mineru 2.7.5__py3-none-any.whl → 2.7.6__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -24,6 +24,9 @@ def enable_custom_logits_processors() -> bool:
24
24
  compute_capability = "8.0"
25
25
  elif hasattr(torch, 'mlu') and torch.mlu.is_available():
26
26
  compute_capability = "8.0"
27
+ elif hasattr(torch, 'sdaa') and torch.sdaa.is_available():
28
+ compute_capability = "8.0"
29
+
27
30
  else:
28
31
  logger.info("CUDA not available, disabling custom_logits_processors")
29
32
  return False
@@ -102,4 +105,128 @@ def set_default_batch_size() -> int:
102
105
  except Exception as e:
103
106
  logger.warning(f'Error determining VRAM: {e}, using default batch_ratio: 1')
104
107
  batch_size = 1
105
- return batch_size
108
+ return batch_size
109
+
110
+
111
+ def _get_device_config(device_type: str) -> dict | None:
112
+ """获取不同设备类型的配置参数"""
113
+
114
+ # 各设备类型的配置定义
115
+ DEVICE_CONFIGS = {
116
+ # "musa": {
117
+ # "compilation_config_dict": {
118
+ # "cudagraph_capture_sizes": [1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 16, 18, 20, 24, 28, 30],
119
+ # "simple_cuda_graph": True
120
+ # },
121
+ # "block_size": 32,
122
+ # },
123
+ "corex": {
124
+ "compilation_config_dict": {
125
+ "cudagraph_mode": "FULL_DECODE_ONLY",
126
+ "level": 0
127
+ },
128
+ },
129
+ "kxpu": {
130
+ "compilation_config_dict": {
131
+ "splitting_ops": [
132
+ "vllm.unified_attention", "vllm.unified_attention_with_output",
133
+ "vllm.unified_attention_with_output_kunlun", "vllm.mamba_mixer2",
134
+ "vllm.mamba_mixer", "vllm.short_conv", "vllm.linear_attention",
135
+ "vllm.plamo2_mamba_mixer", "vllm.gdn_attention", "vllm.sparse_attn_indexer"
136
+ ]
137
+ },
138
+ "block_size": 128,
139
+ "dtype": "float16",
140
+ "distributed_executor_backend": "mp",
141
+ "enable_chunked_prefill": False,
142
+ "enable_prefix_caching": False,
143
+ },
144
+ }
145
+
146
+ return DEVICE_CONFIGS.get(device_type.lower())
147
+
148
+
149
+ def _check_server_arg_exists(args: list, arg_name: str) -> bool:
150
+ """检查命令行参数列表中是否已存在指定参数"""
151
+ return any(arg == f"--{arg_name}" or arg.startswith(f"--{arg_name}=") for arg in args)
152
+
153
+
154
+ def _add_server_arg_if_missing(args: list, arg_name: str, value: str) -> None:
155
+ """如果参数不存在,则添加到命令行参数列表"""
156
+ if not _check_server_arg_exists(args, arg_name):
157
+ args.extend([f"--{arg_name}", value])
158
+
159
+
160
+ def _add_server_flag_if_missing(args: list, flag_name: str) -> None:
161
+ """如果 flag 不存在,则添加到命令行参数列表"""
162
+ if not _check_server_arg_exists(args, flag_name):
163
+ args.append(f"--{flag_name}")
164
+
165
+
166
+ def _add_engine_kwarg_if_missing(kwargs: dict, key: str, value) -> None:
167
+ """如果参数不存在,则添加到 kwargs 字典"""
168
+ if key not in kwargs:
169
+ kwargs[key] = value
170
+
171
+
172
+ def mod_kwargs_by_device_type(kwargs_or_args: dict | list, vllm_mode: str) -> dict | list:
173
+ """根据设备类型修改 vllm 配置参数
174
+
175
+ Args:
176
+ kwargs_or_args: 配置参数,server 模式为 list,engine 模式为 dict
177
+ vllm_mode: vllm 运行模式 ("server", "sync_engine", "async_engine")
178
+
179
+ Returns:
180
+ 修改后的配置参数
181
+ """
182
+ device_type = os.getenv("MINERU_VLLM_DEVICE", "")
183
+ config = _get_device_config(device_type)
184
+
185
+ if config is None:
186
+ return kwargs_or_args
187
+
188
+ if vllm_mode == "server":
189
+ _apply_server_config(kwargs_or_args, config)
190
+ else:
191
+ _apply_engine_config(kwargs_or_args, config, vllm_mode)
192
+
193
+ return kwargs_or_args
194
+
195
+
196
+ def _apply_server_config(args: list, config: dict) -> None:
197
+ """应用 server 模式的配置"""
198
+ import json
199
+
200
+ for key, value in config.items():
201
+ if key == "compilation_config_dict":
202
+ _add_server_arg_if_missing(
203
+ args, "compilation-config",
204
+ json.dumps(value, separators=(',', ':'))
205
+ )
206
+ else:
207
+ # 转换 key 格式: block_size -> block-size
208
+ arg_name = key.replace("_", "-")
209
+ if arg_name in {"enable-chunked-prefill", "enable-prefix-caching"} and value is False:
210
+ _add_server_flag_if_missing(args, f"no-{arg_name}")
211
+ continue
212
+ _add_server_arg_if_missing(args, arg_name, str(value))
213
+
214
+
215
+ def _apply_engine_config(kwargs: dict, config: dict, vllm_mode: str) -> None:
216
+ """应用 engine 模式的配置"""
217
+ try:
218
+ from vllm.config import CompilationConfig
219
+ except ImportError:
220
+ raise ImportError("Please install vllm to use the vllm-async-engine backend.")
221
+
222
+ for key, value in config.items():
223
+ if key == "compilation_config_dict":
224
+ if vllm_mode == "sync_engine":
225
+ compilation_config = value
226
+ elif vllm_mode == "async_engine":
227
+ compilation_config = CompilationConfig(**value)
228
+ else:
229
+ continue
230
+ _add_engine_kwarg_if_missing(kwargs, "compilation_config", compilation_config)
231
+ else:
232
+ _add_engine_kwarg_if_missing(kwargs, key, value)
@@ -6,7 +6,7 @@ import json
6
6
  from loguru import logger
7
7
 
