mindstudio-probe 1.0.4__py3-none-any.whl → 1.1.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {mindstudio_probe-1.0.4.dist-info → mindstudio_probe-1.1.1.dist-info}/METADATA +5 -5
- mindstudio_probe-1.1.1.dist-info/RECORD +341 -0
- {mindstudio_probe-1.0.4.dist-info → mindstudio_probe-1.1.1.dist-info}/WHEEL +1 -1
- {mindstudio_probe-1.0.4.dist-info → mindstudio_probe-1.1.1.dist-info}/entry_points.txt +0 -1
- msprobe/README.md +84 -18
- msprobe/__init__.py +16 -1
- msprobe/config.json +1 -5
- msprobe/core/advisor/advisor.py +16 -11
- msprobe/core/advisor/advisor_const.py +6 -7
- msprobe/core/advisor/advisor_result.py +12 -12
- msprobe/core/common/const.py +164 -3
- msprobe/core/common/exceptions.py +26 -4
- msprobe/core/common/file_utils.py +196 -27
- msprobe/core/common/inplace_op_checker.py +53 -0
- msprobe/core/common/inplace_ops.yaml +251 -0
- msprobe/core/common/log.py +46 -18
- msprobe/core/common/utils.py +308 -209
- msprobe/core/common_config.py +60 -38
- msprobe/core/compare/acc_compare.py +332 -94
- msprobe/core/compare/check.py +104 -22
- msprobe/core/compare/compare_cli.py +42 -5
- msprobe/core/compare/highlight.py +162 -57
- msprobe/core/compare/layer_mapping/__init__.py +19 -0
- msprobe/core/compare/layer_mapping/data_scope_parser.py +235 -0
- msprobe/core/compare/layer_mapping/layer_mapping.py +242 -0
- msprobe/core/compare/layer_mapping/postprocess_pass.py +94 -0
- msprobe/core/compare/multiprocessing_compute.py +33 -8
- msprobe/core/compare/npy_compare.py +73 -29
- msprobe/core/compare/utils.py +306 -247
- msprobe/core/data_dump/data_collector.py +44 -43
- msprobe/core/data_dump/data_processor/base.py +88 -35
- msprobe/core/data_dump/data_processor/factory.py +20 -3
- msprobe/core/data_dump/data_processor/mindspore_processor.py +14 -8
- msprobe/core/data_dump/data_processor/pytorch_processor.py +180 -66
- msprobe/core/data_dump/json_writer.py +63 -42
- msprobe/core/data_dump/scope.py +143 -48
- msprobe/core/grad_probe/constant.py +31 -13
- msprobe/core/grad_probe/grad_compare.py +20 -4
- msprobe/core/grad_probe/utils.py +44 -3
- msprobe/core/overflow_check/abnormal_scene.py +185 -0
- msprobe/core/overflow_check/api_info.py +55 -0
- msprobe/core/overflow_check/checker.py +138 -0
- msprobe/core/overflow_check/filter.py +157 -0
- msprobe/core/overflow_check/ignore_rules.yaml +55 -0
- msprobe/core/overflow_check/level.py +22 -0
- msprobe/core/overflow_check/utils.py +28 -0
- msprobe/docs/01.installation.md +29 -9
- msprobe/docs/02.config_introduction.md +83 -84
- msprobe/docs/03.config_examples.md +3 -20
- msprobe/docs/04.kernel_dump_PyTorch.md +73 -0
- msprobe/docs/05.data_dump_PyTorch.md +143 -13
- msprobe/docs/06.data_dump_MindSpore.md +197 -88
- msprobe/docs/07.accuracy_checker_PyTorch.md +69 -46
- msprobe/docs/08.accuracy_checker_online_PyTorch.md +52 -17
- msprobe/docs/09.accuracy_checker_MindSpore.md +51 -15
- msprobe/docs/10.accuracy_compare_PyTorch.md +187 -99
- msprobe/docs/11.accuracy_compare_MindSpore.md +253 -31
- msprobe/docs/12.overflow_check_PyTorch.md +1 -1
- msprobe/docs/13.overflow_check_MindSpore.md +6 -6
- msprobe/docs/15.free_benchmarking_PyTorch.md +60 -55
- msprobe/docs/16.free_benchmarking_MindSpore.md +159 -0
- msprobe/docs/17.grad_probe.md +19 -22
- msprobe/docs/18.online_dispatch.md +89 -0
- msprobe/docs/19.monitor.md +468 -0
- msprobe/docs/20.monitor_performance_baseline.md +52 -0
- msprobe/docs/21.visualization_PyTorch.md +386 -0
