mindstudio-probe 1.1.1__py3-none-any.whl → 1.2.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (197) hide show
  1. {mindstudio_probe-1.1.1.dist-info → mindstudio_probe-1.2.1.dist-info}/METADATA +3 -2
  2. {mindstudio_probe-1.1.1.dist-info → mindstudio_probe-1.2.1.dist-info}/RECORD +196 -141
  3. msprobe/CMakeLists.txt +5 -0
  4. msprobe/README.md +14 -19
  5. msprobe/config.json +1 -0
  6. msprobe/core/common/const.py +155 -6
  7. msprobe/core/common/exceptions.py +3 -1
  8. msprobe/core/common/file_utils.py +33 -7
  9. msprobe/core/common/inplace_ops.yaml +3 -0
  10. msprobe/core/common/utils.py +28 -14
  11. msprobe/core/common_config.py +6 -0
  12. msprobe/core/compare/acc_compare.py +139 -128
  13. msprobe/core/compare/check.py +31 -29
  14. msprobe/core/compare/compare_cli.py +17 -16
  15. msprobe/core/compare/highlight.py +186 -99
  16. msprobe/core/compare/layer_mapping/data_scope_parser.py +18 -7
  17. msprobe/core/compare/layer_mapping/layer_mapping.py +21 -14
  18. msprobe/core/compare/layer_mapping/postprocess_pass.py +4 -3
  19. msprobe/core/compare/merge_result/merge_result.py +380 -0
  20. msprobe/core/compare/merge_result/merge_result_cli.py +31 -0
  21. msprobe/core/compare/multiprocessing_compute.py +2 -2
  22. msprobe/core/compare/npy_compare.py +109 -147
  23. msprobe/core/compare/utils.py +189 -69
  24. msprobe/core/data_dump/data_collector.py +51 -21
  25. msprobe/core/data_dump/data_processor/base.py +38 -20
  26. msprobe/core/data_dump/data_processor/factory.py +5 -3
  27. msprobe/core/data_dump/data_processor/mindspore_processor.py +154 -20
  28. msprobe/core/data_dump/data_processor/pytorch_processor.py +118 -58
  29. msprobe/core/data_dump/json_writer.py +29 -1
  30. msprobe/core/data_dump/scope.py +19 -18
  31. msprobe/core/overflow_check/abnormal_scene.py +9 -5
  32. msprobe/core/overflow_check/checker.py +1 -1
  33. msprobe/core/overflow_check/utils.py +1 -1
  34. msprobe/docs/01.installation.md +96 -17
  35. msprobe/docs/02.config_introduction.md +5 -5
  36. msprobe/docs/05.data_dump_PyTorch.md +91 -61
  37. msprobe/docs/06.data_dump_MindSpore.md +57 -19
  38. msprobe/docs/07.accuracy_checker_PyTorch.md +18 -18
  39. msprobe/docs/09.accuracy_checker_MindSpore.md +4 -4
  40. msprobe/docs/10.accuracy_compare_PyTorch.md +99 -41
  41. msprobe/docs/11.accuracy_compare_MindSpore.md +249 -48
  42. msprobe/docs/12.overflow_check_PyTorch.md +1 -1
  43. msprobe/docs/19.monitor.md +120 -27
  44. msprobe/docs/21.visualization_PyTorch.md +115 -35
  45. msprobe/docs/22.visualization_MindSpore.md +138 -41
  46. msprobe/docs/23.generate_operator_PyTorch.md +107 -0
  47. msprobe/docs/24.code_mapping_Mindspore.md +28 -0
  48. msprobe/docs/{23.tool_function_introduction.md → 25.tool_function_introduction.md} +1 -0
  49. msprobe/docs/26.data_dump_PyTorch_baseline.md +37 -0
  50. msprobe/docs/27.dump_json_instruction.md +521 -0
  51. msprobe/docs/FAQ.md +26 -2
  52. msprobe/docs/accuracy_checker_MindSpore/accuracy_checker_MindSpore_baseline.md +14 -0
  53. msprobe/docs/data_dump_MindSpore/data_dump_MindSpore_baseline.md +22 -0
  54. msprobe/docs/img/merge_result.png +0 -0
  55. msprobe/docs/img/visualization/fuzzy_match_ms.png +0 -0
  56. msprobe/docs/img/visualization/fuzzy_match_pt.png +0 -0
  57. msprobe/docs/img/visualization/tensorboard_1.png +0 -0
  58. msprobe/docs/img/visualization/tensorboard_2.png +0 -0
  59. msprobe/docs/img/visualization/vis_browser_1.png +0 -0
  60. msprobe/docs/img/visualization/vis_browser_2.png +0 -0
  61. msprobe/docs/img/visualization/vis_precision_info.png +0 -0
  62. msprobe/docs/img/visualization/vis_search_info.png +0 -0
  63. msprobe/docs/img/visualization/vis_show_info.png +0 -0
  64. msprobe/docs/img/visualization/vis_showcase.png +0 -0
  65. msprobe/docs/img/visualization/vis_unmatch_info.png +0 -0
  66. msprobe/docs/visualization/GPTModel.png +0 -0
  67. msprobe/docs/visualization/ParallelMLP.png +0 -0
  68. msprobe/docs/visualization/layer_mapping_example.md +132 -0
  69. msprobe/docs/visualization/mapping.png +0 -0
  70. msprobe/docs/visualization/mapping1.png +0 -0
  71. msprobe/docs/visualization/module_name.png +0 -0
  72. msprobe/docs/visualization/module_name1.png +0 -0
  73. msprobe/docs/visualization/no_mapping.png +0 -0
  74. msprobe/docs/visualization/no_mapping1.png +0 -0
  75. msprobe/docs/visualization/no_mapping_analyze.png +0 -0
  76. msprobe/docs/visualization/top_layer.png +0 -0
  77. msprobe/mindspore/__init__.py +10 -0
  78. msprobe/mindspore/api_accuracy_checker/api_accuracy_checker.py +57 -25
  79. msprobe/mindspore/api_accuracy_checker/cmd_parser.py +2 -1
  80. msprobe/mindspore/api_accuracy_checker/compute_element.py +5 -7
  81. msprobe/mindspore/api_accuracy_checker/data_manager.py +37 -0
  82. msprobe/mindspore/api_accuracy_checker/main.py +1 -0
  83. msprobe/mindspore/api_accuracy_checker/multi_api_accuracy_checker.py +12 -6
  84. msprobe/mindspore/api_accuracy_checker/multi_data_manager.py +3 -1
  85. msprobe/mindspore/code_mapping/bind.py +264 -0
  86. msprobe/mindspore/code_mapping/cmd_parser.py +40 -0
  87. msprobe/mindspore/code_mapping/graph.py +49 -0
  88. msprobe/mindspore/code_mapping/graph_parser.py +226 -0
  89. msprobe/mindspore/code_mapping/main.py +24 -0
  90. msprobe/mindspore/code_mapping/processor.py +34 -0
  91. msprobe/mindspore/common/const.py +3 -1
  92. msprobe/mindspore/common/utils.py +50 -5
  93. msprobe/mindspore/compare/distributed_compare.py +0 -2
  94. msprobe/mindspore/compare/ms_compare.py +105 -63
  95. msprobe/mindspore/compare/ms_graph_compare.py +14 -5
  96. msprobe/mindspore/debugger/debugger_config.py +3 -0
  97. msprobe/mindspore/debugger/precision_debugger.py +81 -12
  98. msprobe/mindspore/dump/hook_cell/api_registry.py +83 -16
  99. msprobe/mindspore/dump/hook_cell/hook_cell.py +60 -38
  100. msprobe/mindspore/dump/hook_cell/primitive_hooks.py +33 -15
  101. msprobe/mindspore/dump/hook_cell/support_wrap_ops.yaml +11 -1
  102. msprobe/mindspore/dump/hook_cell/wrap_api.py +92 -1
  103. msprobe/mindspore/dump/kernel_dump/kernel_config.py +33 -0
  104. msprobe/mindspore/dump/kernel_graph_dump.py +7 -0
  105. msprobe/mindspore/free_benchmark/api_pynative_self_check.py +13 -4