8
8
  from .utils import enable_custom_logits_processors, set_default_gpu_memory_utilization, set_default_batch_size, \
9
- set_lmdeploy_backend
9
+ set_lmdeploy_backend, mod_kwargs_by_device_type
10
10
  from .model_output_to_middle_json import result_to_middle_json
11
11
  from ...data.data_reader_writer import DataWriter
12
12
  from mineru.utils.pdf_image_tools import load_images_from_pdf
@@ -101,27 +101,7 @@ class ModelSingleton:
101
101
  except ImportError:
102
102
  raise ImportError("Please install vllm to use the vllm-engine backend.")
103
103
 
104
- # musa vllm v1 引擎特殊配置
105
- # device = get_device()
106
- # if device_type.startswith("musa"):
107
- # import torch
108
- # if torch.musa.is_available():
109
- # compilation_config = {
110
- # "cudagraph_capture_sizes": [1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 16, 18, 20, 24, 28, 30],
111
- # "simple_cuda_graph": True
112
- # }
113
- # block_size = 32
114
- # kwargs["compilation_config"] = compilation_config
115
- # kwargs["block_size"] = block_size
116
-
117
- # corex vllm v1 引擎特殊配置
118
- device_type = os.getenv("MINERU_LMDEPLOY_DEVICE", "")
119
- if device_type.lower() == "corex":
120
- compilation_config = {
121
- "cudagraph_mode": "FULL_DECODE_ONLY",
122
- "level": 0
123
- }
124
- kwargs["compilation_config"] = compilation_config
104
+ kwargs = mod_kwargs_by_device_type(kwargs, vllm_mode="sync_engine")
125
105
 