- msprobe/docs/22.visualization_MindSpore.md +384 -0
- msprobe/docs/23.tool_function_introduction.md +28 -0
- msprobe/docs/{FAQ_PyTorch.md → FAQ.md} +25 -10
- msprobe/docs/data_dump_Mindspore/dynamic_graph_quick_start_example.md +211 -0
- msprobe/docs/img/compare_result.png +0 -0
- msprobe/docs/img/monitor/cpu_info.png +0 -0
- msprobe/docs/img/ms_dump.png +0 -0
- msprobe/docs/img/ms_layer.png +0 -0
- msprobe/docs/img/pt_dump.png +0 -0
- msprobe/mindspore/__init__.py +16 -0
- msprobe/mindspore/api_accuracy_checker/api_accuracy_checker.py +130 -138
- msprobe/mindspore/api_accuracy_checker/api_info.py +27 -5
- msprobe/mindspore/api_accuracy_checker/api_runner.py +43 -18
- msprobe/mindspore/api_accuracy_checker/base_compare_algorithm.py +21 -7
- msprobe/mindspore/api_accuracy_checker/checker_support_api.yaml +77 -0
- msprobe/mindspore/api_accuracy_checker/cmd_parser.py +63 -1
- msprobe/mindspore/api_accuracy_checker/compute_element.py +59 -24
- msprobe/mindspore/api_accuracy_checker/data_manager.py +264 -0
- msprobe/mindspore/api_accuracy_checker/main.py +27 -3
- msprobe/mindspore/api_accuracy_checker/multi_api_accuracy_checker.py +206 -0
- msprobe/mindspore/api_accuracy_checker/multi_data_manager.py +58 -0
- msprobe/mindspore/api_accuracy_checker/type_mapping.py +22 -5
- msprobe/mindspore/api_accuracy_checker/utils.py +34 -17
- msprobe/mindspore/cell_processor.py +58 -13
- msprobe/mindspore/common/const.py +35 -13
- msprobe/mindspore/common/log.py +5 -9
- msprobe/mindspore/common/utils.py +60 -5
- msprobe/mindspore/compare/distributed_compare.py +15 -28
- msprobe/mindspore/compare/ms_compare.py +319 -158
- msprobe/mindspore/compare/ms_graph_compare.py +99 -49
- msprobe/mindspore/debugger/debugger_config.py +20 -14
- msprobe/mindspore/debugger/precision_debugger.py +43 -13
- msprobe/mindspore/dump/dump_tool_factory.py +18 -1
- msprobe/mindspore/dump/hook_cell/api_registry.py +23 -3
- msprobe/mindspore/dump/hook_cell/primitive_hooks.py +203 -0
- msprobe/mindspore/dump/hook_cell/support_wrap_ops.yaml +107 -10
- msprobe/mindspore/dump/hook_cell/wrap_api.py +21 -13
- msprobe/mindspore/dump/jit_dump.py +56 -20
- msprobe/mindspore/dump/kernel_graph_dump.py +19 -5
- msprobe/mindspore/dump/kernel_kbyk_dump.py +19 -6
- msprobe/mindspore/dym_loader/hook_dynamic_loader.cc +140 -0
- msprobe/mindspore/dym_loader/hook_dynamic_loader.h +53 -0
- msprobe/mindspore/free_benchmark/api_pynative_self_check.py +162 -41
- msprobe/mindspore/free_benchmark/common/config.py +15 -0
- msprobe/mindspore/free_benchmark/common/handler_params.py +15 -1
- msprobe/mindspore/free_benchmark/common/utils.py +37 -8
- msprobe/mindspore/free_benchmark/data/support_wrap_ops.yaml +0 -204
- msprobe/mindspore/free_benchmark/handler/base_handler.py +20 -5
- msprobe/mindspore/free_benchmark/handler/check_handler.py +21 -7
- msprobe/mindspore/free_benchmark/handler/fix_handler.py +18 -3
- msprobe/mindspore/free_benchmark/handler/handler_factory.py +21 -6
- msprobe/mindspore/free_benchmark/perturbation/add_noise.py +23 -8
- msprobe/mindspore/free_benchmark/perturbation/base_perturbation.py +29 -5
- msprobe/mindspore/free_benchmark/perturbation/bit_noise.py +25 -10
- msprobe/mindspore/free_benchmark/perturbation/exchange_value.py +45 -19
- msprobe/mindspore/free_benchmark/perturbation/improve_precision.py +29 -8
- msprobe/mindspore/free_benchmark/perturbation/no_change.py +16 -1
- msprobe/mindspore/free_benchmark/perturbation/perturbation_factory.py +22 -7
