ml4gw 0.2.0__py3-none-any.whl → 0.4.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of ml4gw might be problematic. Click here for more details.

@@ -0,0 +1,306 @@
1
+ import torch
2
+ from torchtyping import TensorType
3
+
4
+ GAMMA = 0.577215664901532860606512090082402431
5
+ """Euler-Mascheroni constant. Same as lal.GAMMA"""
6
+
7
+ MSUN_SI = 1.988409870698050731911960804878414216e30
8
+ """Solar mass in kg. Same as lal.MSUN_SI"""
9
+
10
+ MTSUN_SI = 4.925490947641266978197229498498379006e-6
11
+ """1 solar mass in seconds. Same value as lal.MTSUN_SI"""
12
+
13
+ PI = 3.141592653589793238462643383279502884
14
+ """Archimedes constant. Same as lal.PI"""
15
+
16
+ MPC_SEC = 1.02927125e14
17
+ """
18
+ 1 Mpc in seconds.
19
+ """
20
+
21
+
22
+ def taylorf2_phase(
23
+ Mf: TensorType,
24
+ mass1: TensorType,
25
+ mass2: TensorType,
26
+ chi1: TensorType,
27
+ chi2: TensorType,
28
+ ) -> TensorType:
29
+ """
30
+ Calculate the inspiral phase for the TaylorF2.
31
+ """
32
+ M = mass1 + mass2
33
+ eta = mass1 * mass2 / M / M
34
+ m1byM = mass1 / M
35
+ m2byM = mass2 / M
36
+ chi1sq = chi1 * chi1
37
+ chi2sq = chi2 * chi2
38
+
39
+ v0 = torch.ones_like(Mf)
40
+ v1 = (PI * Mf) ** (1.0 / 3.0)
41
+ v2 = v1 * v1
42
+ v3 = v2 * v1
43
+ v4 = v3 * v1
44
+ v5 = v4 * v1
45
+ v6 = v5 * v1
46
+ v7 = v6 * v1
47
+ logv = torch.log(v1)
48
+ v5_logv = v5 * logv
49
+ v6_logv = v6 * logv
50
+
51
+ # Phase coeffeciencts from https://git.ligo.org/lscsoft/lalsuite/-/blob/master/lalsimulation/lib/LALSimInspiralPNCoefficients.c # noqa E501
52
+ pfaN = 3.0 / (128.0 * eta)
53
+ pfa_v0 = 1.0
54
+ pfa_v1 = 0.0
55
+ pfa_v2 = 5.0 * (74.3 / 8.4 + 11.0 * eta) / 9.0
56
+ pfa_v3 = -16.0 * PI
57
+ # SO contributions at 1.5 PN
58
+ pfa_v3 += (
59
+ m1byM * (25.0 + 38.0 / 3.0 * m1byM) * chi1
60
+ + m2byM * (25.0 + 38.0 / 3.0 * m2byM) * chi2
61
+ )
62
+ pfa_v4 = (
63
+ 5.0
64
+ * (3058.673 / 7.056 + 5429.0 / 7.0 * eta + 617.0 * eta * eta)
65
+ / 72.0
66
+ )
67
+ # SO, SS, S1,2-squared contributions
68
+ pfa_v4 += (
69
+ 247.0 / 4.8 * eta * chi1 * chi2
70
+ + -721.0 / 4.8 * eta * chi1 * chi2
71
+ + (-720.0 / 9.6 * m1byM * m1byM + 1.0 / 9.6 * m1byM * m1byM) * chi1sq
72
+ + (-720.0 / 9.6 * m2byM * m2byM + 1.0 / 9.6 * m2byM * m2byM) * chi2sq
73
+ + (240.0 / 9.6 * m1byM * m1byM + -7.0 / 9.6 * m1byM * m1byM) * chi1sq
74
+ + (240.0 / 9.6 * m2byM * m2byM + -7.0 / 9.6 * m2byM * m2byM) * chi2sq
75
+ )
76
+ pfa_v5logv = 5.0 / 3.0 * (772.9 / 8.4 - 13.0 * eta) * PI
77
+ pfa_v5 = 5.0 / 9.0 * (772.9 / 8.4 - 13.0 * eta) * PI
78
+ # SO coefficient for 2.5 PN
79
+ pfa_v5logv += 3.0 * (
80
+ -m1byM
81
+ * (
82
+ 1391.5 / 8.4
83
+ - 10.0 / 3.0 * m1byM * (1.0 - m1byM)
