mindstudio-probe 1.2.2__py3-none-any.whl → 8.1.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (261) hide show
  1. {mindstudio_probe-1.2.2.dist-info → mindstudio_probe-8.1.0.dist-info}/METADATA +4 -3
  2. {mindstudio_probe-1.2.2.dist-info → mindstudio_probe-8.1.0.dist-info}/RECORD +243 -191
  3. msprobe/README.md +57 -21
  4. msprobe/core/__init__.py +17 -0
  5. msprobe/core/common/const.py +224 -82
  6. msprobe/core/common/decorator.py +50 -0
  7. msprobe/core/common/exceptions.py +5 -3
  8. msprobe/core/common/file_utils.py +274 -40
  9. msprobe/core/common/framework_adapter.py +169 -0
  10. msprobe/core/common/global_lock.py +86 -0
  11. msprobe/core/common/runtime.py +25 -0
  12. msprobe/core/common/utils.py +148 -72
  13. msprobe/core/common_config.py +7 -0
  14. msprobe/core/compare/acc_compare.py +640 -462
  15. msprobe/core/compare/check.py +36 -107
  16. msprobe/core/compare/compare_cli.py +4 -0
  17. msprobe/core/compare/config.py +72 -0
  18. msprobe/core/compare/highlight.py +217 -215
  19. msprobe/core/compare/layer_mapping/layer_mapping.py +4 -1
  20. msprobe/core/compare/merge_result/merge_result.py +12 -6
  21. msprobe/core/compare/multiprocessing_compute.py +227 -107
  22. msprobe/core/compare/npy_compare.py +32 -16
  23. msprobe/core/compare/utils.py +218 -244
  24. msprobe/{mindspore/runtime.py → core/config_check/__init__.py} +2 -4
  25. msprobe/{pytorch/dump/kernel_dump/kernel_config.py → core/config_check/checkers/__init__.py} +8 -16
  26. msprobe/core/config_check/checkers/base_checker.py +60 -0
  27. msprobe/core/config_check/checkers/dataset_checker.py +138 -0
  28. msprobe/core/config_check/checkers/env_args_checker.py +96 -0
  29. msprobe/core/config_check/checkers/hyperparameter_checker.py +170 -0
  30. msprobe/core/config_check/checkers/pip_checker.py +90 -0
  31. msprobe/core/config_check/checkers/random_checker.py +367 -0
  32. msprobe/core/config_check/checkers/weights_checker.py +147 -0
  33. msprobe/core/config_check/ckpt_compare/ckpt_comparator.py +74 -0
  34. msprobe/core/config_check/ckpt_compare/megatron_loader.py +302 -0
  35. msprobe/core/config_check/ckpt_compare/metrics.py +83 -0
  36. msprobe/core/config_check/ckpt_compare/name_mapping.yaml +12 -0
  37. msprobe/core/config_check/config_check_cli.py +51 -0
  38. msprobe/core/config_check/config_checker.py +100 -0
  39. msprobe/{pytorch/parse.py → core/config_check/resource/dependency.yaml} +7 -4
  40. msprobe/core/config_check/resource/env.yaml +57 -0
  41. msprobe/core/config_check/resource/hyperparameter.yaml +21 -0
  42. msprobe/core/config_check/utils/hyperparameter_parser.py +115 -0
  43. msprobe/core/config_check/utils/utils.py +107 -0
  44. msprobe/core/data_dump/api_registry.py +239 -0
  45. msprobe/core/data_dump/data_collector.py +36 -9
  46. msprobe/core/data_dump/data_processor/base.py +74 -53
  47. msprobe/core/data_dump/data_processor/mindspore_processor.py +119 -78
  48. msprobe/core/data_dump/data_processor/pytorch_processor.py +134 -96
  49. msprobe/core/data_dump/json_writer.py +146 -57
  50. msprobe/core/debugger/precision_debugger.py +143 -0
  51. msprobe/core/grad_probe/constant.py +2 -1
  52. msprobe/core/grad_probe/grad_compare.py +2 -2
  53. msprobe/core/grad_probe/utils.py +1 -1
  54. msprobe/core/hook_manager.py +242 -0
  55. msprobe/core/monitor/anomaly_processor.py +384 -0
  56. msprobe/core/overflow_check/abnormal_scene.py +2 -0
  57. msprobe/core/service.py +356 -0
  58. msprobe/core/single_save/__init__.py +0 -0
  59. msprobe/core/single_save/single_comparator.py +243 -0
  60. msprobe/core/single_save/single_saver.py +157 -0
  61. msprobe/docs/01.installation.md +6 -5
  62. msprobe/docs/02.config_introduction.md +89 -30
  63. msprobe/docs/03.config_examples.md +1 -0
  64. msprobe/docs/04.kernel_dump_PyTorch.md +1 -1
  65. msprobe/docs/05.data_dump_PyTorch.md +184 -50
  66. msprobe/docs/06.data_dump_MindSpore.md +193 -28
  67. msprobe/docs/07.accuracy_checker_PyTorch.md +13 -3
  68. msprobe/docs/08.accuracy_checker_online_PyTorch.md +72 -10
  69. msprobe/docs/09.accuracy_checker_MindSpore.md +19 -7
  70. msprobe/docs/10.accuracy_compare_PyTorch.md +266 -102
  71. msprobe/docs/11.accuracy_compare_MindSpore.md +117 -43
  72. msprobe/docs/12.overflow_check_PyTorch.md +5 -3
  73. msprobe/docs/13.overflow_check_MindSpore.md +6 -4
  74. msprobe/docs/14.data_parse_PyTorch.md +4 -10
  75. msprobe/docs/17.grad_probe.md +2 -1
  76. msprobe/docs/18.online_dispatch.md +3 -3
  77. msprobe/docs/19.monitor.md +211 -103
  78. msprobe/docs/21.visualization_PyTorch.md +100 -28
  79. msprobe/docs/22.visualization_MindSpore.md +103 -31
  80. msprobe/docs/23.generate_operator_PyTorch.md +9 -9
  81. msprobe/docs/25.tool_function_introduction.md +23 -22
  82. msprobe/docs/26.data_dump_PyTorch_baseline.md +14 -3
  83. msprobe/docs/27.dump_json_instruction.md +278 -8
  84. msprobe/docs/28.debugger_save_instruction.md +111 -20
  85. msprobe/docs/28.kernel_dump_MindSpore.md +1 -1
  86. msprobe/docs/29.data_dump_MSAdapter.md +229 -0
  87. msprobe/docs/30.overflow_check_MSAdapter.md +31 -0
  88. msprobe/docs/31.config_check.md +95 -0
  89. msprobe/docs/32.ckpt_compare.md +69 -0
  90. msprobe/docs/33.generate_operator_MindSpore.md +190 -0
  91. msprobe/docs/34.RL_collect.md +92 -0
  92. msprobe/docs/35.nan_analyze.md +72 -0
  93. msprobe/docs/FAQ.md +3 -11
  94. msprobe/docs/data_dump_MindSpore/data_dump_MindSpore_baseline.md +12 -1
  95. msprobe/docs/data_dump_MindSpore/dynamic_graph_quick_start_example.md +3 -1
  96. msprobe/docs/img/compare_result.png +0 -0
  97. msprobe/docs/img/merge_result.png +0 -0
  98. msprobe/docs/img/save_compare_result_sample.png +0 -0
  99. msprobe/docs/img/visualization/proxy.png +0 -0
  100. msprobe/docs/img/visualization/vis_browser_1.png +0 -0
  101. msprobe/docs/img/visualization/vis_match_info.png +0 -0
  102. msprobe/docs/img/visualization/vis_precision_info.png +0 -0
  103. msprobe/docs/img/visualization/vis_search_info.png +0 -0
  104. msprobe/docs/img/visualization/vis_show_info.png +0 -0
  105. msprobe/docs/img/visualization/vis_showcase.png +0 -0
  106. msprobe/docs/img/visualization/vis_unmatch_info.png +0 -0
  107. msprobe/mindspore/__init__.py +3 -3
  108. msprobe/mindspore/api_accuracy_checker/api_accuracy_checker.py +151 -55
  109. msprobe/mindspore/api_accuracy_checker/api_runner.py +25 -11
  110. msprobe/mindspore/api_accuracy_checker/base_compare_algorithm.py +2 -1
  111. msprobe/mindspore/api_accuracy_checker/bench_functions/flash_attention_score.py +580 -0
  112. msprobe/mindspore/api_accuracy_checker/bench_functions/fusion_operator.py +41 -0
  113. msprobe/mindspore/api_accuracy_checker/cmd_parser.py +4 -0
  114. msprobe/mindspore/api_accuracy_checker/data_manager.py +4 -3
  115. msprobe/mindspore/api_accuracy_checker/generate_op_script/config_op.json +9 -0
  116. msprobe/mindspore/api_accuracy_checker/generate_op_script/op_generator.py +451 -0
  117. msprobe/mindspore/api_accuracy_checker/generate_op_script/operator_replication.template +2081 -0
  118. msprobe/mindspore/api_accuracy_checker/multi_api_accuracy_checker.py +11 -1
  119. msprobe/mindspore/api_accuracy_checker/torch_mindtorch_importer.py +2 -1
  120. msprobe/mindspore/cell_processor.py +204 -33
  121. msprobe/mindspore/code_mapping/graph_parser.py +4 -21
  122. msprobe/mindspore/common/const.py +73 -2
  123. msprobe/mindspore/common/utils.py +157 -29
  124. msprobe/mindspore/compare/common_dir_compare.py +382 -0
  125. msprobe/mindspore/compare/distributed_compare.py +2 -26
  126. msprobe/mindspore/compare/ms_compare.py +18 -398
  127. msprobe/mindspore/compare/ms_graph_compare.py +20 -10
  128. msprobe/mindspore/compare/utils.py +37 -0
  129. msprobe/mindspore/debugger/debugger_config.py +59 -7
  130. msprobe/mindspore/debugger/precision_debugger.py +83 -90
  131. msprobe/mindspore/dump/cell_dump_process.py +902 -0
  132. msprobe/mindspore/dump/cell_dump_with_insert_gradient.py +889 -0
  133. msprobe/mindspore/dump/dump_tool_factory.py +18 -8
  134. msprobe/mindspore/dump/graph_mode_cell_dump.py +139 -0
  135. msprobe/mindspore/dump/graph_tensor_dump.py +123 -0
  136. msprobe/mindspore/dump/hook_cell/api_register.py +176 -0
  137. msprobe/mindspore/dump/hook_cell/hook_cell.py +22 -12
  138. msprobe/mindspore/dump/hook_cell/ms_hook_manager.py +88 -0
  139. msprobe/mindspore/dump/hook_cell/primitive_hooks.py +8 -2
  140. msprobe/mindspore/dump/hook_cell/support_wrap_ops.yaml +42 -26
  141. msprobe/mindspore/dump/jit_dump.py +35 -27
  142. msprobe/mindspore/dump/kernel_kbyk_dump.py +6 -3
  143. msprobe/mindspore/dym_loader/hook_dynamic_loader.cpp +110 -0
  144. msprobe/mindspore/dym_loader/hook_dynamic_loader.h +15 -16
  145. msprobe/mindspore/free_benchmark/api_pynative_self_check.py +22 -12
  146. msprobe/mindspore/free_benchmark/common/utils.py +1 -1
  147. msprobe/mindspore/free_benchmark/perturbation/perturbation_factory.py +4 -2
  148. msprobe/mindspore/free_benchmark/self_check_tool_factory.py +6 -3
  149. msprobe/mindspore/grad_probe/global_context.py +9 -2
  150. msprobe/mindspore/grad_probe/grad_analyzer.py +2 -1
  151. msprobe/mindspore/grad_probe/grad_stat_csv.py +3 -2
  152. msprobe/mindspore/grad_probe/hook.py +2 -4
  153. msprobe/mindspore/mindspore_service.py +111 -0
  154. msprobe/mindspore/monitor/common_func.py +52 -0
  155. msprobe/mindspore/monitor/data_writers.py +237 -0
  156. msprobe/mindspore/monitor/distributed/wrap_distributed.py +1 -1
  157. msprobe/mindspore/monitor/features.py +13 -1
  158. msprobe/mindspore/monitor/module_hook.py +568 -444
  159. msprobe/mindspore/monitor/optimizer_collect.py +331 -0
  160. msprobe/mindspore/monitor/utils.py +71 -9
  161. msprobe/mindspore/ms_config.py +16 -15
  162. msprobe/mindspore/overflow_check/overflow_check_tool_factory.py +5 -3
  163. msprobe/mindspore/task_handler_factory.py +5 -2
  164. msprobe/msprobe.py +19 -0
  165. msprobe/nan_analyze/__init__.py +14 -0
  166. msprobe/nan_analyze/analyzer.py +255 -0
  167. msprobe/nan_analyze/graph.py +189 -0
  168. msprobe/nan_analyze/utils.py +211 -0
  169. msprobe/pytorch/api_accuracy_checker/common/config.py +2 -2
  170. msprobe/pytorch/api_accuracy_checker/compare/api_precision_compare.py +3 -6
  171. msprobe/pytorch/api_accuracy_checker/compare/compare.py +36 -34
  172. msprobe/pytorch/api_accuracy_checker/generate_op_script/op_generator.py +15 -13
  173. msprobe/pytorch/api_accuracy_checker/generate_op_script/operator_replication.template +206 -4
  174. msprobe/pytorch/api_accuracy_checker/run_ut/multi_run_ut.py +9 -9