126
106
  if "compilation_config" in kwargs:
127
107
  if isinstance(kwargs["compilation_config"], str):
@@ -148,28 +128,7 @@ class ModelSingleton:
148
128
  except ImportError:
149
129
  raise ImportError("Please install vllm to use the vllm-async-engine backend.")
150
130
 
151
-
152
- # musa vllm v1 引擎特殊配置
153
- # device = get_device()
154
- # if device.startswith("musa"):
155
- # import torch
156
- # if torch.musa.is_available():
157
- # compilation_config = CompilationConfig(
158
- # cudagraph_capture_sizes=[1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 16, 18, 20, 24, 28, 30],
159
- # simple_cuda_graph=True
160
- # )
161
- # block_size = 32
162
- # kwargs["compilation_config"] = compilation_config
163
- # kwargs["block_size"] = block_size
164
-
165
- # corex vllm v1 引擎特殊配置
166
- device_type = os.getenv("MINERU_LMDEPLOY_DEVICE", "")
167
- if device_type.lower() == "corex":
168
- compilation_config = CompilationConfig(
169
- cudagraph_mode="FULL_DECODE_ONLY",
170
- level=0
171
- )
172
- kwargs["compilation_config"] = compilation_config
131
+ kwargs = mod_kwargs_by_device_type(kwargs, vllm_mode="async_engine")
173
132
 
174
133
  if "compilation_config" in kwargs:
175
134
  if isinstance(kwargs["compilation_config"], dict):
@@ -89,7 +89,11 @@ class FormulaRecognizer(BaseOCRV20):
89
89
  return rec_formula
90
90
 
91
91
  def batch_predict(
92
- self, images_mfd_res: list, images: list, batch_size: int = 64
92
+ self,
93
+ images_mfd_res: list,
94
+ images: list,
95
+ batch_size: int = 64,
96
+ interline_enable: bool = True,
93
97
  ) -> list:
94
98
  images_formula_list = []
95
99
  mf_image_list = []
@@ -105,6 +109,8 @@ class FormulaRecognizer(BaseOCRV20):
105
109
  for idx, (xyxy, conf, cla) in enumerate(
106
110
  zip(mfd_res.boxes.xyxy, mfd_res.boxes.conf, mfd_res.boxes.cls)
107
111
  ):
112
+ if not interline_enable and cla.item() == 1:
113
+ continue # Skip interline regions if not enabled
108
114
  xmin, ymin, xmax, ymax = [int(p.item()) for p in xyxy]
109
115
  new_item = {
110
116
  "category_id": 13 + int(cla.item()),
@@ -1,8 +1,8 @@
1
1
  import os
2
2
  import sys
3
3
 
4
- from mineru.backend.vlm.utils import set_default_gpu_memory_utilization, enable_custom_logits_processors
5
- from mineru.utils.config_reader import get_device
4
+ from mineru.backend.vlm.utils import set_default_gpu_memory_utilization, enable_custom_logits_processors, \
5
+ mod_kwargs_by_device_type
6
6
  from mineru.utils.models_download_utils import auto_download_and_get_model_root_path
7
7
 
8
8
  from vllm.entrypoints.cli.main import main as vllm_main
@@ -14,8 +14,6 @@ def main():
14
14
  has_port_arg = False
15
15
  has_gpu_memory_utilization_arg = False
16
16
  has_logits_processors_arg = False
17
- has_block_size_arg = False
18
- has_compilation_config = False
19
17
  model_path = None
20
18
  model_arg_indices = []
21
19
 