84
+ + m1byM * (1276.0 / 8.1 + 170.0 / 9.0 * m1byM * (1.0 - m1byM))
85
+ )
86
+ * chi1
87
+ - m2byM
88
+ * (
89
+ 1391.5 / 8.4
90
+ - 10.0 / 3.0 * m2byM * (1.0 - m2byM)
91
+ + m2byM * (1276.0 / 8.1 + 170.0 / 9.0 * m2byM * (1.0 - m2byM))
92
+ )
93
+ * chi2
94
+ )
95
+ pfa_v5 += (
96
+ -m1byM
97
+ * (
98
+ 1391.5 / 8.4
99
+ - 10.0 / 3.0 * m1byM * (1.0 - m1byM)
100
+ + m1byM * (1276.0 / 8.1 + 170.0 / 9.0 * m1byM * (1.0 - m1byM))
101
+ )
102
+ * chi1
103
+ + -m2byM
104
+ * (
105
+ 1391.5 / 8.4
106
+ - 10.0 / 3.0 * m2byM * (1.0 - m2byM)
107
+ + m2byM * (1276.0 / 8.1 + 170.0 / 9.0 * m2byM * (1.0 - m2byM))
108
+ )
109
+ * chi2
110
+ )
111
+ pfa_v6logv = -684.8 / 2.1
112
+ pfa_v6 = (
113
+ 11583.231236531 / 4.694215680
114
+ - 640.0 / 3.0 * PI * PI
115
+ - 684.8 / 2.1 * GAMMA
116
+ + eta * (-15737.765635 / 3.048192 + 225.5 / 1.2 * PI * PI)
117
+ + eta * eta * 76.055 / 1.728
118
+ - eta * eta * eta * 127.825 / 1.296
119
+ + pfa_v6logv * torch.log(torch.tensor(4.0))
120
+ )
121
+ # SO + S1-S2 + S-squared contribution at 3 PN
122
+ pfa_v6 += (
123
+ PI * m1byM * (1490.0 / 3.0 + m1byM * 260.0) * chi1
124
+ + PI * m2byM * (1490.0 / 3.0 + m2byM * 260.0) * chi2
125
+ + (326.75 / 1.12 + 557.5 / 1.8 * eta) * eta * chi1 * chi2
126
+ + (
127
+ (4703.5 / 8.4 + 2935.0 / 6.0 * m1byM - 120.0 * m1byM * m1byM)
128
+ * m1byM
129
+ * m1byM
130
+ + (
131
+ -4108.25 / 6.72
132
+ - 108.5 / 1.2 * m1byM
133
+ + 125.5 / 3.6 * m1byM * m1byM
134
+ )
135
+ * m1byM
136
+ * m1byM
137
+ )
138
+ * chi1sq
139
+ + (
140
+ (4703.5 / 8.4 + 2935.0 / 6.0 * m2byM - 120.0 * m2byM * m2byM)
141
+ * m2byM
142
+ * m2byM
143
+ + (
144
+ -4108.25 / 6.72
145
+ - 108.5 / 1.2 * m2byM
146
+ + 125.5 / 3.6 * m2byM * m2byM
147
+ )
148
+ * m2byM
149
+ * m2byM
150
+ )
151
+ * chi2sq
152
+ )
153
+ pfa_v7 = PI * (
154
+ 770.96675 / 2.54016 + 378.515 / 1.512 * eta - 740.45 / 7.56 * eta * eta
155
+ )
156
+ # SO contribution at 3.5 PN
157
+ pfa_v7 += (
158
+ m1byM
159
+ * (
160
+ -17097.8035 / 4.8384
161
+ + eta * 28764.25 / 6.72
162
+ + eta * eta * 47.35 / 1.44
163
+ + m1byM
164
+ * (
165
+ -7189.233785 / 1.524096
166
+ + eta * 458.555 / 3.024
167
+ - eta * eta * 534.5 / 7.2
168
+ )
169
+ )
170
+ ) * chi1 + (
171
+ m2byM
172
+ * (
173
+ -17097.8035 / 4.8384
174
+ + eta * 28764.25 / 6.72
175
+ + eta * eta * 47.35 / 1.44
176
+ + m2byM
177
+ * (
178
+ -7189.233785 / 1.524096
179
+ + eta * 458.555 / 3.024
180
+ - eta * eta * 534.5 / 7.2
181
+ )
182
+ )
183
+ ) * chi2
184
+ # construct power series
185
+ phasing = (v7.T * pfa_v7).T
186
+ phasing += (v6.T * pfa_v6 + v6_logv.T * pfa_v6logv).T
187
+ phasing += (v5.T * pfa_v5 + v5_logv.T * pfa_v5logv).T
