mito-ai 0.1.58__py3-none-any.whl → 0.1.59__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (53) hide show
  1. mito_ai/__init__.py +5 -2
  2. mito_ai/_version.py +1 -1
  3. mito_ai/completions/prompt_builders/prompt_constants.py +2 -0
  4. mito_ai/constants.py +25 -3
  5. mito_ai/enterprise/litellm_client.py +12 -5
  6. mito_ai/enterprise/utils.py +16 -2
  7. mito_ai/openai_client.py +26 -6
  8. mito_ai/provider_manager.py +34 -2
  9. mito_ai/tests/message_history/test_generate_short_chat_name.py +35 -4
  10. mito_ai/tests/open_ai_utils_test.py +34 -36
  11. mito_ai/tests/providers/test_azure.py +2 -2
  12. mito_ai/tests/test_constants.py +90 -0
  13. mito_ai/tests/test_enterprise_mode.py +55 -0
  14. mito_ai/tests/test_model_utils.py +116 -25
  15. mito_ai/utils/model_utils.py +130 -51
  16. mito_ai/utils/open_ai_utils.py +29 -33
  17. mito_ai/utils/provider_utils.py +13 -7
  18. {mito_ai-0.1.58.data → mito_ai-0.1.59.data}/data/share/jupyter/labextensions/mito_ai/build_log.json +1 -1
  19. {mito_ai-0.1.58.data → mito_ai-0.1.59.data}/data/share/jupyter/labextensions/mito_ai/package.json +2 -2
  20. {mito_ai-0.1.58.data → mito_ai-0.1.59.data}/data/share/jupyter/labextensions/mito_ai/schemas/mito_ai/package.json.orig +1 -1
  21. mito_ai-0.1.58.data/data/share/jupyter/labextensions/mito_ai/static/lib_index_js.03302cc521d72eb56b00.js → mito_ai-0.1.59.data/data/share/jupyter/labextensions/mito_ai/static/lib_index_js.44c109c7be36fb884d25.js +389 -70
  22. mito_ai-0.1.59.data/data/share/jupyter/labextensions/mito_ai/static/lib_index_js.44c109c7be36fb884d25.js.map +1 -0
  23. mito_ai-0.1.58.data/data/share/jupyter/labextensions/mito_ai/static/remoteEntry.570df809a692f53a7ab7.js → mito_ai-0.1.59.data/data/share/jupyter/labextensions/mito_ai/static/remoteEntry.f7decebaf69618541e0f.js +3 -3
  24. mito_ai-0.1.58.data/data/share/jupyter/labextensions/mito_ai/static/remoteEntry.570df809a692f53a7ab7.js.map → mito_ai-0.1.59.data/data/share/jupyter/labextensions/mito_ai/static/remoteEntry.f7decebaf69618541e0f.js.map +1 -1
  25. {mito_ai-0.1.58.data → mito_ai-0.1.59.data}/data/share/jupyter/labextensions/mito_ai/themes/mito_ai/index.css +78 -78
  26. {mito_ai-0.1.58.dist-info → mito_ai-0.1.59.dist-info}/METADATA +1 -1
  27. {mito_ai-0.1.58.dist-info → mito_ai-0.1.59.dist-info}/RECORD +52 -52
  28. mito_ai-0.1.58.data/data/share/jupyter/labextensions/mito_ai/static/lib_index_js.03302cc521d72eb56b00.js.map +0 -1
  29. {mito_ai-0.1.58.data → mito_ai-0.1.59.data}/data/etc/jupyter/jupyter_server_config.d/mito_ai.json +0 -0
  30. {mito_ai-0.1.58.data → mito_ai-0.1.59.data}/data/share/jupyter/labextensions/mito_ai/schemas/mito_ai/toolbar-buttons.json +0 -0
  31. {mito_ai-0.1.58.data → mito_ai-0.1.59.data}/data/share/jupyter/labextensions/mito_ai/static/node_modules_process_browser_js.4b128e94d31a81ebd209.js +0 -0
  32. {mito_ai-0.1.58.data → mito_ai-0.1.59.data}/data/share/jupyter/labextensions/mito_ai/static/node_modules_process_browser_js.4b128e94d31a81ebd209.js.map +0 -0
  33. {mito_ai-0.1.58.data → mito_ai-0.1.59.data}/data/share/jupyter/labextensions/mito_ai/static/style.js +0 -0
  34. {mito_ai-0.1.58.data → mito_ai-0.1.59.data}/data/share/jupyter/labextensions/mito_ai/static/style_index_js.f5d476ac514294615881.js +0 -0
  35. {mito_ai-0.1.58.data → mito_ai-0.1.59.data}/data/share/jupyter/labextensions/mito_ai/static/style_index_js.f5d476ac514294615881.js.map +0 -0
  36. {mito_ai-0.1.58.data → mito_ai-0.1.59.data}/data/share/jupyter/labextensions/mito_ai/static/vendors-node_modules_aws-amplify_auth_dist_esm_providers_cognito_apis_signOut_mjs-node_module-75790d.688c25857e7b81b1740f.js +0 -0
  37. {mito_ai-0.1.58.data → mito_ai-0.1.59.data}/data/share/jupyter/labextensions/mito_ai/static/vendors-node_modules_aws-amplify_auth_dist_esm_providers_cognito_apis_signOut_mjs-node_module-75790d.688c25857e7b81b1740f.js.map +0 -0
  38. {mito_ai-0.1.58.data → mito_ai-0.1.59.data}/data/share/jupyter/labextensions/mito_ai/static/vendors-node_modules_aws-amplify_auth_dist_esm_providers_cognito_tokenProvider_tokenProvider_-72f1c8.a917210f057fcfe224ad.js +0 -0
  39. {mito_ai-0.1.58.data → mito_ai-0.1.59.data}/data/share/jupyter/labextensions/mito_ai/static/vendors-node_modules_aws-amplify_auth_dist_esm_providers_cognito_tokenProvider_tokenProvider_-72f1c8.a917210f057fcfe224ad.js.map +0 -0
  40. {mito_ai-0.1.58.data → mito_ai-0.1.59.data}/data/share/jupyter/labextensions/mito_ai/static/vendors-node_modules_aws-amplify_dist_esm_index_mjs.6bac1a8c4cc93f15f6b7.js +0 -0
  41. {mito_ai-0.1.58.data → mito_ai-0.1.59.data}/data/share/jupyter/labextensions/mito_ai/static/vendors-node_modules_aws-amplify_dist_esm_index_mjs.6bac1a8c4cc93f15f6b7.js.map +0 -0
  42. {mito_ai-0.1.58.data → mito_ai-0.1.59.data}/data/share/jupyter/labextensions/mito_ai/static/vendors-node_modules_aws-amplify_ui-react_dist_esm_index_mjs.4fcecd65bef9e9847609.js +0 -0
  43. {mito_ai-0.1.58.data → mito_ai-0.1.59.data}/data/share/jupyter/labextensions/mito_ai/static/vendors-node_modules_aws-amplify_ui-react_dist_esm_index_mjs.4fcecd65bef9e9847609.js.map +0 -0
  44. {mito_ai-0.1.58.data → mito_ai-0.1.59.data}/data/share/jupyter/labextensions/mito_ai/static/vendors-node_modules_react-dom_client_js-node_modules_aws-amplify_ui-react_dist_styles_css.b43d4249e4d3dac9ad7b.js +0 -0
  45. {mito_ai-0.1.58.data → mito_ai-0.1.59.data}/data/share/jupyter/labextensions/mito_ai/static/vendors-node_modules_react-dom_client_js-node_modules_aws-amplify_ui-react_dist_styles_css.b43d4249e4d3dac9ad7b.js.map +0 -0
  46. {mito_ai-0.1.58.data → mito_ai-0.1.59.data}/data/share/jupyter/labextensions/mito_ai/static/vendors-node_modules_semver_index_js.3f6754ac5116d47de76b.js +0 -0
  47. {mito_ai-0.1.58.data → mito_ai-0.1.59.data}/data/share/jupyter/labextensions/mito_ai/static/vendors-node_modules_semver_index_js.3f6754ac5116d47de76b.js.map +0 -0
  48. {mito_ai-0.1.58.data → mito_ai-0.1.59.data}/data/share/jupyter/labextensions/mito_ai/static/vendors-node_modules_vscode-diff_dist_index_js.ea55f1f9346638aafbcf.js +0 -0
  49. {mito_ai-0.1.58.data → mito_ai-0.1.59.data}/data/share/jupyter/labextensions/mito_ai/static/vendors-node_modules_vscode-diff_dist_index_js.ea55f1f9346638aafbcf.js.map +0 -0
  50. {mito_ai-0.1.58.data → mito_ai-0.1.59.data}/data/share/jupyter/labextensions/mito_ai/themes/mito_ai/index.js +0 -0
  51. {mito_ai-0.1.58.dist-info → mito_ai-0.1.59.dist-info}/WHEEL +0 -0
  52. {mito_ai-0.1.58.dist-info → mito_ai-0.1.59.dist-info}/entry_points.txt +0 -0
  53. {mito_ai-0.1.58.dist-info → mito_ai-0.1.59.dist-info}/licenses/LICENSE +0 -0
@@ -137,6 +137,61 @@ class TestModelValidation:
137
137
 