- msprobe/mindspore/free_benchmark/self_check_tool_factory.py +17 -2
- msprobe/mindspore/grad_probe/global_context.py +44 -14
- msprobe/mindspore/grad_probe/grad_analyzer.py +27 -13
- msprobe/mindspore/grad_probe/grad_monitor.py +16 -1
- msprobe/mindspore/grad_probe/grad_stat_csv.py +33 -5
- msprobe/mindspore/grad_probe/hook.py +24 -10
- msprobe/mindspore/grad_probe/utils.py +18 -5
- msprobe/mindspore/ms_config.py +22 -15
- msprobe/mindspore/overflow_check/kernel_graph_overflow_check.py +20 -6
- msprobe/mindspore/overflow_check/overflow_check_tool_factory.py +15 -0
- msprobe/mindspore/runtime.py +15 -0
- msprobe/mindspore/service.py +75 -150
- msprobe/mindspore/task_handler_factory.py +15 -0
- msprobe/msprobe.py +24 -7
- msprobe/pytorch/__init__.py +23 -3
- msprobe/pytorch/api_accuracy_checker/common/config.py +81 -2
- msprobe/pytorch/api_accuracy_checker/common/utils.py +53 -21
- msprobe/pytorch/api_accuracy_checker/compare/algorithm.py +19 -2
- msprobe/pytorch/api_accuracy_checker/compare/api_precision_compare.py +50 -25
- msprobe/pytorch/api_accuracy_checker/compare/compare.py +51 -21
- msprobe/pytorch/api_accuracy_checker/compare/compare_column.py +23 -6
- msprobe/pytorch/api_accuracy_checker/compare/compare_utils.py +28 -8
- msprobe/pytorch/api_accuracy_checker/config.yaml +1 -1
- msprobe/pytorch/api_accuracy_checker/generate_op_script/config_op.json +9 -0
- msprobe/pytorch/api_accuracy_checker/generate_op_script/op_generator.py +454 -0
- msprobe/pytorch/api_accuracy_checker/generate_op_script/operator_replication.template +365 -0
- msprobe/pytorch/api_accuracy_checker/run_ut/data_generate.py +73 -33
- msprobe/pytorch/api_accuracy_checker/run_ut/multi_run_ut.py +44 -18
- msprobe/pytorch/api_accuracy_checker/run_ut/run_overflow_check.py +32 -11
- msprobe/pytorch/api_accuracy_checker/run_ut/run_ut.py +122 -172
- msprobe/pytorch/api_accuracy_checker/run_ut/run_ut_utils.py +158 -4
- msprobe/pytorch/api_accuracy_checker/tensor_transport_layer/attl.py +30 -24
- msprobe/pytorch/api_accuracy_checker/tensor_transport_layer/client.py +68 -31
- msprobe/pytorch/api_accuracy_checker/tensor_transport_layer/device_dispatch.py +27 -4
- msprobe/pytorch/api_accuracy_checker/tensor_transport_layer/dump_dispatch.py +115 -0
- msprobe/pytorch/api_accuracy_checker/tensor_transport_layer/server.py +26 -9
- msprobe/pytorch/api_accuracy_checker/tensor_transport_layer/torch_ops_config.yaml +63 -0
- msprobe/pytorch/api_accuracy_checker/tensor_transport_layer/utils.py +44 -0
- msprobe/pytorch/bench_functions/__init__.py +18 -3
- msprobe/pytorch/bench_functions/apply_adam_w.py +15 -0
- msprobe/pytorch/bench_functions/confusion_transpose.py +20 -1
- msprobe/pytorch/bench_functions/fast_gelu.py +15 -0
- msprobe/pytorch/bench_functions/layer_norm_eval.py +15 -0
- msprobe/pytorch/bench_functions/linear.py +15 -0
- msprobe/pytorch/bench_functions/matmul_backward.py +33 -6
- msprobe/pytorch/bench_functions/npu_fusion_attention.py +280 -157
- msprobe/pytorch/bench_functions/rms_norm.py +15 -0
- msprobe/pytorch/bench_functions/rotary_mul.py +32 -9
- msprobe/pytorch/bench_functions/scaled_mask_softmax.py +15 -0
- msprobe/pytorch/bench_functions/swiglu.py +29 -6
- msprobe/pytorch/common/__init__.py +15 -0
- msprobe/pytorch/common/log.py +18 -6
- msprobe/pytorch/common/parse_json.py +31 -16
- msprobe/pytorch/common/utils.py +96 -40
- msprobe/pytorch/compare/distributed_compare.py +13 -14
- msprobe/pytorch/compare/match.py +15 -0