@@ -27,10 +25,6 @@ def main():
27
25
  has_gpu_memory_utilization_arg = True
28
26
  if arg == "--logits-processors" or arg.startswith("--logits-processors="):
29
27
  has_logits_processors_arg = True
30
- if arg == "--block-size" or arg.startswith("--block-size="):
31
- has_block_size_arg = True
32
- if arg == "--compilation-config" or arg.startswith("--compilation-config="):
33
- has_compilation_config = True
34
28
  if arg == "--model":
35
29
  if i + 1 < len(args):
36
30
  model_path = args[i + 1]
@@ -57,21 +51,7 @@ def main():
57
51
  if (not has_logits_processors_arg) and custom_logits_processors:
58
52
  args.extend(["--logits-processors", "mineru_vl_utils:MinerULogitsProcessor"])
59
53
 
60
- # musa vllm v1 引擎特殊配置
61
- # device = get_device()
62
- # if device.startswith("musa"):
63
- # import torch
64
- # if torch.musa.is_available():
65
- # if not has_block_size_arg:
66
- # args.extend(["--block-size", "32"])
67
- # if not has_compilation_config:
68
- # args.extend(["--compilation-config", '{"cudagraph_capture_sizes": [1,2,3,4,5,6,7,8,10,12,14,16,18,20,24,28,30], "simple_cuda_graph": true}'])
69
-
70
- # corex vllm v1 引擎特殊配置
71
- device_type = os.getenv("MINERU_LMDEPLOY_DEVICE", "")
72
- if device_type.lower() == "corex":
73
- if not has_compilation_config:
74
- args.extend(["--compilation-config", '{"cudagraph_mode": "FULL_DECODE_ONLY", "level": 0}'])
54
+ args = mod_kwargs_by_device_type(args, vllm_mode="server")
75
55
 
76
56
  # 重构参数,将模型路径作为位置参数
77
57
  sys.argv = [sys.argv[0]] + ["serve", model_path] + args
@@ -202,6 +202,10 @@ def model_init(model_name: str):
202
202
  if hasattr(torch, 'mlu') and torch.mlu.is_available():
203
203
  if torch.mlu.is_bf16_supported():
204
204
  bf_16_support = True
205
+ elif device_name.startswith("sdaa"):
206
+ if hasattr(torch, 'sdaa') and torch.sdaa.is_available():
207
+ if torch.sdaa.is_bf16_supported():
208
+ bf_16_support = True
205
209
 
206
210
  if model_name == 'layoutreader':
207
211
  # 检测modelscope的缓存目录是否存在
@@ -98,7 +98,12 @@ def get_device():
98
98
  if torch.mlu.is_available():
99
99
  return "mlu"
100
100
  except Exception as e:
101
- pass
101
+ try:
102
+ if torch.sdaa.is_available():
103
+ return "sdaa"
104
+ except Exception as e:
105
+ pass
106
+
102
107
  return "cpu"
103
108
 
104
109
 
@@ -432,6 +432,9 @@ def clean_memory(device='cuda'):
432
432
  elif str(device).startswith("mlu"):
433
433
  if torch.mlu.is_available():
434
434
  torch.mlu.empty_cache()
435
+ elif str(device).startswith("sdaa"):
436
+ if torch.sdaa.is_available():
437
+ torch.sdaa.empty_cache()
435
438
  gc.collect()
436
439
 
437
440
 
@@ -476,5 +479,8 @@ def get_vram(device) -> int:
476
479
  elif str(device).startswith("mlu"):
477
480
  if torch.mlu.is_available():
478
481
  total_memory = round(torch.mlu.get_device_properties(device).total_memory / (1024 ** 3)) # 转为 GB
482
+ elif str(device).startswith("sdaa"):
483
+ if torch.sdaa.is_available():
484
+ total_memory = round(torch.sdaa.get_device_properties(device).total_memory / (1024 ** 3)) # 转为 GB
479
485
 