  175. msprobe/pytorch/api_accuracy_checker/run_ut/run_overflow_check.py +6 -5
  176. msprobe/pytorch/api_accuracy_checker/run_ut/run_ut.py +31 -9
  177. msprobe/pytorch/api_accuracy_checker/run_ut/run_ut_utils.py +28 -20
  178. msprobe/pytorch/api_accuracy_checker/tensor_transport_layer/attl.py +3 -1
  179. msprobe/pytorch/api_accuracy_checker/tensor_transport_layer/client.py +29 -13
  180. msprobe/pytorch/api_accuracy_checker/tensor_transport_layer/device_dispatch.py +12 -2
  181. msprobe/pytorch/api_accuracy_checker/tensor_transport_layer/server.py +45 -31
  182. msprobe/pytorch/api_accuracy_checker/tensor_transport_layer/utils.py +154 -0
  183. msprobe/pytorch/attl_manager.py +65 -0
  184. msprobe/pytorch/bench_functions/moe_gating_top_k_softmax.py +6 -0
  185. msprobe/pytorch/bench_functions/npu_fusion_attention.py +27 -0
  186. msprobe/pytorch/common/utils.py +53 -19
  187. msprobe/pytorch/compare/distributed_compare.py +4 -36
  188. msprobe/pytorch/compare/pt_compare.py +13 -84
  189. msprobe/pytorch/compare/utils.py +47 -0
  190. msprobe/pytorch/debugger/debugger_config.py +34 -17
  191. msprobe/pytorch/debugger/precision_debugger.py +50 -96
  192. msprobe/pytorch/dump/module_dump/hook_wrapper.py +93 -0
  193. msprobe/pytorch/dump/module_dump/module_dump.py +15 -61
  194. msprobe/pytorch/dump/module_dump/module_processer.py +150 -114
  195. msprobe/pytorch/free_benchmark/common/utils.py +1 -1
  196. msprobe/pytorch/free_benchmark/compare/single_benchmark.py +1 -1
  197. msprobe/pytorch/free_benchmark/perturbed_layers/npu/add_noise.py +3 -3
  198. msprobe/pytorch/free_benchmark/perturbed_layers/npu/bit_noise.py +3 -3
  199. msprobe/pytorch/free_benchmark/perturbed_layers/npu/change_value.py +1 -1
  200. msprobe/pytorch/free_benchmark/perturbed_layers/npu/improve_precision.py +1 -1
  201. msprobe/pytorch/free_benchmark/result_handlers/check_handler.py +1 -1
  202. msprobe/pytorch/function_factory.py +1 -1
  203. msprobe/pytorch/grad_probe/grad_monitor.py +2 -2
  204. msprobe/pytorch/grad_probe/grad_stat_csv.py +3 -2
  205. msprobe/pytorch/hook_module/api_register.py +155 -0
  206. msprobe/pytorch/hook_module/hook_module.py +18 -22
  207. msprobe/pytorch/hook_module/jit_script_wrapper.py +33 -0
  208. msprobe/pytorch/hook_module/pt_hook_manager.py +68 -0
  209. msprobe/pytorch/hook_module/register_optimizer_hook.py +2 -1
  210. msprobe/pytorch/hook_module/support_wrap_ops.yaml +193 -75
  211. msprobe/pytorch/hook_module/utils.py +28 -2
  212. msprobe/pytorch/monitor/csv2tb.py +14 -4
  213. msprobe/pytorch/monitor/data_writers.py +259 -0
  214. msprobe/pytorch/monitor/distributed/wrap_distributed.py +8 -2
  215. msprobe/pytorch/monitor/module_hook.py +336 -241
  216. msprobe/pytorch/monitor/module_metric.py +17 -0
  217. msprobe/pytorch/monitor/optimizer_collect.py +244 -224
  218. msprobe/pytorch/monitor/utils.py +84 -4
  219. msprobe/pytorch/online_dispatch/compare.py +0 -2
  220. msprobe/pytorch/online_dispatch/dispatch.py +13 -2
  221. msprobe/pytorch/online_dispatch/dump_compare.py +8 -2
  222. msprobe/pytorch/online_dispatch/utils.py +3 -0
  223. msprobe/pytorch/parse_tool/lib/interactive_cli.py +1 -6
  224. msprobe/pytorch/parse_tool/lib/utils.py +5 -4
  225. msprobe/pytorch/pt_config.py +16 -11
  226. msprobe/pytorch/pytorch_service.py +70 -0
  227. msprobe/visualization/builder/graph_builder.py +69 -10
  228. msprobe/visualization/builder/msprobe_adapter.py +24 -12
  229. msprobe/visualization/compare/graph_comparator.py +63 -51
  230. msprobe/visualization/compare/mode_adapter.py +22 -20
  231. msprobe/visualization/graph/base_node.py +11 -4
  232. msprobe/visualization/graph/distributed_analyzer.py +1 -10
  233. msprobe/visualization/graph/graph.py +2 -13
  234. msprobe/visualization/graph/node_op.py +1 -2
  235. msprobe/visualization/graph_service.py +251 -104
  236. msprobe/visualization/utils.py +26 -44
  237. msprobe/mindspore/dump/hook_cell/api_registry.py +0 -207
  238. msprobe/mindspore/dump/hook_cell/wrap_api.py +0 -212
  239. msprobe/mindspore/dym_loader/hook_dynamic_loader.cc +0 -140
  240. msprobe/mindspore/monitor/anomaly_detect.py +0 -404
  241. msprobe/mindspore/monitor/module_spec_verifier.py +0 -94
  242. msprobe/mindspore/service.py +0 -543
  243. msprobe/pytorch/hook_module/api_registry.py +0 -166
  244. msprobe/pytorch/hook_module/wrap_distributed.py +0 -79
  245. msprobe/pytorch/hook_module/wrap_functional.py +0 -66
  246. msprobe/pytorch/hook_module/wrap_npu_custom.py +0 -85
  247. msprobe/pytorch/hook_module/wrap_tensor.py +0 -69
  248. msprobe/pytorch/hook_module/wrap_torch.py +0 -84
  249. msprobe/pytorch/hook_module/wrap_vf.py +0 -60
  250. msprobe/pytorch/monitor/anomaly_analyse.py +0 -201
  251. msprobe/pytorch/monitor/anomaly_detect.py +0 -410
  252. msprobe/pytorch/monitor/module_spec_verifier.py +0 -95
  253. msprobe/pytorch/monitor/unittest/test_monitor.py +0 -160
  254. msprobe/pytorch/service.py +0 -470
  255. {mindstudio_probe-1.2.2.dist-info → mindstudio_probe-8.1.0.dist-info}/LICENSE +0 -0
  256. {mindstudio_probe-1.2.2.dist-info → mindstudio_probe-8.1.0.dist-info}/WHEEL +0 -0
  257. {mindstudio_probe-1.2.2.dist-info → mindstudio_probe-8.1.0.dist-info}/entry_points.txt +0 -0
  258. {mindstudio_probe-1.2.2.dist-info → mindstudio_probe-8.1.0.dist-info}/top_level.txt +0 -0
  259. /msprobe/{mindspore → core}/compare/ms_to_pt_api.yaml +0 -0
  260. /msprobe/{mindspore/dump → core}/kernel_dump/kernel_config.py +0 -0
  261. /msprobe/{pytorch/monitor/unittest → core/monitor}/__init__.py +0 -0
@@ -0,0 +1,157 @@
1
+ # Copyright (c) 2025-2025, Huawei Technologies Co., Ltd.
2
+ # All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ import os
17
+
18
+ from msprobe.core.common.file_utils import create_directory, save_json
19
+ from msprobe.core.common.const import Const
20
+ from msprobe.core.common.framework_adapter import FmkAdp
21
+ from msprobe.core.common.log import logger
22
+
23
+
24
+ support_nested_data_type = (list, tuple, dict)
25
+
26
+
27
+ class SingleSave:
28
+ _instance = None
29
+
30
+ def __new__(cls, dump_path, fmk=Const.PT_FRAMEWORK):
31
+ if cls._instance is None:
32
+ cls._instance = super(SingleSave, cls).__new__(cls)
33
+ FmkAdp.set_fmk(fmk)
34
+ create_directory(dump_path)
35
+
36
+ cls._instance.dump_path = dump_path
37
+ cls._instance.rank = FmkAdp.get_rank_id()
38
+ cls._instance.step_count = 0
39
+ cls._instance.cache_dict = {}
40
+ return cls._instance
41
+
42
+ @staticmethod
43
+ def _analyze_tensor_data(data, data_name=None, save_dir=None):
44
+ '''
45
+ data: Tensor
46
+ return:
47
+ result_data: with keys {"max", "min", "mean", "norm", "shape"}
48
+ '''
49
+ result_data = {}
50
+ result_data["max"] = FmkAdp.tensor_max(data)
51
+ result_data["min"] = FmkAdp.tensor_min(data)
52
+ result_data["mean"] = FmkAdp.tensor_mean(data)
53
+ result_data["norm"] = FmkAdp.tensor_norm(data)
54
+ result_data["shape"] = list(data.shape)
55
+ if save_dir is not None and data_name is not None:
56
+ real_save_path = os.path.join(save_dir, data_name + ".npy")
57
+ FmkAdp.save_tensor(data, real_save_path)
58
+ return result_data
59
+
60
+ @classmethod
61
+ def save_config(cls, data):
62
+ dump_file = os.path.join(cls._instance.dump_path, 'configurations.json')
63
+ save_json(dump_file, data, indent=4)
64
+
65
+ @classmethod
66
+ def save_ex(cls, data, micro_batch=None):
67
+ '''
68
+ data: dict{str: Union[Tensor, tuple, list]}
69
+
70
+ return: void
71
+ '''
72
+
73
+ instance = cls._instance
74
+
75
+ if not isinstance(data, dict):
76
+ logger.warning("SingleSave data type not valid, "
77
+ "should be dict. "
78
+ "Skip current save process.")
79
+ return
80
+ for key, value in data.items():
81
+ if not isinstance(key, str):
82
+ logger.warning("key should be string when save data")
83
+ continue
84
+ if not isinstance(value, support_nested_data_type) and not FmkAdp.is_tensor(value):
85
+ logger.warning(f"value should be {support_nested_data_type} or Tensor when save data")
86
+ continue
87
+ real_dump_dir = os.path.join(
88
+ instance.dump_path,
89
+ "data",
90
+ key,
91
+ f"step{instance.step_count}",
92
+ f"rank{instance.rank}")
93
+ if micro_batch is not None:
94
+ real_dump_dir = os.path.join(real_dump_dir, f"micro_step{micro_batch}")
95
+ create_directory(real_dump_dir)
96
+
97
+ if FmkAdp.is_tensor(value):
98
+ result = cls._analyze_tensor_data(value, key, real_dump_dir)
99
+ elif isinstance(value, (tuple, list)):
100
+ result = cls._analyze_list_tuple_data(value, key, real_dump_dir)
101
+ elif isinstance(value, dict):
102
+ result = cls._analyze_dict_data(value, key, real_dump_dir)
103
+
104
+ result_json = {"data": result}
105
+ json_path = os.path.join(real_dump_dir, key + ".json")
106
+ save_json(json_path, result_json, indent=4)
107
+
108
+
109
+ @classmethod
110
+ def step(cls):
111
+ instance = cls._instance
112
+ for key, value in instance.cache_dict.items():
113
+ if not value["have_micro_batch"]:
114
+ cls.save_ex({key: value["data"][0]})
115
+ else:
116
+ for i, data in enumerate(value["data"]):
117
+ cls.save_ex({key: data}, micro_batch=i)
118
+ instance.cache_dict = {}
119
+ instance.step_count += 1
120
+
121
+ @classmethod
122
+ def save(cls, data):
123
+ instance = cls._instance
124
+ if not isinstance(data, dict):
125
+ logger.warning("SingleSave data type not valid, "
126
+ "should be dict. "
127
+ "Skip current save process.")
128
+ return
129
+ for key, value in data.items():
130
+ if key not in instance.cache_dict:
131
+ instance.cache_dict[key] = {
132
+ "have_micro_batch": False,
133
+ "data": [value]
134
+ }
135
+ else:
136
+ instance.cache_dict[key]["have_micro_batch"] = True
137
+ instance.cache_dict[key]["data"].append(value)
138
+
139
+ @classmethod
140
+ def _analyze_list_tuple_data(cls, data, data_name=None, save_dir=None):
141
+ lst = []
142
+ for index, element in enumerate(data):
143
+ if not FmkAdp.is_tensor(element):
144
+ raise TypeError(f"SingleSave: Unsupported type: {type(element)}")
145
+ element_name = data_name + "." + str(index)
146
+ lst.append(cls._analyze_tensor_data(element, element_name, save_dir))
147
+ return lst
148
+
149
+ @classmethod
150
+ def _analyze_dict_data(cls, data, data_name=None, save_dir=None):
151
+ result_data = {}
152
+ for key, value in data.items():
153
+ if not FmkAdp.is_tensor(value):
154
+ raise TypeError(f"SingleSave: Unsupported type: {type(value)}")
155
+ key_name = data_name + "." + str(key)
156
+ result_data[key] = cls._analyze_tensor_data(value, key_name, save_dir)
157
+ return result_data
@@ -16,6 +16,9 @@ pip install mindstudio-probe
16
16
 