138
138
  from mito_ai.utils.model_utils import STANDARD_MODELS
139
139
  assert result == STANDARD_MODELS
140
+
141
+ @patch('mito_ai.utils.model_utils.is_enterprise')
142
+ @patch('mito_ai.utils.model_utils.constants')
143
+ @patch('mito_ai.utils.model_utils.is_abacus_configured')
144
+ def test_provider_manager_validates_abacus_model(self, mock_is_abacus_configured, mock_constants, mock_is_enterprise, provider_config: Config):
145
+ """Test that ProviderManager validates Abacus models against available models."""
146
+ mock_is_abacus_configured.return_value = True
147
+ mock_is_enterprise.return_value = True
148
+ mock_constants.ABACUS_BASE_URL = "https://routellm.abacus.ai/v1"
149
+ mock_constants.ABACUS_MODELS = ["Abacus/gpt-4.1", "Abacus/gpt-5.2"]
150
+
151
+ provider_manager = ProviderManager(config=provider_config)
152
+ provider_manager.set_selected_model("Abacus/gpt-4.1")
153
+
154
+ # Should not raise an error for valid model
155
+ available_models = get_available_models()
156
+ assert "Abacus/gpt-4.1" in available_models
157
+
158
+ @patch('mito_ai.utils.model_utils.is_enterprise')
159
+ @patch('mito_ai.utils.model_utils.constants')
160
+ @patch('mito_ai.utils.model_utils.is_abacus_configured')
161
+ @pytest.mark.asyncio
162
+ async def test_provider_manager_rejects_invalid_abacus_model(self, mock_is_abacus_configured, mock_constants, mock_is_enterprise, provider_config: Config):
163
+ """Test that ProviderManager rejects invalid Abacus models."""
164
+ mock_is_abacus_configured.return_value = True
165
+ mock_is_enterprise.return_value = True
166
+ mock_constants.ABACUS_BASE_URL = "https://routellm.abacus.ai/v1"
167
+ mock_constants.ABACUS_MODELS = ["Abacus/gpt-4.1"]
168
+ mock_constants.ABACUS_API_KEY = "test-key"
169
+
170
+ provider_manager = ProviderManager(config=provider_config)
171
+ provider_manager.set_selected_model("invalid-model")
172
+
173
+ messages: list[ChatCompletionMessageParam] = [{"role": "user", "content": "test"}]
174
+
175
+ # Should raise ValueError for invalid model
176
+ with pytest.raises(ValueError, match="is not in the allowed model list"):
177
+ await provider_manager.request_completions(
178
+ message_type=MessageType.CHAT,
179
+ messages=messages
180
+ )
181
+
182
+ @patch('mito_ai.utils.model_utils.is_enterprise')
183
+ @patch('mito_ai.utils.model_utils.constants')
184
+ @patch('mito_ai.utils.model_utils.is_abacus_configured')
185
+ def test_available_models_endpoint_returns_abacus_models(self, mock_is_abacus_configured, mock_constants, mock_is_enterprise):
186
+ """Test that /available-models endpoint returns Abacus models when configured."""
187
+ mock_is_abacus_configured.return_value = True
188
+ mock_is_enterprise.return_value = True
189
+ mock_constants.ABACUS_BASE_URL = "https://routellm.abacus.ai/v1"
190
+ mock_constants.ABACUS_MODELS = ["Abacus/gpt-4.1", "Abacus/claude-haiku-4-5-20251001"]
191
+
192
+ result = get_available_models()
193
+
194
+ assert result == ["Abacus/gpt-4.1", "Abacus/claude-haiku-4-5-20251001"]
140
195
 