480
486
  return total_memory
mineru/version.py CHANGED
@@ -1 +1 @@
1
- __version__ = "2.7.5"
1
+ __version__ = "2.7.6"
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: mineru
3
- Version: 2.7.5
3
+ Version: 2.7.6
4
4
  Summary: A practical tool for converting PDF to Markdown
5
5
  License: AGPL-3.0
6
6
  Project-URL: homepage, https://mineru.net/
@@ -135,17 +135,22 @@ Dynamic: license-file
135
135
 
136
136
  # Changelog
137
137
 
138
- - 2026/01/30 2.7.4 Release
139
- - Added support for domestic computing platforms IluvatarCorex and Cambricon. Currently, the officially supported domestic computing platforms include:
140
- - [Ascend](https://opendatalab.github.io/MinerU/zh/usage/acceleration_cards/Ascend/)
141
- - [T-Head](https://opendatalab.github.io/MinerU/zh/usage/acceleration_cards/THead/)
142
- - [METAX](https://opendatalab.github.io/MinerU/zh/usage/acceleration_cards/METAX/)
138
+ - 2026/02/06 2.7.6 Release
139
+ - Added support for the domestic computing platforms Kunlunxin and Tecorigin; currently, the domestic computing platforms that have been adapted and supported by the official team and vendors include:
140
+ - [Ascend](https://opendatalab.github.io/MinerU/zh/usage/acceleration_cards/Ascend)
141
+ - [T-Head](https://opendatalab.github.io/MinerU/zh/usage/acceleration_cards/THead)
142
+ - [METAX](https://opendatalab.github.io/MinerU/zh/usage/acceleration_cards/METAX)
143
143
  - [Hygon](https://opendatalab.github.io/MinerU/zh/usage/acceleration_cards/Hygon/)
144
144
  - [Enflame](https://opendatalab.github.io/MinerU/zh/usage/acceleration_cards/Enflame/)
145
145
  - [MooreThreads](https://opendatalab.github.io/MinerU/zh/usage/acceleration_cards/MooreThreads/)
146
146
  - [IluvatarCorex](https://opendatalab.github.io/MinerU/zh/usage/acceleration_cards/IluvatarCorex/)
147
147
  - [Cambricon](https://opendatalab.github.io/MinerU/zh/usage/acceleration_cards/Cambricon/)
148
- - MinerU continues to ensure compatibility with domestic hardware platforms, supporting mainstream chip architectures. With secure and reliable technology, we empower researchers, government, and enterprises to reach new heights in document digitization!
148
+ - [Kunlunxin](https://opendatalab.github.io/MinerU/zh/usage/acceleration_cards/Kunlunxin/)
149
+ - [Tecorigin](https://opendatalab.github.io/MinerU/zh/usage/acceleration_cards/Tecorigin/)
150
+ - MinerU continues to support domestic hardware platforms and mainstream chip architectures. With secure and reliable technology, it helps research, government, and enterprise users reach new heights in document digitization!
151
+
152
+ - 2026/01/30 2.7.4 Release
153
+ - Added support for domestic computing platforms IluvatarCorex and Cambricon.
149
154
 
