml4gw/dataloading/hdf5_dataset.py +1 -1
- ml4gw/dataloading/in_memory_dataset.py +8 -4
- ml4gw/distributions.py +5 -3
- ml4gw/gw.py +21 -27
- ml4gw/nn/autoencoder/base.py +11 -6
- ml4gw/nn/autoencoder/convolutional.py +7 -4
- ml4gw/nn/autoencoder/skip_connection.py +7 -6
- ml4gw/nn/autoencoder/utils.py +2 -1
- ml4gw/nn/norm.py +5 -1
- ml4gw/nn/streaming/online_average.py +7 -5
- ml4gw/nn/streaming/snapshotter.py +7 -5
- ml4gw/spectral.py +40 -36
- ml4gw/transforms/pearson.py +7 -3
- ml4gw/transforms/qtransform.py +20 -14
- ml4gw/transforms/scaler.py +6 -2
- ml4gw/transforms/snr_rescaler.py +6 -5
- ml4gw/transforms/spectral.py +9 -2
- ml4gw/transforms/spectrogram.py +7 -1
- ml4gw/transforms/transform.py +4 -3
- ml4gw/transforms/waveforms.py +10 -7
- ml4gw/transforms/whitening.py +12 -4
- ml4gw/types.py +25 -10
- ml4gw/utils/interferometer.py +1 -1
- ml4gw/utils/slicing.py +24 -16
- ml4gw/waveforms/generator.py +9 -5
- ml4gw/waveforms/phenom_d.py +20 -18
- ml4gw/waveforms/phenom_p.py +77 -60
- ml4gw/waveforms/ringdown.py +8 -9
- ml4gw/waveforms/sine_gaussian.py +6 -6
- ml4gw/waveforms/taylorf2.py +33 -27
- {ml4gw-0.5.0.dist-info → ml4gw-0.5.1.dist-info}/METADATA +4 -3
- ml4gw-0.5.1.dist-info/RECORD +47 -0
- ml4gw-0.5.0.dist-info/RECORD +0 -47
- {ml4gw-0.5.0.dist-info → ml4gw-0.5.1.dist-info}/WHEEL +0 -0
ml4gw/waveforms/phenom_p.py
CHANGED
|
@@ -1,9 +1,12 @@
|
|
|
1
1
|
from typing import Dict, Tuple
|
|
2
2
|
|
|
3
3
|
import torch
|
|
4
|
-
from
|
|
4
|
+
from jaxtyping import Float
|
|
5
|
+
from torch import Tensor
|
|
6
|
+
|
|
7
|
+
from ml4gw.constants import MPC_SEC, MTSUN_SI, PI
|
|
8
|
+
from ml4gw.types import BatchTensor, FrequencySeries1d
|
|
5
9
|
|
|
6
|
-
from ..constants import MPC_SEC, MTSUN_SI, PI
|
|
7
10
|
from .phenom_d import IMRPhenomD
|
|
8
11
|
|
|
9
12
|
|
|
@@ -13,19 +16,19 @@ class IMRPhenomPv2(IMRPhenomD):
|
|
|
13
16
|
|
|
14
17
|
def forward(
|
|
15
18
|
self,
|
|
16
|
-
fs:
|
|
17
|
-
chirp_mass:
|
|
18
|
-
mass_ratio:
|
|
19
|
-
s1x:
|
|
20
|
-
s1y:
|
|
21
|
-
s1z:
|
|
22
|
-
s2x:
|
|
23
|
-
s2y:
|
|
24
|
-
s2z:
|
|
25
|
-
dist_mpc:
|
|
26
|
-
tc:
|
|
27
|
-
phiRef:
|
|
28
|
-
incl:
|
|
19
|
+
fs: FrequencySeries1d,
|
|
20
|
+
chirp_mass: BatchTensor,
|
|
21
|
+
mass_ratio: BatchTensor,
|
|
22
|
+
s1x: BatchTensor,
|
|
23
|
+
s1y: BatchTensor,
|
|
24
|
+
s1z: BatchTensor,
|
|
25
|
+
s2x: BatchTensor,
|
|
26
|
+
s2y: BatchTensor,
|
|
27
|
+
s2z: BatchTensor,
|
|
28
|
+
dist_mpc: BatchTensor,
|
|
29
|
+
tc: BatchTensor,
|
|
30
|
+
phiRef: BatchTensor,
|
|
31
|
+
incl: BatchTensor,
|
|
29
32
|
f_ref: float,
|
|
30
33
|
):
|
|
31
34
|
"""
|
|
@@ -184,18 +187,18 @@ class IMRPhenomPv2(IMRPhenomD):
|
|
|
184
187
|
|
|
185
188
|
def PhenomPCoreTwistUp(
|
|
186
189
|
self,
|
|
187
|
-
fHz:
|
|
188
|
-
hPhenom:
|
|
189
|
-
eta:
|
|
190
|
-
chi1_l:
|
|
191
|
-
chi2_l:
|
|
192
|
-
chip:
|
|
193
|
-
M:
|
|
194
|
-
angcoeffs: Dict[str,
|
|
195
|
-
Y2m:
|
|
196
|
-
alphaoffset:
|
|
197
|
-
epsilonoffset:
|
|
198
|
-
) -> Tuple[
|
|