141
196
 
142
197
  class TestModelStorage:
@@ -22,11 +22,11 @@ class TestGetAvailableModels:
22
22
  """Test that LiteLLM models are returned when enterprise mode is enabled and LiteLLM is configured."""
23
23
  mock_is_enterprise.return_value = True
24
24
  mock_constants.LITELLM_BASE_URL = "https://litellm-server.com"
25
- mock_constants.LITELLM_MODELS = ["openai/gpt-4o", "anthropic/claude-3-5-sonnet"]
25
+ mock_constants.LITELLM_MODELS = ["litellm/openai/gpt-4o", "litellm/anthropic/claude-3-5-sonnet"]
26
26
 
27
27
  result = get_available_models()
28
28
 
29
- assert result == ["openai/gpt-4o", "anthropic/claude-3-5-sonnet"]
29
+ assert result == ["litellm/openai/gpt-4o", "litellm/anthropic/claude-3-5-sonnet"]
30
30
 
31
31
  @patch('mito_ai.utils.model_utils.is_enterprise')
32
32
  @patch('mito_ai.utils.model_utils.constants')
@@ -56,7 +56,7 @@ class TestGetAvailableModels:
56
56
  """Test that standard models are returned when enterprise mode is enabled but LITELLM_BASE_URL is not set."""
57
57
  mock_is_enterprise.return_value = True
58
58
  mock_constants.LITELLM_BASE_URL = None
59
- mock_constants.LITELLM_MODELS = ["openai/gpt-4o"]
59
+ mock_constants.LITELLM_MODELS = ["litellm/openai/gpt-4o"]
60
60
 
61
61
  result = get_available_models()
62
62
 
@@ -73,6 +73,20 @@ class TestGetAvailableModels:
73
73
  result = get_available_models()
74
74
 
75
75
  assert result == STANDARD_MODELS
76
+
77
+ @patch('mito_ai.utils.model_utils.is_abacus_configured')
78
+ @patch('mito_ai.utils.model_utils.is_enterprise')
79
+ @patch('mito_ai.utils.model_utils.constants')
80
+ def test_returns_abacus_models_when_configured(self, mock_constants, mock_is_enterprise, mock_is_abacus_configured):
81
+ """Test that Abacus models are returned when Abacus is configured (highest priority)."""
82
+ mock_is_abacus_configured.return_value = True
83
+ mock_is_enterprise.return_value = True
84
+ mock_constants.ABACUS_BASE_URL = "https://routellm.abacus.ai/v1"
85
+ mock_constants.ABACUS_MODELS = ["Abacus/gpt-4.1", "Abacus/claude-haiku-4-5-20251001"]
86
+
87
+ result = get_available_models()
88
+
89
+ assert result == ["Abacus/gpt-4.1", "Abacus/claude-haiku-4-5-20251001"]
76
90
 