188
+ phasing += (v4.T * pfa_v4).T
189
+ phasing += (v3.T * pfa_v3).T
190
+ phasing += (v2.T * pfa_v2).T
191
+ phasing += (v1.T * pfa_v1).T
192
+ phasing += (v0.T * pfa_v0).T
193
+ # Divide by 0PN v-dependence
194
+ phasing /= v5
195
+ # Multiply by 0PN coefficient
196
+ phasing = (phasing.T * pfaN).T
197
+
198
+ # Derivative of phase w.r.t Mf
199
+ # dPhi/dMf = dPhi/dv dv/dMf
200
+ Dphasing = (2.0 * v7.T * pfa_v7).T
201
+ Dphasing += (v6.T * (pfa_v6 + pfa_v6logv)).T
202
+ Dphasing += (v6_logv.T * pfa_v6logv).T
203
+ Dphasing += (v5.T * pfa_v5logv).T
204
+ Dphasing += (-1.0 * v4.T * pfa_v4).T
205
+ Dphasing += (-2.0 * v3.T * pfa_v3).T
206
+ Dphasing += (-3.0 * v2.T * pfa_v2).T
207
+ Dphasing += (-4.0 * v1.T * pfa_v1).T
208
+ Dphasing += -5.0 * v0
209
+ Dphasing /= 3.0 * v1 * v7
210
+ Dphasing *= PI
211
+ Dphasing = (Dphasing.T * pfaN).T
212
+
213
+ return phasing, Dphasing
214
+
215
+
216
+ def taylorf2_amplitude(
217
+ Mf: TensorType, mass1, mass2, eta, distance
218
+ ) -> TensorType:
219
+ mass1_s = mass1 * MTSUN_SI
220
+ mass2_s = mass2 * MTSUN_SI
221
+ v = (PI * Mf) ** (1.0 / 3.0)
222
+ v10 = v**10
223
+
224
+ # Flux and energy coefficient at newtonian
225
+ FTaN = 32.0 * eta * eta / 5.0
226
+ dETaN = 2 * (-eta / 2.0)
227
+
228
+ amp0 = -4.0 * mass1_s * mass2_s * (PI / 12.0) ** 0.5
229
+
230
+ amp0 /= distance * MPC_SEC
231
+ flux = (v10.T * FTaN).T
232
+ dEnergy = (v.T * dETaN).T
233
+ amp = torch.sqrt(-dEnergy / flux) * v
234
+ amp = (amp.T * amp0).T
235
+
236
+ return amp
237
+
238
+
239
+ def taylorf2_htilde(
240
+ f: TensorType,
241
+ mass1: TensorType,
242
+ mass2: TensorType,
243
+ chi1: TensorType,
244
+ chi2: TensorType,
245
+ distance: TensorType,
246
+ phic: TensorType,
247
+ f_ref: float,
248
+ ):
249
+ mass1_s = mass1 * MTSUN_SI
250
+ mass2_s = mass2 * MTSUN_SI
251
+ M_s = mass1_s + mass2_s
252
+ eta = mass1_s * mass2_s / M_s / M_s
253
+
254
+ Mf = torch.outer(M_s, f)
255
+ Mf_ref = torch.outer(M_s, f_ref * torch.ones_like(f))
256
+
257
+ Psi, _ = taylorf2_phase(Mf, mass1, mass2, chi1, chi2)
258
+ Psi_ref, _ = taylorf2_phase(Mf_ref, mass1, mass2, chi1, chi2)
259
+
260
+ Psi = (Psi.T - 2 * phic).T
261
+ Psi -= Psi_ref
262
+
263
+ amp0 = taylorf2_amplitude(Mf, mass1, mass2, eta, distance)
264
+ h0 = amp0 * torch.exp(-1j * (Psi - PI / 4))
265
+ return h0
266
+
267
+
268
+ def TaylorF2(
269
+ f: TensorType,
270
+ mass1: TensorType,
271
+ mass2: TensorType,
272
+ chi1: TensorType,
273
+ chi2: TensorType,
274
+ distance: TensorType,
275
+ phic: TensorType,
276
+ inclination: TensorType,
277
+ f_ref: float,
278
+ ):
279
+ """
280
+ TaylorF2 up to 3.5 PN in phase. Newtonian SPA amplitude.