17
17
  |版本|发布日期|支持 PyTorch 版本|支持 MindSpore 版本|下载链接|校验码|
18
18
  |:--:|:--:|:--:|:--:|:--:|:--:|
19
+ |8.0.0|2025.5.07|1.11/2.0/2.1/2.2|2.4.0/2.5.0/2.6.0|[mindstudio_probe-8.0.0-py3-none-any.whl](https://ptdbg.obs.myhuaweicloud.com/msprobe/8.0/mindstudio_probe-8.0.0-py3-none-any.whl)|6810eade7ae99e3b24657d5cab251119882decd791aa76a7aeeb94dea767daec|
20
+ |1.3.0|2025.4.17|1.11/2.0/2.1/2.2|2.4.0/2.5.0/2.6.0|[mindstudio_probe-1.3.0-py3-none-any.whl](https://ptdbg.obs.myhuaweicloud.com/msprobe/1.3/mindstudio_probe-1.3.0-py3-none-any.whl)|85dbc5518b5c23d29c67d7b85d662517d0318352f372891f8d91e73e71b439c3|
21
+ |1.2.2|2025.3.03|1.11/2.0/2.1/2.2|2.4.0|[mindstudio_probe-1.2.2-py3-none-any.whl](https://ptdbg.obs.myhuaweicloud.com/msprobe/1.2/mindstudio_probe-1.2.2-py3-none-any.whl)|961411bb460d327ea51d6ca4d0c8e8c5565f07c0852d7b8592b781ca35b87212|
19
22
  |1.2.1|2025.2.07|1.11/2.0/2.1/2.2|2.4.0|[mindstudio_probe-1.2.1-py3-none-any.whl](https://ptdbg.obs.myhuaweicloud.com/msprobe/1.2/mindstudio_probe-1.2.1-py3-none-any.whl)|b64b342118558e0339b39237f88a49b93fd24551b0cb202c872fbfef4260c86b|
20
23
  |1.2.0|2025.1.13|1.11/2.0/2.1/2.2|2.4.0|[mindstudio_probe-1.2.0-py3-none-any.whl](https://ptdbg.obs.myhuaweicloud.com/msprobe/1.2/mindstudio_probe-1.2.0-py3-none-any.whl)|1e3aeea1706112f6ee52fd1165037936bb209138f0b9ec42ea21e2c1c8942cdc|
21
24
  |1.1.1|2024.12.09|1.11/2.0/2.1/2.2|2.4.0|[mindstudio_probe-1.1.1-py3-none-any.whl](https://ptdbg.obs.myhuaweicloud.com/msprobe/1.1/mindstudio_probe-1.1.1-py3-none-any.whl)|577b597555dc155b76ba1a62d575c3546004644e140a456c3ba0824d46283735|
@@ -51,7 +54,7 @@ pip install ./mindstudio_probe*.whl
51
54
 