  106. msprobe/mindspore/free_benchmark/perturbation/bit_noise.py +2 -2
  107. msprobe/mindspore/grad_probe/grad_analyzer.py +24 -12
  108. msprobe/mindspore/grad_probe/hook.py +13 -4
  109. msprobe/mindspore/mindtorch/__init__.py +18 -0
  110. msprobe/mindspore/mindtorch/mindtorch_adaptor.py +255 -0
  111. msprobe/mindspore/ms_config.py +5 -1
  112. msprobe/mindspore/overflow_check/kernel_graph_overflow_check.py +7 -0
  113. msprobe/mindspore/service.py +267 -101
  114. msprobe/msprobe.py +24 -3
  115. msprobe/pytorch/__init__.py +7 -6
  116. msprobe/pytorch/api_accuracy_checker/common/utils.py +31 -16
  117. msprobe/pytorch/api_accuracy_checker/compare/algorithm.py +41 -8
  118. msprobe/pytorch/api_accuracy_checker/compare/api_precision_compare.py +100 -267
  119. msprobe/pytorch/api_accuracy_checker/compare/api_precision_standard.yaml +4 -1
  120. msprobe/pytorch/api_accuracy_checker/compare/compare.py +69 -68
  121. msprobe/pytorch/api_accuracy_checker/compare/compare_column.py +54 -0
  122. msprobe/pytorch/api_accuracy_checker/compare/compare_input.py +51 -0
  123. msprobe/pytorch/api_accuracy_checker/compare/compare_utils.py +2 -4
  124. msprobe/pytorch/api_accuracy_checker/generate_op_script/op_generator.py +54 -30
  125. msprobe/pytorch/api_accuracy_checker/precision_standard/absolute_threshold.py +106 -0
  126. msprobe/pytorch/api_accuracy_checker/precision_standard/accumulative_error_compare.py +107 -0
  127. msprobe/pytorch/api_accuracy_checker/precision_standard/base_standard.py +151 -0
  128. msprobe/pytorch/api_accuracy_checker/precision_standard/benchmark_compare.py +226 -0
  129. msprobe/pytorch/api_accuracy_checker/precision_standard/binary_consistency.py +68 -0
  130. msprobe/pytorch/api_accuracy_checker/precision_standard/standard_config.py +218 -0
  131. msprobe/pytorch/api_accuracy_checker/precision_standard/standard_register.py +104 -0
  132. msprobe/pytorch/api_accuracy_checker/precision_standard/thousandth_standard.py +63 -0
  133. msprobe/pytorch/api_accuracy_checker/precision_standard/ulp_compare.py +200 -0
  134. msprobe/pytorch/api_accuracy_checker/run_ut/data_generate.py +57 -1
  135. msprobe/pytorch/api_accuracy_checker/run_ut/multi_run_ut.py +2 -1
  136. msprobe/pytorch/api_accuracy_checker/run_ut/run_overflow_check.py +42 -14
  137. msprobe/pytorch/api_accuracy_checker/run_ut/run_ut.py +64 -19
  138. msprobe/pytorch/api_accuracy_checker/run_ut/run_ut_utils.py +34 -4
  139. msprobe/pytorch/api_accuracy_checker/tensor_transport_layer/device_dispatch.py +5 -3
  140. msprobe/pytorch/bench_functions/npu_fusion_attention.py +42 -10
  141. msprobe/pytorch/common/parse_json.py +2 -1
  142. msprobe/pytorch/common/utils.py +45 -2
  143. msprobe/pytorch/compare/distributed_compare.py +17 -29
  144. msprobe/pytorch/compare/pt_compare.py +40 -20
  145. msprobe/pytorch/debugger/debugger_config.py +27 -12
  146. msprobe/pytorch/debugger/precision_debugger.py +42 -12
  147. msprobe/pytorch/dump/module_dump/__init__.py +0 -0
  148. msprobe/pytorch/dump/module_dump/module_dump.py +86 -0
  149. msprobe/pytorch/{module_processer.py → dump/module_dump/module_processer.py} +80 -6
  150. msprobe/pytorch/free_benchmark/common/params.py +2 -1
  151. msprobe/pytorch/free_benchmark/common/utils.py +3 -0
  152. msprobe/pytorch/free_benchmark/compare/grad_saver.py +0 -2
  153. msprobe/pytorch/free_benchmark/result_handlers/base_handler.py +31 -47
  154. msprobe/pytorch/free_benchmark/result_handlers/preheat_handler.py +0 -4
  155. msprobe/pytorch/hook_module/__init__.py +1 -1
  156. msprobe/pytorch/hook_module/hook_module.py +14 -11
  157. msprobe/pytorch/hook_module/register_optimizer_hook.py +59 -0
  158. msprobe/pytorch/hook_module/support_wrap_ops.yaml +34 -0
  159. msprobe/pytorch/hook_module/wrap_distributed.py +6 -8
  160. msprobe/pytorch/hook_module/wrap_functional.py +0 -40
  161. msprobe/pytorch/monitor/anomaly_analyse.py +1 -1
  162. msprobe/pytorch/monitor/anomaly_detect.py +107 -22
  163. msprobe/pytorch/monitor/csv2tb.py +166 -0
  164. msprobe/pytorch/monitor/distributed/wrap_distributed.py +25 -14
  165. msprobe/pytorch/monitor/features.py +3 -3
  166. msprobe/pytorch/monitor/module_hook.py +483 -277
  167. msprobe/pytorch/monitor/module_metric.py +27 -48
  168. msprobe/pytorch/monitor/module_spec_verifier.py +3 -1
  169. msprobe/pytorch/monitor/optimizer_collect.py +52 -14
  170. msprobe/pytorch/monitor/unittest/test_monitor.py +24 -9
  171. msprobe/pytorch/monitor/utils.py +77 -6
  172. msprobe/pytorch/online_dispatch/dispatch.py +8 -2
  173. msprobe/pytorch/parse_tool/lib/compare.py +10 -10
  174. msprobe/pytorch/parse_tool/lib/config.py +5 -7
  175. msprobe/pytorch/parse_tool/lib/file_desc.py +15 -1
  176. msprobe/pytorch/parse_tool/lib/interactive_cli.py +10 -10
  177. msprobe/pytorch/parse_tool/lib/parse_exception.py +7 -7
  178. msprobe/pytorch/parse_tool/lib/parse_tool.py +11 -10
  179. msprobe/pytorch/parse_tool/lib/utils.py +18 -19
  180. msprobe/pytorch/parse_tool/lib/visualization.py +9 -10
  181. msprobe/pytorch/service.py +176 -106
  182. msprobe/visualization/builder/graph_builder.py +62 -5
  183. msprobe/visualization/builder/msprobe_adapter.py +24 -2
  184. msprobe/visualization/compare/graph_comparator.py +64 -14
  185. msprobe/visualization/compare/mode_adapter.py +1 -15
  186. msprobe/visualization/graph/base_node.py +12 -17
  187. msprobe/visualization/graph/distributed_analyzer.py +318 -0
  188. msprobe/visualization/graph/graph.py +9 -0
  189. msprobe/visualization/graph_service.py +97 -23
  190. msprobe/visualization/utils.py +14 -29
  191. msprobe/pytorch/functional/module_dump.py +0 -84
  192. {mindstudio_probe-1.1.1.dist-info → mindstudio_probe-1.2.1.dist-info}/LICENSE +0 -0
  193. {mindstudio_probe-1.1.1.dist-info → mindstudio_probe-1.2.1.dist-info}/WHEEL +0 -0
  194. {mindstudio_probe-1.1.1.dist-info → mindstudio_probe-1.2.1.dist-info}/entry_points.txt +0 -0
  195. {mindstudio_probe-1.1.1.dist-info → mindstudio_probe-1.2.1.dist-info}/top_level.txt +0 -0
  196. /msprobe/docs/{data_dump_Mindspore → data_dump_MindSpore}/dynamic_graph_quick_start_example.md +0 -0
  197. /msprobe/{pytorch/functional → mindspore/code_mapping}/__init__.py +0 -0
@@ -1,5 +1,10 @@
1
1
  # MindSpore 场景的精度比对
2
2
 