281
+
282
+ Returns:
283
+ --------
284
+ hp, hc
285
+ """
286
+ # shape assumed (n_batch, params)
287
+ if (
288
+ mass1.shape[0] != mass2.shape[0]
289
+ or mass2.shape[0] != chi1.shape[0]
290
+ or chi1.shape[0] != chi2.shape[0]
291
+ or chi2.shape[0] != distance.shape[0]
292
+ or distance.shape[0] != phic.shape[0]
293
+ or phic.shape[0] != inclination.shape[0]
294
+ ):
295
+ raise RuntimeError("Tensors should have same batch size")
296
+ cfac = torch.cos(inclination)
297
+ pfac = 0.5 * (1.0 + cfac * cfac)
298
+
299
+ htilde = taylorf2_htilde(
300
+ f, mass1, mass2, chi1, chi2, distance, phic, f_ref
301
+ )
302
+
303
+ hp = (htilde.T * pfac).T
304
+ hc = -1j * (htilde.T * cfac).T
305
+
306
+ return hp, hc
@@ -1,16 +1,19 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: ml4gw
3
- Version: 0.2.0
3
+ Version: 0.4.0
4
4
  Summary: Tools for training torch models on gravitational wave data
5
5
  Author: Alec Gunny
6
6
  Author-email: alec.gunny@ligo.org
7
- Requires-Python: >=3.8,<4.0
7
+ Requires-Python: >=3.8,<3.12
8
8
  Classifier: Programming Language :: Python :: 3
9
9
  Classifier: Programming Language :: Python :: 3.8
10
10
  Classifier: Programming Language :: Python :: 3.9
11
11
  Classifier: Programming Language :: Python :: 3.10
12
12
  Classifier: Programming Language :: Python :: 3.11
13
- Requires-Dist: torch (>=1.10,<2.0)
13
+ Requires-Dist: torch (>=1.10,<2.0) ; python_version >= "3.8" and python_version < "3.11"
14
+ Requires-Dist: torch (>=2.0,<3.0) ; python_version >= "3.11"
15
+ Requires-Dist: torchaudio (>=0.13,<0.14) ; python_version >= "3.8" and python_version < "3.11"
16
+ Requires-Dist: torchaudio (>=2.0,<3.0) ; python_version >= "3.11"
14
17
  Requires-Dist: torchtyping (>=0.1,<0.2)
15
18
  Description-Content-Type: text/markdown
16
19
 
@@ -37,8 +40,8 @@ pip install ml4gw torch==1.12.0 --extra-index-url=https://download.pytorch.org/w
37
40
 
38
41
  ```toml
39
42
  [tool.poetry.dependencies]
40
- python = "^3.8" # python versions 3.8-3.10 are supported
41
- ml4gw = "^0.1.0"
43
+ python = "^3.8" # python versions 3.8-3.11 are supported
44
+ ml4gw = "^0.3.0"
42
45
  ```
43
46
 
44
47
  To build against a specific PyTorch/CUDA combination, consult the PyTorch installation documentation above and specify the `extra-index-url` via the `tool.poetry.source` table in your `pyproject.toml`. For example, to build against CUDA 11.6, you would do something like:
@@ -46,7 +49,7 @@ To build against a specific PyTorch/CUDA combination, consult the PyTorch instal
46
49
  ```toml
47
50
  [tool.poetry.dependencies]
48
51
  python = "^3.8"
49
- ml4gw = "^0.1.0"
52
+ ml4gw = "^0.3.0"
50
53
  torch = {version = "^1.12", source = "torch"}
51
54
 
52
55
  [[tool.poetry.source]]
@@ -56,6 +59,8 @@ secondary = true
56
59
  default = false
57
60
  ```
58
61
 
62
+ Note: if you are building against CUDA 11.6 or 11.7, make sure that you are using python 3.8, 3.9, or 3.10. Python 3.11 is incompatible with `torchaudio` 0.13, and the following `torchaudio` version is incompatible with CUDA 11.7 and earlier.
