mindstudio-probe 1.2.2__py3-none-any.whl → 1.3.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {mindstudio_probe-1.2.2.dist-info → mindstudio_probe-1.3.0.dist-info}/METADATA +3 -3
- {mindstudio_probe-1.2.2.dist-info → mindstudio_probe-1.3.0.dist-info}/RECORD +143 -144
- msprobe/README.md +25 -20
- msprobe/core/common/const.py +110 -66
- msprobe/core/common/decorator.py +50 -0
- msprobe/core/common/exceptions.py +3 -1
- msprobe/core/common/file_utils.py +25 -2
- msprobe/core/common/utils.py +30 -34
- msprobe/core/compare/acc_compare.py +43 -74
- msprobe/core/compare/check.py +2 -6
- msprobe/core/compare/highlight.py +2 -0
- msprobe/core/compare/layer_mapping/layer_mapping.py +2 -1
- msprobe/core/compare/merge_result/merge_result.py +8 -2
- msprobe/core/compare/multiprocessing_compute.py +19 -12
- msprobe/core/compare/npy_compare.py +30 -12
- msprobe/core/compare/utils.py +20 -10
- msprobe/core/data_dump/api_registry.py +176 -0
- msprobe/core/data_dump/data_processor/base.py +2 -2
- msprobe/core/data_dump/data_processor/mindspore_processor.py +19 -32
- msprobe/core/data_dump/data_processor/pytorch_processor.py +45 -15
- msprobe/core/data_dump/json_writer.py +38 -35
- msprobe/core/grad_probe/constant.py +1 -0
- msprobe/core/grad_probe/grad_compare.py +1 -1
- msprobe/core/overflow_check/abnormal_scene.py +2 -0
- msprobe/docs/01.installation.md +2 -1
- msprobe/docs/02.config_introduction.md +17 -15
- msprobe/docs/05.data_dump_PyTorch.md +70 -2
- msprobe/docs/06.data_dump_MindSpore.md +33 -12
- msprobe/docs/07.accuracy_checker_PyTorch.md +11 -1
- msprobe/docs/08.accuracy_checker_online_PyTorch.md +3 -1
- msprobe/docs/09.accuracy_checker_MindSpore.md +1 -1
- msprobe/docs/10.accuracy_compare_PyTorch.md +59 -33
- msprobe/docs/11.accuracy_compare_MindSpore.md +40 -16
- msprobe/docs/12.overflow_check_PyTorch.md +3 -1
- msprobe/docs/13.overflow_check_MindSpore.md +4 -2
- msprobe/docs/14.data_parse_PyTorch.md +1 -7
- msprobe/docs/18.online_dispatch.md +1 -1
- msprobe/docs/19.monitor.md +124 -62
- msprobe/docs/21.visualization_PyTorch.md +32 -13
- msprobe/docs/22.visualization_MindSpore.md +32 -13
- msprobe/docs/23.generate_operator_PyTorch.md +9 -9
- msprobe/docs/27.dump_json_instruction.md +278 -8
- msprobe/docs/28.kernel_dump_MindSpore.md +1 -1
- msprobe/docs/29.data_dump_MSAdapter.md +229 -0
- msprobe/docs/30.overflow_check_MSAdapter.md +31 -0
- msprobe/docs/FAQ.md +3 -11
- msprobe/docs/img/compare_result.png +0 -0
- msprobe/docs/img/merge_result.png +0 -0
- msprobe/docs/img/visualization/vis_browser_1.png +0 -0
- msprobe/docs/img/visualization/vis_match_info.png +0 -0
- msprobe/docs/img/visualization/vis_precision_info.png +0 -0
- msprobe/docs/img/visualization/vis_search_info.png +0 -0
- msprobe/docs/img/visualization/vis_show_info.png +0 -0
- msprobe/docs/img/visualization/vis_showcase.png +0 -0
- msprobe/docs/img/visualization/vis_unmatch_info.png +0 -0
- msprobe/mindspore/__init__.py +4 -3
- msprobe/mindspore/api_accuracy_checker/api_accuracy_checker.py +6 -1
- msprobe/mindspore/api_accuracy_checker/api_runner.py +19 -9
- msprobe/mindspore/api_accuracy_checker/base_compare_algorithm.py +2 -1
- msprobe/mindspore/api_accuracy_checker/bench_functions/flash_attention_score.py +602 -0
- msprobe/mindspore/api_accuracy_checker/bench_functions/fusion_operator.py +41 -0
- msprobe/mindspore/api_accuracy_checker/data_manager.py +2 -1
- msprobe/mindspore/api_accuracy_checker/multi_api_accuracy_checker.py +2 -1
- msprobe/mindspore/api_accuracy_checker/torch_mindtorch_importer.py +2 -1
- msprobe/mindspore/common/const.py +61 -0
- msprobe/mindspore/common/utils.py +31 -19
- msprobe/mindspore/compare/ms_compare.py +27 -19
- msprobe/mindspore/compare/ms_graph_compare.py +6 -5
- msprobe/mindspore/debugger/debugger_config.py +6 -4
- msprobe/mindspore/debugger/precision_debugger.py +22 -10
- msprobe/mindspore/dump/dump_tool_factory.py +5 -3
- msprobe/mindspore/dump/hook_cell/api_register.py +142 -0
- msprobe/mindspore/dump/hook_cell/hook_cell.py +9 -10
- msprobe/mindspore/dump/hook_cell/support_wrap_ops.yaml +24 -26
- msprobe/mindspore/dump/jit_dump.py +14 -9
- msprobe/mindspore/dym_loader/hook_dynamic_loader.cc +22 -56
- msprobe/mindspore/dym_loader/hook_dynamic_loader.h +0 -1
- msprobe/mindspore/free_benchmark/api_pynative_self_check.py +10 -6
- msprobe/mindspore/free_benchmark/perturbation/perturbation_factory.py +4 -2