52
55
  |参数|说明|是否必选|
53
56
  |--|--|:--:|
54
- |--include-mod|指定可选模块,可取值`adump`,表示在编whl包时加入adump模块。默认未配置该参数,表示编基础包。<br>&#8226; adump模块用于MindSpore静态图场景L2级别的dump。<br>&#8226; 仅MindSpore 2.5.0及以上版本支持adump模块。<br>&#8226; 若使用源码安装,编译环境需支持GCC 7或以上版本,和CMAKE 3.14或以上版本。<br>&#8226; 生成的whl包仅限编译时使用的python版本和处理器架构可用。|否|
57
+ |--include-mod|指定可选模块,可取值`adump`,表示在编whl包时加入adump模块。默认未配置该参数,表示编基础包。<br>&#8226; adump模块用于MindSpore静态图场景L2级别的dump。<br>&#8226; 仅MindSpore 2.5.0及以上版本支持adump模块。<br>&#8226; 若使用源码安装,编译环境需支持GCC 7.5或以上版本,和CMake 3.14或以上版本。<br>&#8226; 生成的whl包仅限编译时使用的python版本和处理器架构可用。|否|
55
58
 
56
59
  # 特性变更说明
57
60
 
@@ -79,8 +82,6 @@ pip install ./mindstudio_probe*.whl
79
82
 
80
83
  ## 1.1.1
81
84
 
82
- ## 1.1.1
83
-
84
85
  【数据采集】
85
86
 
86
87
  - dump 支持 processgroup、namedtuple、slice 等数据类型
@@ -208,6 +209,6 @@ source {cann_path}/ascend-toolkit/set_env.sh
208
209
 
209
210
  链接:[https://gitee.com/ascend/pytorch](https://gitee.com/ascend/pytorch)。
210
211
 
211
- ## 3 安装 ModelLink
212
+ ## 3 安装 MindSpeed LLM
212
213
 
213
- 链接:[https://gitee.com/ascend/ModelLink](https://gitee.com/ascend/ModelLink)。
214
+ 链接:[https://gitee.com/ascend/MindSpeed-LLM](https://gitee.com/ascend/MindSpeed-LLM)。
@@ -10,47 +10,59 @@
10
10
 