3
+ ## 🚨 重要通知
4
+
5
+ **1. 精度比对已支持自动识别stack.json并呈现NPU_Stack_Info,用户可无需配置compare.json中的"stack_path"字段和命令行中的-s参数。具体使用参见“4.1 比对文件”中的参数说明。命令行方式中的-s(--stack_mode)将于2025.9.30废弃,并且不再需要配置compare.json中的"stack_path"字段。**
6
+
7
+
3
8
  ## 1 简介
4
9
 
5
10
  msprobe精度比对工具主要用于如下场景:
@@ -37,10 +42,10 @@ msprobe -f mindspore compare -i ./compare.json -o ./output -s
37
42
  | -s或--stack_mode | 比对结果展示调用栈信息(NPU_Stack_Info)的开关,bool 类型。单卡场景开启时,需要使用[比对文件](#31-比对文件)的单卡场景配置stack_path指定stack.json文件,才能生成详细调用栈信息,否则在比对时会报错;暂不支持多卡场景。通过直接配置该参数开启,默认未配置,表示关闭。 | 否 |
38
43
  | -c或--compare_only | 仅比对开关,bool 类型。该参数默认未配置,会启用自动精度分析,工具自动针对比对结果进行分析,识别到第一个精度可能不达标节点(在比对结果文件中的 Accuracy Reached or Not 列显示为 No),并给出问题可能产生的原因(打屏展示并生成 `advisor_{timestamp}.txt` 文件)。通过配置该参数取消自动精度分析,仅输出比对结果表格。 | 否 |
39
44
  | -f或--fuzzy_match | 模糊匹配。开启后,对于网络中同一层级且命名仅调用次数不同的API,可匹配并进行比对。通过直接配置该参数开启,默认未配置,表示关闭。 | 否 |
40
- | -am或--api_mapping | 跨框架比对。配置该参数时表示开启跨框架API比对功能,可以指定自定义映射文件*.yaml,不指定映射文件时按照msprobe定义的默认映射关系进行比对。自定义映射文件的格式请参见[自定义映射文件(API)](#33-自定义映射文件api)。仅[跨框架的API比对](#25-跨框架的api比对)场景需要配置。 | 否 |
41
- | -cm或--cell_mapping | 跨框架比对。配置该参数时表示开启跨框架cell模块比对功能,可以指定自定义映射文件*.yaml,不指定映射文件时按照msprobe定义的默认映射关系进行比对。自定义映射文件的格式请参见[自定义映射文件(cell)](#34-自定义映射文件cell)。仅[跨框架的cell模块比对](#26-跨框架的cell模块比对)场景需要配置。 | 否 |
42
- | -dm或--data_mapping | 跨框架比对。配置该参数时表示开启跨框架API或模块的比对功能,需要指定自定义映射文件*.yaml。自定义映射文件的格式请参见[自定义映射文件(API和模块)](#35-自定义映射文件api和模块)。仅[跨框架的API或模块比对](#27-跨框架的api或模块比对)场景需要配置。 | 否 |
43
- | -lm或--layer_mapping | 跨框架比对。配置该参数时表示开启跨框架Layer层的比对功能,指定模型代码中的Layer层后,可以识别对应dump数据中的模块或API。需要指定自定义映射文件*.yaml。自定义映射文件的格式请参见[自定义映射文件(Layer)](#36-自定义映射文件layer)。仅[跨框架的Layer层比对](#28-跨框架的layer层比对)场景需要配置。 | 否 |
45
+ | -am或--api_mapping | 跨框架比对。配置该参数时表示开启跨框架API比对功能,可以指定自定义映射文件*.yaml,不指定映射文件时按照msprobe定义的默认映射关系进行比对。自定义映射文件的格式请参见[自定义映射文件(api_mapping)](#33-自定义映射文件api_mapping)。仅[跨框架的API比对](#25-跨框架的api比对)场景需要配置。 | 否 |
46
+ | -cm或--cell_mapping | 跨框架比对。配置该参数时表示开启跨框架cell模块比对功能,可以指定自定义映射文件*.yaml,不指定映射文件时按照msprobe定义的默认映射关系进行比对。自定义映射文件的格式请参见[自定义映射文件(cell_mapping)](#34-自定义映射文件cell_mapping)。仅[跨框架的cell模块比对](#26-跨框架的cell模块比对)场景需要配置。 | 否 |
47
+ | -dm或--data_mapping | 同框架或跨框架比对。通过映射文件指定两个具体参数的对应关系,可以在L0、L1或mix采集场景下使用。配置该参数的同时需要指定自定义映射文件*.yaml。自定义映射文件的格式请参见[自定义映射文件(data_mapping)](#35-自定义映射文件data_mapping) | 否 |
48
+ | -lm或--layer_mapping | 跨框架比对。配置该参数时表示开启跨框架Layer层的比对功能,指定模型代码中的Layer层后,可以识别对应dump数据中的模块或API。需要指定自定义映射文件*.yaml。自定义映射文件的格式请参见[自定义映射文件(Layer_mapping)](#36-自定义映射文件layer_mapping)。仅[跨框架的Layer层比对](#27-跨框架的layer层比对)场景需要配置。 | 否 |
44
49
 