- msprobe/mindspore/free_benchmark/self_check_tool_factory.py +6 -3
- msprobe/mindspore/grad_probe/global_context.py +2 -0
- msprobe/mindspore/grad_probe/grad_analyzer.py +2 -1
- msprobe/mindspore/grad_probe/hook.py +2 -4
- msprobe/mindspore/monitor/distributed/wrap_distributed.py +1 -1
- msprobe/mindspore/monitor/module_hook.py +354 -302
- msprobe/mindspore/monitor/utils.py +46 -4
- msprobe/mindspore/overflow_check/overflow_check_tool_factory.py +5 -3
- msprobe/mindspore/service.py +23 -17
- msprobe/pytorch/api_accuracy_checker/compare/api_precision_compare.py +3 -6
- msprobe/pytorch/api_accuracy_checker/generate_op_script/op_generator.py +11 -6
- msprobe/pytorch/api_accuracy_checker/generate_op_script/operator_replication.template +2 -2
- msprobe/pytorch/api_accuracy_checker/run_ut/multi_run_ut.py +4 -5
- msprobe/pytorch/api_accuracy_checker/run_ut/run_overflow_check.py +5 -5
- msprobe/pytorch/api_accuracy_checker/run_ut/run_ut.py +25 -6
- msprobe/pytorch/api_accuracy_checker/run_ut/run_ut_utils.py +28 -19
- msprobe/pytorch/api_accuracy_checker/tensor_transport_layer/attl.py +3 -1
- msprobe/pytorch/bench_functions/moe_gating_top_k_softmax.py +6 -0
- msprobe/pytorch/common/utils.py +29 -7
- msprobe/pytorch/debugger/precision_debugger.py +10 -1
- msprobe/pytorch/dump/module_dump/module_dump.py +4 -3
- msprobe/pytorch/dump/module_dump/module_processer.py +12 -6
- msprobe/pytorch/free_benchmark/common/utils.py +1 -1
- msprobe/pytorch/free_benchmark/compare/single_benchmark.py +1 -1
- msprobe/pytorch/free_benchmark/perturbed_layers/npu/add_noise.py +3 -3
- msprobe/pytorch/free_benchmark/perturbed_layers/npu/bit_noise.py +3 -3
- msprobe/pytorch/free_benchmark/perturbed_layers/npu/change_value.py +1 -1
- msprobe/pytorch/free_benchmark/perturbed_layers/npu/improve_precision.py +1 -1
- msprobe/pytorch/free_benchmark/result_handlers/check_handler.py +1 -1
- msprobe/pytorch/function_factory.py +1 -1
- msprobe/pytorch/grad_probe/grad_monitor.py +2 -2
- msprobe/pytorch/hook_module/api_register.py +131 -0
- msprobe/pytorch/hook_module/hook_module.py +19 -14
- msprobe/pytorch/hook_module/register_optimizer_hook.py +2 -1
- msprobe/pytorch/hook_module/support_wrap_ops.yaml +172 -75
- msprobe/pytorch/monitor/csv2tb.py +8 -2
- msprobe/pytorch/monitor/distributed/wrap_distributed.py +8 -2
- msprobe/pytorch/monitor/module_hook.py +131 -105
- msprobe/pytorch/monitor/module_metric.py +3 -0
- msprobe/pytorch/monitor/optimizer_collect.py +55 -4
- msprobe/pytorch/monitor/unittest/test_monitor.py +1 -1
- msprobe/pytorch/monitor/utils.py +68 -1
- msprobe/pytorch/online_dispatch/compare.py +0 -2
- msprobe/pytorch/online_dispatch/dispatch.py +9 -0
- msprobe/pytorch/online_dispatch/dump_compare.py +3 -0
- msprobe/pytorch/online_dispatch/utils.py +3 -0
- msprobe/pytorch/parse_tool/lib/interactive_cli.py +1 -6
- msprobe/pytorch/parse_tool/lib/utils.py +2 -1
- msprobe/pytorch/pt_config.py +11 -7
- msprobe/pytorch/service.py +11 -8
- msprobe/visualization/builder/graph_builder.py +44 -5
- msprobe/visualization/builder/msprobe_adapter.py +0 -1
- msprobe/visualization/compare/graph_comparator.py +42 -38
- msprobe/visualization/compare/mode_adapter.py +0 -19
- msprobe/visualization/graph/base_node.py +8 -1
- msprobe/visualization/graph/distributed_analyzer.py +1 -10
- msprobe/visualization/graph/graph.py +0 -11
- msprobe/visualization/graph/node_op.py +1 -2
- msprobe/visualization/graph_service.py +1 -1
- msprobe/visualization/utils.py +2 -33
- msprobe/mindspore/dump/hook_cell/api_registry.py +0 -207
- msprobe/mindspore/dump/hook_cell/wrap_api.py +0 -212
- msprobe/pytorch/hook_module/api_registry.py +0 -166
- msprobe/pytorch/hook_module/wrap_distributed.py +0 -79
- msprobe/pytorch/hook_module/wrap_functional.py +0 -66
- msprobe/pytorch/hook_module/wrap_npu_custom.py +0 -85
- msprobe/pytorch/hook_module/wrap_tensor.py +0 -69
- msprobe/pytorch/hook_module/wrap_torch.py +0 -84
- msprobe/pytorch/hook_module/wrap_vf.py +0 -60
- msprobe/pytorch/parse.py +0 -19
- {mindstudio_probe-1.2.2.dist-info → mindstudio_probe-1.3.0.dist-info}/LICENSE +0 -0
- {mindstudio_probe-1.2.2.dist-info → mindstudio_probe-1.3.0.dist-info}/WHEEL +0 -0
- {mindstudio_probe-1.2.2.dist-info → mindstudio_probe-1.3.0.dist-info}/entry_points.txt +0 -0
- {mindstudio_probe-1.2.2.dist-info → mindstudio_probe-1.3.0.dist-info}/top_level.txt +0 -0