- msprobe/pytorch/compare/pt_compare.py +44 -10
- msprobe/pytorch/debugger/debugger_config.py +69 -52
- msprobe/pytorch/debugger/precision_debugger.py +72 -24
- msprobe/pytorch/dump/kernel_dump/kernel_config.py +33 -0
- msprobe/pytorch/free_benchmark/__init__.py +20 -5
- msprobe/pytorch/free_benchmark/common/constant.py +15 -0
- msprobe/pytorch/free_benchmark/common/counter.py +15 -0
- msprobe/pytorch/free_benchmark/common/enums.py +43 -0
- msprobe/pytorch/free_benchmark/common/params.py +23 -1
- msprobe/pytorch/free_benchmark/common/utils.py +43 -5
- msprobe/pytorch/free_benchmark/compare/grad_saver.py +47 -9
- msprobe/pytorch/free_benchmark/compare/single_benchmark.py +17 -0
- msprobe/pytorch/free_benchmark/main.py +19 -4
- msprobe/pytorch/free_benchmark/perturbed_layers/base_layer.py +15 -0
- msprobe/pytorch/free_benchmark/perturbed_layers/layer_factory.py +19 -4
- msprobe/pytorch/free_benchmark/perturbed_layers/npu/add_noise.py +18 -1
- msprobe/pytorch/free_benchmark/perturbed_layers/npu/bit_noise.py +21 -4
- msprobe/pytorch/free_benchmark/perturbed_layers/npu/change_value.py +28 -2
- msprobe/pytorch/free_benchmark/perturbed_layers/npu/improve_precision.py +19 -0
- msprobe/pytorch/free_benchmark/perturbed_layers/npu/no_change.py +15 -0
- msprobe/pytorch/free_benchmark/perturbed_layers/npu/npu_base_layser.py +15 -0
- msprobe/pytorch/free_benchmark/perturbed_layers/run_cpu.py +15 -0
- msprobe/pytorch/free_benchmark/result_handlers/base_handler.py +65 -16
- msprobe/pytorch/free_benchmark/result_handlers/check_handler.py +15 -0
- msprobe/pytorch/free_benchmark/result_handlers/fix_handler.py +21 -5
- msprobe/pytorch/free_benchmark/result_handlers/handler_factory.py +15 -0
- msprobe/pytorch/free_benchmark/result_handlers/preheat_handler.py +19 -4
- msprobe/pytorch/function_factory.py +17 -2
- msprobe/pytorch/functional/module_dump.py +84 -0
- msprobe/pytorch/grad_probe/grad_monitor.py +23 -6
- msprobe/pytorch/grad_probe/grad_stat_csv.py +40 -10
- msprobe/pytorch/hook_module/__init__.py +16 -1
- msprobe/pytorch/hook_module/api_registry.py +13 -8
- msprobe/pytorch/hook_module/hook_module.py +17 -19
- msprobe/pytorch/hook_module/support_wrap_ops.yaml +1 -0
- msprobe/pytorch/hook_module/utils.py +4 -6
- msprobe/pytorch/hook_module/wrap_aten.py +12 -11
- msprobe/pytorch/hook_module/wrap_distributed.py +6 -7
- msprobe/pytorch/hook_module/wrap_functional.py +21 -20
- msprobe/pytorch/hook_module/wrap_npu_custom.py +9 -17
- msprobe/pytorch/hook_module/wrap_tensor.py +4 -6
- msprobe/pytorch/hook_module/wrap_torch.py +4 -6
- msprobe/pytorch/hook_module/wrap_vf.py +4 -6
- msprobe/pytorch/module_processer.py +18 -6
- msprobe/pytorch/monitor/anomaly_analyse.py +201 -0
- msprobe/pytorch/monitor/anomaly_detect.py +340 -0
- msprobe/pytorch/monitor/distributed/distributed_ops.yaml +19 -0
- msprobe/pytorch/monitor/distributed/stack_blacklist.yaml +5 -0
- msprobe/pytorch/monitor/distributed/wrap_distributed.py +272 -0
- msprobe/pytorch/monitor/features.py +108 -0
- msprobe/pytorch/monitor/module_hook.py +870 -0
- msprobe/pytorch/monitor/module_metric.py +193 -0
- msprobe/pytorch/monitor/module_spec_verifier.py +93 -0
- msprobe/pytorch/monitor/optimizer_collect.py +295 -0
- msprobe/pytorch/monitor/unittest/__init__.py +0 -0
- msprobe/pytorch/monitor/unittest/test_monitor.py +145 -0
- msprobe/pytorch/monitor/utils.py +250 -0
- msprobe/pytorch/monitor/visualizer.py +59 -0
- msprobe/pytorch/online_dispatch/__init__.py +2 -3