77
91
 
78
92
  class TestGetFastModelForSelectedModel:
@@ -114,51 +128,51 @@ class TestGetFastModelForSelectedModel:
114
128
  [
115
129
  # Test case 1: LiteLLM OpenAI model returns fastest overall
116
130
  (
117
- "openai/gpt-5.2",
118
- ["openai/gpt-4.1", "openai/gpt-5.2", "anthropic/claude-sonnet-4-5-20250929"],
119
- "openai/gpt-4.1",
131
+ "litellm/openai/gpt-5.2",
132
+ ["litellm/openai/gpt-4.1", "litellm/openai/gpt-5.2", "litellm/anthropic/claude-sonnet-4-5-20250929"],
133
+ "litellm/openai/gpt-4.1",
120
134
  ),
121
135
  # Test case 2: LiteLLM Anthropic model returns fastest overall
122
136
  (
123
- "anthropic/claude-sonnet-4-5-20250929",
124
- ["openai/gpt-4.1", "anthropic/claude-sonnet-4-5-20250929", "anthropic/claude-haiku-4-5-20251001"],
125
- "openai/gpt-4.1",
137
+ "litellm/anthropic/claude-sonnet-4-5-20250929",
138
+ ["litellm/openai/gpt-4.1", "litellm/anthropic/claude-sonnet-4-5-20250929", "litellm/anthropic/claude-haiku-4-5-20251001"],
139
+ "litellm/openai/gpt-4.1",
126
140
  ),
127
141
  # Test case 3: LiteLLM Google model returns fastest overall
128
142
  (
129
- "google/gemini-3-pro-preview",
130
- ["google/gemini-3-pro-preview", "google/gemini-3-flash-preview"],
131
- "google/gemini-3-flash-preview",
143
+ "litellm/google/gemini-3-pro-preview",
144
+ ["litellm/google/gemini-3-pro-preview", "litellm/google/gemini-3-flash-preview"],
145
+ "litellm/google/gemini-3-flash-preview",
132
146
  ),
133
147
  # Test case 4: Unknown LiteLLM model returns fastest known
134
148
  (
135
149
  "unknown/provider/model",
136
- ["openai/gpt-4.1", "unknown/provider/model"],
137
- "openai/gpt-4.1",
150
+ ["litellm/openai/gpt-4.1", "unknown/provider/model"],
151
+ "litellm/openai/gpt-4.1",
138
152
  ),
139
153
  # Test case 5: Single LiteLLM model returns itself
140
154
  (
141
- "openai/gpt-4o",
142
- ["openai/gpt-4o"],
143
- "openai/gpt-4o",
155
+ "litellm/openai/gpt-4o",
156
+ ["litellm/openai/gpt-4o"],
157
+ "litellm/openai/gpt-4o",
144
158
  ),
145
159
  # Test case 6: Cross-provider comparison - OpenAI is faster
146
160
  (
147
- "anthropic/claude-sonnet-4-5-20250929",
161
+ "litellm/anthropic/claude-sonnet-4-5-20250929",
148
162
  [
149
- "openai/gpt-4.1", # Index 0 in OPENAI_MODEL_ORDER
150
- "anthropic/claude-sonnet-4-5-20250929", # Index 1 in ANTHROPIC_MODEL_ORDER
163
+ "litellm/openai/gpt-4.1", # Index 0 in OPENAI_MODEL_ORDER
164
+ "litellm/anthropic/claude-sonnet-4-5-20250929", # Index 1 in ANTHROPIC_MODEL_ORDER
151
165
  ],
152
- "openai/gpt-4.1",
166
+ "litellm/openai/gpt-4.1",
153
167
  ),
154
168
  # Test case 7: Cross-provider comparison - Anthropic is faster
155
169
  (
156
- "openai/gpt-5.2",
170
+ "litellm/openai/gpt-5.2",
157
171
  [
158
- "openai/gpt-5.2", # Index 1 in OPENAI_MODEL_ORDER
159
- "anthropic/claude-haiku-4-5-20251001", # Index 0 in ANTHROPIC_MODEL_ORDER
172
+ "litellm/openai/gpt-5.2", # Index 1 in OPENAI_MODEL_ORDER
173
+ "litellm/anthropic/claude-haiku-4-5-20251001", # Index 0 in ANTHROPIC_MODEL_ORDER
160
174
  ],
161
- "anthropic/claude-haiku-4-5-20251001",
175
+ "litellm/anthropic/claude-haiku-4-5-20251001",
162
176
  ),
163
177
  ],
164
178
  ids=[
@@ -269,3 +283,80 @@ class TestGetFastModelForSelectedModel:
269
283
  for model, expected in test_cases:
270
284
  result = get_fast_model_for_selected_model(model)
271
285
  assert result == expected, f"Case-insensitive matching failed for {model}"
286
+
287
+ @patch('mito_ai.utils.model_utils.get_available_models')
288
+ @pytest.mark.parametrize(
289
+ "selected_model,available_models,expected_result",
290
+ [
291
+ # Test case 1: Abacus GPT model returns fastest overall
292
+ (
293
+ "Abacus/gpt-5.2",
294
+ ["Abacus/gpt-4.1", "Abacus/gpt-5.2", "Abacus/claude-sonnet-4-5-20250929"],
295
+ "Abacus/gpt-4.1",
296
+ ),
297
+ # Test case 2: Abacus Claude model returns fastest overall
298
+ (
299
+ "Abacus/claude-sonnet-4-5-20250929",
300
+ ["Abacus/gpt-4.1", "Abacus/claude-sonnet-4-5-20250929", "Abacus/claude-haiku-4-5-20251001"],
301
+ "Abacus/gpt-4.1",
302
+ ),
303
+ # Test case 3: Abacus Gemini model returns fastest overall
304
+ (
305
+ "Abacus/gemini-3-pro-preview",
306
+ ["Abacus/gemini-3-pro-preview", "Abacus/gemini-3-flash-preview"],
307
+ "Abacus/gemini-3-flash-preview",
308
+ ),
309
+ # Test case 4: Unknown Abacus model returns fastest known
310
+ (
311
+ "Abacus/unknown-model",
312
+ ["Abacus/gpt-4.1", "Abacus/unknown-model"],
313
+ "Abacus/gpt-4.1",
314
+ ),
315
+ # Test case 5: Single Abacus model returns itself
316
+ (
317
+ "Abacus/gpt-4.1",
318
+ ["Abacus/gpt-4.1"],
319
+ "Abacus/gpt-4.1",
320
+ ),
321
+ # Test case 6: Cross-provider comparison - OpenAI is faster
322
+ (
323
+ "Abacus/claude-sonnet-4-5-20250929",
324
+ [
325
+ "Abacus/gpt-4.1", # Index 0 in OPENAI_MODEL_ORDER
326
+ "Abacus/claude-sonnet-4-5-20250929", # Index 1 in ANTHROPIC_MODEL_ORDER
327
+ ],
328
+ "Abacus/gpt-4.1",
329
+ ),
330
+ # Test case 7: Cross-provider comparison - Anthropic is faster
331
+ (
332
+ "Abacus/gpt-5.2",
333
+ [
334
+ "Abacus/gpt-5.2", # Index 1 in OPENAI_MODEL_ORDER
335
+ "Abacus/claude-haiku-4-5-20251001", # Index 0 in ANTHROPIC_MODEL_ORDER
336
+ ],
337
+ "Abacus/claude-haiku-4-5-20251001",
338
+ ),
339
+ ],
340
+ ids=[
341
+ "abacus_gpt_model_returns_fastest_overall",
342
+ "abacus_anthropic_model_returns_fastest_overall",
343
+ "abacus_google_model_returns_fastest_overall",
344
+ "abacus_unknown_model_returns_fastest_known",
345
+ "abacus_single_model_returns_itself",
346
+ "abacus_cross_provider_comparison_openai_faster",
347
+ "abacus_returns_fastest_when_anthropic_is_faster",
348
+ ]
349
+ )
350
+ def test_abacus_model_returns_fastest(
351
+ self,
352
+ mock_get_available_models,
353
+ selected_model,
354
+ available_models,
355
+ expected_result,
356
+ ):
357
+ """Test that Abacus models return fastest model from all available models."""
358
+ mock_get_available_models.return_value = available_models
359
+
360
+ result = get_fast_model_for_selected_model(selected_model)
361
+
362
+ assert result == expected_result
@@ -4,6 +4,7 @@
4
4
  from typing import List, Tuple, Union, Optional, cast
5
5
  from mito_ai import constants
6
6
  from mito_ai.utils.version_utils import is_enterprise
7
+ from mito_ai.enterprise.utils import is_abacus_configured
7
8
 