|
@@ -1,166 +0,0 @@
|
|
|
1
|
-
# Copyright (c) 2024-2024, Huawei Technologies Co., Ltd.
|
|
2
|
-
# All rights reserved.
|
|
3
|
-
#
|
|
4
|
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
-
# you may not use this file except in compliance with the License.
|
|
6
|
-
# You may obtain a copy of the License at
|
|
7
|
-
#
|
|
8
|
-
# http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
-
#
|
|
10
|
-
# Unless required by applicable law or agreed to in writing, software
|
|
11
|
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
-
# See the License for the specific language governing permissions and
|
|
14
|
-
# limitations under the License.
|
|
15
|
-
|
|
16
|
-
import torch
|
|
17
|
-
import torch.distributed as dist
|
|
18
|
-
|
|
19
|
-
from msprobe.pytorch.hook_module import wrap_torch, wrap_functional, wrap_tensor, wrap_vf, wrap_distributed, wrap_aten
|
|
20
|
-
from msprobe.pytorch.hook_module.wrap_aten import get_aten_ops
|
|
21
|
-
from msprobe.pytorch.hook_module.wrap_distributed import get_distributed_ops
|
|
22
|
-
from msprobe.pytorch.hook_module.wrap_functional import get_functional_ops
|
|
23
|
-
from msprobe.pytorch.hook_module.wrap_tensor import get_tensor_ops
|
|
24
|
-
from msprobe.pytorch.hook_module.wrap_torch import get_torch_ops
|
|
25
|
-
from msprobe.pytorch.hook_module.wrap_vf import get_vf_ops
|
|
26
|
-
from msprobe.pytorch.common.utils import torch_without_guard_version, npu_distributed_api, is_gpu
|
|
27
|
-
from msprobe.core.common.const import Const
|
|
28
|
-
|
|
29
|
-
torch_version_above_2 = torch.__version__.split('+')[0] > '2.0'
|
|
30
|
-
|
|
31
|
-
if not is_gpu:
|
|
32
|
-
import torch_npu
|
|
33
|
-
from . import wrap_npu_custom
|
|
34
|
-
from .wrap_npu_custom import get_npu_ops
|
|
35
|
-
|
|
36
|
-
|
|
37
|
-
class ApiRegistry:
|
|
38
|
-
def __init__(self):
|
|
39
|
-
self.tensor_ori_attr = {}
|
|
40
|
-
self.torch_ori_attr = {}
|
|
41
|
-
self.functional_ori_attr = {}
|
|
42
|
-
self.distributed_ori_attr = {}
|
|
43
|
-
self.npu_distributed_ori_attr = {}
|
|
44
|
-
self.vf_ori_attr = {}
|
|
45
|
-
self.aten_ori_attr = {}
|
|
46
|
-
self.torch_npu_ori_attr = {}
|
|
47
|
-
|
|
48
|
-
self.tensor_hook_attr = {}
|
|
49
|
-
self.torch_hook_attr = {}
|
|
50
|
-
self.functional_hook_attr = {}
|
|
51
|
-
self.distributed_hook_attr = {}
|
|
52
|
-
self.npu_distributed_hook_attr = {}
|
|
53
|
-
self.vf_hook_attr = {}
|
|
54
|
-
self.aten_hook_attr = {}
|
|
55
|
-
self.torch_npu_hook_attr = {}
|
|
56
|
-
|
|
57
|
-
@staticmethod
|
|
58
|
-
def store_ori_attr(ori_api_group, api_list, api_ori_attr):
|
|
59
|
-
for api in api_list:
|
|
60
|
-
if '.' in api:
|
|
61
|
-
sub_module_name, sub_op = api.rsplit('.', 1)
|
|
62
|
-
sub_module = getattr(ori_api_group, sub_module_name)
|
|
63
|
-
api_ori_attr[api] = getattr(sub_module, sub_op)
|
|
64
|
-
else:
|
|
65
|
-
api_ori_attr[api] = getattr(ori_api_group, api)
|
|
66
|
-
|
|
67
|
-
@staticmethod
|
|
68
|
-
def set_api_attr(api_group, attr_dict):
|
|
69
|
-
for api, api_attr in attr_dict.items():
|
|
70
|
-
if '.' in api:
|
|
71
|
-
sub_module_name, sub_op = api.rsplit('.', 1)
|
|
72
|
-
sub_module = getattr(api_group, sub_module_name, None)
|
|
73
|
-
if sub_module is not None:
|
|
74
|
-
setattr(sub_module, sub_op, api_attr)
|
|
75
|
-
else:
|
|
76
|
-
setattr(api_group, api, api_attr)
|
|
77
|
-
|
|
78
|
-
def api_modularity(self):
|
|
79
|
-
self.set_api_attr(torch.Tensor, self.tensor_hook_attr)
|
|
80
|
-
self.set_api_attr(torch, self.torch_hook_attr)
|
|
81
|
-
self.set_api_attr(torch.nn.functional, self.functional_hook_attr)
|
|
82
|
-
self.set_api_attr(dist, self.distributed_hook_attr)
|
|
83
|
-
self.set_api_attr(dist.distributed_c10d, self.distributed_hook_attr)
|
|
84
|
-
if not is_gpu and not torch_without_guard_version:
|
|
85
|
-
self.set_api_attr(torch_npu.distributed, self.npu_distributed_hook_attr)
|
|
86
|
-
self.set_api_attr(torch_npu.distributed.distributed_c10d, self.npu_distributed_hook_attr)
|
|
87
|
-
if torch_version_above_2:
|
|
88
|
-
self.set_api_attr(torch.ops.aten, self.aten_hook_attr)
|
|
89
|
-
self.set_api_attr(torch._VF, self.vf_hook_attr)
|
|
90
|
-
if not is_gpu:
|
|
91
|
-
self.set_api_attr(torch_npu, self.torch_npu_hook_attr)
|
|
92
|
-
|
|
93
|
-
def api_originality(self):
|
|
94
|
-
self.set_api_attr(torch.Tensor, self.tensor_ori_attr)
|
|
95
|
-
self.set_api_attr(torch, self.torch_ori_attr)
|
|
96
|
-
self.set_api_attr(torch.nn.functional, self.functional_ori_attr)
|
|
97
|
-
self.set_api_attr(dist, self.distributed_ori_attr)
|
|
98
|
-
self.set_api_attr(dist.distributed_c10d, self.distributed_ori_attr)
|
|
99
|
-
if not is_gpu and not torch_without_guard_version:
|
|
100
|
-
self.set_api_attr(torch_npu.distributed, self.npu_distributed_ori_attr)
|
|
101
|
-
self.set_api_attr(torch_npu.distributed.distributed_c10d, self.npu_distributed_ori_attr)
|
|
102
|
-
if torch_version_above_2:
|
|
103
|
-
self.set_api_attr(torch.ops.aten, self.aten_ori_attr)
|
|
104
|
-
self.set_api_attr(torch._VF, self.vf_ori_attr)
|
|
105
|
-
if not is_gpu:
|
|
106
|
-
self.set_api_attr(torch_npu, self.torch_npu_ori_attr)
|
|
107
|
-
|
|
108
|
-
def initialize_hook(self, hook, online_run_ut=False):
|
|
109
|
-
"""
|
|
110
|
-
initialize_hook
|
|
111
|
-
Args:
|
|
112
|
-
hook (_type_): initialize_hook
|
|
113
|
-
online_run_ut (bool): default False, whether online run_ut or not.
