ml4gw 0.2.0__py3-none-any.whl → 0.4.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of ml4gw might be problematic. Click here for more details.
- ml4gw/augmentations.py +43 -0
- ml4gw/dataloading/__init__.py +2 -1
- ml4gw/dataloading/chunked_dataset.py +66 -212
- ml4gw/dataloading/hdf5_dataset.py +176 -0
- ml4gw/nn/__init__.py +0 -0
- ml4gw/nn/autoencoder/__init__.py +3 -0
- ml4gw/nn/autoencoder/base.py +89 -0
- ml4gw/nn/autoencoder/convolutional.py +156 -0
- ml4gw/nn/autoencoder/skip_connection.py +46 -0
- ml4gw/nn/autoencoder/utils.py +14 -0
- ml4gw/nn/norm.py +97 -0
- ml4gw/nn/resnet/__init__.py +2 -0
- ml4gw/nn/resnet/resnet_1d.py +413 -0
- ml4gw/nn/resnet/resnet_2d.py +413 -0
- ml4gw/nn/streaming/__init__.py +2 -0
- ml4gw/nn/streaming/online_average.py +121 -0
- ml4gw/nn/streaming/snapshotter.py +121 -0
- ml4gw/transforms/__init__.py +2 -0
- ml4gw/transforms/pearson.py +87 -0
- ml4gw/transforms/spectrogram.py +162 -0
- ml4gw/transforms/whitening.py +1 -1
- ml4gw/waveforms/__init__.py +2 -0
- ml4gw/waveforms/phenom_d.py +1359 -0
- ml4gw/waveforms/phenom_d_data.py +3026 -0
- ml4gw/waveforms/taylorf2.py +306 -0
- {ml4gw-0.2.0.dist-info → ml4gw-0.4.0.dist-info}/METADATA +14 -6
- ml4gw-0.4.0.dist-info/RECORD +43 -0
- {ml4gw-0.2.0.dist-info → ml4gw-0.4.0.dist-info}/WHEEL +1 -1
- ml4gw-0.2.0.dist-info/RECORD +0 -23
|
@@ -0,0 +1,306 @@
|
|
|
1
|
+
import torch
|
|
2
|
+
from torchtyping import TensorType
|
|
3
|
+
|
|
4
|
+
GAMMA = 0.577215664901532860606512090082402431
|
|
5
|
+
"""Euler-Mascheroni constant. Same as lal.GAMMA"""
|
|
6
|
+
|
|
7
|
+
MSUN_SI = 1.988409870698050731911960804878414216e30
|
|
8
|
+
"""Solar mass in kg. Same as lal.MSUN_SI"""
|
|
9
|
+
|
|
10
|
+
MTSUN_SI = 4.925490947641266978197229498498379006e-6
|
|
11
|
+
"""1 solar mass in seconds. Same value as lal.MTSUN_SI"""
|
|
12
|
+
|
|
13
|
+
PI = 3.141592653589793238462643383279502884
|
|
14
|
+
"""Archimedes constant. Same as lal.PI"""
|
|
15
|
+
|
|
16
|
+
MPC_SEC = 1.02927125e14
|
|
17
|
+
"""
|
|
18
|
+
1 Mpc in seconds.
|
|
19
|
+
"""
|
|
20
|
+
|
|
21
|
+
|
|
22
|
+
def taylorf2_phase(
|
|
23
|
+
Mf: TensorType,
|
|
24
|
+
mass1: TensorType,
|
|
25
|
+
mass2: TensorType,
|
|
26
|
+
chi1: TensorType,
|
|
27
|
+
chi2: TensorType,
|
|
28
|
+
) -> TensorType:
|
|
29
|
+
"""
|
|
30
|
+
Calculate the inspiral phase for the TaylorF2.