11
11
  ### 1.1 通用配置
12
12
 
13
- | 参数 | 解释 | 是否必选 |
14
- | ----------------- |------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| -------- |
15
- | task | dump 的任务类型,str 类型。可选参数:<br/> "statistics":仅采集统计信息,默认值;<br/> "tensor":采集统计信息和完全复刻整网的真实数据;<br/> "run_ut":精度预检,仅 PyTorch 场景支持,采集数据时勿选;<br/> "overflow_check":溢出检测;<br/> "free_benchmark":无标杆比对;<br/> "grad_probe":梯度监控; <br/> "structure":仅采集模型结构以及调用栈信息,不采集具体数据。 <br/> 根据 task 参数取值的不同,可以配置不同场景参数,详见:<br/>[1.2 task 配置为 statistics](#12-task-配置为-statistics),<br/>[1.3 task 配置为 tensor](#13-task-配置为-tensor),<br/>[1.4 task 配置为 run_ut](#14-task-配置为-run_ut),<br/>[1.5 task 配置为 overflow_check](#15-task-配置为-overflow_check),<br/>[1.6 task 配置为 free_benchmark](#16-task-配置为-free_benchmark),<br/>[1.7 task 配置为 grad_probe](#17-task-配置为-grad_probe)。 <br/> **配置示例**:"task": "tensor"。 | 否 |
16
- | dump_path | 设置 dump 数据目录路径,str 类型。<br/> **配置示例**:"dump_path": "./dump_path"。 | 是 |
17
- | rank | 指定对某张卡上的数据进行采集,list[Union[int, str]] 类型,默认未配置(表示采集所有卡的数据),应配置元素为 ≥0 的整数或类似"4-6"的字符串,且须配置实际可用的 Rank ID。<br/> PyTorch 场景: Rank ID 从 0 开始计数,最大取值为所有节点可用卡总数-1,若所配置的值大于实际训练所运行的卡的 Rank ID,则 dump 数据为空,比如当前环境 Rank ID 为 0 到 7,实际训练运行 0 到 3 卡,此时若配置 Rank ID 为 4 或不存在的 10 等其他值,dump 数据为空。<br/> MindSpore 场景:所有节点的 Rank ID 均从 0 开始计数,最大取值为每个节点可用卡总数-1,config.json 配置一次 rank 参数对所有节点同时生效。<br/> 注意,单卡训练时,rank必须为[],即空列表,不能指定rank。<br/>**配置示例**:"rank": [1, "4-6"]。 | 否 |
18
- | step | 指定采集某个 step 的数据,list[Union[int, str]] 类型。默认未配置,表示采集所有 step 数据。采集特定 step 时,须指定为训练脚本中存在的 step,可逐个配置,也可以指定范围。<br/> **配置示例**:"step": [0, 1 , 2, "4-6"]。 | 否 |
19
- | level | dump 级别,str 类型,根据不同级别采集不同数据。可选参数:<br/>"L0":dump 模块级精度数据,仅 PyTorch 与 MindSpore 动态图场景支持,使用背景详见 [1.1.1 模块级精度数据 dump 说明](#111-模块级精度数据-dump-说明);<br/>"L1":dump API 级精度数据,默认值,仅 PyTorch MindSpore 动态图场景支持;<br/>"L2":dump kernel 级精度数据,PyTorch场景详细介绍见 [PyTorch 场景的 kernel dump 说明](./04.kernel_dump_PyTorch.md);MindSpore场景详细介绍见 [MindSpore 场景的 kernel dump 说明](./28.kernel_dump_MindSpore.md);<br/>"mix":dump module 模块级和 API 级精度数据,即"L0"+"L1",仅 PyTorch MindSpore 动态图场景支持。<br/>"debug":单点保存功能,细节详见[单点保存工具 README](./28.debugger_save_instruction.md)<br/> **配置示例**:"level": "L1"。 | 否 |
20
- | enable_dataloader | 自动控制开关,bool 类型,仅 PyTorch 场景支持。可选参数 true(开启)或 false(关闭),默认为 false。配置为 true 后自动识别 step 参数指定的迭代,并在该迭代执行完成后退出训练,此时 start、stop 和 step 函数可不配置,开启该开关要求训练脚本是通过 torch.utils.data.dataloader 方式加载数据。仅支持 PyTorch 单卡训练使用,分布式训练场景下存在数据 dump 不全问题。 **这个特性下个版本将被废弃** | 否 |
21
- | async_dump | 异步 dump 开关,bool 类型。可选参数 true(开启)或 false(关闭),默认为 false。配置为 true 后开启异步 dump,即采集的精度数据会在当前 step 训练结束后统一落盘,训练过程中工具不触发同步操作。由于使用该模式有**显存溢出**的风险,当 task 配置为 tensor 时,即真实数据的异步dump模式,必须配置 [list](#13-task-配置为-tensor) 参数,指定需要 dump 的 tensor 。该模式暂不支持复数类型 tensor <br/>的统计量计算。 | 否 |
13
+ | 参数 | 解释 | 是否必选 |
14
+ | ----------------- |-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| -------- |
15
+ | task | dump 的任务类型,str 类型。可选参数:<br/> "statistics":仅采集统计信息,默认值;<br/> "tensor":采集统计信息和完全复刻整网的真实数据;<br/> "run_ut":精度预检,仅 PyTorch 场景支持,采集数据时勿选;<br/> "overflow_check":溢出检测;<br/> "free_benchmark":无标杆比对,不支持 MSAdapter 场景;<br/> "grad_probe":梯度监控, 不支持 MSAdapter 场景; <br/> "structure":仅采集模型结构以及调用栈信息,不采集具体数据。 <br/> 根据 task 参数取值的不同,可以配置不同场景参数,详见:<br/>[1.2 task 配置为 statistics](#12-task-配置为-statistics),<br/>[1.3 task 配置为 tensor](#13-task-配置为-tensor),<br/>[1.4 task 配置为 run_ut](#14-task-配置为-run_ut),<br/>[1.5 task 配置为 overflow_check](#15-task-配置为-overflow_check),<br/>[1.6 task 配置为 free_benchmark](#16-task-配置为-free_benchmark),<br/>[1.7 task 配置为 grad_probe](#17-task-配置为-grad_probe),<br/>[1.8 task 配置为 structure](#18-task-配置为-structure)。 <br/> **配置示例**:"task": "tensor"。 | 否 |
16
+ | dump_path | 设置 dump 数据目录路径,str 类型。<br/> **配置示例**:"dump_path": "./dump_path"。 | 是 |
17
+ | rank | 指定对某张卡上的数据进行采集,list[Union[int, str]] 类型,默认未配置(表示采集所有卡的数据),应配置元素为 ≥0 的整数或类似"4-6"的字符串,且须配置实际可用的 Rank ID。<br/> PyTorch 场景: Rank ID 从 0 开始计数,最大取值为所有节点可用卡总数-1,若所配置的值大于实际训练所运行的卡的 Rank ID,则 dump 数据为空,比如当前环境 Rank ID 为 0 到 7,实际训练运行 0 到 3 卡,此时若配置 Rank ID 为 4 或不存在的 10 等其他值,dump 数据为空。<br/> MindSpore 场景:所有节点的 Rank ID 均从 0 开始计数,最大取值为每个节点可用卡总数-1,config.json 配置一次 rank 参数对所有节点同时生效。静态图 L0 级别 dump 暂不支持指定rank。<br/> 注意,单卡训练时,rank必须为[],即空列表,不能指定rank。<br/>**配置示例**:"rank": [1, "4-6"]。 | 否 |
18
+ | step | 指定采集某个 step 的数据,list[Union[int, str]] 类型。默认未配置,表示采集所有 step 数据。采集特定 step 时,须指定为训练脚本中存在的 step,可逐个配置,也可以指定范围。<br/> **配置示例**:"step": [0, 1 , 2, "4-6"]。 | 否 |
19
+ | level | dump 级别,str 类型,根据不同级别采集不同数据。可选参数:<br/>"L0":dump 模块级精度数据,使用背景详见 [1.1.1 模块级精度数据 dump 说明](#111-模块级精度数据-dump-说明)。<br/>"L1":dump API 级精度数据,默认值,仅 PyTorch、MSAdapter 以及 MindSpore 动态图场景支持。<br/>"L2":dump kernel 级精度数据,PyTorch 场景详细介绍见 [PyTorch 场景的 kernel dump 说明](./04.kernel_dump_PyTorch.md);MindSpore 动态图场景详细介绍见 [MindSpore 动态图场景的 kernel dump 说明](./28.kernel_dump_MindSpore.md);MindSpore 静态图场景详细介绍见《MindSpore 场景的数据采集》中的 ["**8.1 静态图场景**"](./06.data_dump_MindSpore.md#81-静态图场景)小节。<br/>"mix":dump module 模块级和 API 级精度数据,即"L0"+"L1",仅 PyTorch、MSAdapter 以及 MindSpore 动态图场景支持。<br/>"debug":单点保存功能,详见[单点保存工具](./28.debugger_save_instruction.md)。<br/> **配置示例**:"level": "L1"。 | 否 |
20
+ | enable_dataloader | 自动控制开关,bool 类型,仅 PyTorch 场景支持。可选参数 true(开启)或 false(关闭),默认为 false。配置为 true 后自动识别 step 参数指定的迭代,并在该迭代执行完成后退出训练,此时 start、stop 和 step 函数可不配置,开启该开关要求训练脚本是通过 torch.utils.data.dataloader 方式加载数据。仅支持 PyTorch 单卡训练使用,分布式训练场景下存在数据 dump 不全问题。 **这个特性下个版本将被废弃** | 否 |
21
+ | async_dump | 异步 dump 开关,bool 类型, 支持 task 为 tensor 或 statistic 模式, level 支持 L0、 L1、 mix、 debug 模式。可选参数 true(开启)或 false(关闭),默认为 false。配置为 true 后开启异步 dump,即采集的精度数据会在当前 step 训练结束后统一落盘,训练过程中工具不触发同步操作。由于使用该模式有**显存溢出**的风险,当 task 配置为 tensor 时,即真实数据的异步dump模式,必须配置 [list](#13-task-配置为-tensor) 参数,指定需要 dump 的 tensor 。该模式暂不支持复数类型 tensor 的统计量计算。<br/> | 否 |
22
22
 