150
155
  - 2026/01/23 2.7.2 Release
151
156
  - Added support for domestic computing platforms Hygon, Enflame, and Moore Threads.
@@ -1,5 +1,5 @@
1
1
  mineru/__init__.py,sha256=8CRrCQVuExa0BttRFh3Z40lFy2K5jN0sp67KWjOlj5c,50
2
- mineru/version.py,sha256=lBcjVwt4I0-VUeE_7gM1gQBbtKOi9jGT3DavJbzcYnQ,22
2
+ mineru/version.py,sha256=6xG2XfctNZV_iMAbDf3PscewWwjPfwfmAC2zaeMR2KI,22
3
3
  mineru/backend/__init__.py,sha256=8CRrCQVuExa0BttRFh3Z40lFy2K5jN0sp67KWjOlj5c,50
4
4
  mineru/backend/utils.py,sha256=GLJU3IznDmhE1_qNmkU1UOtsuskIHBezgsEVO6Uar-Y,698
5
5
  mineru/backend/hybrid/__init__.py,sha256=IFgr2C8NfSAj8q7JF7QOqMvCiJ6Fc8TIuU3Uh2DaFZU,51
@@ -17,8 +17,8 @@ mineru/backend/pipeline/pipeline_magic_model.py,sha256=w8jGx8f6yZN0Wf2yPP3L9rYKc
17
17
  mineru/backend/pipeline/pipeline_middle_json_mkcontent.py,sha256=NJCLGKE7BqM24bRdpXCfTalyiqozowFZjpdzpIUy5aA,14672
18
18
  mineru/backend/vlm/__init__.py,sha256=8CRrCQVuExa0BttRFh3Z40lFy2K5jN0sp67KWjOlj5c,50
19
19
  mineru/backend/vlm/model_output_to_middle_json.py,sha256=AqYX44gS9crUO_t7SuUatD71EVjow6pI6yA2Ik3gQ0s,5139
20
- mineru/backend/vlm/utils.py,sha256=PIYqOStLCZlxU9TiZK4EhP90rPYIe_0thEZeP01YPls,3940
21
- mineru/backend/vlm/vlm_analyze.py,sha256=_2-xJC2C2rT87lZw8JZfC6PFFY0FfEbM9PK2TOkIJao,15604
20
+ mineru/backend/vlm/utils.py,sha256=igxgc-ZXje-TKQvZ2p_YJZTMkHS9yXE7u1-FcaGEVZ0,8523
21
+ mineru/backend/vlm/vlm_analyze.py,sha256=Vc8rRzvcE5egjW_J7L0bueo2dLK3b3KKIzvCK2AyBRk,13500
22
22
  mineru/backend/vlm/vlm_magic_model.py,sha256=RodoVwNJhzjyuRLn5Io5gFMIX1NxCuuLzCbUxGaKV80,21447
23
23
  mineru/backend/vlm/vlm_middle_json_mkcontent.py,sha256=w-Szbm4HitR7MY4pinSCZZdXtPSqmtlU9cjNh4IOQyg,29499
24
24
  mineru/cli/__init__.py,sha256=8CRrCQVuExa0BttRFh3Z40lFy2K5jN0sp67KWjOlj5c,50
@@ -51,7 +51,7 @@ mineru/model/mfd/yolo_v8.py,sha256=OI5AxVgt3FvXp4NYk0BDXXvpDlo9YjM6byDyC_TZ8Js,3
51
51
  mineru/model/mfr/__init__.py,sha256=8CRrCQVuExa0BttRFh3Z40lFy2K5jN0sp67KWjOlj5c,50
52
52
  mineru/model/mfr/utils.py,sha256=pAi1HnkTuO0R6251Hdl-o50m0wH0Ce89PAf74WCsXPU,11499
53
53
  mineru/model/mfr/pp_formulanet_plus_m/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
54
- mineru/model/mfr/pp_formulanet_plus_m/predict_formula.py,sha256=alGX_sPJxZh_7v1sOK3DJ8akfkWO-2c5I_JR7aXMTLU,5588
54
+ mineru/model/mfr/pp_formulanet_plus_m/predict_formula.py,sha256=tYbxdG_oNLb18CsQkusZA-r3fxHQd1uDnfzIFQ6IIU4,5783