45
50
  动态图模式没有填写任何mapping时,按照同框架比对的方式进行比对,比对数据和标杆数据的Cell或Api名称需要完全相同才能匹配得上。
46
51
 
@@ -110,9 +115,15 @@ msprobe -f mindspore compare -i ./compare.json -o ./output -s
110
115
  msprobe -f mindspore compare -i ./compare.json -o ./output -s -am api_mapping.yaml
111
116
  ```
112
117
 
113
- api_mapping.yaml文件配置请参见[自定义映射文件(API)](#33-自定义映射文件api)。
118
+ api_mapping.yaml文件配置请参见[自定义映射文件(api_mapping)](#33-自定义映射文件api_mapping)。
114
119
  不传入api_mapping.yaml的情况下将按照内置的api映射进行匹配;传入api_mapping.yaml的情况下优先按照api_mapping.yaml的内容进行匹配,api_mapping.yaml中没有涉及的按照内置的api映射进行匹配。
115
120
 
121
+ 此外,也可以通过data_mapping.yaml文件实现具体参数的匹配,例:
122
+ ```shell
123
+ msprobe -f mindspore compare -i ./compare.json -o ./output -s -dm data_mapping.yaml
124
+ ```
125
+ data_mapping.yaml的写法请参见[自定义映射文件(data_mapping)](#35-自定义映射文件data_mapping)。
126
+
116
127
  5. 查看比对结果,请详见PyTorch目录下的《[PyTorch 场景的精度比对-精度比对结果分析](./10.accuracy_compare_PyTorch.md#3-精度比对结果分析)》章节。
117
128
 
118
129
  ### 2.6 跨框架的cell模块比对
@@ -135,16 +146,22 @@ msprobe -f mindspore compare -i ./compare.json -o ./output -s
135
146
  msprobe -f mindspore compare -i ./compare.json -o ./output -s -cm cell_mapping.yaml
136
147
  ```
137
148
 
138
- cell_mapping.yaml文件配置请参见[自定义映射文件(cell)](#34-自定义映射文件cell)。
149
+ cell_mapping.yaml文件配置请参见[自定义映射文件(cell_mapping)](#34-自定义映射文件cell_mapping)。
139
150
  不传入cell_mapping.yaml的情况下仅将Cell改成Module后进行匹配;传入cell_mapping.yaml的情况下将按照cell_mapping.yaml的内容进行匹配。
140
151
 