- msprobe/pytorch/online_dispatch/compare.py +38 -48
- msprobe/pytorch/online_dispatch/dispatch.py +50 -25
- msprobe/pytorch/online_dispatch/dump_compare.py +21 -9
- msprobe/pytorch/online_dispatch/single_compare.py +60 -39
- msprobe/pytorch/online_dispatch/torch_ops_config.yaml +9 -1
- msprobe/pytorch/online_dispatch/utils.py +48 -23
- msprobe/pytorch/parse.py +15 -0
- msprobe/pytorch/parse_tool/cli.py +5 -6
- msprobe/pytorch/parse_tool/lib/compare.py +19 -26
- msprobe/pytorch/parse_tool/lib/config.py +1 -1
- msprobe/pytorch/parse_tool/lib/parse_tool.py +4 -2
- msprobe/pytorch/parse_tool/lib/utils.py +40 -55
- msprobe/pytorch/parse_tool/lib/visualization.py +3 -1
- msprobe/pytorch/pt_config.py +192 -40
- msprobe/pytorch/service.py +110 -35
- msprobe/visualization/__init__.py +14 -0
- msprobe/visualization/builder/__init__.py +14 -0
- msprobe/visualization/builder/graph_builder.py +165 -0
- msprobe/visualization/builder/msprobe_adapter.py +205 -0
- msprobe/visualization/compare/__init__.py +14 -0
- msprobe/visualization/compare/graph_comparator.py +130 -0
- msprobe/visualization/compare/mode_adapter.py +211 -0
- msprobe/visualization/graph/__init__.py +14 -0
- msprobe/visualization/graph/base_node.py +124 -0
- msprobe/visualization/graph/graph.py +200 -0
- msprobe/visualization/graph/node_colors.py +95 -0
- msprobe/visualization/graph/node_op.py +39 -0
- msprobe/visualization/graph_service.py +214 -0
- msprobe/visualization/utils.py +232 -0
- mindstudio_probe-1.0.4.dist-info/RECORD +0 -276
- msprobe/docs/04.acl_config_examples.md +0 -76
- msprobe/mindspore/free_benchmark/decorator/dec_forward.py +0 -43
- msprobe/mindspore/free_benchmark/decorator/decorator_factory.py +0 -107
- msprobe/pytorch/api_accuracy_checker/tensor_transport_layer/ssl_config.py +0 -10
- msprobe/pytorch/functional/dump_module.py +0 -39
- {mindstudio_probe-1.0.4.dist-info → mindstudio_probe-1.1.1.dist-info}/LICENSE +0 -0
- {mindstudio_probe-1.0.4.dist-info → mindstudio_probe-1.1.1.dist-info}/top_level.txt +0 -0
- /msprobe/{mindspore/free_benchmark/decorator → pytorch/monitor}/__init__.py +0 -0
- /msprobe/pytorch/{functional/data_processor.py → monitor/distributed/__init__.py} +0 -0
|
@@ -3,24 +3,21 @@
|
|
|
3
3
|
- 当调用 **PrecisionDebugger** 接口执行 dump 或其他操作时,需要使用 [config.json](../config.json) 文件;当未指定 config.json 时,将使用默认配置。
|
|
4
4
|
- msprobe 成功安装后,config.json 一般位于如下目录:
|
|
5
5
|
```
|
|
6
|
-
/home
|
|
6
|
+
/home/xxx/miniconda3/envs/xxx/lib/python3.xx/site-packages/msprobe/
|
|
7
7
|
```
|
|
8
8
|
|
|
9
9
|
## 1 参数介绍
|
|
10
10
|
|
|
11
11
|
### 1.1 通用配置
|
|
12
12
|
|
|
13
|
-
|
|
|
14
|
-
| -----------------
|
|
15
|
-
| task | dump 的任务类型,str
|
|
16
|
-
| dump_path | 设置 dump 数据目录路径,str 类型。<br/> **配置示例**:"dump_path": "./dump_path"。
|
|
17
|
-
| rank |
|
|
18
|
-
| step |
|
|
19
|
-
| level | dump 级别,str
|
|
20
|
-
|
|
|
21
|
-
| seed | 随机种子数,int 类型,默认值为:1234,仅 PyTorch 场景支持。通过固定随机数保证模型的输入或输出一致,可固定的随机数详见 [1.1.2 固定随机数范围(仅 PyTorch 场景支持)](#112-固定随机数范围仅-pytorch-场景支持)。<br/> **配置示例**:"seed": 1234。 | 否 |
|
|
22
|
-
| is_deterministic | 确定性计算模式,bool 类型,仅 PyTorch 场景支持。可取值 true(开启)或 false(关闭),默认关闭。<br/> 即使在相同的硬件和输入下,API 多次执行的结果也可能不同,开启确定性计算是为了保证在相同的硬件和输入下,API 多次执行的结果相同。<br/>确定性计算会导致 API 执行性能降低,建议在发现模型多次执行结果不同的情况下开启。<br/> rnn 类算子、ReduceSum、ReduceMean 等算子可能与确定性计算存在冲突,若开启确定性计算后多次执行的结果不相同,则考虑存在这些算子。<br/> **配置示例**:"is_deterministic": true。<br/> | 否 |
|
|
23
|
-