8
9
  # Model ordering: [fastest, ..., slowest] for each provider
9
10
  ANTHROPIC_MODEL_ORDER = [
@@ -35,15 +36,23 @@ STANDARD_MODELS = [
35
36
 
36
37
  def get_available_models() -> List[str]:
37
38
  """
38
- Determine which models are available based on enterprise mode and LiteLLM configuration.
39
+ Determine which models are available based on enterprise mode and router configuration.
40
+
41
+ Priority order:
42
+ 1. Abacus (if configured)
43
+ 2. LiteLLM (if configured)
44
+ 3. Standard models
39
45
 
40
46
  Returns:
41
- List of available model names. If enterprise mode is enabled AND LiteLLM is configured,
42
- returns LiteLLM models. Otherwise, returns standard models.
47
+ List of available model names with appropriate prefixes.
43
48
  """
49
+ # Check if enterprise mode is enabled AND Abacus is configured (highest priority)
50
+ if is_abacus_configured():
51
+ # Return Abacus models (with Abacus/ prefix)
52
+ return constants.ABACUS_MODELS
44
53
  # Check if enterprise mode is enabled AND LiteLLM is configured
45
- if is_enterprise() and constants.LITELLM_BASE_URL and constants.LITELLM_MODELS:
46
- # Return LiteLLM models (with provider prefixes)
54
+ elif is_enterprise() and constants.LITELLM_BASE_URL and constants.LITELLM_MODELS:
55
+ # Return LiteLLM models (with LiteLLM/provider/ prefix or legacy provider/ prefix)
47
56
  return constants.LITELLM_MODELS
48
57
  else:
49
58
  # Return standard models
@@ -55,39 +64,50 @@ def get_fast_model_for_selected_model(selected_model: str) -> str:
55
64
  Get the fastest model for the client of the selected model.
56
65
 