152
+ 此外,也可以通过data_mapping.yaml文件实现具体参数的匹配,例:
153
+ ```shell
154
+ msprobe -f mindspore compare -i ./compare.json -o ./output -s -dm data_mapping.yaml
155
+ ```
156
+ data_mapping.yaml的写法请参见[自定义映射文件(data_mapping)](#35-自定义映射文件data_mapping)。
157
+
141
158
  5. 查看比对结果,请详见PyTorch目录下的《[PyTorch 场景的精度比对-精度比对结果分析](./10.accuracy_compare_PyTorch.md#3-精度比对结果分析)》章节。
142
159
 
143
- ### 2.7 跨框架的API或模块比对
160
+ ### 2.7 跨框架的Layer层比对
144
161
 
145
- 该场景可用于在“**跨框架的API比对**”和“**跨框架的cell模块比对**”场景均无法完全覆盖模型中的API和模块时,通过手动指定映射关系来补全未被比对的API或模块。
162
+ layer_mapping可以从Layer层识别整网的API和Cell,简化配置。
146
163
 
147
- 1. 配置[config.json](../config.json)文件level配置为L0或L1、task配置为tensor或statistics并指定需要dump的API或模块名。
164
+ 1. 配置[config.json](../config.json)文件level配置为L0或mix、task配置为tensor或statistics并指定需要dump的API或模块名。
148
165
 
149
166
  2. 参见《[MindSpore 场景的精度数据采集](./06.data_dump_MindSpore.md)》和《[PyTorch 场景的精度数据采集](./05.data_dump_PyTorch.md)》完成不同环境下API或模块精度数据的采集,得到两个框架的API或模块dump数据。
150
167
 
@@ -153,36 +170,75 @@ msprobe -f mindspore compare -i ./compare.json -o ./output -s
153
170
  4. 执行如下示例命令进行比对:
154
171
 
155
172
  ```shell
156
- msprobe -f mindspore compare -i ./compare.json -o ./output -s -dm data_mapping.yaml
173
+ msprobe -f mindspore compare -i ./compare.json -o ./output -s -lm layer_mapping.yaml
157
174
  ```
158
175
 
159
- data_mapping.yaml文件配置请参见[自定义映射文件(all)](#35-自定义映射文件api和模块)。
176
+ layer_mapping.yaml文件配置请参见[自定义映射文件(layer_mapping)](#36-自定义映射文件layer_mapping)。
177
+
178
+ 此外,也可以通过data_mapping.yaml文件实现具体参数的匹配,例:
179
+ ```shell
180
+ msprobe -f mindspore compare -i ./compare.json -o ./output -s -dm data_mapping.yaml
181
+ ```
182
+ data_mapping.yaml的写法请参见[自定义映射文件(data_mapping)](#35-自定义映射文件data_mapping)。
160
183
 
161
184
  5. 查看比对结果,请详见PyTorch目录下的《[PyTorch 场景的精度比对-精度比对结果分析](./10.accuracy_compare_PyTorch.md#3-精度比对结果分析)》章节。
162
185
 
163
- ### 2.8 跨框架的Layer层比对
186
+ ## 3 多卡比对结果提取汇总通信算子数据
164
187
 
165
- 该场景可简化API或模块场景的配置,从Layer层识别整网的API和模块。
188
+ 本功能是将多卡比对场景的比对结果,进行通信算子数据提取和汇总,输出整理好的通信算子多卡比对精度表。
166
189
 
167
- 1. 配置[config.json](../config.json)文件level配置为L0或mix、task配置为tensor或statistics并指定需要dump的API或模块名。
190
+ **约束**
168
191
 
169
- 2. 参见《[MindSpore 场景的精度数据采集](./06.data_dump_MindSpore.md)》和《[PyTorch 场景的精度数据采集](./05.data_dump_PyTorch.md)》完成不同环境下API或模块精度数据的采集,得到两个框架的API或模块dump数据。
192
+ - 不支持MD5比对结果。
193
+ - 不支持MindSpore静态图比对结果。
170
194
 
171
- 3. 创建比对文件,文件内容及示例请参见[比对文件](#31-比对文件)。
195
+ **命令示例**
172
196
 
173
- 4. 执行如下示例命令进行比对:
197
+ ```bash
198
+ msprobe -f mindspore merge_result -i ./input_dir -o ./output_dir -config ./config.yaml
199
+ ```
174
200
 
175
- ```shell
176
- msprobe -f mindspore compare -i ./compare.json -o ./output -s -lm layer_mapping.yaml
177
- ```
201
+ **完整参数说明**
178
202
 
179
- layer_mapping.yaml文件配置请参见[自定义映射文件(Layer)](#36-自定义映射文件layer)。
203
+ | 参数名 | 说明 | 是否必选 |
204
+ | ---------------------- | ------------------------------------------------------------ | -------- |
205
+ | -i 或 --input_dir | 多卡比对结果存盘目录,即使用compare比对的结果输出目录,str类型。所有比对结果应全部为真实数据比对结果或统计数据比对结果,否则可能导致汇总数据不完整。 | 是 |
206
+ | -o 或 --output_dir | 数据提取汇总结果存盘目录,str类型。文件名称基于时间戳自动生成,格式为:`multi_ranks_compare_merge_{timestamp}.xlsx`。 | 是 |
207
+ | -config或--config-path | 指定需要汇总数据的API和比对指标的yaml文件路径,str类型。<br>yaml文件详细介绍见下文“**yaml文件说明**”。 | 是 |
180
208
 