| enable_dataloader | 自动控制开关,bool 类型,仅 PyTorch 场景支持。可取值 true(开启)或 false(关闭),默认为 false。配置为 True 后自动识别 step 参数指定的迭代,并在该迭代执行完成后退出训练,此时 start、stop 和 step 函数可不配置,开启该开关要求训练脚本是通过 torch.utils.data.dataloader 方式加载数据。仅支持 PyTorch 单卡训练使用,分布式训练场景下存在数据 dump 不全问题,**下个版本即将废弃该功能**。 | 否 |
|
|
13
|
+
| 参数 | 解释 | 是否必选 |
|
|
14
|
+
| ----------------- |-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| -------- |
|
|
15
|
+
| task | dump 的任务类型,str 类型。可选参数:<br/> "statistics":仅采集统计信息,默认值;<br/> "tensor":采集统计信息和完全复刻整网的真实数据;<br/> "run_ut":精度预检,仅 PyTorch 场景支持,采集数据时勿选;<br/> "overflow_check":溢出检测;<br/> "free_benchmark":无标杆比对;<br/> "grad_probe":梯度监控。<br/> 根据 task 参数取值的不同,可以配置不同场景参数,详见:<br/>[1.2 task 配置为 statistics](#12-task-配置为-statistics),<br/>[1.3 task 配置为 tensor](#13-task-配置为-tensor),<br/>[1.4 task 配置为 run_ut](#14-task-配置为-run_ut),<br/>[1.5 task 配置为 overflow_check](#15-task-配置为-overflow_check),<br/>[1.6 task 配置为 free_benchmark](#16-task-配置为-free_benchmark),<br/>[1.7 task 配置为 grad_probe](#17-task-配置为-grad_probe)。 <br/> **配置示例**:"task": "tensor"。 | 否 |
|
|
16
|
+
| dump_path | 设置 dump 数据目录路径,str 类型。<br/> **配置示例**:"dump_path": "./dump_path"。 | 是 |
|
|
17
|
+
| rank | 指定对某张卡上的数据进行采集,list[Union[int, str]] 类型,默认未配置(表示采集所有卡的数据),应配置元素为 ≥0 的整数或类似"4-6"的字符串,且须配置实际可用的 Rank ID。<br/> PyTorch 场景: Rank ID 从 0 开始计数,最大取值为所有节点可用卡总数-1,若所配置的值大于实际训练所运行的卡的 Rank ID,则 dump 数据为空,比如当前环境 Rank ID 为 0 到 7,实际训练运行 0 到 3 卡,此时若配置 Rank ID 为 4 或不存在的 10 等其他值,dump 数据为空。<br/> MindSpore 场景:所有节点的 Rank ID 均从 0 开始计数,最大取值为每个节点可用卡总数-1,config.json 配置一次 rank 参数对所有节点同时生效。<br/> 注意,单卡训练时,rank必须为[],即空列表,不能指定rank。<br/>**配置示例**:"rank": [1, "4-6"]。 | 否 |
|
|
18
|
+
| step | 指定采集某个 step 的数据,list[Union[int, str]] 类型。默认未配置,表示采集所有 step 数据。采集特定 step 时,须指定为训练脚本中存在的 step,可逐个配置,也可以指定范围。<br/> **配置示例**:"step": [0, 1 , 2, "4-6"]。 | 否 |
|
|
19
|
+
| level | dump 级别,str 类型,根据不同级别采集不同数据。可选参数:<br/>"L0":dump 模块级精度数据,仅 PyTorch 与 MindSpore 动态图场景支持,使用背景详见 [1.1.1 模块级精度数据 dump 说明](#111-模块级精度数据-dump-说明);<br/>"L1":dump API 级精度数据,默认值,仅 PyTorch 与 MindSpore 动态图场景支持;<br/>"L2":dump kernel 级精度数据,PyTorch场景详细介绍见 [PyTorch 场景的 kernel dump 说明](./04.kernel_dump_PyTorch.md);<br/>"mix":dump module 模块级和 API 级精度数据,即"L0"+"L1",仅 PyTorch 与 MindSpore 动态图场景支持。<br/> **配置示例**:"level": "L1"。 | 否 |
|
|
20
|
+
| enable_dataloader | 自动控制开关,bool 类型,仅 PyTorch 场景支持。可选参数 true(开启)或 false(关闭),默认为 false。配置为 true 后自动识别 step 参数指定的迭代,并在该迭代执行完成后退出训练,此时 start、stop 和 step 函数可不配置,开启该开关要求训练脚本是通过 torch.utils.data.dataloader 方式加载数据。仅支持 PyTorch 单卡训练使用,分布式训练场景下存在数据 dump 不全问题。 **这个特性下个版本将被废弃** | 否 |
|
|
24
21
|
|
|
25
22
|
#### 1.1.1 模块级精度数据 dump 说明
|
|
26
23
|
|
|
@@ -32,79 +29,49 @@
|
|
|
32
29
|
|
|
33
30
|
模块指的是继承 nn.Module 类(PyTorch场景)或 nn.Cell 类(MindSpore场景)的子类,通常情况下这类模块就是一个小模型,可以被视为一个整体,dump 数据时以模块为粒度进行 dump。
|
|
34
31
|
|
|
35
|
-
#### 1.1.2 固定随机数范围(仅 PyTorch 场景支持)
|
|
36
|
-
|
|
37
|
-
seed_all 函数可固定随机数的范围如下表。
|
|
38
|
-
|
|
39
|
-
| API | 固定随机数 |
|
|
40
|
-
| ---------------------------------------- | --------------------------- |
|
|
41
|
-
| os.environ['PYTHONHASHSEED'] = str(seed) | 禁止 Python 中的 hash 随机化 |
|
|
42
|
-
| random.seed(seed) | 设置 random 随机生成器的种子 |
|
|
43
|
-
| np.random.seed(seed) | 设置 numpy 中随机生成器的种子 |
|
|
44
|
-
| torch.manual_seed(seed) | 设置当前 CPU 的随机种子 |
|
|
45
|
-
| torch.cuda.manual_seed(seed) | 设置当前 GPU 的随机种子 |
|
|
46
|
-
| torch.cuda.manual_seed_all(seed) | 设置所有 GPU 的随机种子 |
|
|
47
|
-
| torch_npu.npu.manual_seed(seed) | 设置当前 NPU 的随机种子 |
|
|
48
|
-
| torch_npu.npu.manual_seed_all(seed) | 设置所有 NPU 的随机种子 |
|
|
49
|
-
| torch.backends.cudnn.enable=False | 关闭 cuDNN |
|
|
50
|
-