57
66
  - For standard providers, returns the first (fastest) model from that provider's order.
58
- - For LiteLLM models, finds the fastest available model from LiteLLM by comparing indices in the model order lists.
67
+ - For enterprise router models (Abacus/LiteLLM), finds the fastest available model by comparing indices.
59
68
  """
60
- # Check if this is a LiteLLM model (has provider prefix like "openai/gpt-4o")
61
- if "/" in selected_model:
62
-
63
- # Find the fastest model from available LiteLLM models
69
+ # Check if this is an enterprise router model (has "/" or router prefix)
70
+ if "/" in selected_model or selected_model.lower().startswith(('abacus/', 'litellm/')):
71
+ # Find the fastest model from available models
64
72
  available_models = get_available_models()
65
73
  if not available_models:
66
74
  return selected_model
67
75
 
68
- # Filter to only LiteLLM models (those with "/") before splitting
69
- litellm_models = [model for model in available_models if "/" in model]
70
- if not litellm_models:
76
+ # Filter to only router models (those with "/")
77
+ router_models = [model for model in available_models if "/" in model]
78
+ if not router_models:
71
79
  return selected_model
72
80
 
73
- available_provider_model_pairs: List[List[str]] = [model.split("/", 1) for model in litellm_models]
74
-
75
- # Get indices for all pairs and filter out None indices (unknown models)
76
- pairs_with_indices = [(pair, get_model_order_index(pair)) for pair in available_provider_model_pairs]
77
- valid_pairs_with_indices = [(pair, index) for pair, index in pairs_with_indices if index is not None]
81
+ # Extract provider/model pairs for ordering
82
+ pairs_with_indices = []
83
+ for model in router_models:
84
+ # Strip router prefix to get underlying model info
85
+ model_without_router = strip_router_prefix(model)
86
+
87
+ # For Abacus: model_without_router is just the model name (e.g., "gpt-4.1")
88
+ # For LiteLLM: model_without_router is "provider/model" (e.g., "openai/gpt-4.1")
89
+ if "/" in model_without_router:
90
+ # LiteLLM format: provider/model
91
+ pair = model_without_router.split("/", 1)
92
+ else:
93
+ # Abacus format: just model name, need to determine provider
94
+ provider = get_underlying_model_provider(model)
95
+ if provider:
96
+ pair = [provider, model_without_router]
97
+ else:
98
+ continue
99
+
100
+ index = get_model_order_index(pair)
101
+ if index is not None:
102
+ pairs_with_indices.append((model, index))
78
103
 
79
- if not valid_pairs_with_indices:
104
+ if not pairs_with_indices:
80
105
  return selected_model
81
106
 
82
- # Find the pair with the minimum index (fastest model)
83
- fastest_pair, _ = min(valid_pairs_with_indices, key=lambda x: x[1])
84
- fastest_model = f"{fastest_pair[0]}/{fastest_pair[1]}"
107
+ # Find the model with the minimum index (fastest model)
108
+ fastest_model, _ = min(pairs_with_indices, key=lambda x: x[1])
85
109
 
86
- # If we found a fastest model, return it. Otherwise, use the selected model
87
- if fastest_model:
88
- return fastest_model
89
- else:
90
- return selected_model
110
+ return fastest_model
91
111
 
92
112
  # Standard provider logic - ensure we return a model from the same provider
93
113
  model_lower = selected_model.lower()
@@ -107,42 +127,57 @@ def get_smartest_model_for_selected_model(selected_model: str) -> str:
107
127
  Get the smartest model for the client of the selected model.
108
128
 
109
129
  - For standard providers, returns the last (smartest) model from that provider's order.
110
- - For LiteLLM models, finds the smartest available model from LiteLLM by comparing indices in the model order lists.
130
+ - For enterprise router models (Abacus/LiteLLM), finds the smartest available model by comparing indices.
111
131
  """
112
- # Check if this is a LiteLLM model (has provider prefix like "openai/gpt-4o")
113
- if "/" in selected_model:
114
-
115
- # Extract provider from selected model
116
- selected_provider, _ = selected_model.split("/", 1)
132
+ # Check if this is an enterprise router model (has "/" or router prefix)
133
+ if "/" in selected_model or selected_model.lower().startswith(('abacus/', 'litellm/')):
134
+ # Extract underlying provider from selected model
135
+ selected_provider = get_underlying_model_provider(selected_model)
136
+ if not selected_provider:
137
+ return selected_model
117
138
 
118
- # Find the smartest model from available LiteLLM models
139
+ # Find the smartest model from available models
119
140
  available_models = get_available_models()
120
141
  if not available_models:
121
142
  return selected_model
122
143
 
123
- # Filter to only LiteLLM models (those with "/")
124
- litellm_models = [model for model in available_models if "/" in model and model.startswith(f"{selected_provider}/")]
125
- if not litellm_models:
126
- return selected_model
144
+ # Filter to only router models with the same underlying provider
145
+ router_models = []
146
+ for model in available_models:
147
+ if "/" in model:
148
+ model_provider = get_underlying_model_provider(model)
149
+ if model_provider == selected_provider:
150
+ router_models.append(model)
127
151
 
128
- available_provider_model_pairs: List[List[str]] = [model.split("/", 1) for model in litellm_models]
152
+ if not router_models:
153
+ return selected_model
129
154
 