55
55
  mineru/model/mfr/pp_formulanet_plus_m/processors.py,sha256=MSKyanxiDDjgDQHBov-GjKtPnMx9tSmxBC9GIkM3ft8,23832
56
56
  mineru/model/mfr/unimernet/Unimernet.py,sha256=ZK0M9fPmZziK4D33H3YND7RnHiQkRVCS-lvNfY-N7do,7912
57
57
  mineru/model/mfr/unimernet/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
@@ -151,17 +151,17 @@ mineru/model/utils/tools/infer/predict_system.py,sha256=hkegkn6hq2v2zqHVAP615-k-
151
151
  mineru/model/utils/tools/infer/pytorchocr_utility.py,sha256=i1PFN-_kefJUUZ4Vk7igs1TU8gfErTDlDXY6-8Uaurw,9323
152
152
  mineru/model/vlm/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
153
153
  mineru/model/vlm/lmdeploy_server.py,sha256=PvxJNcUIKB8VzWMDXeV1t0SHSgz_ULO36ZAzJbppz90,3262
154
- mineru/model/vlm/vllm_server.py,sha256=7taySlBANFBTS81Q8PJ6gJWjTgjnFQoGvMknK4NuyLY,3360
154
+ mineru/model/vlm/vllm_server.py,sha256=gC4bkwBbnQXpmxaiq1nPf7RgWF-pUYESjLssveJq6Do,2360
155
155
  mineru/resources/header.html,sha256=7xrf6bGloR-3ZeTDyA-JvavE_NeRuUDe3p07cEKUXSI,4769
156
156
  mineru/resources/fasttext-langdetect/lid.176.ftz,sha256=jzRyz-hzintgmejpmcPL-uDc0VaWqsfXc4qAOdtgPoM,938013
157
157
  mineru/utils/__init__.py,sha256=8CRrCQVuExa0BttRFh3Z40lFy2K5jN0sp67KWjOlj5c,50
158
158
  mineru/utils/block_pre_proc.py,sha256=uGBmxf2MR9bplTnQI8xHjCI-kj3plRhJr0hcWKidbOQ,9632
159
- mineru/utils/block_sort.py,sha256=e6nNjdUeRixT70OfvlEzM1FGwKxFSVwiLtwYGrsG_U0,13724
159
+ mineru/utils/block_sort.py,sha256=5S1VdpRgI72D2dRb3Qp5XQiqSmiPpELwFIqbpshH1jA,13916
160
160
  mineru/utils/boxbase.py,sha256=xnGA1k7hVtTQrreqlJmK-SA3y9edTHgLmGiqGrSXckE,7568
161
161
  mineru/utils/char_utils.py,sha256=74T5Ylr5mi1uddAIuJku9Z6sH7vhR7t595_H7qmbu4c,1777
162
162
  mineru/utils/check_sys_env.py,sha256=TRjzg4xWyoSGrgv4KaP225A-99xBgLAfZ1cPcGqrBAA,1191
163
163
  mineru/utils/cli_parser.py,sha256=4seFAu1kulsYnw6WM2q_cxgEOt2tErZVkI-LNEF_kGw,1445
164
- mineru/utils/config_reader.py,sha256=mwXYVuj52mA__2BU2qOPP0Pn9m0dDLi4mAqPS9a4Pjo,4575
164
+ mineru/utils/config_reader.py,sha256=03ASqJUJIl6CkXVcsewpnPDAo9I7WYdj_hx-osUKrlE,4835
165
165
  mineru/utils/cut_image.py,sha256=g3m4nfcJNWlxi-P0kpXTtlmspXkMcLCfGwmYuQ-Z2hE,751
166
166
  mineru/utils/draw_bbox.py,sha256=FkgppjUzRhN-uxvChdkhHXcDavJEaApMD6qC6qoRwfQ,20292
167
167
  mineru/utils/engine_utils.py,sha256=Jmao9-O-sZDzH7vANKEDaY6NJ8tuthKsTr23LFIeBLU,2203