|
|
31
|
+
"""
|
|
32
|
+
M = mass1 + mass2
|
|
33
|
+
eta = mass1 * mass2 / M / M
|
|
34
|
+
m1byM = mass1 / M
|
|
35
|
+
m2byM = mass2 / M
|
|
36
|
+
chi1sq = chi1 * chi1
|
|
37
|
+
chi2sq = chi2 * chi2
|
|
38
|
+
|
|
39
|
+
v0 = torch.ones_like(Mf)
|
|
40
|
+
v1 = (PI * Mf) ** (1.0 / 3.0)
|
|
41
|
+
v2 = v1 * v1
|
|
42
|
+
v3 = v2 * v1
|
|
43
|
+
v4 = v3 * v1
|
|
44
|
+
v5 = v4 * v1
|
|
45
|
+
v6 = v5 * v1
|
|
46
|
+
v7 = v6 * v1
|
|
47
|
+
logv = torch.log(v1)
|
|
48
|
+
v5_logv = v5 * logv
|
|
49
|
+
v6_logv = v6 * logv
|
|
50
|
+
|
|
51
|
+
# Phase coeffeciencts from https://git.ligo.org/lscsoft/lalsuite/-/blob/master/lalsimulation/lib/LALSimInspiralPNCoefficients.c # noqa E501
|
|
52
|
+
pfaN = 3.0 / (128.0 * eta)
|
|
53
|
+
pfa_v0 = 1.0
|
|
54
|
+
pfa_v1 = 0.0
|
|
55
|
+
pfa_v2 = 5.0 * (74.3 / 8.4 + 11.0 * eta) / 9.0
|
|
56
|
+
pfa_v3 = -16.0 * PI
|
|
57
|
+
# SO contributions at 1.5 PN
|
|
58
|
+
pfa_v3 += (
|
|
59
|
+
m1byM * (25.0 + 38.0 / 3.0 * m1byM) * chi1
|
|
60
|
+
+ m2byM * (25.0 + 38.0 / 3.0 * m2byM) * chi2
|
|
61
|
+
)
|
|
62
|
+
pfa_v4 = (
|
|
63
|
+
5.0
|
|
64
|
+
* (3058.673 / 7.056 + 5429.0 / 7.0 * eta + 617.0 * eta * eta)
|
|
65
|
+
/ 72.0
|
|
66
|
+
)
|
|
67
|
+
# SO, SS, S1,2-squared contributions
|
|
68
|
+
pfa_v4 += (
|
|
69
|
+
247.0 / 4.8 * eta * chi1 * chi2
|
|
70
|
+
+ -721.0 / 4.8 * eta * chi1 * chi2
|
|
71
|
+
+ (-720.0 / 9.6 * m1byM * m1byM + 1.0 / 9.6 * m1byM * m1byM) * chi1sq
|
|
72
|
+
+ (-720.0 / 9.6 * m2byM * m2byM + 1.0 / 9.6 * m2byM * m2byM) * chi2sq
|
|
73
|
+
+ (240.0 / 9.6 * m1byM * m1byM + -7.0 / 9.6 * m1byM * m1byM) * chi1sq
|
|
74
|
+
+ (240.0 / 9.6 * m2byM * m2byM + -7.0 / 9.6 * m2byM * m2byM) * chi2sq
|
|
75
|
+
)
|
|
76
|
+
pfa_v5logv = 5.0 / 3.0 * (772.9 / 8.4 - 13.0 * eta) * PI
|
|
77
|
+
pfa_v5 = 5.0 / 9.0 * (772.9 / 8.4 - 13.0 * eta) * PI
|
|
78
|
+
# SO coefficient for 2.5 PN
|
|
79
|
+
pfa_v5logv += 3.0 * (
|
|
80
|
+
-m1byM
|
|
81
|
+
* (
|
|
82
|
+
1391.5 / 8.4
|
|
83
|
+
- 10.0 / 3.0 * m1byM * (1.0 - m1byM)
|
|
84
|
+
+ m1byM * (1276.0 / 8.1 + 170.0 / 9.0 * m1byM * (1.0 - m1byM))
|
|
85
|
+
)
|
|
86
|
+
* chi1
|
|
87
|
+
- m2byM
|
|
88
|
+
* (
|
|
89
|
+
1391.5 / 8.4
|
|
90
|
+
- 10.0 / 3.0 * m2byM * (1.0 - m2byM)
|
|
91
|
+
+ m2byM * (1276.0 / 8.1 + 170.0 / 9.0 * m2byM * (1.0 - m2byM))
|
|
92
|
+
)
|
|
93
|
+
* chi2
|
|
94
|
+
)
|
|
95
|
+
pfa_v5 += (
|
|
96
|
+
-m1byM
|
|
97
|
+
* (
|
|
98
|
+
1391.5 / 8.4
|
|
99
|
+
- 10.0 / 3.0 * m1byM * (1.0 - m1byM)
|
|
100
|
+
+ m1byM * (1276.0 / 8.1 + 170.0 / 9.0 * m1byM * (1.0 - m1byM))
|
|
101
|
+
)
|
|
102
|
+
* chi1
|
|
103
|
+
+ -m2byM
|
|
104
|
+
* (
|
|
105
|
+
1391.5 / 8.4
|
|
106
|
+
- 10.0 / 3.0 * m2byM * (1.0 - m2byM)
|
|
107
|
+
+ m2byM * (1276.0 / 8.1 + 170.0 / 9.0 * m2byM * (1.0 - m2byM))
|
|
108
|
+
)
|
|
109
|
+
* chi2
|
|
110
|
+
)
|
|
111
|
+