| torch.backends.cudnn.benchmark=False | cuDNN 确定性地选择算法 |
|
|
51
|
-
| torch.backends.cudnn.deterministic=True | cuDNN 仅使用确定性的卷积算法 |
|
|
52
|
-
|
|
53
|
-
需要保证 CPU 或 GPU 以及 NPU 的模型输入完全一致,dump 数据的比对才有意义,seed_all 并不能保证模型输入完全一致,如下表所示场景需要保证输入的一致性。
|
|
54
|
-
|
|
55
|
-
| 场景 | 固定方法 |
|
|
56
|
-
| --------------- | ------------- |
|
|
57
|
-
| 数据集的 shuffle | 关闭 shuffle。 |
|
|
58
|
-
| dropout | 关闭 dropout。 |
|
|
59
|
-
|
|
60
|
-
关闭 shuffle 示例:
|
|
61
|
-
|
|
62
|
-
```python
|
|
63
|
-
train_loader = torch.utils.data.DataLoader(
|
|
64
|
-
train_dataset,
|
|
65
|
-
batch_size = batch_size,
|
|
66
|
-
shuffle = False,
|
|
67
|
-
num_workers = num_workers
|
|
68
|
-
)
|
|
69
|
-
```
|
|
70
|
-
|
|
71
|
-
关闭 dropout:
|
|
72
|
-
|
|
73
|
-
在使用 `from msprobe.pytorch import PrecisionDebugger` 后,工具会自动将 `torch.nn.functional.dropout`、`torch.nn.functional.dropout2d`、`torch.nn.functional.dropout3d`、`torch.nn.Dropout`、`torch.nn.Dropout2d`、`torch.nn.Dropout3d` 的接口参数 p 置为0。
|
|
74
|
-
|
|
75
32
|
### 1.2 task 配置为 statistics
|
|
76
33
|
|
|
77
|
-
|
|
78
|
-
|
|
79
|
-
|
|
80
|
-
|
|
81
|
-
|
|
82
|
-
|
|
34
|
+
<table>
|
|
35
|
+
<tr><th>参数</th><th>解释</th><th>是否必选</th></tr>
|
|
36
|
+
<tr><td>scope</td><td>PyTorch 和 MindSpore 动态图场景 dump 范围,list[str] 类型,默认未配置(list 也未配置时表示 dump 所有 API 的数据)。该参数可以在 [ ] 内配置两个模块名或 API 名,要求列表长度必须为2,需要配置按照工具命名格式的完整模块名或API名称,用于锁定区间,dump 该范围内的数据。<br/><b>配置示例</b>:
|
|
37
|
+
"scope": ["Module.conv1.Conv2d.forward.0", "Module.fc2.Linear.forward.0"],
|
|
38
|
+
或 "scope": ["Cell.conv1.Conv2d.forward.0", "Cell.fc2.Dense.backward.0"], 或"scope": ["Tensor.add.0.forward", "Functional.square.2.forward"]。与 level 参数取值相关,level 为 L0 级别时,可配置模块名;level 为 L1 级别时,可配置 API 名, level为 mix 级别时,可配置为模块名或API名。</td><td>否</td></tr>
|
|
39
|
+
<tr><td rowspan="4">list</td><td>自定义采集的算子列表,list[str] 类型,默认未配置(scope 也未配置时表示 dump 所有 API 的数据),包含以下配置方法:</td><td rowspan="4">否</td></tr>
|
|
40
|
+
<tr><td>PyTorch 和 MindSpore 动态图场景配置具体的 API 全称,dump 该 API 数据。在 PyTorch 场景,如果 level 配置成 L2,该配置为必填项。<br/><b>配置示例</b>:"list": ["Tensor.permute.1.forward", "Tensor.transpose.2.forward", "Torch.relu.3.backward"]。<br/> PyTorch 和 MindSpore 动态图场景在level为 mix 级别时可以配置模块名称,dump该模块展开数据 (dump该模块执行前到执行期间结束所有的数据)。
|
|
41
|
+
<br/><b>配置示例</b>:"list": ["Module.module.language_model.encoder.layers.0.mlp.ParallelMlp.forward.0"], 或 "list": ["Cell.network_with_loss.language_model.encoder.layers.0.mlp.ParallelMlp.forward.0"]</td></tr>
|
|
42
|
+
<tr><td>PyTorch 和 MindSpore 动态图场景指定某一类 API,dump 某一类的 API 级别输入输出数据。<br/><b>配置示例</b>:"list": ["relu"]。 <br/> PyTorch 和 MindSpore 动态图场景在level为 mix 级别时, 会dump名称中包含list中配置的字符串的API数据,还会将名称中包含list中配置的字符串的模块进行展开dump (dump该模块执行前到执行期间结束所有的数据)。</td></tr>
|
|
43
|
+
<tr><td>MindSpore 静态图场景配置 kernel_name,可以是算子的名称列表,也可以指定算子类型("level": "L2"时不支持),还可以配置算子名称的正则表达式(当字符串符合“name-regex(xxx)”格式时,后台则会将其作为正则表达式。<br/><b>配置示例</b>:list: ["name-regex(Default/.+)"]<br/>可匹配算子名称以“Default/”开头的所有算子。</td></tr>
|
|
44
|
+
<tr><td rowspan="3">data_mode</td><td>dump 数据过滤,str 类型。</td><td rowspan="3">否</td></tr>
|
|
45
|
+
<tr><td>PyTorch 与 MindSpore 动态图场景:支持"all"、"forward"、"backward"、"input"和"output",除"all"外,其余参数可以自由组合。默认为["all"],即保存所有 dump 的数据。<br/> <b>配置示例</b>:"data_mode": ["backward"] (仅保存反向数据)或 "data_mode": ["forward", "input"](仅保存前向的输入数据)。</td></tr>
|
|
46
|
+
<tr><td>MindSpore 静态图场景:仅支持"all"、"input"和"output"参数,且各参数只能单独配置,不支持自由组合。<br/><b>配置示例</b>:"data_mode": ["all"]。</td></tr>
|
|
47
|
+