63
+
59
64
  ## Use cases
60
65
  This library provided utilities for both data iteration and transformation via dataloaders defined in `ml4gw/dataloading` and transform layers exposed in `ml4gw/transforms`. Lower level functions and utilies are defined at the top level of the library and in the `utils` library.
61
66
 
@@ -145,3 +150,6 @@ We also strongly encourage ML users in the GW physics space to try their hand at
145
150
  For more information about how to get involved, feel free to reach out to [ml4gw@ligo.mit.edu](mailto:ml4gw@ligo.mit.edu) .
146
151
  By bringing in new users with new use cases, we hope to develop this library into a truly general-purpose tool which makes DL more accessible for gravitational wave physicists everywhere.
147
152
 
153
+ ## Funding
154
+ We are grateful for the support of the U.S. National Science Foundation (NSF) Harnessing the Data Revolution (HDR) Institute for <a href="https://a3d3.ai">Accelerating AI Algorithms for Data Driven Discovery (A3D3)</a> under Cooperative Agreement No. <a href="https://www.nsf.gov/awardsearch/showAward?AWD_ID=2117997">PHY-2117997</a>.
155
+
@@ -0,0 +1,43 @@
1
+ ml4gw/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
2
+ ml4gw/augmentations.py,sha256=UEwNxdjzIQUqUgtAdrstptTZ73ay5sLc3imQY1DVUqs,1027
3
+ ml4gw/dataloading/__init__.py,sha256=EHBBqU7y2-Np5iQ_xyufxamUEM1pPEquqFo7oaJnaJE,149
4
+ ml4gw/dataloading/chunked_dataset.py,sha256=jy-y5xhMJqRZIA_pjrc4QHhqpAcpM9aJi2omT24riXY,5195
5
+ ml4gw/dataloading/hdf5_dataset.py,sha256=D6cWBtF5_nox89SO4M9so2GDhkfkhdkc0EUpPhyvEyE,6643
6
+ ml4gw/dataloading/in_memory_dataset.py,sha256=9P0mk0PPno6ErRrxX6nhcYuwTJWAUAp7VSls2DBFRwo,9801
7
+ ml4gw/distributions.py,sha256=m38ynrUy0QoCpqkyLHSzUZe72tA02se5UBXuXQhN4bQ,3428
8
+ ml4gw/gw.py,sha256=RlG8Vj9GCcv0wpKWz9XlbRattls1A-FCCN1RiIhSE_w,17914
9
+ ml4gw/nn/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
10
+ ml4gw/nn/autoencoder/__init__.py,sha256=ZaT1XhJTHpMuPQqu5E__Jezeh9uwtjcXlT7IZ18byq4,161
11
+ ml4gw/nn/autoencoder/base.py,sha256=PLr26Cn5DHmgDYX1qj4idfrLehHVeiJqer065ea8_QM,3098
12
+ ml4gw/nn/autoencoder/convolutional.py,sha256=JTMpTJVdFju9HPPAh9UDdXG1MsFbADrqUIKM8_xg74E,5316
13
+ ml4gw/nn/autoencoder/skip_connection.py,sha256=bOKBLzMqZDh9w8s9G5U93LCESjTSFUHzQGo0hLDOeSk,1304
14
+ ml4gw/nn/autoencoder/utils.py,sha256=whTnWPvdKuVDlxg52azJeM1d9YjiYFWoqIOzJVDGups,326