pfa_v6logv = -684.8 / 2.1
|
|
112
|
+
pfa_v6 = (
|
|
113
|
+
11583.231236531 / 4.694215680
|
|
114
|
+
- 640.0 / 3.0 * PI * PI
|
|
115
|
+
- 684.8 / 2.1 * GAMMA
|
|
116
|
+
+ eta * (-15737.765635 / 3.048192 + 225.5 / 1.2 * PI * PI)
|
|
117
|
+
+ eta * eta * 76.055 / 1.728
|
|
118
|
+
- eta * eta * eta * 127.825 / 1.296
|
|
119
|
+
+ pfa_v6logv * torch.log(torch.tensor(4.0))
|
|
120
|
+
)
|
|
121
|
+
# SO + S1-S2 + S-squared contribution at 3 PN
|
|
122
|
+
pfa_v6 += (
|
|
123
|
+
PI * m1byM * (1490.0 / 3.0 + m1byM * 260.0) * chi1
|
|
124
|
+
+ PI * m2byM * (1490.0 / 3.0 + m2byM * 260.0) * chi2
|
|
125
|
+
+ (326.75 / 1.12 + 557.5 / 1.8 * eta) * eta * chi1 * chi2
|
|
126
|
+
+ (
|
|
127
|
+
(4703.5 / 8.4 + 2935.0 / 6.0 * m1byM - 120.0 * m1byM * m1byM)
|
|
128
|
+
* m1byM
|
|
129
|
+
* m1byM
|
|
130
|
+
+ (
|
|
131
|
+
-4108.25 / 6.72
|
|
132
|
+
- 108.5 / 1.2 * m1byM
|
|
133
|
+
+ 125.5 / 3.6 * m1byM * m1byM
|
|
134
|
+
)
|
|
135
|
+
* m1byM
|
|
136
|
+
* m1byM
|
|
137
|
+
)
|
|
138
|
+
* chi1sq
|
|
139
|
+
+ (
|
|
140
|
+
(4703.5 / 8.4 + 2935.0 / 6.0 * m2byM - 120.0 * m2byM * m2byM)
|
|
141
|
+
* m2byM
|
|
142
|
+
* m2byM
|
|
143
|
+
+ (
|
|
144
|
+
-4108.25 / 6.72
|
|
145
|
+
- 108.5 / 1.2 * m2byM
|
|
146
|
+
+ 125.5 / 3.6 * m2byM * m2byM
|
|
147
|
+
)
|
|
148
|
+
* m2byM
|
|
149
|
+
* m2byM
|
|
150
|
+
)
|
|
151
|
+
* chi2sq
|
|
152
|
+
)
|
|
153
|
+
pfa_v7 = PI * (
|
|
154
|
+
770.96675 / 2.54016 + 378.515 / 1.512 * eta - 740.45 / 7.56 * eta * eta
|
|
155
|
+
)
|
|
156
|
+
# SO contribution at 3.5 PN
|
|
157
|
+
pfa_v7 += (
|
|
158
|
+
m1byM
|
|
159
|
+
* (
|
|
160
|
+
-17097.8035 / 4.8384
|
|
161
|
+
+ eta * 28764.25 / 6.72
|
|
162
|
+
+ eta * eta * 47.35 / 1.44
|
|
163
|
+
+ m1byM
|
|
164
|
+
* (
|
|
165
|
+
-7189.233785 / 1.524096
|
|
166
|
+
+ eta * 458.555 / 3.024
|
|
167
|
+
- eta * eta * 534.5 / 7.2
|
|
168
|
+
)
|
|
169
|
+
)
|
|
170
|
+
) * chi1 + (
|
|
171
|
+
m2byM
|
|
172
|
+
* (
|
|
173
|
+
-17097.8035 / 4.8384
|
|
174
|
+
+ eta * 28764.25 / 6.72
|
|
175
|
+
+ eta * eta * 47.35 / 1.44
|
|
176
|
+
+ m2byM
|
|
177
|
+
* (
|
|
178
|
+
-7189.233785 / 1.524096
|
|
179
|
+
+ eta * 458.555 / 3.024
|
|
180
|
+
- eta * eta * 534.5 / 7.2
|
|
181
|
+
)
|
|
182
|
+
)
|
|
183
|
+
) * chi2
|
|
184
|
+
# construct power series
|
|
185
|
+
phasing = (v7.T * pfa_v7).T
|
|
186
|
+
phasing += (v6.T * pfa_v6 + v6_logv.T * pfa_v6logv).T
|
|
187
|
+
phasing += (v5.T * pfa_v5 + v5_logv.T * pfa_v5logv).T
|
|
188
|
+
phasing += (v4.T * pfa_v4).T
|
|
189
|
+
phasing += (v3.T * pfa_v3).T
|
|
190
|
+
phasing += (v2.T * pfa_v2).T
|
|
191
|
+
phasing += (v1.T * pfa_v1).T
|
|
192
|
+
phasing += (v0.T * pfa_v0).T
|
|
193
|
+
# Divide by 0PN v-dependence
|
|
194
|
+
phasing /= v5
|
|
195
|
+
# Multiply by 0PN coefficient
|
|
196
|
+
phasing = (phasing.T * pfaN).T
|
|
197
|
+
|
|
198
|
+