190
|
+
fHz: FrequencySeries1d,
|
|
191
|
+
hPhenom: BatchTensor,
|
|
192
|
+
eta: BatchTensor,
|
|
193
|
+
chi1_l: BatchTensor,
|
|
194
|
+
chi2_l: BatchTensor,
|
|
195
|
+
chip: BatchTensor,
|
|
196
|
+
M: BatchTensor,
|
|
197
|
+
angcoeffs: Dict[str, BatchTensor],
|
|
198
|
+
Y2m: BatchTensor,
|
|
199
|
+
alphaoffset: BatchTensor,
|
|
200
|
+
epsilonoffset: BatchTensor,
|
|
201
|
+
) -> Tuple[BatchTensor, BatchTensor]:
|
|
199
202
|
assert angcoeffs is not None
|
|
200
203
|
assert Y2m is not None
|
|
201
204
|
f = fHz * MTSUN_SI * M.unsqueeze(1) # Frequency in geometric units
|
|
@@ -354,8 +357,11 @@ class IMRPhenomPv2(IMRPhenomD):
|
|
|
354
357
|
# Utility functions
|
|
355
358
|
|
|
356
359
|
def interpolate(
|
|
357
|
-
self,
|
|
358
|
-
|
|
360
|
+
self,
|
|
361
|
+
x: Float[Tensor, " new_series"],
|
|
362
|
+
xp: Float[Tensor, " series"],
|
|
363
|
+
fp: Float[Tensor, " series"],
|
|
364
|
+
) -> Float[Tensor, " new_series"]:
|
|
359
365
|
"""One-dimensional linear interpolation for monotonically
|
|
360
366
|
increasing sample points.
|
|
361
367
|
|
|
@@ -385,7 +391,7 @@ class IMRPhenomPv2(IMRPhenomD):
|
|
|
385
391
|
|
|
386
392
|
return interpolated.reshape(original_shape)
|
|
387
393
|
|
|
388
|
-
def ROTATEZ(self, angle:
|
|
394
|
+
def ROTATEZ(self, angle: BatchTensor, x, y, z):
|
|
389
395
|
tmp_x = x * torch.cos(angle) - y * torch.sin(angle)
|
|
390
396
|
tmp_y = x * torch.sin(angle) + y * torch.cos(angle)
|
|
391
397
|
return tmp_x, tmp_y, z
|
|
@@ -395,7 +401,11 @@ class IMRPhenomPv2(IMRPhenomD):
|
|
|
395
401
|
tmp_z = -x * torch.sin(angle) + z * torch.cos(angle)
|
|
396
402
|
return tmp_x, y, tmp_z
|
|
397
403
|
|
|
398
|
-
def L2PNR(
|
|
404
|
+
def L2PNR(
|
|
405
|
+
self,
|
|
406
|
+
v: BatchTensor,
|
|
407
|
+
eta: BatchTensor,
|
|
408
|
+
) -> BatchTensor:
|
|
399
409
|
eta2 = eta**2
|
|
400
410
|
x = v**2
|
|
401
411
|
x2 = x**2
|
|
@@ -412,25 +422,25 @@ class IMRPhenomPv2(IMRPhenomD):
|
|
|
412
422
|
|
|
413
423
|
def convert_spins(
|
|
414
424
|
self,
|
|
415
|
-
m1:
|
|
416
|
-
m2:
|
|
425
|
+
m1: BatchTensor,
|
|
426
|
+
m2: BatchTensor,
|
|
417
427
|
f_ref: float,
|
|
418
|
-
phiRef:
|
|
419
|
-
incl:
|
|
420
|
-
s1x:
|
|
421
|
-
s1y:
|
|
422
|
-
s1z:
|
|
423
|
-
s2x:
|
|
424
|
-
s2y:
|
|
425
|
-
s2z:
|
|
428
|
+
phiRef: BatchTensor,
|
|
429
|
+
incl: BatchTensor,
|
|
430
|
+
s1x: BatchTensor,
|
|
431
|
+
s1y: BatchTensor,
|
|
432
|
+
s1z: BatchTensor,
|
|
433
|
+
s2x: BatchTensor,
|
|
434
|
+
s2y: BatchTensor,
|
|
435
|
+
s2z: BatchTensor,
|
|
426
436
|
) -> Tuple[
|
|
427
|
-
|
|
428
|
-
|
|
429
|
-
|
|
430
|
-
|
|
431
|
-
|
|
432
|
-
|
|
433
|
-
|
|
437
|
+
BatchTensor,
|
|
438
|
+
BatchTensor,
|
|
439
|
+
BatchTensor,
|
|
440
|
+
BatchTensor,
|
|
441
|
+
BatchTensor,
|
|
442
|
+
BatchTensor,
|
|
443
|
+
BatchTensor,
|
|
434
444
|
]:
|
|
435
445
|
M = m1 + m2
|
|
436
446
|
m1_2 = m1 * m1
|
|
@@ -591,8 +601,12 @@ class IMRPhenomPv2(IMRPhenomD):
|
|
|
591
601
|
)
|
|
592
602
|
|
|
593
603
|
def WignerdCoefficients(