@@ -172,7 +172,7 @@ mineru/utils/hash_utils.py,sha256=UPS_8NRBmVumdyOv16Lmv6Ly2xK8OVDJEe5gG6gKIFk,85
172
172
  mineru/utils/language.py,sha256=7RT3mxSa7jdpoC5ySd7ZddHA7TO7UsnmDOWiYZAxuyg,1433
173
173
  mineru/utils/llm_aided.py,sha256=9WUytvxenSAuaWR4sTQhVPQ5h8pY0wVOH1O2sj_6dLs,5149
174
174
  mineru/utils/magic_model_utils.py,sha256=8Hv-BDk9Ez4TUx6hrVJ_675yZZggPj6Uib81lSpm0ig,11683
175
- mineru/utils/model_utils.py,sha256=xlw5hUYKa6o1NiM8PoXO1HFvHfrgY5e4Ut_upGEY9yI,19909
175
+ mineru/utils/model_utils.py,sha256=YadxNuRvuWZ5yW2NkSpD0ZYTJdj0ZVS2X8KF_hlGWCA,20231
176
176
  mineru/utils/models_download_utils.py,sha256=UfjvwhxO6BkJHa5JSpEVNZ71GoLMPMmJpym3THET2T4,2957
177
177
  mineru/utils/ocr_utils.py,sha256=lPIrwNUib5mrzUkponRYHuUCdjV2qvETNLSzOLyflrU,15990
178
178
  mineru/utils/os_env_config.py,sha256=VHK9lS3QFJhrwWa9FOFU1Swm7oXnby4SaNNjTyonTTg,990
@@ -185,9 +185,9 @@ mineru/utils/run_async.py,sha256=rPeP4BCZerR8VByRDhiYzfZiahLVqoZEBVAS54dAjNg,128
185
185
  mineru/utils/span_block_fix.py,sha256=0eVQjJCrT03woRt9hoh6Uu42Tp1dacfGTv2x3B9qq94,8797
186
186
  mineru/utils/span_pre_proc.py,sha256=nu6Bh5TWPKFzHuFfbEs0Asr04M4xOL5IONz_8GJHn44,13862
187
187
  mineru/utils/table_merge.py,sha256=LORxz0THemCqH746FMViqEuLzM088M4HgIkEuwDIfNU,21393
188
- mineru-2.7.5.dist-info/licenses/LICENSE.md,sha256=jVa0BUaKrRH4erV2P5AeJ24I2WRv9chIGxditreJ6e0,34524
189
- mineru-2.7.5.dist-info/METADATA,sha256=MvPv4AgyLwaHz3hspAPrZ0wEeSE0wnu0MkMwfAJ5hTs,36928
190
- mineru-2.7.5.dist-info/WHEEL,sha256=wUyA8OaulRlbfwMtmQsvNngGrxQHAvkKcvRmdizlJi0,92
191
- mineru-2.7.5.dist-info/entry_points.txt,sha256=a9AHBIiYe3dpT3oofVQJC8fI0WjDhQASCUlhdMOK120,376
192
- mineru-2.7.5.dist-info/top_level.txt,sha256=zuGQfZcbsHv4I4oKI9gaKPqEWBFm6xJroKuug2LnKP8,7
193
- mineru-2.7.5.dist-info/RECORD,,
188
+ mineru-2.7.6.dist-info/licenses/LICENSE.md,sha256=jVa0BUaKrRH4erV2P5AeJ24I2WRv9chIGxditreJ6e0,34524
189
+ mineru-2.7.6.dist-info/METADATA,sha256=m6EbuSPR6iPDZp-fBf90urMSPi9JbGLKZZC5EneGsKc,37245
190
+ mineru-2.7.6.dist-info/WHEEL,sha256=wUyA8OaulRlbfwMtmQsvNngGrxQHAvkKcvRmdizlJi0,92
191
+ mineru-2.7.6.dist-info/entry_points.txt,sha256=a9AHBIiYe3dpT3oofVQJC8fI0WjDhQASCUlhdMOK120,376
192
+ mineru-2.7.6.dist-info/top_level.txt,sha256=zuGQfZcbsHv4I4oKI9gaKPqEWBFm6xJroKuug2LnKP8,7
193
+ mineru-2.7.6.dist-info/RECORD,,
File without changes