# Derivative of phase w.r.t Mf
|
|
199
|
+
# dPhi/dMf = dPhi/dv dv/dMf
|
|
200
|
+
Dphasing = (2.0 * v7.T * pfa_v7).T
|
|
201
|
+
Dphasing += (v6.T * (pfa_v6 + pfa_v6logv)).T
|
|
202
|
+
Dphasing += (v6_logv.T * pfa_v6logv).T
|
|
203
|
+
Dphasing += (v5.T * pfa_v5logv).T
|
|
204
|
+
Dphasing += (-1.0 * v4.T * pfa_v4).T
|
|
205
|
+
Dphasing += (-2.0 * v3.T * pfa_v3).T
|
|
206
|
+
Dphasing += (-3.0 * v2.T * pfa_v2).T
|
|
207
|
+
Dphasing += (-4.0 * v1.T * pfa_v1).T
|
|
208
|
+
Dphasing += -5.0 * v0
|
|
209
|
+
Dphasing /= 3.0 * v1 * v7
|
|
210
|
+
Dphasing *= PI
|
|
211
|
+
Dphasing = (Dphasing.T * pfaN).T
|
|
212
|
+
|
|
213
|
+
return phasing, Dphasing
|
|
214
|
+
|
|
215
|
+
|
|
216
|
+
def taylorf2_amplitude(
|
|
217
|
+
Mf: TensorType, mass1, mass2, eta, distance
|
|
218
|
+
) -> TensorType:
|
|
219
|
+
mass1_s = mass1 * MTSUN_SI
|
|
220
|
+
mass2_s = mass2 * MTSUN_SI
|
|
221
|
+
v = (PI * Mf) ** (1.0 / 3.0)
|
|
222
|
+
v10 = v**10
|
|
223
|
+
|
|
224
|
+
# Flux and energy coefficient at newtonian
|
|
225
|
+
FTaN = 32.0 * eta * eta / 5.0
|
|
226
|
+
dETaN = 2 * (-eta / 2.0)
|
|
227
|
+
|
|
228
|
+
amp0 = -4.0 * mass1_s * mass2_s * (PI / 12.0) ** 0.5
|
|
229
|
+
|
|
230
|
+
amp0 /= distance * MPC_SEC
|
|
231
|
+
flux = (v10.T * FTaN).T
|
|
232
|
+
dEnergy = (v.T * dETaN).T
|
|
233
|
+
amp = torch.sqrt(-dEnergy / flux) * v
|
|
234
|
+
amp = (amp.T * amp0).T
|
|
235
|
+
|
|
236
|
+
return amp
|
|
237
|
+
|
|
238
|
+
|
|
239
|
+
def taylorf2_htilde(
|
|
240
|
+
f: TensorType,
|
|
241
|
+
mass1: TensorType,
|
|
242
|
+
mass2: TensorType,
|
|
243
|
+
chi1: TensorType,
|
|
244
|
+
chi2: TensorType,
|
|
245
|
+
distance: TensorType,
|
|
246
|
+
phic: TensorType,
|
|
247
|
+
f_ref: float,
|
|
248
|
+
):
|
|
249
|
+
mass1_s = mass1 * MTSUN_SI
|
|
250
|
+
mass2_s = mass2 * MTSUN_SI
|
|
251
|
+
M_s = mass1_s + mass2_s
|
|
252
|
+
eta = mass1_s * mass2_s / M_s / M_s
|
|
253
|
+
|
|
254
|
+
Mf = torch.outer(M_s, f)
|
|
255
|
+
Mf_ref = torch.outer(M_s, f_ref * torch.ones_like(f))
|
|
256
|
+
|
|
257
|
+
Psi, _ = taylorf2_phase(Mf, mass1, mass2, chi1, chi2)
|
|
258
|
+
Psi_ref, _ = taylorf2_phase(Mf_ref, mass1, mass2, chi1, chi2)
|
|
259
|
+
|
|
260
|
+
Psi = (Psi.T - 2 * phic).T
|
|
261
|
+
Psi -= Psi_ref
|
|
262
|
+
|
|
263
|
+
amp0 = taylorf2_amplitude(Mf, mass1, mass2, eta, distance)
|
|
264
|
+
h0 = amp0 * torch.exp(-1j * (Psi - PI / 4))
|
|
265
|
+
return h0
|
|
266
|
+
|
|
267
|
+
|
|
268
|
+
def TaylorF2(
|
|
269
|
+
f: TensorType,
|
|
270
|
+
mass1: TensorType,
|
|
271
|
+
mass2: TensorType,
|
|
272
|
+
chi1: TensorType,
|
|
273
|
+
chi2: TensorType,
|
|
274
|
+
distance: TensorType,
|
|
275
|
+
phic: TensorType,
|
|
276
|
+
inclination: TensorType,
|
|
277
|
+
f_ref: float,
|
|
278
|
+
):
|
|
279
|
+
"""
|
|
280
|
+
TaylorF2 up to 3.5 PN in phase. Newtonian SPA amplitude.