|
|
594
|
-
self,
|
|
595
|
-
|
|
604
|
+
self,
|
|
605
|
+
v: BatchTensor,
|
|
606
|
+
SL: BatchTensor,
|
|
607
|
+
eta: BatchTensor,
|
|
608
|
+
Sp: BatchTensor,
|
|
609
|
+
) -> Tuple[BatchTensor, BatchTensor]:
|
|
596
610
|
# We define the shorthand s := Sp / (L + SL)
|
|
597
611
|
L = self.L2PNR(v, eta)
|
|
598
612
|
s = (Sp / (L + SL)).mT
|
|
@@ -604,8 +618,11 @@ class IMRPhenomPv2(IMRPhenomD):
|
|
|
604
618
|
return cos_beta_half, sin_beta_half
|
|
605
619
|
|
|
606
620
|
def ComputeNNLOanglecoeffs(
|
|
607
|
-
self,
|
|
608
|
-
|
|
621
|
+
self,
|
|
622
|
+
q: BatchTensor,
|
|
623
|
+
chil: BatchTensor,
|
|
624
|
+
chip: BatchTensor,
|
|
625
|
+
) -> Dict[str, BatchTensor]:
|
|
609
626
|
m2 = q / (1.0 + q)
|
|
610
627
|
m1 = 1.0 / (1.0 + q)
|
|
611
628
|
dm = m1 - m2
|
|
@@ -730,12 +747,12 @@ class IMRPhenomPv2(IMRPhenomD):
|
|
|
730
747
|
|
|
731
748
|
def FinalSpin_inplane(
|
|
732
749
|
self,
|
|
733
|
-
m1:
|
|
734
|
-
m2:
|
|
735
|
-
chi1_l:
|
|
736
|
-
chi2_l:
|
|
737
|
-
chip:
|
|
738
|
-
) ->
|
|
750
|
+
m1: BatchTensor,
|
|
751
|
+
m2: BatchTensor,
|
|
752
|
+
chi1_l: BatchTensor,
|
|
753
|
+
chi2_l: BatchTensor,
|
|
754
|
+
chip: BatchTensor,
|
|
755
|
+
) -> BatchTensor:
|
|
739
756
|
M = m1 + m2
|
|
740
757
|
eta = m1 * m2 / (M * M)
|
|
741
758
|
eta2 = eta * eta
|
|
@@ -751,7 +768,7 @@ class IMRPhenomPv2(IMRPhenomD):
|
|
|
751
768
|
|
|
752
769
|
def phP_get_fRD_fdamp(
|
|
753
770
|
self, m1, m2, chi1_l, chi2_l, chip
|
|
754
|
-
) -> Tuple[
|
|
771
|
+
) -> Tuple[BatchTensor, BatchTensor]:
|
|
755
772
|
# m1 > m2 should hold here
|
|
756
773
|
finspin = self.FinalSpin_inplane(m1, m2, chi1_l, chi2_l, chip)
|
|
757
774
|
m1_s = m1 * MTSUN_SI
|
|
@@ -770,7 +787,7 @@ class IMRPhenomPv2(IMRPhenomD):
|
|
|
770
787
|
) / (1.0 - Erad)
|
|
771
788
|
return fRD / M_s, fdamp / M_s
|
|
772
789
|
|
|
773
|
-
def get_Amp0(self, fM_s:
|
|
790
|
+
def get_Amp0(self, fM_s: BatchTensor, eta: BatchTensor) -> BatchTensor:
|
|
774
791
|
Amp0 = (
|
|
775
792
|
(2.0 / 3.0 * eta.unsqueeze(1)) ** (1.0 / 2.0)
|
|
776
793
|
* (fM_s) ** (-7.0 / 6.0)
|
ml4gw/waveforms/ringdown.py
CHANGED
|
@@ -1,9 +1,8 @@
|
|
|
1
1
|
import numpy as np
|
|
2
2
|
import torch
|
|
3
3
|
|
|
4
|
-
from ml4gw.
|
|
5
|
-
|
|
6
|
-
from ..constants import PI, C, G, m_per_Mpc
|
|
4
|
+
from ml4gw.constants import PI, C, G, m_per_Mpc
|
|
5
|
+
from ml4gw.types import BatchTensor
|
|
7
6
|
|
|
8
7
|
|
|
9
8
|
class Ringdown(torch.nn.Module):
|
|
@@ -27,12 +26,12 @@ class Ringdown(torch.nn.Module):
|
|
|
27
26
|
|
|
28
27
|
def forward(
|
|
29
28
|
self,
|
|
30
|
-
frequency:
|
|
31
|
-
quality:
|
|
32
|
-
epsilon:
|
|
33
|
-
phase:
|
|
34
|
-
inclination:
|
|
35
|
-
distance:
|
|
29
|
+
frequency: BatchTensor,
|
|
30
|
+
quality: BatchTensor,
|
|
31
|
+
epsilon: BatchTensor,
|
|
32
|
+
phase: BatchTensor,
|
|
33
|
+
inclination: BatchTensor,
|
|
34
|
+
distance: BatchTensor,
|
|
36
35
|
):
|
|
37
36
|
"""
|
|
38
37
|
Generate ringdown waveform based on the damped sinusoid equation.