|
|
114
|
-
If online_run_ut is True, the hook will not wrap the aten ops.
|
|
115
|
-
"""
|
|
116
|
-
self.store_ori_attr(torch.Tensor, get_tensor_ops(), self.tensor_ori_attr)
|
|
117
|
-
wrap_tensor.wrap_tensor_ops_and_bind(hook)
|
|
118
|
-
for attr_name in dir(wrap_tensor.HOOKTensor):
|
|
119
|
-
if attr_name.startswith(Const.ATTR_NAME_PREFIX):
|
|
120
|
-
self.tensor_hook_attr[attr_name[5:]] = getattr(wrap_tensor.HOOKTensor, attr_name)
|
|
121
|
-
|
|
122
|
-
self.store_ori_attr(torch, get_torch_ops(), self.torch_ori_attr)
|
|
123
|
-
wrap_torch.wrap_torch_ops_and_bind(hook)
|
|
124
|
-
for attr_name in dir(wrap_torch.HOOKTorchOP):
|
|
125
|
-
if attr_name.startswith(Const.ATTR_NAME_PREFIX):
|
|
126
|
-
self.torch_hook_attr[attr_name[5:]] = getattr(wrap_torch.HOOKTorchOP, attr_name)
|
|
127
|
-
|
|
128
|
-
self.store_ori_attr(torch.nn.functional, get_functional_ops(), self.functional_ori_attr)
|
|
129
|
-
wrap_functional.wrap_functional_ops_and_bind(hook)
|
|
130
|
-
for attr_name in dir(wrap_functional.HOOKFunctionalOP):
|
|
131
|
-
if attr_name.startswith(Const.ATTR_NAME_PREFIX):
|
|
132
|
-
self.functional_hook_attr[attr_name[5:]] = getattr(wrap_functional.HOOKFunctionalOP, attr_name)
|
|
133
|
-
|
|
134
|
-
self.store_ori_attr(dist, get_distributed_ops(), self.distributed_ori_attr)
|
|
135
|
-
wrap_distributed.wrap_distributed_ops_and_bind(hook)
|
|
136
|
-
if not is_gpu and not torch_without_guard_version:
|
|
137
|
-
self.store_ori_attr(torch_npu.distributed, npu_distributed_api, self.npu_distributed_ori_attr)
|
|
138
|
-
for attr_name in dir(wrap_distributed.HOOKDistributedOP):
|
|
139
|
-
if attr_name.startswith(Const.ATTR_NAME_PREFIX):
|
|
140
|
-
self.distributed_hook_attr[attr_name[5:]] = getattr(wrap_distributed.HOOKDistributedOP, attr_name)
|
|
141
|
-
if not is_gpu and not torch_without_guard_version and attr_name[5:] in npu_distributed_api:
|
|
142
|
-
self.npu_distributed_hook_attr[attr_name[5:]] = getattr(wrap_distributed.HOOKDistributedOP,
|
|
143
|
-
attr_name)
|
|
144
|
-
|
|
145
|
-
if torch_version_above_2 and not online_run_ut:
|
|
146
|
-
self.store_ori_attr(torch.ops.aten, get_aten_ops(), self.aten_ori_attr)
|
|
147
|
-
wrap_aten.wrap_aten_ops_and_bind(hook)
|
|
148
|
-
for attr_name in dir(wrap_aten.HOOKAtenOP):
|
|
149
|
-
if attr_name.startswith(Const.ATTR_NAME_PREFIX):
|
|
150
|
-
self.aten_hook_attr[attr_name[5:]] = getattr(wrap_aten.HOOKAtenOP, attr_name)
|
|
151
|
-
|
|
152
|
-
self.store_ori_attr(torch._VF, get_vf_ops(), self.vf_ori_attr)
|
|
153
|
-
wrap_vf.wrap_vf_ops_and_bind(hook)
|
|
154
|
-
for attr_name in dir(wrap_vf.HOOKVfOP):
|
|
155
|
-
if attr_name.startswith(Const.ATTR_NAME_PREFIX):
|
|
156
|
-
self.vf_hook_attr[attr_name[5:]] = getattr(wrap_vf.HOOKVfOP, attr_name)
|
|
157
|
-
|
|
158
|
-
if not is_gpu:
|
|
159
|
-
self.store_ori_attr(torch_npu, get_npu_ops(), self.torch_npu_ori_attr)
|
|
160
|
-
wrap_npu_custom.wrap_npu_ops_and_bind(hook)
|
|
161
|
-
for attr_name in dir(wrap_npu_custom.HOOKNpuOP):
|
|
162
|
-
if attr_name.startswith(Const.ATTR_NAME_PREFIX):
|
|
163
|
-
self.torch_npu_hook_attr[attr_name[5:]] = getattr(wrap_npu_custom.HOOKNpuOP, attr_name)
|
|
164
|
-
|
|
165
|
-
|
|
166
|
-
api_register = ApiRegistry()