|
|
281
|
+
|
|
282
|
+
Returns:
|
|
283
|
+
--------
|
|
284
|
+
hp, hc
|
|
285
|
+
"""
|
|
286
|
+
# shape assumed (n_batch, params)
|
|
287
|
+
if (
|
|
288
|
+
mass1.shape[0] != mass2.shape[0]
|
|
289
|
+
or mass2.shape[0] != chi1.shape[0]
|
|
290
|
+
or chi1.shape[0] != chi2.shape[0]
|
|
291
|
+
or chi2.shape[0] != distance.shape[0]
|
|
292
|
+
or distance.shape[0] != phic.shape[0]
|
|
293
|
+
or phic.shape[0] != inclination.shape[0]
|
|
294
|
+
):
|
|
295
|
+
raise RuntimeError("Tensors should have same batch size")
|
|
296
|
+
cfac = torch.cos(inclination)
|
|
297
|
+
pfac = 0.5 * (1.0 + cfac * cfac)
|
|
298
|
+
|
|
299
|
+
htilde = taylorf2_htilde(
|
|
300
|
+
f, mass1, mass2, chi1, chi2, distance, phic, f_ref
|
|
301
|
+
)
|
|
302
|
+
|
|
303
|
+
hp = (htilde.T * pfac).T
|
|
304
|
+
hc = -1j * (htilde.T * cfac).T
|
|
305
|
+
|
|
306
|
+
return hp, hc
|
|
@@ -1,16 +1,19 @@
|
|
|
1
1
|
Metadata-Version: 2.1
|
|
2
2
|
Name: ml4gw
|
|
3
|
-
Version: 0.
|
|
3
|
+
Version: 0.4.0
|
|
4
4
|
Summary: Tools for training torch models on gravitational wave data
|
|
5
5
|
Author: Alec Gunny
|
|
6
6
|
Author-email: alec.gunny@ligo.org
|
|
7
|
-
Requires-Python: >=3.8,<
|
|
7
|
+
Requires-Python: >=3.8,<3.12
|
|
8
8
|
Classifier: Programming Language :: Python :: 3
|
|
9
9
|
Classifier: Programming Language :: Python :: 3.8
|
|
10
10
|
Classifier: Programming Language :: Python :: 3.9
|
|
11
11
|
Classifier: Programming Language :: Python :: 3.10
|
|
12
12
|
Classifier: Programming Language :: Python :: 3.11
|
|
13
|
-
Requires-Dist: torch (>=1.10,<2.0)
|
|
13
|
+
Requires-Dist: torch (>=1.10,<2.0) ; python_version >= "3.8" and python_version < "3.11"
|
|
14
|
+
Requires-Dist: torch (>=2.0,<3.0) ; python_version >= "3.11"
|
|
15
|
+
Requires-Dist: torchaudio (>=0.13,<0.14) ; python_version >= "3.8" and python_version < "3.11"
|
|
16
|
+
Requires-Dist: torchaudio (>=2.0,<3.0) ; python_version >= "3.11"
|
|
14
17
|
Requires-Dist: torchtyping (>=0.1,<0.2)
|
|
15
18
|
Description-Content-Type: text/markdown
|
|
16
19
|
|
|
@@ -37,8 +40,8 @@ pip install ml4gw torch==1.12.0 --extra-index-url=https://download.pytorch.org/w
|
|
|
37
40
|
|
|
38
41
|
```toml
|
|
39
42
|
[tool.poetry.dependencies]
|
|
40
|
-
python = "^3.8" # python versions 3.8-3.
|
|
41
|
-
ml4gw = "^0.
|
|
43
|
+
python = "^3.8" # python versions 3.8-3.11 are supported
|
|
44
|
+
ml4gw = "^0.3.0"
|
|
42
45
|
```
|
|
43
46
|
|
|
44
47
|
To build against a specific PyTorch/CUDA combination, consult the PyTorch installation documentation above and specify the `extra-index-url` via the `tool.poetry.source` table in your `pyproject.toml`. For example, to build against CUDA 11.6, you would do something like:
|
|
@@ -46,7 +49,7 @@ To build against a specific PyTorch/CUDA combination, consult the PyTorch instal
|
|
|
46
49
|
```toml
|
|
47
50
|
[tool.poetry.dependencies]
|
|
48
51
|
python = "^3.8"
|
|
49
|
-
ml4gw = "^0.