|
ml4gw/waveforms/sine_gaussian.py
CHANGED
|
@@ -1,7 +1,7 @@
|
|
|
1
1
|
import torch
|
|
2
2
|
from torch import Tensor
|
|
3
3
|
|
|
4
|
-
from ml4gw.types import
|
|
4
|
+
from ml4gw.types import BatchTensor
|
|
5
5
|
|
|
6
6
|
|
|
7
7
|
def semi_major_minor_from_e(e: Tensor):
|
|
@@ -32,11 +32,11 @@ class SineGaussian(torch.nn.Module):
|
|
|
32
32
|
|
|
33
33
|
def forward(
|
|
34
34
|
self,
|
|
35
|
-
quality:
|
|
36
|
-
frequency:
|
|
37
|
-
hrss:
|
|
38
|
-
phase:
|
|
39
|
-
eccentricity:
|
|
35
|
+
quality: BatchTensor,
|
|
36
|
+
frequency: BatchTensor,
|
|
37
|
+
hrss: BatchTensor,
|
|
38
|
+
phase: BatchTensor,
|
|
39
|
+
eccentricity: BatchTensor,
|
|
40
40
|
):
|
|
41
41
|
"""
|
|
42
42
|
Generate lalinference implementation of a sine-Gaussian waveform.
|
ml4gw/waveforms/taylorf2.py
CHANGED
|
@@ -1,8 +1,9 @@
|
|
|
1
1
|
import torch
|
|
2
|
-
from
|
|
2
|
+
from jaxtyping import Float
|
|
3
3
|
|
|
4
|
-
from
|
|
5
|
-
from
|
|
4
|
+
from ml4gw.constants import MPC_SEC, MTSUN_SI, PI
|
|
5
|
+
from ml4gw.constants import EulerGamma as GAMMA
|
|
6
|
+
from ml4gw.types import BatchTensor, FrequencySeries1d
|
|
6
7
|
|
|
7
8
|
|
|
8
9
|
class TaylorF2(torch.nn.Module):
|
|
@@ -11,14 +12,14 @@ class TaylorF2(torch.nn.Module):
|
|
|
11
12
|
|
|
12
13
|
def forward(
|
|
13
14
|
self,
|
|
14
|
-
f:
|
|
15
|
-
chirp_mass:
|
|
16
|
-
mass_ratio:
|
|
17
|
-
chi1:
|
|
18
|
-
chi2:
|
|
19
|
-
distance:
|
|
20
|
-
phic:
|
|
21
|
-
inclination:
|
|
15
|
+
f: FrequencySeries1d,
|
|
16
|
+
chirp_mass: BatchTensor,
|
|
17
|
+
mass_ratio: BatchTensor,
|
|
18
|
+
chi1: BatchTensor,
|
|
19
|
+
chi2: BatchTensor,
|
|
20
|
+
distance: BatchTensor,
|
|
21
|
+
phic: BatchTensor,
|
|
22
|
+
inclination: BatchTensor,
|
|
22
23
|
f_ref: float,
|
|
23
24
|
):
|
|
24
25
|
"""
|
|
@@ -75,15 +76,15 @@ class TaylorF2(torch.nn.Module):
|
|
|
75
76
|
|
|
76
77
|
def taylorf2_htilde(
|
|
77
78
|
self,
|
|
78
|
-
f:
|
|
79
|
-
mass1:
|
|
80
|
-
mass2:
|
|
81
|
-
chi1:
|
|
82
|
-
chi2:
|
|
83
|
-
distance:
|
|
84
|
-
phic:
|
|
79
|
+
f: FrequencySeries1d,
|
|
80
|
+
mass1: BatchTensor,
|
|
81
|
+
mass2: BatchTensor,
|
|
82
|
+
chi1: BatchTensor,
|
|
83
|
+
chi2: BatchTensor,
|
|
84
|
+
distance: BatchTensor,
|
|
85
|
+
phic: BatchTensor,
|
|
85
86
|
f_ref: float,
|
|
86
|
-
):
|
|
87
|
+
) -> Float[FrequencySeries1d, " batch"]:
|
|
87
88
|
mass1_s = mass1 * MTSUN_SI
|
|
88
89
|
mass2_s = mass2 * MTSUN_SI
|
|
89
90
|
M_s = mass1_s + mass2_s
|
|
@@ -103,8 +104,13 @@ class TaylorF2(torch.nn.Module):
|
|
|
103
104
|
return h0
|
|
104
105
|
|
|
105
106
|
def taylorf2_amplitude(
|
|
106
|
-
self,
|
|
107
|
-
|
|
107
|
+
self,
|
|
108
|
+
Mf: BatchTensor,
|
|
109
|
+
mass1: BatchTensor,
|
|
110
|
+
mass2: BatchTensor,
|
|
111
|
+
eta: BatchTensor,
|
|
112
|
+
distance: BatchTensor,
|
|
113
|
+
) -> Float[FrequencySeries1d, " batch"]:
|
|
108
114
|
mass1_s = mass1 * MTSUN_SI
|
|
109
115
|
mass2_s = mass2 * MTSUN_SI
|
|
110
116
|
v = (PI * Mf) ** (1.0 / 3.0)
|
|
@@ -126,12 +132,12 @@ class TaylorF2(torch.nn.Module):
|
|
|
126
132
|
|
|
127
133
|
def taylorf2_phase(
|
|
128
134
|
self,
|
|
129
|
-
Mf:
|
|
130
|
-
mass1:
|
|
131
|
-
mass2:
|
|
132
|
-
chi1:
|
|
133
|
-
chi2:
|
|
134
|
-
) ->
|
|
135
|
+
Mf: BatchTensor,
|
|
136
|
+
mass1: BatchTensor,
|
|
137
|
+
mass2: BatchTensor,
|
|
138
|
+
chi1: BatchTensor,
|
|
139
|
+
chi2: BatchTensor,
|
|
140
|
+
) -> Float[FrequencySeries1d, " batch"]:
|
|
135
141
|
"""
|
|
136
142
|
Calculate the inspiral phase for the TaylorF2.