15
+ ml4gw/nn/norm.py,sha256=9IHZTCCp4zgP7EaGpw1FpAm7o0EU5zu-LYFHKfuLzzw,3250
16
+ ml4gw/nn/resnet/__init__.py,sha256=vBI0IftVP_EYAeDlqomtkGqUYE-RE_S4WNioUhniw9s,64
17
+ ml4gw/nn/resnet/resnet_1d.py,sha256=IQ-EIIzAXd-NWuLwt7JTXLWg5bO3FGJpuFAZwZ78jaI,13218
18
+ ml4gw/nn/resnet/resnet_2d.py,sha256=aK4I0FOZk62JxnYFz0t1O0s5s7J7yRNYSM1flRypvVc,13301
19
+ ml4gw/nn/streaming/__init__.py,sha256=zgjGR2L8t0txXLnil9ceZT0tM8Y2FC8yPxqIKYH0o1A,80
20
+ ml4gw/nn/streaming/online_average.py,sha256=T-wWw7eEufbUVPRNnLAXIq0cedAyJWEE9tdZ6CTi3cs,4561
21
+ ml4gw/nn/streaming/snapshotter.py,sha256=-l_YsWby7ZnEzGIAlLAV2mtR0daLMtLCxovtt4OI3Z0,4432
22
+ ml4gw/spectral.py,sha256=5GfKAV_1vw5yyzTD2u_myjT5jIlAyAHDX6TXj9ynL_o,19021
23
+ ml4gw/transforms/__init__.py,sha256=t6ZJcq23apqDKhLGM-U5l_bqxJcXFj3riY6cTGY47Gc,314
24
+ ml4gw/transforms/pearson.py,sha256=bJ77lO4wBY6y1R1aESN_bcUEMbc55hWCIaCBdbIj4CY,3133
25
+ ml4gw/transforms/scaler.py,sha256=5VGov0M80NZostRzccViC3HNftx4ZVu0kOKTDmiLrR4,2327
26
+ ml4gw/transforms/snr_rescaler.py,sha256=ocYr6UjpHW7t5TvruV7fyY8KuuDfGOJyvxEulmiFA6o,2275
27
+ ml4gw/transforms/spectral.py,sha256=Vba9199z_ZaxsHWxdpgHB3U216rmGoSyehtvM3R9Z7A,3771
28
+ ml4gw/transforms/spectrogram.py,sha256=R3O8eUB6NHdBFx89v8e_WdJIvXl4qwVeGWZnPyLhHHQ,6024
29
+ ml4gw/transforms/transform.py,sha256=jEr9OFj4u7Wjeh_rpRq90jMpK_TfzcIelbBmt30DxQU,2408
30
+ ml4gw/transforms/waveforms.py,sha256=iyEDSRqK_1zZrxxJenJFbwGUWqbE-alVTXhvjaGl1ww,3060
31
+ ml4gw/transforms/whitening.py,sha256=TmvFCCeTOcSEWo5Pt_JQRJ23X5byiJ91q5jHgBRy0rc,9428
32
+ ml4gw/types.py,sha256=XbxunX8zRF95Fp1mZ9jEbixb63bwDQMoayRMMxT9Lzo,429
33
+ ml4gw/utils/interferometer.py,sha256=w_0WkboCJZMKAg-4lhiNGOOkNogAghpT96I0TE5aJ1g,1519
34
+ ml4gw/utils/slicing.py,sha256=Cbwcpk_0hsfN4zczFVM2YbDRjeirA7jFvApM4Jy0U8s,13535
35
+ ml4gw/waveforms/__init__.py,sha256=zjqOKNY4z1A5iPhWTxyhnkLh2robB-obPTtaK-pDUoU,104
36
+ ml4gw/waveforms/generator.py,sha256=4Z6vUEuI84t__3t0DDnXlOyB8R96ynf8xFvtwCGu9JA,1057
37
+ ml4gw/waveforms/phenom_d.py,sha256=pxHk7paW5709Ak29m_DYeQ8kiMLC8wrUnM13flUU36o,38419
38
+ ml4gw/waveforms/phenom_d_data.py,sha256=WA1FBxUp9fo1IQaV_OLJ_5g5gI166mY1FtG9n25he9U,53447
39
+ ml4gw/waveforms/sine_gaussian.py,sha256=WZ6KiVEFSjB9Tv5otJbvI_Yr3341th1Noec_LB9kPOE,3577
40
+ ml4gw/waveforms/taylorf2.py,sha256=x3drvKUMarWI9xHUzMRQhVp1Hh7X-j5WC2bdsbEiVfk,8482