|
|
52
|
+
ml4gw = "^0.3.0"
|
|
50
53
|
torch = {version = "^1.12", source = "torch"}
|
|
51
54
|
|
|
52
55
|
[[tool.poetry.source]]
|
|
@@ -56,6 +59,8 @@ secondary = true
|
|
|
56
59
|
default = false
|
|
57
60
|
```
|
|
58
61
|
|
|
62
|
+
Note: if you are building against CUDA 11.6 or 11.7, make sure that you are using python 3.8, 3.9, or 3.10. Python 3.11 is incompatible with `torchaudio` 0.13, and the following `torchaudio` version is incompatible with CUDA 11.7 and earlier.
|
|
63
|
+
|
|
59
64
|
## Use cases
|
|
60
65
|
This library provided utilities for both data iteration and transformation via dataloaders defined in `ml4gw/dataloading` and transform layers exposed in `ml4gw/transforms`. Lower level functions and utilies are defined at the top level of the library and in the `utils` library.
|
|
61
66
|
|
|
@@ -145,3 +150,6 @@ We also strongly encourage ML users in the GW physics space to try their hand at
|
|
|
145
150
|
For more information about how to get involved, feel free to reach out to [ml4gw@ligo.mit.edu](mailto:ml4gw@ligo.mit.edu) .
|
|
146
151
|
By bringing in new users with new use cases, we hope to develop this library into a truly general-purpose tool which makes DL more accessible for gravitational wave physicists everywhere.
|
|
147
152
|
|
|
153
|
+
## Funding
|
|
154
|
+
We are grateful for the support of the U.S. National Science Foundation (NSF) Harnessing the Data Revolution (HDR) Institute for <a href="https://a3d3.ai">Accelerating AI Algorithms for Data Driven Discovery (A3D3)</a> under Cooperative Agreement No. <a href="https://www.nsf.gov/awardsearch/showAward?AWD_ID=2117997">PHY-2117997</a>.
|
|
155
|
+
|
|
@@ -0,0 +1,43 @@
|
|
|
1
|
+
ml4gw/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
2
|
+
ml4gw/augmentations.py,sha256=UEwNxdjzIQUqUgtAdrstptTZ73ay5sLc3imQY1DVUqs,1027
|
|
3
|
+
ml4gw/dataloading/__init__.py,sha256=EHBBqU7y2-Np5iQ_xyufxamUEM1pPEquqFo7oaJnaJE,149
|
|
4
|
+
ml4gw/dataloading/chunked_dataset.py,sha256=jy-y5xhMJqRZIA_pjrc4QHhqpAcpM9aJi2omT24riXY,5195
|
|
5
|
+
ml4gw/dataloading/hdf5_dataset.py,sha256=D6cWBtF5_nox89SO4M9so2GDhkfkhdkc0EUpPhyvEyE,6643
|
|
6
|
+
ml4gw/dataloading/in_memory_dataset.py,sha256=9P0mk0PPno6ErRrxX6nhcYuwTJWAUAp7VSls2DBFRwo,9801
|
|
7
|
+
ml4gw/distributions.py,sha256=m38ynrUy0QoCpqkyLHSzUZe72tA02se5UBXuXQhN4bQ,3428
|
|
8
|
+
ml4gw/gw.py,sha256=RlG8Vj9GCcv0wpKWz9XlbRattls1A-FCCN1RiIhSE_w,17914
|
|
9
|
+
ml4gw/nn/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
10
|
+
ml4gw/nn/autoencoder/__init__.py,sha256=ZaT1XhJTHpMuPQqu5E__Jezeh9uwtjcXlT7IZ18byq4,161
|
|
11
|
+