|
|
137
143
|
"""
|
|
@@ -1,19 +1,20 @@
|
|
|
1
1
|
Metadata-Version: 2.1
|
|
2
2
|
Name: ml4gw
|
|
3
|
-
Version: 0.5.
|
|
3
|
+
Version: 0.5.1
|
|
4
4
|
Summary: Tools for training torch models on gravitational wave data
|
|
5
5
|
Author: Alec Gunny
|
|
6
6
|
Author-email: alec.gunny@ligo.org
|
|
7
|
-
Requires-Python: >=3.8,<3.
|
|
7
|
+
Requires-Python: >=3.8,<3.13
|
|
8
8
|
Classifier: Programming Language :: Python :: 3
|
|
9
9
|
Classifier: Programming Language :: Python :: 3.8
|
|
10
10
|
Classifier: Programming Language :: Python :: 3.9
|
|
11
11
|
Classifier: Programming Language :: Python :: 3.10
|
|
12
12
|
Classifier: Programming Language :: Python :: 3.11
|
|
13
|
+
Classifier: Programming Language :: Python :: 3.12
|
|
14
|
+
Requires-Dist: jaxtyping (>=0.2,<0.3)
|
|
13
15
|
Requires-Dist: numpy (<2.0.0)
|
|
14
16
|
Requires-Dist: torch (>=2.0,<3.0)
|
|
15
17
|
Requires-Dist: torchaudio (>=2.0,<3.0)
|
|
16
|
-
Requires-Dist: torchtyping (>=0.1,<0.2)
|
|
17
18
|
Description-Content-Type: text/markdown
|
|
18
19
|
|
|
19
20
|
# ML4GW
|
|
@@ -0,0 +1,47 @@
|
|
|
1
|
+
ml4gw/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
2
|
+
ml4gw/augmentations.py,sha256=pZH9tjEpXV0AIqvHHDkpUE-BorG02beOz2pmSipw2EY,1232
|
|
3
|
+
ml4gw/constants.py,sha256=W9beA9RDRdIug1I2H7VLPEPv_DFsQWWoYRmzxv7FWgM,891
|
|
4
|
+
ml4gw/dataloading/__init__.py,sha256=EHBBqU7y2-Np5iQ_xyufxamUEM1pPEquqFo7oaJnaJE,149
|
|
5
|
+
ml4gw/dataloading/chunked_dataset.py,sha256=FpDc4gFxt-PMyXs5qSWLuTGXMTuS1B-hH8gUOCOGxZk,5260
|
|
6
|
+
ml4gw/dataloading/hdf5_dataset.py,sha256=UB1Eog8l7m4M78Owst7oYQZICb0DRJer9WVLVn4hl_I,6645
|
|
7
|
+
ml4gw/dataloading/in_memory_dataset.py,sha256=kleMA9ABUKA6J0tCdz78tbX9lM6uxVSLhqgHbSa1iWY,9550
|
|
8
|
+
ml4gw/distributions.py,sha256=tUuaOiX5enjKLYWD7uiN8rdRVQcrIKps64xBkTl8fMs,4991
|
|
9
|
+
ml4gw/gw.py,sha256=To_hQz9tUp02ADllGLxFCPsNcfbb-kbvfgGpooxcOII,17693
|
|
10
|
+
ml4gw/nn/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
11
|
+
ml4gw/nn/autoencoder/__init__.py,sha256=ZaT1XhJTHpMuPQqu5E__Jezeh9uwtjcXlT7IZ18byq4,161
|
|
12
|
+
ml4gw/nn/autoencoder/base.py,sha256=4d5Ej30IUzZh3XbldzWlCpp3p0_91YUvKeRID8ZEZGA,3225
|
|
13
|
+
ml4gw/nn/autoencoder/convolutional.py,sha256=2BXDuPWYC-151RO_FL0ogdrqSVTfo4YNrY80lPwrmFA,5419
|
|
14
|
+
ml4gw/nn/autoencoder/skip_connection.py,sha256=fpXxxIIl0CXY4mAfUZQuvI542pEBSwpg90TNG2rbZY8,1411
|
|
15
|
+
ml4gw/nn/autoencoder/utils.py,sha256=m_ivYGNwdrhA7cFxJVD4gqM8AHiWIGmlQI3pFNRklXQ,355
|
|
16
|
+