|
|
@@ -1,79 +0,0 @@
|
|
|
1
|
-
# Copyright (c) 2024-2024, Huawei Technologies Co., Ltd.
|
|
2
|
-
# All rights reserved.
|
|
3
|
-
#
|
|
4
|
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
-
# you may not use this file except in compliance with the License.
|
|
6
|
-
# You may obtain a copy of the License at
|
|
7
|
-
#
|
|
8
|
-
# http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
-
#
|
|
10
|
-
# Unless required by applicable law or agreed to in writing, software
|
|
11
|
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
-
# See the License for the specific language governing permissions and
|
|
14
|
-
# limitations under the License.
|
|
15
|
-
|
|
16
|
-
import os
|
|
17
|
-
from functools import wraps
|
|
18
|
-
import torch.distributed as dist
|
|
19
|
-
|
|
20
|
-
from msprobe.pytorch.hook_module.hook_module import HOOKModule
|
|
21
|
-
from msprobe.pytorch.common.utils import torch_device_guard
|
|
22
|
-
from msprobe.core.common.const import Const
|
|
23
|
-
from msprobe.core.common.file_utils import load_yaml
|
|
24
|
-
|
|
25
|
-
|
|
26
|
-
cur_path = os.path.dirname(os.path.realpath(__file__))
|
|
27
|
-
yaml_path = os.path.join(cur_path, "support_wrap_ops.yaml")
|
|
28
|
-
|
|
29
|
-
|
|
30
|
-
distributed_func = {}
|
|
31
|
-
for f in dir(dist):
|
|
32
|
-
distributed_func[f] = getattr(dist, f)
|
|
33
|
-
|
|
34
|
-
|
|
35
|
-
def get_distributed_ops():
|
|
36
|
-
_all_distributed_ops = dir(dist)
|
|
37
|
-
yaml_data = load_yaml(yaml_path)
|
|
38
|
-
wrap_distributed_ops = yaml_data.get('distributed')
|
|
39
|
-
return set(wrap_distributed_ops) & set(_all_distributed_ops)
|
|
40
|
-
|
|
41
|
-
|
|
42
|
-
class HOOKDistributedOP(object):
|
|
43
|
-
pass
|
|
44
|
-
|
|
45
|
-
|
|
46
|
-
class DistributedOPTemplate(HOOKModule):
|
|
47
|
-
def __init__(self, op_name, build_hook):
|
|
48
|
-
self.op_name_ = op_name
|
|
49
|
-
self.prefix_op_name_ = "Distributed" + Const.SEP + str(op_name) + Const.SEP
|
|
50
|
-
super().__init__(build_hook)
|
|
51
|
-
if not self.stop_hook:
|
|
52
|
-
self.op_is_distributed = True
|
|
53
|
-
|
|
54
|
-
@torch_device_guard
|
|
55
|
-
def forward(self, *args, **kwargs):
|
|
56
|
-
handle = distributed_func.get(self.op_name_)(*args, **kwargs)
|
|
57
|
-
if kwargs.get("async_op") or self.op_name_ in ["isend", "irecv"]:
|
|
58
|
-
if handle and hasattr(handle, 'wait'):
|
|
59
|
-
handle.wait()
|
|
60
|
-
if self.op_name_ == "batch_isend_irecv":
|
|
61
|
-
if isinstance(handle, list):
|
|
62
|
-
for req in handle:
|
|
63
|
-
req.wait()
|
|
64
|
-
return handle
|
|
65
|
-
|
|
66
|
-
|
|
67
|
-
def wrap_distributed_op(op_name, hook):
|
|
68
|
-
@wraps(DistributedOPTemplate)
|
|
69
|
-
def distributed_op_template(*args, **kwargs):
|
|
70
|
-
return DistributedOPTemplate(op_name, hook)(*args, **kwargs)
|
|
71
|
-
|
|
72
|
-
distributed_op_template.__name__ = op_name
|
|
73
|
-
return distributed_op_template
|
|
74
|
-
|
|
75
|
-
|
|
76
|
-
def wrap_distributed_ops_and_bind(hook):
|
|
77
|
-
_distributed_ops = get_distributed_ops()
|
|
78
|
-
for op_name in _distributed_ops:
|
|
79
|
-
setattr(HOOKDistributedOP, "wrap_" + str(op_name), wrap_distributed_op(op_name, hook))
|
|
@@ -1,66 +0,0 @@
|
|
|
1
|
-
# Copyright (c) 2024-2024, Huawei Technologies Co., Ltd.
|
|
2
|
-
# All rights reserved.
|
|
3
|
-
#
|
|
4
|
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
-
# you may not use this file except in compliance with the License.
|
|
6
|
-
# You may obtain a copy of the License at
|
|
7
|
-
#
|
|
8
|
-
# http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
-
#
|
|
10
|
-
# Unless required by applicable law or agreed to in writing, software
|
|
11
|
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
-
# See the License for the specific language governing permissions and
|
|
14
|
-
# limitations under the License.
|
|
15
|
-
|
|
16
|
-
import os
|
|
17
|
-
import torch
|
|
18
|
-
|
|
19
|
-
from msprobe.pytorch.hook_module.hook_module import HOOKModule
|
|
20
|
-
from msprobe.pytorch.common.utils import torch_device_guard
|
|
21
|
-
from msprobe.core.common.const import Const
|
|
22
|
-
from msprobe.pytorch.common.log import logger
|
|
23
|
-
from msprobe.core.common.file_utils import load_yaml
|
|
24
|
-
|
|
25
|
-
|
|
26
|
-
cur_path = os.path.dirname(os.path.realpath(__file__))
|
|
27
|
-
yaml_path = os.path.join(cur_path, "support_wrap_ops.yaml")
|
|
28
|
-
|
|
29
|
-
|
|
30
|
-
def get_functional_ops():
|
|
31
|
-
yaml_data = load_yaml(yaml_path)
|
|
32
|
-
wrap_functional_ops = yaml_data.get('functional')
|
|
33
|
-
_all_functional_ops = dir(torch.nn.functional)
|
|
34
|
-
return set(wrap_functional_ops) & set(_all_functional_ops)
|
|
35
|
-
|
|
36
|
-
|
|
37
|
-
TorchFunctions = {func: getattr(torch.nn.functional, func) for func in get_functional_ops()}
|
|
38
|
-
|
|
39
|
-
|
|
40
|
-
class HOOKFunctionalOP(object):
|
|
41
|
-
pass
|
|
42
|
-
|
|
43
|
-
|
|
44
|
-
class FunctionalOPTemplate(HOOKModule):
|
|
45
|
-
def __init__(self, op_name, hook, need_hook=True):
|
|
46
|
-
self.op_name_ = op_name
|
|
47
|
-
self.prefix_op_name_ = "Functional" + Const.SEP + str(op_name) + Const.SEP
|
|
48
|
-
if need_hook:
|
|
49
|
-
super().__init__(hook)
|
|
50
|
-
|
|
51
|
-
@torch_device_guard
|
|
52
|
-
def forward(self, *args, **kwargs):
|
|
53
|
-
return TorchFunctions[str(self.op_name_)](*args, **kwargs)
|
|
54
|
-
|
|
55
|
-
|
|
56
|
-
def wrap_functional_op(op_name, hook):
|
|
57
|
-
def functional_op_template(*args, **kwargs):
|
|
58
|
-
return FunctionalOPTemplate(op_name, hook)(*args, **kwargs)
|
|
59
|
-
|
|
60
|
-
return functional_op_template
|
|
61
|
-
|
|
62
|
-
|
|
63
|
-
def wrap_functional_ops_and_bind(hook):
|
|
64
|
-
_functional_ops = get_functional_ops()
|
|
65
|
-
for op_name in _functional_ops:
|
|
66
|
-
setattr(HOOKFunctionalOP, "wrap_" + op_name, wrap_functional_op(op_name, hook))