ml4gw/nn/autoencoder/base.py,sha256=PLr26Cn5DHmgDYX1qj4idfrLehHVeiJqer065ea8_QM,3098
|
|
12
|
+
ml4gw/nn/autoencoder/convolutional.py,sha256=JTMpTJVdFju9HPPAh9UDdXG1MsFbADrqUIKM8_xg74E,5316
|
|
13
|
+
ml4gw/nn/autoencoder/skip_connection.py,sha256=bOKBLzMqZDh9w8s9G5U93LCESjTSFUHzQGo0hLDOeSk,1304
|
|
14
|
+
ml4gw/nn/autoencoder/utils.py,sha256=whTnWPvdKuVDlxg52azJeM1d9YjiYFWoqIOzJVDGups,326
|
|
15
|
+
ml4gw/nn/norm.py,sha256=9IHZTCCp4zgP7EaGpw1FpAm7o0EU5zu-LYFHKfuLzzw,3250
|
|
16
|
+
ml4gw/nn/resnet/__init__.py,sha256=vBI0IftVP_EYAeDlqomtkGqUYE-RE_S4WNioUhniw9s,64
|
|
17
|
+
ml4gw/nn/resnet/resnet_1d.py,sha256=IQ-EIIzAXd-NWuLwt7JTXLWg5bO3FGJpuFAZwZ78jaI,13218
|
|
18
|
+
ml4gw/nn/resnet/resnet_2d.py,sha256=aK4I0FOZk62JxnYFz0t1O0s5s7J7yRNYSM1flRypvVc,13301
|
|
19
|
+
ml4gw/nn/streaming/__init__.py,sha256=zgjGR2L8t0txXLnil9ceZT0tM8Y2FC8yPxqIKYH0o1A,80
|
|
20
|
+
ml4gw/nn/streaming/online_average.py,sha256=T-wWw7eEufbUVPRNnLAXIq0cedAyJWEE9tdZ6CTi3cs,4561
|
|
21
|
+
ml4gw/nn/streaming/snapshotter.py,sha256=-l_YsWby7ZnEzGIAlLAV2mtR0daLMtLCxovtt4OI3Z0,4432
|
|
22
|
+
ml4gw/spectral.py,sha256=5GfKAV_1vw5yyzTD2u_myjT5jIlAyAHDX6TXj9ynL_o,19021
|
|
23
|
+
ml4gw/transforms/__init__.py,sha256=t6ZJcq23apqDKhLGM-U5l_bqxJcXFj3riY6cTGY47Gc,314
|
|
24
|
+
ml4gw/transforms/pearson.py,sha256=bJ77lO4wBY6y1R1aESN_bcUEMbc55hWCIaCBdbIj4CY,3133
|
|
25
|
+
ml4gw/transforms/scaler.py,sha256=5VGov0M80NZostRzccViC3HNftx4ZVu0kOKTDmiLrR4,2327
|
|
26
|
+
ml4gw/transforms/snr_rescaler.py,sha256=ocYr6UjpHW7t5TvruV7fyY8KuuDfGOJyvxEulmiFA6o,2275
|
|
27
|
+
ml4gw/transforms/spectral.py,sha256=Vba9199z_ZaxsHWxdpgHB3U216rmGoSyehtvM3R9Z7A,3771
|
|
28
|
+
ml4gw/transforms/spectrogram.py,sha256=R3O8eUB6NHdBFx89v8e_WdJIvXl4qwVeGWZnPyLhHHQ,6024
|
|
29
|
+
ml4gw/transforms/transform.py,sha256=jEr9OFj4u7Wjeh_rpRq90jMpK_TfzcIelbBmt30DxQU,2408
|
|
30
|
+
ml4gw/transforms/waveforms.py,sha256=iyEDSRqK_1zZrxxJenJFbwGUWqbE-alVTXhvjaGl1ww,3060
|
|
31
|
+
ml4gw/transforms/whitening.py,sha256=TmvFCCeTOcSEWo5Pt_JQRJ23X5byiJ91q5jHgBRy0rc,9428
|
|
32
|
+
ml4gw/types.py,sha256=XbxunX8zRF95Fp1mZ9jEbixb63bwDQMoayRMMxT9Lzo,429
|
|
33
|
+
ml4gw/utils/interferometer.py,sha256=w_0WkboCJZMKAg-4lhiNGOOkNogAghpT96I0TE5aJ1g,1519
|
|
34
|
+
ml4gw/utils/slicing.py,sha256=Cbwcpk_0hsfN4zczFVM2YbDRjeirA7jFvApM4Jy0U8s,13535
|
|
35
|
+
ml4gw/waveforms/__init__.py,sha256=zjqOKNY4z1A5iPhWTxyhnkLh2robB-obPTtaK-pDUoU,104
|
|
36
|
+
ml4gw/waveforms/generator.py,sha256=4Z6vUEuI84t__3t0DDnXlOyB8R96ynf8xFvtwCGu9JA,1057
|
|
37
|
+
ml4gw/waveforms/phenom_d.py,sha256=pxHk7paW5709Ak29m_DYeQ8kiMLC8wrUnM13flUU36o,38419
|
|
38
|
+
ml4gw/waveforms/phenom_d_data.py,sha256=WA1FBxUp9fo1IQaV_OLJ_5g5gI166mY1FtG9n25he9U,53447