ml4gw/nn/norm.py,sha256=JIOMXQbUtoWlrhncGsqW6f1-DiGDx9zQH2O3CvQml3U,3594
|
|
17
|
+
ml4gw/nn/resnet/__init__.py,sha256=vBI0IftVP_EYAeDlqomtkGqUYE-RE_S4WNioUhniw9s,64
|
|
18
|
+
ml4gw/nn/resnet/resnet_1d.py,sha256=IQ-EIIzAXd-NWuLwt7JTXLWg5bO3FGJpuFAZwZ78jaI,13218
|
|
19
|
+
ml4gw/nn/resnet/resnet_2d.py,sha256=aK4I0FOZk62JxnYFz0t1O0s5s7J7yRNYSM1flRypvVc,13301
|
|
20
|
+
ml4gw/nn/streaming/__init__.py,sha256=zgjGR2L8t0txXLnil9ceZT0tM8Y2FC8yPxqIKYH0o1A,80
|
|
21
|
+
ml4gw/nn/streaming/online_average.py,sha256=aI8hkT7I3thXkda9tsXxYrzump9swelSXPdSTwPlJWY,4719
|
|
22
|
+
ml4gw/nn/streaming/snapshotter.py,sha256=B9qtbHxnPszAHQ5WQppWJLRuMnnYIxGk7MRUlgja7Is,4476
|
|
23
|
+
ml4gw/spectral.py,sha256=Mt3-yz4a83z0X7M1sVp00_vB947w-9OjU0iNdEkbQcU,19145
|
|
24
|
+
ml4gw/transforms/__init__.py,sha256=24pdP_hIg1wfrtZxxRBPhcEXsCbvVKtNKp7JL8SEogE,362
|
|
25
|
+
ml4gw/transforms/pearson.py,sha256=Ep3mMsY15AF55taRaWNjpHRTvtr1StShUDfqk0dN-qo,3235
|
|
26
|
+
ml4gw/transforms/qtransform.py,sha256=umBSpykfmPftjfyMqbniiP2mTh62q4hoYPA55qneJ4o,17702
|
|
27
|
+
ml4gw/transforms/scaler.py,sha256=fLZo-m6_yFY3UDoLEaS_YgCnYggxlcKstXcM7749TiU,2433
|
|
28
|
+
ml4gw/transforms/snr_rescaler.py,sha256=3XXCTaXc2dzzpXRZx7iqRwImvYtRSJLM5fHdBGfpoUs,2351
|
|
29
|
+
ml4gw/transforms/spectral.py,sha256=gTHUeC0gGYbzgBZHb_FxC_4zdhl5H-XCiLg1hrvKB70,4393
|
|
30
|
+
ml4gw/transforms/spectrogram.py,sha256=HS3Rf5iB7JjhlSESRDdFGUwCtIBdvUaJUDulkB4Lmos,6162
|
|
31
|
+
ml4gw/transforms/transform.py,sha256=BuzTbPFxp18OEGP9Tu9jBGtvqy3len1cqvqg5X37DiY,2512
|
|
32
|
+
ml4gw/transforms/waveforms.py,sha256=LkYCvxPqYhHa2yYZTvPE6j0E4HFy16b5ndCRQb7WfcA,3196
|
|
33
|
+
ml4gw/transforms/whitening.py,sha256=Aw_ogq93CYCATiHWBqSZ-qsUtaHAMA3k009ZRtQTtHA,9596
|
|
34
|
+
ml4gw/types.py,sha256=CcctqDcNajR7khGT6BD-WYsfRKpiP0udoSAB0k1qcFw,863
|
|
35
|
+
ml4gw/utils/interferometer.py,sha256=lRS0N3SwUTknhYXX57VACJ99jK1P9M19oUWN_i_nQN0,1814
|
|
36
|
+
ml4gw/utils/slicing.py,sha256=ilRz_5sJzwmd5VyBlrj81tvyC3uCnXYjd0TO2fzFMr8,13563
|
|
37
|
+
ml4gw/waveforms/__init__.py,sha256=dnxfRGX_B3zQPB3_3srLyjZXRxTn4miZqYIRe7PYyrU,170
|
|
38
|
+
ml4gw/waveforms/generator.py,sha256=dO6RQ96EC87p2q0tEkxA62XkkJc1xARFO1SKcGvyDhM,1272
|
|
39
|
+
ml4gw/waveforms/phenom_d.py,sha256=vA60SjOvWSIcsU83-KEw2hnU3ATo4eW8A2mMmuMXo7Y,46941
|
|
40
|
+
ml4gw/waveforms/phenom_d_data.py,sha256=WA1FBxUp9fo1IQaV_OLJ_5g5gI166mY1FtG9n25he9U,53447
|
|
41
|
+
ml4gw/waveforms/phenom_p.py,sha256=VybpPlc2_yMGywnPz5B79QAygAj-WAeHZTPiZHets28,26951
|
|
42
|
+