130
- # Get indices for all pairs and filter out None indices (unknown models)
131
- pairs_with_indices = [(pair, get_model_order_index(pair)) for pair in available_provider_model_pairs]
132
- valid_pairs_with_indices = [(pair, index) for pair, index in pairs_with_indices if index is not None]
155
+ # Extract provider/model pairs for ordering
156
+ pairs_with_indices = []
157
+ for model in router_models:
158
+ # Strip router prefix to get underlying model info
159
+ model_without_router = strip_router_prefix(model)
160
+
161
+ # For Abacus: model_without_router is just the model name (e.g., "gpt-4.1")
162
+ # For LiteLLM: model_without_router is "provider/model" (e.g., "openai/gpt-4.1")
163
+ if "/" in model_without_router:
164
+ # LiteLLM format: provider/model
165
+ pair = model_without_router.split("/", 1)
166
+ else:
167
+ # Abacus format: just model name, provider already determined
168
+ pair = [selected_provider, model_without_router]
169
+
170
+ index = get_model_order_index(pair)
171
+ if index is not None:
172
+ pairs_with_indices.append((model, index))
133
173
 
134
- if not valid_pairs_with_indices:
174
+ if not pairs_with_indices:
135
175
  return selected_model
136
176
 
137
- # Find the pair with the maximum index (smartest model)
138
- smartest_pair, _ = max(valid_pairs_with_indices, key=lambda x: x[1])
139
- smartest_model = f"{smartest_pair[0]}/{smartest_pair[1]}"
177
+ # Find the model with the maximum index (smartest model)
178
+ smartest_model, _ = max(pairs_with_indices, key=lambda x: x[1])
140
179
 
141
- # If we found a smartest model, return it. Otherwise, use the selected model
142
- if smartest_model:
143
- return smartest_model
144
- else:
145
- return selected_model
180
+ return smartest_model
146
181
 
147
182
  # Standard provider logic
148
183
  model_lower = selected_model.lower()
@@ -157,6 +192,50 @@ def get_smartest_model_for_selected_model(selected_model: str) -> str:
157
192
 
158
193
  return selected_model
159
194
 
195
+ def strip_router_prefix(model: str) -> str:
196
+ """
197
+ Strip router prefix from model name.
198
+
199
+ Examples:
200
+ - "Abacus/gpt-4.1" -> "gpt-4.1"
201
+ - "LiteLLM/openai/gpt-4.1" -> "openai/gpt-4.1"
202
+ - "gpt-4.1" -> "gpt-4.1" (no prefix, return as-is)
203
+ """
204
+ if model.lower().startswith('abacus/'):
205
+ return model[7:] # Strip "Abacus/"
206
+ elif model.lower().startswith('litellm/'):
207
+ return model[8:] # Strip "LiteLLM/"
208
+ return model
209
+
210
+ def get_underlying_model_provider(full_model_provider_id: str) -> Optional[str]:
211
+ """
212
+ Determine the underlying AI provider from a model identifier.
213
+
214
+ For Abacus models (Abacus/model), determine the provider from model name pattern.
215
+ For LiteLLM models (LiteLLM/provider/model), extract the provider from the prefix.
216
+
217
+ Returns:
218
+ Provider name ("openai", "anthropic", "google") or None if cannot determine.
219
+ """
220
+ # Strip router prefix first
221
+ model_without_router = strip_router_prefix(full_model_provider_id)
222
+
223
+ # Check if it's a LiteLLM format (provider/model)
224
+ if "/" in model_without_router:
225
+ provider, _ = model_without_router.split("/", 1)
226
+ return provider.lower()
227
+
228
+ # For Abacus models without provider prefix, determine from model name
229
+ model_lower = model_without_router.lower()
230
+ if model_lower.startswith('gpt'):
231
+ return 'openai'
232
+ elif model_lower.startswith('claude'):
233
+ return 'anthropic'
234
+ elif model_lower.startswith('gemini'):
235
+ return 'google'
236
+
237
+ return None
238
+
160
239
  def get_model_order_index(pair: List[str]) -> Optional[int]:
161
240
  provider, model_name = pair
162
241
  if provider == "openai":
@@ -6,30 +6,18 @@
6
6
 
7
7
  # Copyright (c) Saga Inc.
8
8
 
9
- import asyncio
10
- import json
11
- import time
12
- from typing import Any, Dict, List, Optional, Final, Union, AsyncGenerator, Tuple, Callable
9
+ from typing import Any, Dict, List, Optional, Union, AsyncGenerator, Tuple, Callable
13
10
  from mito_ai.utils.mito_server_utils import get_response_from_mito_server, stream_response_from_mito_server
14
- from tornado.httpclient import AsyncHTTPClient
15
11
  from openai.types.chat import ChatCompletionMessageParam
16
-
17
- from mito_ai.utils.utils import is_running_test
18
- from mito_ai.completions.models import MessageType, ResponseFormatInfo, CompletionReply, CompletionStreamChunk, CompletionItem
12
+ from mito_ai.completions.models import MessageType, ResponseFormatInfo, CompletionReply, CompletionStreamChunk
19
13
  from mito_ai.utils.schema import UJ_STATIC_USER_ID, UJ_USER_EMAIL
20
14
  from mito_ai.utils.db import get_user_field
21
- from mito_ai.utils.version_utils import is_pro
22
- from mito_ai.utils.server_limits import check_mito_server_quota
23
- from mito_ai.utils.telemetry_utils import log_ai_completion_success
24
- from .utils import _create_http_client
15
+ from mito_ai.enterprise.utils import is_abacus_configured
25
16
  from mito_ai.constants import MITO_OPENAI_URL
26
17
 