|
|
@@ -1,85 +0,0 @@
|
|
|
1
|
-
# Copyright (c) 2024-2024, Huawei Technologies Co., Ltd.
|
|
2
|
-
# All rights reserved.
|
|
3
|
-
#
|
|
4
|
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
-
# you may not use this file except in compliance with the License.
|
|
6
|
-
# You may obtain a copy of the License at
|
|
7
|
-
#
|
|
8
|
-
# http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
-
#
|
|
10
|
-
# Unless required by applicable law or agreed to in writing, software
|
|
11
|
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
-
# See the License for the specific language governing permissions and
|
|
14
|
-
# limitations under the License.
|
|
15
|
-
|
|
16
|
-
import os
|
|
17
|
-
import torch
|
|
18
|
-
|
|
19
|
-
from msprobe.pytorch.hook_module.hook_module import HOOKModule
|
|
20
|
-
from msprobe.pytorch.common.utils import torch_device_guard, torch_without_guard_version
|
|
21
|
-
from msprobe.core.common.const import Const
|
|
22
|
-
from msprobe.core.common.log import logger
|
|
23
|
-
from msprobe.core.common.file_utils import load_yaml
|
|
24
|
-
from msprobe.pytorch.function_factory import npu_custom_functions
|
|
25
|
-
|
|
26
|
-
try:
|
|
27
|
-
import torch_npu
|
|
28
|
-
except ImportError:
|
|
29
|
-
logger.info("Failing to import torch_npu.")
|
|
30
|
-
|
|
31
|
-
|
|
32
|
-
cur_path = os.path.dirname(os.path.realpath(__file__))
|
|
33
|
-
yaml_path = os.path.join(cur_path, "support_wrap_ops.yaml")
|
|
34
|
-
cuda_func_mapping = {"npu_fusion_attention" : "gpu_fusion_attention"}
|
|
35
|
-
|
|
36
|
-
|
|
37
|
-
def get_npu_ops():
|
|
38
|
-
if torch_without_guard_version:
|
|
39
|
-
_npu_ops = dir(torch.ops.npu)
|
|
40
|
-
else:
|
|
41
|
-
_npu_ops = dir(torch_npu._C._VariableFunctionsClass)
|
|
42
|
-
yaml_data = load_yaml(yaml_path)
|
|
43
|
-
wrap_npu_ops = yaml_data.get('torch_npu')
|
|
44
|
-
return set(wrap_npu_ops) & set(_npu_ops)
|
|
45
|
-
|
|
46
|
-
|
|
47
|
-
class HOOKNpuOP(object):
|
|
48
|
-
pass
|
|
49
|
-
|
|
50
|
-
|
|
51
|
-
class NpuOPTemplate(HOOKModule):
|
|
52
|
-
|
|
53
|
-
def __init__(self, op_name, hook, need_hook=True, device=Const.CPU_LOWERCASE):
|
|
54
|
-
self.op_name_ = op_name
|
|
55
|
-
self.prefix_op_name_ = "NPU" + Const.SEP + str(op_name) + Const.SEP
|
|
56
|
-
self.need_hook = need_hook
|
|
57
|
-
self.device = device
|
|
58
|
-
if need_hook:
|
|
59
|
-
super().__init__(hook)
|
|
60
|
-
|
|
61
|
-
@torch_device_guard
|
|
62
|
-
def forward(self, *args, **kwargs):
|
|
63
|
-
if not self.need_hook:
|
|
64
|
-
if self.op_name_ not in npu_custom_functions:
|
|
65
|
-
raise Exception(f'There is not bench function {self.op_name_}')
|
|
66
|
-
if self.device == Const.CUDA_LOWERCASE:
|
|
67
|
-
self.op_name_ = cuda_func_mapping.get(self.op_name_, self.op_name_)
|
|
68
|
-
if self.device in [Const.CUDA_LOWERCASE, Const.CPU_LOWERCASE]:
|
|
69
|
-
return npu_custom_functions[self.op_name_](*args, **kwargs)
|
|
70
|
-
if torch_without_guard_version:
|
|
71
|
-
return getattr(torch.ops.npu, str(self.op_name_))(*args, **kwargs)
|
|
72
|
-
else:
|
|
73
|
-
return getattr(torch_npu._C._VariableFunctionsClass, str(self.op_name_))(*args, **kwargs)
|
|
74
|
-
|
|
75
|
-
|
|
76
|
-
def wrap_npu_op(op_name, hook):
|
|
77
|
-
def npu_op_template(*args, **kwargs):
|
|
78
|
-
return NpuOPTemplate(op_name, hook)(*args, **kwargs)
|
|
79
|
-
return npu_op_template
|
|
80
|
-
|
|
81
|
-
|
|
82
|
-
def wrap_npu_ops_and_bind(hook):
|
|
83
|
-
_npu_ops = get_npu_ops()
|
|
84
|
-
for op_name in _npu_ops:
|
|
85
|
-
setattr(HOOKNpuOP, "wrap_" + str(op_name), wrap_npu_op(op_name, hook))