ml4gw/waveforms/ringdown.py,sha256=m8IBQTxKBBGFqBtWGEO4KG3DEYR8TTnNyGVdVLaMKa8,3316
|
|
43
|
+
ml4gw/waveforms/sine_gaussian.py,sha256=-MtrI7ydwBTk4K0O4tdkC8-w5OifQszdnWN9__I4XzY,3569
|
|
44
|
+
ml4gw/waveforms/taylorf2.py,sha256=ySYLGTT_c3k4NzPDsQ9v822kzvU6TwYpELJEWlCDGQE,10428
|
|
45
|
+
ml4gw-0.5.1.dist-info/METADATA,sha256=P2uoQtMX_K5SSwAzTY5tyNvWYszxaDADTS54iDOQYKw,5785
|
|
46
|
+
ml4gw-0.5.1.dist-info/WHEEL,sha256=sP946D7jFCHeNz5Iq4fL4Lu-PrWrFsgfLXbbkciIZwg,88
|
|
47
|
+
ml4gw-0.5.1.dist-info/RECORD,,
|
ml4gw-0.5.0.dist-info/RECORD
DELETED
|
@@ -1,47 +0,0 @@
|
|
|
1
|
-
ml4gw/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
2
|
-
ml4gw/augmentations.py,sha256=UEwNxdjzIQUqUgtAdrstptTZ73ay5sLc3imQY1DVUqs,1027
|
|
3
|
-
ml4gw/constants.py,sha256=W9beA9RDRdIug1I2H7VLPEPv_DFsQWWoYRmzxv7FWgM,891
|
|
4
|
-
ml4gw/dataloading/__init__.py,sha256=EHBBqU7y2-Np5iQ_xyufxamUEM1pPEquqFo7oaJnaJE,149
|
|
5
|
-
ml4gw/dataloading/chunked_dataset.py,sha256=jy-y5xhMJqRZIA_pjrc4QHhqpAcpM9aJi2omT24riXY,5195
|
|
6
|
-
ml4gw/dataloading/hdf5_dataset.py,sha256=D6cWBtF5_nox89SO4M9so2GDhkfkhdkc0EUpPhyvEyE,6643
|
|
7
|
-
ml4gw/dataloading/in_memory_dataset.py,sha256=8bHOB7GreoLWcb_IYEQd2-BXfaYCO1EonD6MHFVPAzA,9429
|
|
8
|
-
ml4gw/distributions.py,sha256=sTaiRkHEuNVP0l5qt3J3BlH1Xvow2RZWdua7LKIrddY,4922
|
|
9
|
-
ml4gw/gw.py,sha256=RlG8Vj9GCcv0wpKWz9XlbRattls1A-FCCN1RiIhSE_w,17914
|
|
10
|
-
ml4gw/nn/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
11
|
-
ml4gw/nn/autoencoder/__init__.py,sha256=ZaT1XhJTHpMuPQqu5E__Jezeh9uwtjcXlT7IZ18byq4,161
|
|
12
|
-
ml4gw/nn/autoencoder/base.py,sha256=PLr26Cn5DHmgDYX1qj4idfrLehHVeiJqer065ea8_QM,3098
|
|
13
|
-
ml4gw/nn/autoencoder/convolutional.py,sha256=JTMpTJVdFju9HPPAh9UDdXG1MsFbADrqUIKM8_xg74E,5316
|
|
14
|
-
ml4gw/nn/autoencoder/skip_connection.py,sha256=bOKBLzMqZDh9w8s9G5U93LCESjTSFUHzQGo0hLDOeSk,1304
|
|
15
|
-
ml4gw/nn/autoencoder/utils.py,sha256=whTnWPvdKuVDlxg52azJeM1d9YjiYFWoqIOzJVDGups,326
|
|
16
|
-
ml4gw/nn/norm.py,sha256=IQIiXDnKxzK-3BcA4UgHxLDmy_N89BTj-FENj9y4u7E,3447
|
|
17
|
-
ml4gw/nn/resnet/__init__.py,sha256=vBI0IftVP_EYAeDlqomtkGqUYE-RE_S4WNioUhniw9s,64
|
|
18
|
-
ml4gw/nn/resnet/resnet_1d.py,sha256=IQ-EIIzAXd-NWuLwt7JTXLWg5bO3FGJpuFAZwZ78jaI,13218
|
|
19
|
-
ml4gw/nn/resnet/resnet_2d.py,sha256=aK4I0FOZk62JxnYFz0t1O0s5s7J7yRNYSM1flRypvVc,13301
|
|
20
|
-
ml4gw/nn/streaming/__init__.py,sha256=zgjGR2L8t0txXLnil9ceZT0tM8Y2FC8yPxqIKYH0o1A,80
|
|
21
|
-
ml4gw/nn/streaming/online_average.py,sha256=T-wWw7eEufbUVPRNnLAXIq0cedAyJWEE9tdZ6CTi3cs,4561