23
23
  #### 1.1.1 模块级精度数据 dump 说明
24
24
 
25
- 仅 PyTorch 与 MindSpore 动态图场景支持。
26
-
27
25
  大模型场景下,通常不是简单的利用自动迁移能力实现从 GPU 到 NPU 的训练脚本迁移,而是会对 NPU 网络进行一系列针对性的适配,因此,常常会造成迁移后的 NPU 模型存在部分子结构不能与 GPU 原始模型完全对应。模型结构不一致导致 API 调用类型及数量不一致,若直接按照 API 粒度进行精度数据 dump 和比对,则无法完全比对所有的 API。
28
26
 
29
27
  本小节介绍的功能是对模型中的大粒度模块进行数据 dump,使其比对时,对于无法以 API 粒度比对的模块可以直接以模块粒度进行比对。
30
28
 
31
- 模块指的是继承 nn.Module 类(PyTorch场景)或 nn.Cell 类(MindSpore场景)的子类,通常情况下这类模块就是一个小模型,可以被视为一个整体,dump 数据时以模块为粒度进行 dump。
29
+ 模块指的是继承 nn.Module 类(PyTorch 与 MSAdapter 场景)或 nn.Cell 类(MindSpore 场景)的子类,通常情况下这类模块就是一个小模型,可以被视为一个整体,dump 数据时以模块为粒度进行 dump。
32
30
 
31
+ 特别地,在PyTorch场景中,为了规避BackwardHook函数的输出不能进行原地操作的框架限制,工具使用了`torch._C._autograd._set_creation_meta`接口对BackwardHook函数的输出张量进行属性重置,这可能会造成dump数据中缺少原地操作模块(nn.ReLU(inplace=True)及其上一个模块的反向数据。
33
32
 
34
33
 
35
34
  ### 1.2 task 配置为 statistics
36
35
 
37
36
  <table>
38
37
  <tr><th>参数</th><th>解释</th><th>是否必选</th></tr>
39
- <tr><td>scope</td><td>PyTorch MindSpore 动态图场景 dump 范围,list[str] 类型,默认未配置(list 也未配置时表示 dump 所有 API 的数据)。该参数可以在 [ ] 内配置两个模块名或 API 名,要求列表长度必须为2,需要配置按照工具命名格式的完整模块名或API名称,用于锁定区间,dump 该范围内的数据。<br/><b>配置示例</b>:
38
+ <tr><td>scope</td><td>PyTorch、MSAdapter 以及 MindSpore 动态图场景 dump 范围,list[str] 类型,默认未配置(list 也未配置时表示 dump 所有 API 的数据)。该参数可以在 [ ] 内配置两个模块名或 API 名,要求列表长度必须为2,需要配置按照工具命名格式的完整模块名或API名称,用于锁定区间,dump 该范围内的数据。<br/><b>配置示例</b>:
40
39
  "scope": ["Module.conv1.Conv2d.forward.0", "Module.fc2.Linear.forward.0"],
41
40
  或 "scope": ["Cell.conv1.Conv2d.forward.0", "Cell.fc2.Dense.backward.0"], 或"scope": ["Tensor.add.0.forward", "Functional.square.2.forward"]。与 level 参数取值相关,level 为 L0 级别时,可配置模块名;level 为 L1 级别时,可配置 API 名, level为 mix 级别时,可配置为模块名或API名。</td><td>否</td></tr>
42
41
  <tr><td rowspan="4">list</td><td>自定义采集的算子列表,list[str] 类型,默认未配置(scope 也未配置时表示 dump 所有 API 的数据),包含以下配置方法:</td><td rowspan="4">否</td></tr>
43
- <tr><td>PyTorch MindSpore 动态图场景配置具体的 API 全称,dump 该 API 数据。在 PyTorch 场景,如果 level 配置成 L2,该配置为必填项。<br/><b>配置示例</b>:"list": ["Tensor.permute.1.forward", "Tensor.transpose.2.forward", "Torch.relu.3.backward"]。<br/> PyTorch 和 MindSpore 动态图场景在level为 mix 级别时可以配置模块名称,dump该模块展开数据 (dump该模块从执行开始到执行结束期间的所有数据)。
42
+ <tr><td>PyTorch、MSAdapter 以及 MindSpore 动态图场景配置具体的 API 全称,dump 该 API 数据。在 PyTorch 场景,如果 level 配置成 L2,该配置为必填项。<br/><b>配置示例</b>:"list": ["Tensor.permute.1.forward", "Tensor.transpose.2.forward", "Torch.relu.3.backward"]。<br/> PyTorch 和 MindSpore 动态图场景在level为 mix 级别时可以配置模块名称,dump该模块展开数据 (dump该模块从执行开始到执行结束期间的所有数据)。
44
43
  <br/><b>配置示例</b>:"list": ["Module.module.language_model.encoder.layers.0.mlp.ParallelMlp.forward.0"], 或 "list": ["Cell.network_with_loss.language_model.encoder.layers.0.mlp.ParallelMlp.forward.0"]</td></tr>
45
- <tr><td>PyTorch MindSpore 动态图场景指定某一类 API,dump 某一类的 API 级别输入输出数据。<br/><b>配置示例</b>:"list": ["relu"]。 <br/> PyTorch MindSpore 动态图场景在level为 mix 级别时, 会dump名称中包含list中配置的字符串的API数据,还会将名称中包含list中配置的字符串的模块进行展开dump (dump该模块从执行开始到执行结束期间的所有数据)。</td></tr>
46
- <tr><td>MindSpore 静态图场景配置 kernel_name,可以是算子的名称列表,也可以指定算子类型("level": "L2"时不支持),还可以配置算子名称的正则表达式(当字符串符合“name-regex(xxx)”格式时,后台则会将其作为正则表达式。<br/><b>配置示例</b>:list: ["name-regex(Default/.+)"]<br/>可匹配算子名称以“Default/”开头的所有算子。</td></tr>
47
- <tr><td rowspan="3">data_mode</td><td>dump 数据过滤,str 类型。</td><td rowspan="3">否</td></tr>
48
- <tr><td>PyTorch MindSpore 动态图场景:支持"all"、"forward"、"backward"、"input"和"output",除"all"外,其余参数可以自由组合。默认为["all"],即保存所有 dump 的数据。<br/> <b>配置示例</b>:"data_mode": ["backward"] (仅保存反向数据)或 "data_mode": ["forward", "input"](仅保存前向的输入数据)。</td></tr>
49
- <tr><td>MindSpore 静态图场景:仅支持"all""input""output"参数,且各参数只能单独配置,不支持自由组合。<br/><b>配置示例</b>:"data_mode": ["all"]。</td></tr>
50
- <tr><td rowspan="2">summary_mode</td><td>控制 dump 文件输出的模式,str 类型,仅 PyTorch 与 MindSpore 动态图场景支持,可选参数:<br/> md5:dump 输出包含 CRC-32 值以及 API 统计信息的 dump.json 文件,用于验证数据的完整性;<br/> statistics:dump 仅输出包含 API 统计信息的 dump.json 文件,默认值。<br/><b>配置示例</b>:"summary_mode": "md5"。</td><td rowspan="2">否</td><tr><td>MindSpore静态图jit_level=O2场景L2级dump,支持上述配置的同时额外支持配置统计项列表,可选统计项为max、min、mean、l2norm,可从中任意选取组合搭配。其中mean、l2norm的结果为float数据格式。<br/><b>配置示例</b>:"summary_mode": ["max", "min"]。</td></tr></tr>
44
+ <tr><td>PyTorch、MSAdapter 以及 MindSpore 动态图场景指定某一类 API,dump 某一类的 API 级别输入输出数据。<br/><b>配置示例</b>:"list": ["relu"]。 <br/> PyTorch、MSAdapter 以及 MindSpore 动态图场景在level为 mix 级别时, 会dump名称中包含list中配置的字符串的API数据,还会将名称中包含list中配置的字符串的模块进行展开dump (dump该模块从执行开始到执行结束期间的所有数据)。</td></tr>
45
+ <tr><td>MindSpore 静态图场景配置 kernel_name,可以是算子的名称列表,也可以指定算子类型(jit_level=O2 时不支持),还可以配置算子名称的正则表达式(当字符串符合“name-regex(xxx)”格式时,后台则会将其作为正则表达式。<br/><b>配置示例</b>:list: ["name-regex(Default/.+)"]<br/>可匹配算子名称以“Default/”开头的所有算子。</td></tr>
46
+ <tr><td rowspan="2">tensor_list</td><td>自定义采集真实数据的算子列表,list[str] 类型,默认未配置。包含以下配置方法:</td><td rowspan="2">否</td></tr>
47
+ <tr><td>PyTorch、MSAdapter 以及 MindSpore 动态图场景指定某一类 API 或模块,即会 dump 这一类 API 或模块输入输出的统计量信息和完整的 tensor 数据。<br/><b>配置示例</b>:"tensor_list": ["relu"] <br/> PyTorch、MSAdapter 以及 MindSpore 动态图场景目前只支持level配置为 L0, L1 和 mix 级别。 <br/> MindSpore 静态图场景不支持。</td></tr>
48
+ <tr><td>device</td><td>控制统计值计算所用的设备,可选值["device", "host"],默认"host"。使用device计算会比host有性能加速,只支持min/max/avg/l2norm统计量。支持 MindSpore静态图 O0/O1 场景。</td><td>否</td></tr>
49
+ <tr><td>precision</td><td>控制统计值计算所用精度,可选值["high", "low"],默认值为"high"。选择"high"时,avg/l2norm统计量使用float32进行计算,会增加device内存占用,精度更高;为"low"时使用与原始数据相同的类型进行计算,device内存占用较少,但在处理较大数值时可能会导致统计量溢出。支持 MindSpore静态图 O0/O1 场景。</td><td>否</td></tr>
50
+ <tr><td rowspan="3">data_mode</td><td>dump 数据过滤,str 类型。</td><td rowspan="3">否</td></tr><tr><td>PyTorch、MSAdapter 以及 MindSpore 动态图场景:支持"all"、"forward"、"backward"、"input"和"output",除"all"外,其余参数可以自由组合。默认为["all"],即保存所有 dump 的数据。<br/> <b>配置示例</b>:"data_mode": ["backward"] (仅保存反向数据)或 "data_mode": ["forward", "input"](仅保存前向的输入数据)。</td></tr>
51
+ <tr><td>MindSpore 静态图场景:L0 级别 dump 仅支持"all"、"forward"和"backward"参数;L2 级别 dump 仅支持"all"、"input"和"output"参数。且各参数只能单独配置,不支持自由组合。<br/><b>配置示例</b>:"data_mode": ["all"]。</td></tr>
52
+ <tr><td rowspan="3">summary_mode</td><td>控制 dump 文件输出的模式,str 类型,支持 PyTorch、MSAdapter、MindSpore 动态图以及 MindSpore 静态图 L2 级别 jit_level=O2 场景和 L0 级别 jit_level=O0/O1 场景。</td><td rowspan="3">否</td></tr>
53
+ <tr><td>PyTorch、MSAdapter 以及 MindSpore 动态图场景:可选参数为<br/> md5:dump 输出包含 CRC-32 值以及 API 统计信息的 dump.json 文件,用于验证数据的完整性;<br/> statistics:dump 仅输出包含 API 统计信息的 dump.json 文件,默认值。<br/><b>配置示例</b>:"summary_mode": "md5"。</td></tr>
54
+ <tr><td>MindSpore 静态图 L2 级别 jit_level=O2 场景:支持上述配置的同时额外支持配置统计项列表,可选统计项为max、min、mean、l2norm,可从中任意选取组合搭配。其中mean、l2norm的结果为float数据格式。<br/>MindSpore 静态图 L0 级别 jit_level=O0/O1场景:仅支持上述配置中"statistics"字段和max、min、mean、l2norm中任意组合搭配的统计项列表。<br/><b>配置示例</b>:"summary_mode": ["max", "min"]。</td></tr>
51
55
  </table>
52
56
 