27
-
28
18
  __user_email: Optional[str] = None
29
19
  __user_id: Optional[str] = None
30
20
 
31
- FAST_OPENAI_MODEL = "gpt-4.1-nano"
32
-
33
21
  def _prepare_request_data_and_headers(
34
22
  last_message_content: Union[str, None],
35
23
  ai_completion_data: Dict[str, Any],
@@ -171,25 +159,33 @@ def get_open_ai_completion_function_params(
171
159
  # Pydantic models are supported by the OpenAI API, however, we need to be able to
172
160
  # serialize it for requests that are going to be sent to the mito server.
173
161
  # OpenAI expects a very specific schema as seen below.
162
+ # Note: Abacus only supports {"type": "json"} format, not the full JSON schema format.
174
163
  if response_format_info:
175
- json_schema = response_format_info.format.schema()
176
-
177
- # Add additionalProperties: False to the top-level schema
178
- json_schema["additionalProperties"] = False
179
-
180
- # Nested object definitions in $defs need to have additionalProperties set to False also
181
- if "$defs" in json_schema:
182
- for def_name, def_schema in json_schema["$defs"].items():
183
- if def_schema.get("type") == "object":
184
- def_schema["additionalProperties"] = False
185
-
186
- completion_function_params["response_format"] = {
187
- "type": "json_schema",
188
- "json_schema": {
189
- "name": f"{response_format_info.name}",
190
- "schema": json_schema,
191
- "strict": True
164
+ # Check if we're using Abacus - it only supports simple {"type": "json"} format
165
+ if is_abacus_configured() or model.lower().startswith('abacus/'):
166
+ completion_function_params["response_format"] = {
167
+ "type": "json"
168
+ }
169
+ else:
170
+ # For OpenAI and other providers, use the full JSON schema format
171
+ json_schema = response_format_info.format.schema()
172
+
173
+ # Add additionalProperties: False to the top-level schema
174
+ json_schema["additionalProperties"] = False
175
+
176
+ # Nested object definitions in $defs need to have additionalProperties set to False also
177
+ if "$defs" in json_schema:
178
+ for def_name, def_schema in json_schema["$defs"].items():
179
+ if def_schema.get("type") == "object":
180
+ def_schema["additionalProperties"] = False
181
+
182
+ completion_function_params["response_format"] = {
183
+ "type": "json_schema",
184
+ "json_schema": {
185
+ "name": f"{response_format_info.name}",
186
+ "schema": json_schema,
187
+ "strict": True
188
+ }
192
189
  }
193
- }
194
190
 
195
191
  return completion_function_params
@@ -8,19 +8,25 @@ from mito_ai.completions.models import MessageType
8
8
 
9
9
  def get_model_provider(model: str) -> Union[str, None]:
10
10
  """
11
- Determine the model type based on the model name prefix
11
+ Determine the model type based on the model name prefix.
12
+
13
+ Priority order:
14
+ 1. Check for router prefixes (Abacus/, LiteLLM/)
15
+ 2. Check for legacy LiteLLM format (provider/model)
16
+ 3. Check for standard model name patterns
12
17
  """
13
18
  if not model:
14
19
  return None
15
20
 
16
- # Check if model is a LiteLLM model (has provider prefix)
17
- if "/" in model and any(
18
- model.startswith(prefix) for prefix in ["openai/", "anthropic/", "google/", "ollama/"]
19
- ):
20
- return 'litellm'
21
-
22
21
  model_lower = model.lower()
23
22
 
23
+ # Check for router prefixes first (highest priority)
24
+ if model_lower.startswith('abacus/'):
25
+ return 'abacus'
26
+ elif model_lower.startswith('litellm/'):
27
+ return 'litellm'
28
+
29
+ # Check for standard model name patterns
24
30
  if model_lower.startswith('claude'):
25
31
  return 'claude'
26
32
  elif model_lower.startswith('gemini'):
@@ -720,7 +720,7 @@
720
720
  "semver": {},
721
721
  "vscode-diff": {},
722
722
  "mito_ai": {
723
- "version": "0.1.58",
723
+ "version": "0.1.59",
724
724
  "singleton": true,
725
725
  "import": "/home/runner/work/mito/mito/mito-ai/lib/index.js"
726
726
  }
@@ -1,6 +1,6 @@
1
1
  {
2
2
  "name": "mito_ai",
3
- "version": "0.1.58",
3
+ "version": "0.1.59",
4
4
  "description": "AI chat for JupyterLab",
5
5
  "keywords": [
6
6
  "jupyter",
@@ -141,7 +141,7 @@
141
141
  "schemaDir": "schema",
142
142
  "themePath": "style/theme/theme.css",
143
143
  "_build": {
144
- "load": "static/remoteEntry.570df809a692f53a7ab7.js",
144
+ "load": "static/remoteEntry.f7decebaf69618541e0f.js",
145
145
  "extension": "./extension",
146
146
  "style": "./style"
147
147
  }