181
- 5. 查看比对结果,请详见PyTorch目录下的《[PyTorch 场景的精度比对-精度比对结果分析](./10.accuracy_compare_PyTorch.md#3-精度比对结果分析)》章节。
209
+ **yaml文件说明**
210
+
211
+ 以config.yaml文件名为例,配置示例如下:
212
+
213
+ ```
214
+ api:
215
+ - Distributed.all_reduce
216
+ - Distributed.all_gather_into_tensor
217
+ compare_index:
218
+ - Max diff
219
+ - L2norm diff
220
+ - MeanRelativeErr
221
+ ```
222
+
223
+ | 参数名 | 说明 |
224
+ | ------------- | ------------------------------------------------------------ |
225
+ | api | 表示需要汇总的API或module名称。如果没有配置,工具会提示报错。<br/>api名称配置格式为:`{api_type}.{api_name}.{API调用次数}.{前向反向}`<br/>须按顺序配置以上四个字段,可按如下组合配置:<br/> {api_type}<br/> {api_type}.{api_name}<br/> {api_type}.{api_name}.{API调用次数}<br/> {api_type}.{api_name}.{API调用次数}.{前向反向}<br/>这里的api指代API或module。 |
226
+ | compare_index | 表示需要汇总的比对指标。compare_index需为dump_mode对应比对指标的子集。如果没有配置,工具将根据比对结果自动提取dump_mode对应的全部比对指标进行汇总。<br>统计数据模式比对指标:Max diff、Min diff、Mean diff、Norm diff、MaxRelativeErr、MinRelativeErr、MeanRelativeErr、NormRelativeErr<br>真实数据模式比对指标:Cosine、MaxAbsErr、MaxRelativeErr、One Thousandth Err Ratio、Five Thousandths Err Ratio |
182
227
 
183
- ## 3 附录
228
+ **汇总结果件说明**
184
229
 
185
- ### 3.1 比对文件
230
+ 多卡数据汇总结果如下所示:
231
+
232
+ ![merge_result](img/merge_result.png)
233
+
234
+ 1. NPU Name列表示API或module名称。
235
+ 2. rank*列为多卡数据。
236
+ 3. 不同比对指标的数据通过不同sheet页呈现。
237
+ 4. 如果一个API或module在某张卡上找不到数据,汇总结果中将空白呈现。
238
+
239
+ ## 4 附录
240
+
241
+ ### 4.1 比对文件
186
242
 
187
243
  以在当前目录创建./compare.json为例,单卡场景示例如下:
188
244
 
@@ -208,13 +264,13 @@ msprobe -f mindspore compare -i ./compare.json -o ./output -s
208
264
  **参数说明**
209
265
 
210
266
  | 参数名 | 说明 | 是否必选 |
211
- | -------------------- | ------------------------------------------------------------ | -------- |
212
- | npu_path | 配置NPU环境下的dump.json文件(单卡场景)。跨框架场景指定为MindSpore的json文件。数据类型:str。 | 是 |
213
- | bench_path | 配置CPU、GPU或NPU环境下的dump.json文件(单卡场景)。 跨框架场景指定为PyTorch的json文件。数据类型:str。 | 是 |
214
- | stack_path | 配置NPU dump目录下的stack.json文件。数据类型:str。 | |
215
- | is_print_compare_log | 配置是否开启单个算子的日志打屏。可取值true或false,默认为true。关闭后则只输出常规日志。数据类型:bool | 否 |
267
+ | -------------------- | ------------------------------------------------------------ |------|
268
+ | npu_path | 配置NPU环境下的dump.json文件(单卡场景)。跨框架场景指定为MindSpore的json文件。数据类型:str。 | 是 |
269
+ | bench_path | 配置CPU、GPU或NPU环境下的dump.json文件(单卡场景)。 跨框架场景指定为PyTorch的json文件。数据类型:str。 | 是 |
270
+ | stack_path | 配置NPU dump目录下的stack.json文件。数据类型:str。 如果没有配置stack_path,命令行-s参数不生效,程序自动识别是否存在stack.json文件,如存在,则比对结果中呈现NPU_Stack_Info,如不存在,则不呈现。如果配置了stack_path,比对结果中是否呈现NPU_Stack_Info则通过命令行参数-s来控制。 | |
271
+ | is_print_compare_log | 配置是否开启单个算子的日志打屏。可取值true或false,默认为true。关闭后则只输出常规日志。数据类型:bool | 否 |
216
272
 
217
- ### 3.2 比对文件(kernel)
273
+ ### 4.2 比对文件(kernel)
218
274
 
219
275
  仅[不同版本下的全量kernel比对](#23-不同版本下的全量kernel比对)场景支持。
220
276
 
@@ -252,7 +308,7 @@ msprobe -f mindspore compare -i ./compare.json -o ./output -s
252
308
  | rank_id | 配置比对的Rank ID。npu_path和bench_path目录下的dump文件需要存在对应Rank的数据。默认为空,表示比对所有Rank。可配置一个或多个Rank,多个Rank ID用逗号隔开,例如:"rank_id": [1,2,3]。数据类型:list[int]。 | 否 |
253
309
  | step_id | 配置比对的Step ID。npu_path和bench_path目录下的dump文件需要存在对应Step的数据。默认为空,表示比对所有Step。可配置一个或多个Step,多个Step ID用逗号隔开,例如:"step_id": [1,2,3]。数据类型:list[int]。 | 否 |
254
310
 
255
- ### 3.3 自定义映射文件(API
311
+ ### 4.3 自定义映射文件(api_mapping
256
312
 
257
313
  文件名格式:\*.yaml,*为文件名,可自定义。
258
314
 
@@ -323,7 +379,7 @@ pt_outputs:
323
379
  # ms_args/pt_args和ms_outputs/pt_outputs参数的配置需要根据ms_api/pt_api的API入参和输出的顺序,例如Functional.abs API的入参为(a b c),那对应的ms_args为0 1 2,可根据实际需要选择,而Torch.abs的入参如果是(a b c),那么ms_args和pt_args配置一致即可,但如果Torch.abs的入参如果是(a c)或其他与Functional.abs不完全映射的值,那么ms_args和pt_args配置的序号需要与入参对应,Torch.abs(a c)的序号为0 1,Functional.abs(a b c)为0 1 2,只有a和c参数可以映射,那么ms_args配置为0 2,pt_args配置为0 1。ms_outputs/pt_outputs同理。
324
380
  ```
325
381
 
326
- ### 3.4 自定义映射文件(cell
382
+ ### 4.4 自定义映射文件(cell_mapping
327
383
 
328
384
  文件名格式:\*.yaml,*为文件名,可自定义。
329
385
 
@@ -333,10 +389,6 @@ pt_outputs:
333
389
  {cell_name}.{class_name}: {module_name}.{class_name}
334
390
  ```
335
391
 