53
- **说明**:"summary_mode"配置为"md5"时,所使用的校验算法为CRC-32算法。
57
+ **说明**:
58
+
59
+
60
+ 1. "summary_mode" 配置为 "md5" 时,所使用的校验算法为 CRC-32 算法。
61
+
62
+ **示例**:
63
+ - [PyTorch场景](03.config_examples.md#11-task-配置为-statistics)
64
+ - [MindSpore静态图场景](03.config_examples.md#21-task-配置为-statistics)
65
+ - [MindSpore动态图场景](03.config_examples.md#31-task-配置为-statistics)
54
66
 
55
67
  ### 1.3 task 配置为 tensor
56
68
 
@@ -60,12 +72,21 @@
60
72
  | list | 与[ 1.2 task 配置为 statistics ](#12-task-配置为-statistics)中的解释相同。 | 否 |
61
73
  | data_mode | 与[ 1.2 task 配置为 statistics ](#12-task-配置为-statistics)中的解释相同 | 否 |
62
74
  | file_format | tensor 数据的保存格式,str 类型,仅支持 MindSpore 静态图场景的 L2 级别配置该字段,其他场景不生效。可选参数:<br/> "bin":dump 的 tensor 文件为二进制格式;<br/>"npy":dump 的 tensor 文件后缀为 .npy,默认值。 | 否 |
75
+ | summary_mode | 控制 dump 文件输出的模式,str 类型,支持 PyTorch、MSAdapter、MindSpore 动态图。可选参数:<br/> md5:dump 输出包含 CRC-32 值以及 API 统计信息的 dump.json 文件,用于验证数据的完整性;<br/> statistics:dump 仅输出包含 API 统计信息的 dump.json 文件,默认值。| 否 |
63
76
  | online_run_ut<sup>a</sup> | 在线预检模式开关,bool 类型,可选参数 true(开启)、false(关闭),默认未配置,表示关闭。配置为 true 表示开启在线预检。| 否 |
64
77
  | nfs_path<sup>a</sup> | 在线预检模式共享存储目录路径,str 类型,用于 GPU 设备和 NPU 设备间进行通信。仅在 online_run_ut 字段配置为 true 时生效,配置该参数后 host 和 port 不生效。 | 否 |
65
78
  | host<sup>a</sup> | 在线预检模式局域网场景信息接收端 IP,str 类型,用于 GPU 设备和 NPU 设备间进行通信,NPU 侧须配置为 GPU 侧的局域网 IP 地址。仅在 online_run_ut 字段配置为 true 时生效,局域网场景时,不能配置 nfs_path 参数,否则局域网场景不生效。 | 否 |
66
79
  | port<sup>a</sup> | 在线预检模式局域网场景信息接收端端口号,int 类型,用于 GPU 设备和 NPU 设备间进行通信,NPU 侧须配置为 GPU 侧的端口号。仅在 online_run_ut 字段配置为 true 时生效,局域网场景时,不能配置 nfs_path 参数,否则局域网场景不生效。| 否 |
67
80
 
68
- **a**:online_run_ut、nfs_path、host、port 等字段仅在线预检场景 NPU 机器生效。
81
+ **说明**:
82
+
83
+ 1. online_run_ut、nfs_path、host、port 等字段仅在线预检场景 NPU 机器生效。
84
+
85
+ **示例**:
86
+ - [PyTorch场景](03.config_examples.md#12-task-配置为-tensor)
87
+ - [MindSpore静态图场景](03.config_examples.md#22-task-配置为-tensor)
88
+ - [MindSpore动态图场景](03.config_examples.md#32-task-配置为-tensor)
89
+
69
90
 