|
|
39
|
+
ml4gw/waveforms/sine_gaussian.py,sha256=WZ6KiVEFSjB9Tv5otJbvI_Yr3341th1Noec_LB9kPOE,3577
|
|
40
|
+
ml4gw/waveforms/taylorf2.py,sha256=x3drvKUMarWI9xHUzMRQhVp1Hh7X-j5WC2bdsbEiVfk,8482
|
|
41
|
+
ml4gw-0.4.0.dist-info/METADATA,sha256=SyBcghsG_wj1TSYjmCnklojeCAH0OQ3uv-DXOoiiuug,5944
|
|
42
|
+
ml4gw-0.4.0.dist-info/WHEEL,sha256=FMvqSimYX_P7y0a7UY-_Mc83r5zkBZsCYPm7Lr0Bsq4,88
|
|
43
|
+
ml4gw-0.4.0.dist-info/RECORD,,
|
ml4gw-0.2.0.dist-info/RECORD
DELETED
|
@@ -1,23 +0,0 @@
|
|
|
1
|
-
ml4gw/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
2
|
-
ml4gw/dataloading/__init__.py,sha256=1CDa5Ke7In42bYL6ST-g4YYNnu14-RXn1zHYVqLG7XM,91
|
|
3
|
-
ml4gw/dataloading/chunked_dataset.py,sha256=HdbJ8zSRnixX1sx1tJnP7K6CobfExfJiJQWH9qu19Wo,10122
|
|
4
|
-
ml4gw/dataloading/in_memory_dataset.py,sha256=9P0mk0PPno6ErRrxX6nhcYuwTJWAUAp7VSls2DBFRwo,9801
|
|
5
|
-
ml4gw/distributions.py,sha256=m38ynrUy0QoCpqkyLHSzUZe72tA02se5UBXuXQhN4bQ,3428
|
|
6
|
-
ml4gw/gw.py,sha256=RlG8Vj9GCcv0wpKWz9XlbRattls1A-FCCN1RiIhSE_w,17914
|
|
7
|
-
ml4gw/spectral.py,sha256=5GfKAV_1vw5yyzTD2u_myjT5jIlAyAHDX6TXj9ynL_o,19021
|
|
8
|
-
ml4gw/transforms/__init__.py,sha256=90K3nzW8UQwJMVroHSc3ZQRv-sxs0q4Qf82SG9uADr8,215
|
|
9
|
-
ml4gw/transforms/scaler.py,sha256=5VGov0M80NZostRzccViC3HNftx4ZVu0kOKTDmiLrR4,2327
|
|
10
|
-
ml4gw/transforms/snr_rescaler.py,sha256=ocYr6UjpHW7t5TvruV7fyY8KuuDfGOJyvxEulmiFA6o,2275
|
|
11
|
-
ml4gw/transforms/spectral.py,sha256=Vba9199z_ZaxsHWxdpgHB3U216rmGoSyehtvM3R9Z7A,3771
|
|
12
|
-
ml4gw/transforms/transform.py,sha256=jEr9OFj4u7Wjeh_rpRq90jMpK_TfzcIelbBmt30DxQU,2408
|
|
13
|
-
ml4gw/transforms/waveforms.py,sha256=iyEDSRqK_1zZrxxJenJFbwGUWqbE-alVTXhvjaGl1ww,3060
|
|
14
|
-
ml4gw/transforms/whitening.py,sha256=XDGswhQlmt5IgBvdRypgEhei9SrG1gdYEb6mGHKtO_A,9428
|
|
15
|
-
ml4gw/types.py,sha256=XbxunX8zRF95Fp1mZ9jEbixb63bwDQMoayRMMxT9Lzo,429
|
|
16
|
-
ml4gw/utils/interferometer.py,sha256=w_0WkboCJZMKAg-4lhiNGOOkNogAghpT96I0TE5aJ1g,1519
|
|
17
|
-
ml4gw/utils/slicing.py,sha256=Cbwcpk_0hsfN4zczFVM2YbDRjeirA7jFvApM4Jy0U8s,13535
|
|
18
|
-
ml4gw/waveforms/__init__.py,sha256=5It2BlcHVa_qwz0LwgtNsG2bzBm4kV1cIf6NWw97WNM,40
|
|
19
|
-
ml4gw/waveforms/generator.py,sha256=4Z6vUEuI84t__3t0DDnXlOyB8R96ynf8xFvtwCGu9JA,1057
|
|
20
|
-
ml4gw/waveforms/sine_gaussian.py,sha256=WZ6KiVEFSjB9Tv5otJbvI_Yr3341th1Noec_LB9kPOE,3577
|
|
21
|
-
ml4gw-0.2.0.dist-info/METADATA,sha256=j3epCleTH2Ipsc_vzLEJ1etRUhXw9KMzWCo0P2pwFj0,5076
|
|
22
|
-
ml4gw-0.2.0.dist-info/WHEEL,sha256=Zb28QaM1gQi8f4VCBhsUklF61CTlNYfs9YAZn-TOGFk,88
|
|
23
|
-
ml4gw-0.2.0.dist-info/RECORD,,
|