336
- 冒号左侧为MindSpore框架cell模块的{cell_name}.{class_name},冒号右侧为PyTorch框架module模块的{module_name}.{class_name}。
337
-
338
- {cell_name}.{class_name}从dump cell模块级.npy文件名获取,命名格式为:`{Cell}.{cell_name}.{class_name}.{前向反向}.{index}.{input/output}.{参数序号}`
339
-
340
392
  文件内容示例:
341
393
 
342
394
  ```yaml
@@ -344,7 +396,21 @@ fc2.Dense: fc2.Linear
344
396
  conv1.Conv2d: conv3.Conv2d
345
397
  ```
346
398
 
347
- ### 3.5 自定义映射文件(API和模块)
399
+ 冒号左侧为MindSpore框架cell模块的{cell_name}.{class_name},冒号右侧为PyTorch框架module模块的{module_name}.{class_name}。
400
+
401
+ ```yaml
402
+ {cell_name}.{class_name}从dump cell模块级.npy文件名获取,命名格式为:
403
+ {Cell}.{cell_name}.{class_name}.{forward/backward}.{index}.{input/output}.{参数序号/参数名}
404
+
405
+ {Cell}.{cell_name}.{class_name}.parameters_grad.{parameter_name}
406
+
407
+ {module_name}.{class_name}从dump module模块级.npy文件名获取,命名格式为:
408
+ {Module}.{module_name}.{class_name}.{forward/backward}.{index}.{input/output}.{参数序号/参数名}
409
+
410
+ {Module}.{module_name}.{class_name}.parameters_grad.{parameter_name}
411
+ ```
412
+
413
+ ### 4.5 自定义映射文件(data_mapping)
348
414
 
349
415
  文件名格式:\*.yaml,*为文件名,可自定义。
350
416
 
@@ -352,9 +418,11 @@ conv1.Conv2d: conv3.Conv2d
352
418
 
353
419
  ```yaml
354
420
  # API
355
- {api_type}.{api_name}.{API调用次数}.{前向反向}.{input/output}.{参数序号}: {api_type}.{api_name}.{API调用次数}.{前向反向}.{input/output}.{参数序号}
421
+ {api_type}.{api_name}.{API调用次数}.{forward/backward}.{input/output}.{参数序号/参数名}: {api_type}.{api_name}.{API调用次数}.{forward/backward}.{input/output}.{参数序号/参数名}
356
422
  # 模块
357
- {Cell}.{cell_name}.{class_name}.{前向反向}.{index}.{input/output}.{参数序号}: {Module}.{module_name}.{前向反向}.{index}.{input/output}.{参数序号}
423
+ {Cell}.{cell_name}.{class_name}.{forward/backward}.{index}.{input/output}.{参数序号/参数名}: {Module}.{module_name}.{class_name}.{forward/backward}.{index}.{input/output}.{参数序号/参数名}
424
+
425
+ {Cell}.{cell_name}.{class_name}.parameters_grad.{parameter_name}: {Module}.{module_name}.{class_name}.parameters_grad.{parameter_name}
358
426
  ```
359
427
 