|
|
@@ -1,69 +0,0 @@
|
|
|
1
|
-
# Copyright (c) 2024-2024, Huawei Technologies Co., Ltd.
|
|
2
|
-
# All rights reserved.
|
|
3
|
-
#
|
|
4
|
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
-
# you may not use this file except in compliance with the License.
|
|
6
|
-
# You may obtain a copy of the License at
|
|
7
|
-
#
|
|
8
|
-
# http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
-
#
|
|
10
|
-
# Unless required by applicable law or agreed to in writing, software
|
|
11
|
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
-
# See the License for the specific language governing permissions and
|
|
14
|
-
# limitations under the License.
|
|
15
|
-
|
|
16
|
-
import os
|
|
17
|
-
|
|
18
|
-
import torch
|
|
19
|
-
|
|
20
|
-
from msprobe.pytorch.hook_module.hook_module import HOOKModule
|
|
21
|
-
from msprobe.pytorch.common.utils import torch_device_guard, parameter_adapter
|
|
22
|
-
from msprobe.core.common.const import Const
|
|
23
|
-
from msprobe.core.common.file_utils import load_yaml
|
|
24
|
-
|
|
25
|
-
|
|
26
|
-
cur_path = os.path.dirname(os.path.realpath(__file__))
|
|
27
|
-
yaml_path = os.path.join(cur_path, "support_wrap_ops.yaml")
|
|
28
|
-
|
|
29
|
-
|
|
30
|
-
def get_tensor_ops():
|
|
31
|
-
_tensor_ops = dir(torch.Tensor)
|
|
32
|
-
yaml_data = load_yaml(yaml_path)
|
|
33
|
-
wrap_tensor_ops = yaml_data.get('tensor')
|
|
34
|
-
return set(wrap_tensor_ops) & set(_tensor_ops)
|
|
35
|
-
|
|
36
|
-
|
|
37
|
-
TensorOps = {op: getattr(torch.Tensor, op) for op in get_tensor_ops()}
|
|
38
|
-
|
|
39
|
-
|
|
40
|
-
class HOOKTensor(object):
|
|
41
|
-
pass
|
|
42
|
-
|
|
43
|
-
|
|
44
|
-
class TensorOPTemplate(HOOKModule):
|
|
45
|
-
|
|
46
|
-
def __init__(self, op_name, hook, need_hook=True):
|
|
47
|
-
self.op_name_ = op_name
|
|
48
|
-
self.prefix_op_name_ = "Tensor" + Const.SEP + str(op_name) + Const.SEP
|
|
49
|
-
if need_hook:
|
|
50
|
-
super().__init__(hook)
|
|
51
|
-
|
|
52
|
-
@torch_device_guard
|
|
53
|
-
@parameter_adapter
|
|
54
|
-
def forward(self, *args, **kwargs):
|
|
55
|
-
return TensorOps[str(self.op_name_)](*args, **kwargs)
|
|
56
|
-
|
|
57
|
-
|
|
58
|
-
def wrap_tensor_op(op_name, hook):
|
|
59
|
-
|
|
60
|
-
def tensor_op_template(*args, **kwargs):
|
|
61
|
-
return TensorOPTemplate(op_name, hook)(*args, **kwargs)
|
|
62
|
-
|
|
63
|
-
return tensor_op_template
|
|
64
|
-
|
|
65
|
-
|
|
66
|
-
def wrap_tensor_ops_and_bind(hook):
|
|
67
|
-
_tensor_ops = get_tensor_ops()
|
|
68
|
-
for op_name in _tensor_ops:
|
|
69
|
-
setattr(HOOKTensor, "wrap_" + str(op_name), wrap_tensor_op(op_name, hook))