|
|
22
|
-
ml4gw/nn/streaming/snapshotter.py,sha256=-l_YsWby7ZnEzGIAlLAV2mtR0daLMtLCxovtt4OI3Z0,4432
|
|
23
|
-
ml4gw/spectral.py,sha256=5GfKAV_1vw5yyzTD2u_myjT5jIlAyAHDX6TXj9ynL_o,19021
|
|
24
|
-
ml4gw/transforms/__init__.py,sha256=24pdP_hIg1wfrtZxxRBPhcEXsCbvVKtNKp7JL8SEogE,362
|
|
25
|
-
ml4gw/transforms/pearson.py,sha256=bJ77lO4wBY6y1R1aESN_bcUEMbc55hWCIaCBdbIj4CY,3133
|
|
26
|
-
ml4gw/transforms/qtransform.py,sha256=hvCzdGROLoW1nJYR_ZZWDnafJpX4kD1os3CZ2jQJ7IU,17328
|
|
27
|
-
ml4gw/transforms/scaler.py,sha256=5VGov0M80NZostRzccViC3HNftx4ZVu0kOKTDmiLrR4,2327
|
|
28
|
-
ml4gw/transforms/snr_rescaler.py,sha256=ocYr6UjpHW7t5TvruV7fyY8KuuDfGOJyvxEulmiFA6o,2275
|
|
29
|
-
ml4gw/transforms/spectral.py,sha256=WgRkS-QVbZEKa8Dwgst5I6NM6kVhbsY5c7ZmYqpcecE,4178
|
|
30
|
-
ml4gw/transforms/spectrogram.py,sha256=R3O8eUB6NHdBFx89v8e_WdJIvXl4qwVeGWZnPyLhHHQ,6024
|
|
31
|
-
ml4gw/transforms/transform.py,sha256=jEr9OFj4u7Wjeh_rpRq90jMpK_TfzcIelbBmt30DxQU,2408
|
|
32
|
-
ml4gw/transforms/waveforms.py,sha256=iyEDSRqK_1zZrxxJenJFbwGUWqbE-alVTXhvjaGl1ww,3060
|
|
33
|
-
ml4gw/transforms/whitening.py,sha256=TmvFCCeTOcSEWo5Pt_JQRJ23X5byiJ91q5jHgBRy0rc,9428
|
|
34
|
-
ml4gw/types.py,sha256=XbxunX8zRF95Fp1mZ9jEbixb63bwDQMoayRMMxT9Lzo,429
|
|
35
|
-
ml4gw/utils/interferometer.py,sha256=Ei9fJoNxjtFNZcMZIs5MG2yj2n-wrlSlWwi-ELRv7Nc,1806
|
|
36
|
-
ml4gw/utils/slicing.py,sha256=Cbwcpk_0hsfN4zczFVM2YbDRjeirA7jFvApM4Jy0U8s,13535
|
|
37
|
-
ml4gw/waveforms/__init__.py,sha256=dnxfRGX_B3zQPB3_3srLyjZXRxTn4miZqYIRe7PYyrU,170
|
|
38
|
-
ml4gw/waveforms/generator.py,sha256=HYTAbih5y-i4v5iV4twTo2DPSADUrrsuz2m9WDqJoH4,1067
|
|
39
|
-
ml4gw/waveforms/phenom_d.py,sha256=6wV_NYH8iNQcJ_uuB2cB00m8_2wfkVz3Hu7NTY4hBQg,46823
|
|
40
|
-
ml4gw/waveforms/phenom_d_data.py,sha256=WA1FBxUp9fo1IQaV_OLJ_5g5gI166mY1FtG9n25he9U,53447
|
|
41
|
-
ml4gw/waveforms/phenom_p.py,sha256=qZXhDexcSedCP8UwEk1Jw2YoBy9Uxp0zWg1ltXu-guk,26615
|
|
42
|
-
ml4gw/waveforms/ringdown.py,sha256=1-KAzfe2EOv0y9MY-DOB8Qv--9wS8fYIa6xTLcKI4i4,3320
|
|
43
|
-
ml4gw/waveforms/sine_gaussian.py,sha256=LlSgPwd-_HPrkpVhdqZbMReepAn4BQgsMP4Ei33IWAA,3575
|
|
44
|
-
ml4gw/waveforms/taylorf2.py,sha256=-5q52p0Ie5oZJhhfJwdKXR9RNeTLW1QJxsRKMGi1w-c,10160
|
|
45
|
-
ml4gw-0.5.0.dist-info/METADATA,sha256=psK8lqAVUUCfJV6uI4XX9EFrXa2-h8Eyt-KWcO6gDmI,5736
|
|
46
|
-
ml4gw-0.5.0.dist-info/WHEEL,sha256=sP946D7jFCHeNz5Iq4fL4Lu-PrWrFsgfLXbbkciIZwg,88
|
|
47
|
-
ml4gw-0.5.0.dist-info/RECORD,,
|
|
File without changes
|