41
+ ml4gw-0.4.0.dist-info/METADATA,sha256=SyBcghsG_wj1TSYjmCnklojeCAH0OQ3uv-DXOoiiuug,5944
42
+ ml4gw-0.4.0.dist-info/WHEEL,sha256=FMvqSimYX_P7y0a7UY-_Mc83r5zkBZsCYPm7Lr0Bsq4,88
43
+ ml4gw-0.4.0.dist-info/RECORD,,
@@ -1,4 +1,4 @@
1
1
  Wheel-Version: 1.0
2
- Generator: poetry-core 1.6.1
2
+ Generator: poetry-core 1.8.1
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
@@ -1,23 +0,0 @@
1
- ml4gw/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
2
- ml4gw/dataloading/__init__.py,sha256=1CDa5Ke7In42bYL6ST-g4YYNnu14-RXn1zHYVqLG7XM,91
3
- ml4gw/dataloading/chunked_dataset.py,sha256=HdbJ8zSRnixX1sx1tJnP7K6CobfExfJiJQWH9qu19Wo,10122
4
- ml4gw/dataloading/in_memory_dataset.py,sha256=9P0mk0PPno6ErRrxX6nhcYuwTJWAUAp7VSls2DBFRwo,9801
5
- ml4gw/distributions.py,sha256=m38ynrUy0QoCpqkyLHSzUZe72tA02se5UBXuXQhN4bQ,3428
6
- ml4gw/gw.py,sha256=RlG8Vj9GCcv0wpKWz9XlbRattls1A-FCCN1RiIhSE_w,17914
7
- ml4gw/spectral.py,sha256=5GfKAV_1vw5yyzTD2u_myjT5jIlAyAHDX6TXj9ynL_o,19021
8
- ml4gw/transforms/__init__.py,sha256=90K3nzW8UQwJMVroHSc3ZQRv-sxs0q4Qf82SG9uADr8,215
9
- ml4gw/transforms/scaler.py,sha256=5VGov0M80NZostRzccViC3HNftx4ZVu0kOKTDmiLrR4,2327
10
- ml4gw/transforms/snr_rescaler.py,sha256=ocYr6UjpHW7t5TvruV7fyY8KuuDfGOJyvxEulmiFA6o,2275
11
- ml4gw/transforms/spectral.py,sha256=Vba9199z_ZaxsHWxdpgHB3U216rmGoSyehtvM3R9Z7A,3771
12
- ml4gw/transforms/transform.py,sha256=jEr9OFj4u7Wjeh_rpRq90jMpK_TfzcIelbBmt30DxQU,2408
13
- ml4gw/transforms/waveforms.py,sha256=iyEDSRqK_1zZrxxJenJFbwGUWqbE-alVTXhvjaGl1ww,3060
14
- ml4gw/transforms/whitening.py,sha256=XDGswhQlmt5IgBvdRypgEhei9SrG1gdYEb6mGHKtO_A,9428
15
- ml4gw/types.py,sha256=XbxunX8zRF95Fp1mZ9jEbixb63bwDQMoayRMMxT9Lzo,429
16
- ml4gw/utils/interferometer.py,sha256=w_0WkboCJZMKAg-4lhiNGOOkNogAghpT96I0TE5aJ1g,1519
17
- ml4gw/utils/slicing.py,sha256=Cbwcpk_0hsfN4zczFVM2YbDRjeirA7jFvApM4Jy0U8s,13535
18
- ml4gw/waveforms/__init__.py,sha256=5It2BlcHVa_qwz0LwgtNsG2bzBm4kV1cIf6NWw97WNM,40
19
- ml4gw/waveforms/generator.py,sha256=4Z6vUEuI84t__3t0DDnXlOyB8R96ynf8xFvtwCGu9JA,1057
20
- ml4gw/waveforms/sine_gaussian.py,sha256=WZ6KiVEFSjB9Tv5otJbvI_Yr3341th1Noec_LB9kPOE,3577
21
- ml4gw-0.2.0.dist-info/METADATA,sha256=j3epCleTH2Ipsc_vzLEJ1etRUhXw9KMzWCo0P2pwFj0,5076
22
- ml4gw-0.2.0.dist-info/WHEEL,sha256=Zb28QaM1gQi8f4VCBhsUklF61CTlNYfs9YAZn-TOGFk,88
23
- ml4gw-0.2.0.dist-info/RECORD,,