360
428
  冒号左侧为MindSpore框架API的名称和Cell模块的名称,冒号右侧为PyTorch框架API的名称和module模块名称。
@@ -368,9 +436,11 @@ API和模块名称请分别从《[MindSpore 场景的精度数据采集](./06.da
368
436
  Functional.flash_attention_score.4.forward.input.0: NPU.npu_fusion_attention.4.forward.input.0
369
437
  # 模块
370
438
  Cell.relu.ReLU.forward.0.input.0: Module.module.language_model.embedding.word_embedding.VocabParallelEmbedding.forward.0.input.0
439
+
440
+ Cell.relu.ReLU.parameters_grad.weight: Module.module.language_model.embedding.word_embedding.VocabParallelEmbedding.parameters_grad.weight
371
441
  ```
372
442
 
373
- API和模块名称在dump.json文件中的“data_name”字段展示,如下图红框处所示:
443
+ dump.json文件中存在“data_name”字段时,API和模块名称为data_name字段去掉文件后缀,如下图红框处所示:
374
444
 
375
445
  - MindSpore dump
376
446
 
@@ -380,7 +450,145 @@ API和模块名称在dump.json文件中的“data_name”字段展示,如下
380
450
 
381
451
  ![pt_dump](./img/pt_dump.png)
382
452
 
383
- ### 3.6 自定义映射文件(Layer)
453
+ 当dump.json文件中不存在“data_name”字段时,名称的拼写规则如下:
454
+
455
+ input_args、input_kwargs和output使用统一的命名规则,当值是list类型时,名称后面添加'.{index}',当值类型是dict类型时,名称后面加'.{key}',当值类型是具体Tensor或null或空list/dict时,命名结束。
456
+
457
+ 以下面cell的dump文件为例:
458
+ ```yaml
459
+ "Cell.network.module.NetworkWithLoss.forward.0": {
460
+ "input_args": [
461
+ {
462
+ "type": "mindspore.Tensor",
463
+ "dtype": "Float32",
464
+ "shape": [
465
+ 24,
466
+ 16,
467
+ 1,
468
+ 60,
469
+ 34
470
+ ],
471
+ "Max": 3.591925621032715,
472
+ "Min": -3.6856653690338135,
473
+ "Mean": -0.017044123262166977,
474
+ "Norm": 940.671630859375,
475
+ "md5": "00d69ba8"
476
+ },
477
+ {
478
+ "y": {
479
+ "type": "mindspore.Tensor",
480
+ "dtype": "Float32",
481
+ "shape": [
482
+ 24,
483
+ 1,
484
+ 100,
485
+ 4096
486
+ ],
487
+ "Max": 2.433350086212158,
488
+ "Min": -4.09375,
489
+ "Mean": -0.00010696164099499583,
490
+ "Norm": 170.3390655517578,
491
+ "md5": "a72e1fa4"
492
+ },
493
+ "y_mask": {
494
+ "type": "mindspore.Tensor",
495
+ "dtype": "Float32",
496
+ "shape": [
497
+ 24,
498
+ 100
499
+ ],
500
+ "Max": 1.0,
501
+ "Min": 0.0,
502
+ "Mean": 0.22999998927116394,
503
+ "Norm": 23.494680404663086,
504
+ "md5": "bbcbd5ab"
505
+ },
506
+ "x_mask": {
507
+ "type": "mindspore.Tensor",
508
+ "dtype": "Float32",
509
+ "shape": [
510
+ 24,
511
+ 510
512
+ ],
513
+ "Max": 1.0,
514
+ "Min": 1.0,
515
+ "Mean": 1.0,
516
+ "Norm": 110.63453674316406,
517
+ "md5": "766d1028"
518
+ },
519
+ "loss_mask": {
520
+ "type": "mindspore.Tensor",
521
+ "dtype": "Float32",
522
+ "shape": [
523
+ 24,
524
+ 1,
525
+ 60,
526
+ 34
527
+ ],
528
+ "Max": 1.0,
529
+ "Min": 1.0,
530
+ "Mean": 1.0,
531
+ "Norm": 221.26907348632812,
532
+ "md5": "0cb690ce"
533
+ },
534
+ "data_info": {
535
+ "img_hw": null
536
+ }
537
+ }
538
+ ],
539
+ "input_kwargs": {},
540
+ "output": [
541
+ {
542
+ "type": "mindspore.Tensor",
543
+ "dtype": "Float32",
544
+ "shape": [],
545
+ "Max": 0.3672327995300293,
546
+ "Min": 0.3672327995300293,
547
+ "Mean": 0.3672327995300293,
548
+ "Norm": 0.3672327995300293,
549
+ "md5": "28f8f74f"
550
+ }
551
+ ]
552
+ }
553
+ ```
554
+ ,
555
+ 初始名称为`Cell.network.module.NetworkWithLoss.forward.0`,`input_args`是`list`,长度为2,按照顺序命名为
556
+ ```
557
+ Cell.network.module.NetworkWithLoss.forward.0.input.0
558
+ Cell.network.module.NetworkWithLoss.forward.0.input.1
559
+ ```
560
+ 第0项后面直接是`Tensor`,命名结束
561
+ 第1项后面是`dict`,key包括`y`、`y_mask`、`x_mask`和`data_info`,命名为
562
+ ```
563
+ Cell.network.module.NetworkWithLoss.forward.0.input.1.y
564
+ Cell.network.module.NetworkWithLoss.forward.0.input.1.y_mask
565
+ Cell.network.module.NetworkWithLoss.forward.0.input.1.x_mask
566
+ Cell.network.module.NetworkWithLoss.forward.0.input.1.data_info
567
+ ```
568
+ `y`后面是`Tensor`,命名结束;`y_mask`后面是`Tensor`,命名结束;`x_mask`后面是`Tensor`,命名结束;`data_info`后面是`dict`,key是`img_hw`,命名为
569
+ ```
570
+ Cell.network.module.NetworkWithLoss.forward.0.input.1.data_info.img_hw
571
+ ```
572
+ `img_hw`后面是`null`,命名结束。
573
+
574
+ `input_kwargs`是`dict`,长度为0,命名结束。
575
+ `output`是`list`,长度为1,按照顺序命名为
576
+ ```
577
+ Cell.network.module.NetworkWithLoss.forward.0.output.0
578
+ ```
579
+ 第0项后面是`Tensor`,命名结束。
580
+
581
+ 综上,生成的op_name为:
582
+ ```
583
+ Cell.network.module.NetworkWithLoss.forward.0.input.0
584
+ Cell.network.module.NetworkWithLoss.forward.0.input.1.y
585
+ Cell.network.module.NetworkWithLoss.forward.0.input.1.y_mask
586
+ Cell.network.module.NetworkWithLoss.forward.0.input.1.x_mask
587
+ Cell.network.module.NetworkWithLoss.forward.0.input.1.data_info.img_hw
588
+ Cell.network.module.NetworkWithLoss.forward.0.output.0
589
+ ```
590
+
591
+ ### 4.6 自定义映射文件(Layer_mapping)
384
592
 
385
593
  文件名格式:\*.yaml,*为文件名,可自定义。
386
594
 
@@ -406,13 +614,6 @@ PipelineCell:
406
614
 
407
615
  Cell:
408
616
  network_with_loss: module
409
-
410
- layers: # 手动映射MindSpore与PyTorch模型代码中的Layer层序号
411
- '5': '0'
412
- '6': '1'
413
- '7': '2'
414
- '8': '3'
415
- '9': '4'
416
617
  ```
417
618
 
418
619
  Layer层名称需要从模型代码中获取。
@@ -53,7 +53,7 @@ export INF_NAN_MODE_ENABLE=1
53
53
  2. 执行溢出 API 解析操作。
54
54
 
55
55
  ```bash
56
- msprobe -f pytorch run_overflow_check -api_info ./dump.json
56
+ msprobe -f pytorch run_overflow_check -api_info ./dump_path/step{step_number}/rank{rank_number}/dump.json
57
57
  ```
58
58
 
59
59
  | 参数名称 | 说明 | 是否必选 |