|
|
@@ -1,84 +0,0 @@
|
|
|
1
|
-
# Copyright (c) 2024-2024, Huawei Technologies Co., Ltd.
|
|
2
|
-
# All rights reserved.
|
|
3
|
-
#
|
|
4
|
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
-
# you may not use this file except in compliance with the License.
|
|
6
|
-
# You may obtain a copy of the License at
|
|
7
|
-
#
|
|
8
|
-
# http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
-
#
|
|
10
|
-
# Unless required by applicable law or agreed to in writing, software
|
|
11
|
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
-
# See the License for the specific language governing permissions and
|
|
14
|
-
# limitations under the License.
|
|
15
|
-
|
|
16
|
-
import os
|
|
17
|
-
import torch
|
|
18
|
-
|
|
19
|
-
from msprobe.pytorch.hook_module.hook_module import HOOKModule
|
|
20
|
-
from msprobe.pytorch.common.utils import torch_device_guard
|
|
21
|
-
from msprobe.core.common.const import Const
|
|
22
|
-
from msprobe.core.common.file_utils import load_yaml
|
|
23
|
-
|
|
24
|
-
|
|
25
|
-
cur_path = os.path.dirname(os.path.realpath(__file__))
|
|
26
|
-
yaml_path = os.path.join(cur_path, "support_wrap_ops.yaml")
|
|
27
|
-
|
|
28
|
-
|
|
29
|
-
def get_torch_ops():
|
|
30
|
-
_torch_ops = []
|
|
31
|
-
yaml_data = load_yaml(yaml_path)
|
|
32
|
-
wrap_torch_ops = yaml_data.get('torch')
|
|
33
|
-
for operation in wrap_torch_ops:
|
|
34
|
-
if '.' in operation:
|
|
35
|
-
operation_sub_module_name, operation_sub_op = operation.rsplit('.', 1)
|
|
36
|
-
operation_sub_module = getattr(torch, operation_sub_module_name)
|
|
37
|
-
if operation_sub_op in dir(operation_sub_module):
|
|
38
|
-
_torch_ops.append(operation)
|
|
39
|
-
else:
|
|
40
|
-
if hasattr(torch, operation):
|
|
41
|
-
_torch_ops.append(operation)
|
|
42
|
-
return set(_torch_ops)
|
|
43
|
-
|
|
44
|
-
|
|
45
|
-
TorchOps = {}
|
|
46
|
-
for op in get_torch_ops():
|
|
47
|
-
if '.' in op:
|
|
48
|
-
sub_module_name, sub_op = op.rsplit('.', 1)
|
|
49
|
-
sub_module = getattr(torch, sub_module_name)
|
|
50
|
-
TorchOps[op] = getattr(sub_module, sub_op)
|
|
51
|
-
else:
|
|
52
|
-
TorchOps[op] = getattr(torch, op)
|
|
53
|
-
|
|
54
|
-
|
|
55
|
-
|
|
56
|
-
class HOOKTorchOP(object):
|
|
57
|
-
pass
|
|
58
|
-
|
|
59
|
-
|
|
60
|
-
class TorchOPTemplate(HOOKModule):
|
|
61
|
-
|
|
62
|
-
def __init__(self, op_name, hook, need_hook=True):
|
|
63
|
-
self.op_name_ = op_name
|
|
64
|
-
self.prefix_op_name_ = "Torch" + Const.SEP + str(op_name) + Const.SEP
|
|
65
|
-
if need_hook:
|
|
66
|
-
super().__init__(hook)
|
|
67
|
-
|
|
68
|
-
@torch_device_guard
|
|
69
|
-
def forward(self, *args, **kwargs):
|
|
70
|
-
return TorchOps[str(self.op_name_)](*args, **kwargs)
|
|
71
|
-
|
|
72
|
-
|
|
73
|
-
def wrap_torch_op(op_name, hook):
|
|
74
|
-
|
|
75
|
-
def torch_op_template(*args, **kwargs):
|
|
76
|
-
return TorchOPTemplate(op_name, hook)(*args, **kwargs)
|
|
77
|
-
|
|
78
|
-
return torch_op_template
|
|
79
|
-
|
|
80
|
-
|
|
81
|
-
def wrap_torch_ops_and_bind(hook):
|
|
82
|
-
_torch_ops = get_torch_ops()
|
|
83
|
-
for op_name in _torch_ops:
|
|
84
|
-
setattr(HOOKTorchOP, "wrap_" + op_name, wrap_torch_op(op_name, hook))
|
|
@@ -1,60 +0,0 @@
|
|
|
1
|
-
# Copyright (c) 2024-2024, Huawei Technologies Co., Ltd.
|
|
2
|
-
# All rights reserved.
|
|
3
|
-
#
|
|
4
|
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
-
# you may not use this file except in compliance with the License.
|
|
6
|
-
# You may obtain a copy of the License at
|
|
7
|
-
#
|
|
8
|
-
# http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
-
#
|
|
10
|
-
# Unless required by applicable law or agreed to in writing, software
|
|
11
|
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
-
# See the License for the specific language governing permissions and
|
|
14
|
-
# limitations under the License.
|
|
15
|
-
|
|
16
|
-
import os
|
|
17
|
-
import torch
|
|
18
|
-
|
|
19
|
-
from msprobe.core.common.const import Const
|
|
20
|
-
from msprobe.core.common.file_utils import load_yaml
|
|
21
|
-
from msprobe.pytorch.hook_module.hook_module import HOOKModule
|
|
22
|
-
from msprobe.pytorch.common.utils import torch_device_guard
|
|
23
|
-
|
|
24
|
-
|
|
25
|
-
cur_path = os.path.dirname(os.path.realpath(__file__))
|
|
26
|
-
yaml_path = os.path.join(cur_path, "support_wrap_ops.yaml")
|
|
27
|
-
|
|
28
|
-
|
|
29
|
-
def get_vf_ops():
|
|
30
|
-
yaml_data = load_yaml(yaml_path)
|
|
31
|
-
wrap_vf_ops = yaml_data.get('_VF')
|
|
32
|
-
return wrap_vf_ops
|
|
33
|
-
|
|
34
|
-
|
|
35
|
-
class HOOKVfOP(object):
|
|
36
|
-
pass
|
|
37
|
-
|
|
38
|
-
|
|
39
|
-
class VfOPTemplate(HOOKModule):
|
|
40
|
-
def __init__(self, op_name, hook):
|
|
41
|
-
self.op_name_ = op_name
|
|
42
|
-
self.prefix_op_name_ = "VF" + Const.SEP + str(op_name) + Const.SEP
|
|
43
|
-
super().__init__(hook)
|
|
44
|
-
|
|
45
|
-
@torch_device_guard
|
|
46
|
-
def forward(self, *args, **kwargs):
|
|
47
|
-
return getattr(torch._C._VariableFunctionsClass, str(self.op_name_))(*args, **kwargs)
|
|
48
|
-
|
|
49
|
-
|
|
50
|
-
def wrap_vf_op(op_name, hook):
|
|
51
|
-
def vf_op_template(*args, **kwargs):
|
|
52
|
-
return VfOPTemplate(op_name, hook)(*args, **kwargs)
|
|
53
|
-
|
|
54
|
-
return vf_op_template
|
|
55
|
-
|
|
56
|
-
|
|
57
|
-
def wrap_vf_ops_and_bind(hook):
|
|
58
|
-
_vf_ops = get_vf_ops()
|
|
59
|
-
for op_name in _vf_ops:
|
|
60
|
-
setattr(HOOKVfOP, "wrap_" + op_name, wrap_vf_op(op_name, hook))
|
msprobe/pytorch/parse.py
DELETED
|
@@ -1,19 +0,0 @@
|
|
|
1
|
-
# Copyright (c) 2024-2024, Huawei Technologies Co., Ltd.
|
|
2
|
-
# All rights reserved.
|
|
3
|
-
#
|
|
4
|
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
-
# you may not use this file except in compliance with the License.
|
|
6
|
-
# You may obtain a copy of the License at
|
|
7
|
-
#
|
|
8
|
-
# http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
-
#
|
|
10
|
-
# Unless required by applicable law or agreed to in writing, software
|
|
11
|
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
-
# See the License for the specific language governing permissions and
|
|
14
|
-
# limitations under the License.
|
|
15
|
-
|
|
16
|
-
from msprobe.pytorch.parse_tool import cli
|
|
17
|
-
|
|
18
|
-
if __name__ == '__main__':
|
|
19
|
-
cli.parse()
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|