70
91
  ### 1.4 task 配置为 run_ut
71
92
 
@@ -80,22 +101,46 @@
80
101
  | port<sup>b</sup> | 在线预检模式局域网场景信息接收端端口号,int 类型,用于 GPU 设备和 NPU 设备间进行通信,GPU 侧配置为本机可用端口。局域网场景时,不能配置 nfs_path 参数,否则局域网场景不生效。仅在 is_online 字段配置为 true 时生效。| 否 |
81
102
  | rank_list<sup>b</sup> | 指定在线预检的 Rank ID,默认值为 [0],list[int] 类型,应配置为大于等于 0 的整数,且须根据实际卡的 Rank ID 配置,若所配置的值大于实际训练所运行的卡的 Rank ID,则在线预检输出数据为空。GPU 和 NPU 须配置一致。仅在 is_online 字段配置为 true 时生效。 | 否 |
82
103
 
83
- **a**:white_list 和 black_list 同时配置时,二者配置的 API 名单若无交集,则白名单生效,若 API 名单存在交集,则白名单排除的部分以及交集的 API 不进行 dump。
104
+ **说明**:
105
+
106
+ 1. white_list 和 black_list 同时配置时,二者配置的 API 名单若无交集,则白名单生效,若 API 名单存在交集,则白名单排除的部分以及交集的 API 不进行 dump。
107
+
108
+ 2. is_online、nfs_path、host、port、rank_list 等字段仅在线预检场景 GPU 机器生效。
84
109
 
85
- **b**:is_online、nfs_path、host、port、rank_list 等字段仅在线预检场景 GPU 机器生效。
110
+ **示例**:
111
+ ```json
112
+ {
113
+ "task": "run_ut",
114
+ "dump_path": "/home/data_dump",
115
+ "rank": [],
116
+ "step": [],
117
+ "level": "L1",
118
+
119
+ "run_ut": {
120
+ "white_list": [],
121
+ "black_list": [],
122
+ "error_data_path": "./"
123
+ }
124
+ }
125
+ ```
86
126
 
87
127
  ### 1.5 task 配置为 overflow_check
88
128
 
89
- PyTorch MindSpore 动态图场景下,"level"须为"L0"或"L1";MindSpore 静态图场景下,"level"须为"L2",且模型编译优化等级(jit_level)须为"O2"。
129
+ PyTorch、MSAdapter 以及 MindSpore 动态图场景下,"level"须为"L0"或"L1";MindSpore 静态图场景下,"level"须为"L2",且模型编译优化等级(jit_level)须为"O2"。
90
130
 
91
131
  | 参数 | 解释 | 是否必选 |
92
132
  | ------------- | ---------------------- | -------- |
93
- | overflow_nums | 最大溢出次数,int 类型,默认为 1,仅 PyTorch MindSpore 动态图场景支持。表示第 N 次溢出后,不再进行溢出检测。过程中检测到溢出 API 对应的 输入输出 数据均 dump。<br/>**配置示例**:"overflow_nums": 3。配置为 -1 时,表示持续检测溢出直到训练结束。 | 否 |
94
- | check_mode | 溢出类型,str 类型,仅 MindSpore 场景支持,可选参数:<br/>"aicore":开启 AI Core 的溢出检测,不支持 MindSpore v2.3.0 以上版本;<br/>"atomic":开启 Atomic 的溢出检测,不支持 MindSpore v2.3.0 以上版本;<br/>"all":开启算子的溢出检测,默认值。<br/>**配置示例**:"check_mode": "all"。 | 否 |
133
+ | overflow_nums | 最大溢出次数,int 类型,默认为 1,仅 PyTorch、MSAdapter 以及 MindSpore 动态图场景支持。表示第 N 次溢出后,不再进行溢出检测。过程中检测到溢出 API 对应的 输入输出 数据均 dump。<br/>**配置示例**:"overflow_nums": 3。配置为 -1 时,表示持续检测溢出直到训练结束。 | 否 |
134
+ | check_mode | 溢出类型,str 类型,仅 MindSpore v2.3.0 以下版本的静态图场景支持,可选参数:<br/>"aicore":开启 AI Core 的溢出检测;<br/>"atomic":开启 Atomic 的溢出检测;<br/>"all":开启算子的溢出检测,默认值。<br/>**配置示例**:"check_mode": "all"。 | 否 |
135
+
136
+ **示例**:
137
+ - [PyTorch场景](03.config_examples.md#14-task-配置为-overflow_check)
138
+ - [MindSpore静态图场景](03.config_examples.md#23-task-配置为-overflow_check)
139
+ - [MindSpore动态图场景](03.config_examples.md#33-task-配置为-overflow_check)
95
140
 
96
141
  ### 1.6 task 配置为 free_benchmark
97
142
 
98
- 仅 PyTorch 场景与 MindSpore 动态图场景支持,且"level"为"L1"。
143
+ 仅 PyTorch MindSpore 动态图场景支持,且"level"为"L1"。
99
144
 
100
145
  - task 配置为 free_benchmark 时,开启**无标杆比对**,在 NPU 环境下通过对当前模型 API 的输入添加扰动因子,二次执行,将得到的输出与未添加扰动因子前的输出进行比对,从而**得出该模型中可能存在因迁移等变化导致精度降低的 API**。
101
146
 
@@ -119,6 +164,10 @@ PyTorch 与 MindSpore 动态图场景下,"level"须为"L0"或"L1";MindSpore
119
164
  <tr><td>max_sample</td><td>每个算子预热的采样次数的最大阈值(仅 PyTorch 场景支持),int 类型,默认值为 20。须配置 "if_preheat": "true"。</td><td>否</td></tr>
120
165
  </table>
121
166
 
167
+ **示例**:
168
+ - [PyTorch场景](03.config_examples.md#15-task-配置为-free_benchmark)
169
+ - [MindSpore动态图场景](03.config_examples.md#34-task-配置为-free_benchmark)
170
+
122
171
  #### 1.6.1 无标杆比对数据存盘格式
123
172
 
124
173
  无标杆比对在 dump_path 目录下输出结果文件 `free_benchmark.csv`,如下示例:
@@ -162,5 +211,15 @@ PyTorch 与 MindSpore 动态图场景下,"level"须为"L0"或"L1";MindSpore
162
211
  | L1 | ("param_name", "max", "min", "norm", "shape") | 是 |
163
212
  | L2 | ("param_name", *intervals, "=0", "max", "min", "norm", "shape") | 是 |
164
213
 
165
- intervals就是根据值分布bounds划分出的区间。
166
- MindSpore静态图模式下,L0级别中暂不支持"MD5"
214
+ **说明**:
215
+
216
+ 1. intervals就是根据值分布bounds划分出的区间。
217
+ 2. MindSpore静态图模式下,L0级别中暂不支持"MD5"
218
+
219
+ ### 1.8 task 配置为 structure
220
+ structure 模式仅采集模型结构,无其他特殊配置。
221
+
222
+ **示例**:
223
+ - [PyTorch场景](03.config_examples.md#16-task-配置为-structure)
224
+ - [MindSpore动态图场景](03.config_examples.md#35-task-配置为-structure)
225
+
@@ -17,6 +17,7 @@
17
17
  "statistics": {
18
18
  "scope": [],
19
19
  "list": [],
20
+ "tensor_list": [],
20
21
  "data_mode": ["all"],
21
22
  "summary_mode": "statistics"
22
23
  }
@@ -6,7 +6,7 @@
6
6
 
7
7
  ## 1 kernel dump 配置示例
8
8
 
9
- 使用 kernel dump 时,list 必须要填一个 API 名称,kernel dump 目前每个 step 只支持采集一个 API 的数据。
9
+ 使用 kernel dump 时,task 需要配置为 tensor , list 必须要填一个 API 名称,kernel dump 目前每个 step 只支持采集一个 API 的数据。
10
10
  API 名称填写参考 L1 dump 结果文件 dump.json 中的API名称,命名格式为:`{api_type}.{api_name}.{API调用次数}.{forward/backward}`。
11
11
 
12
12
  ```json