<tr><td>summary_mode</td><td>控制 dump 文件输出的模式,str 类型,仅 PyTorch 与 MindSpore 动态图场景支持,可选参数:<br/> md5:dump 输出包含 CRC-32 值以及 API 统计信息的 dump.json 文件,用于验证数据的完整性;<br/> statistics:dump 仅输出包含 API 统计信息的 dump.json 文件,默认值。<br/><b>配置示例</b>:"summary_mode": "md5"。</td><td>否</td></tr>
|
|
48
|
+
</table>
|
|
49
|
+
|
|
50
|
+
**说明**:"summary_mode"配置为"md5"时,所使用的校验算法为CRC-32算法。
|
|
83
51
|
|
|
84
52
|
### 1.3 task 配置为 tensor
|
|
85
53
|
|
|
86
|
-
|
|
|
54
|
+
| 参数 | 解释 | 是否必选 |
|
|
87
55
|
| -------------- | ---------------------- | -------- |
|
|
88
56
|
| scope | 与[ 1.2 task 配置为 statistics ](#12-task-配置为-statistics)中的解释相同。 | 否 |
|
|
89
|
-
| list | 与[ 1.2 task 配置为 statistics ](#12-task-配置为-statistics)
|
|
90
|
-
| backward_input | 该输入文件为首次运行训练 dump 得到反向 API 输入的 dump 文件,str 类型,仅 PyTorch 场景支持,默认未配置。例如若需要 dump Functional.conv2d.1 API 的反向过程的输入输出,则需要在 dump 目录下查找命名包含 Functional.conv2d.1、backward 和 input 字段的 dump 文件。<br/>**配置示例**:"backward_input": ["./npu_dump/step0/rank0/Functional.conv2d.1.backward.input.0.pt"] | 否 |
|
|
57
|
+
| list | 与[ 1.2 task 配置为 statistics ](#12-task-配置为-statistics)中的解释相同。 | 否 |
|
|
91
58
|
| data_mode | 与[ 1.2 task 配置为 statistics ](#12-task-配置为-statistics)中的解释相同 | 否 |
|
|
92
|
-
| file_format |
|
|
93
|
-
| online_run_ut<sup>a
|
|
94
|
-
| nfs_path<sup>a
|
|
95
|
-
| host<sup>a
|
|
96
|
-
| port<sup>a
|
|
59
|
+
| file_format | tensor 数据的保存格式,str 类型,仅支持 MindSpore 静态图场景的 L2,不支持 L0 和 L1。可选参数:<br/> "bin":dump 的 tensor 文件为二进制格式;<br/>"npy":dump 的 tensor 文件后缀为 .npy,默认值。 | 否 |
|
|
60
|
+
| online_run_ut<sup>a</sup> | 在线预检模式开关,bool 类型,可选参数 true(开启)、false(关闭),默认未配置,表示关闭。配置为 true 表示开启在线预检。| 否 |
|
|
61
|
+
| nfs_path<sup>a</sup> | 在线预检模式共享存储目录路径,str 类型,用于 GPU 设备和 NPU 设备间进行通信。仅在 online_run_ut 字段配置为 true 时生效,配置该参数后 host 和 port 不生效。 | 否 |
|
|
62
|
+
| host<sup>a</sup> | 在线预检模式局域网场景信息接收端 IP,str 类型,用于 GPU 设备和 NPU 设备间进行通信,NPU 侧须配置为 GPU 侧的局域网 IP 地址。仅在 online_run_ut 字段配置为 true 时生效,局域网场景时,不能配置 nfs_path 参数,否则局域网场景不生效。 | 否 |
|
|
63
|
+
| port<sup>a</sup> | 在线预检模式局域网场景信息接收端端口号,int 类型,用于 GPU 设备和 NPU 设备间进行通信,NPU 侧须配置为 GPU 侧的端口号。仅在 online_run_ut 字段配置为 true 时生效,局域网场景时,不能配置 nfs_path 参数,否则局域网场景不生效。| 否 |
|
|
97
64
|
|
|
98
65
|
**a**:online_run_ut、nfs_path、host、port 等字段仅在线预检场景 NPU 机器生效。
|
|
99
66
|
|
|
100
67
|
### 1.4 task 配置为 run_ut
|
|
101
68
|
|
|
102
|
-
|
|
|
69
|
+
| 参数 | 解释 | 是否必选 |
|
|
103
70
|
| --------------- | ------------------------ | ------------ |
|
|
104
71
|
| white_list<sup>a</sup> | API dump 白名单,仅对指定的 API 进行 dump。<br/>**配置示例**:"white_list": ["conv1d", "conv2d"]。默认未配置白名单,即 dump 全量 API 数据。 | 否 |
|
|
105
72
|
| black_list<sup>a</sup> | API dump 黑名单,被指定的 API 不进行 dump。<br/>**配置示例**:"black_list": ["conv1d", "conv2d"]。默认未配置黑名单,即 dump 全量 API 数据。 | 否 |
|
|
106
73
|
| error_data_path | 配置保存精度未达标的 API 输入输出数据路径,默认为当前路径。<br/>**配置示例**:"error_data_path": "./"。 | 否 |
|
|
107
|
-
| is_online<sup>b</sup> | 在线预检模式开关,bool
|
|
74
|
+
| is_online<sup>b</sup> | 在线预检模式开关,bool 类型,可选参数 true(开启)、false(关闭),默认关闭。 | 否 |
|
|
108
75
|
| nfs_path<sup>b</sup> | 在线预检模式共享存储目录路径,str 类型,用于 GPU 设备和 NPU 设备间进行通信。配置该参数后 host 和 port 不生效,仅在 is_online 字段配置为 true 时生效。 | 否 |
|
|
109
76
|
| host<sup>b</sup> | 在线预检模式局域网场景信息接收端 IP,str 类型,用于 GPU 设备和 NPU 设备间进行通信,GPU 侧配置为本机地址 127.0.0.1 或本机局域网 IP。局域网场景时,不能配置 nfs_path 参数,否则局域网场景不生效。仅在 is_online 字段配置为 true 时生效。 | 否 |
|
|
110
77
|
| port<sup>b</sup> | 在线预检模式局域网场景信息接收端端口号,int 类型,用于 GPU 设备和 NPU 设备间进行通信,GPU 侧配置为本机可用端口。局域网场景时,不能配置 nfs_path 参数,否则局域网场景不生效。仅在 is_online 字段配置为 true 时生效。| 否 |
|
|
@@ -116,12 +83,12 @@ num_workers = num_workers
|
|
|
116
83
|
|
|
117
84
|
### 1.5 task 配置为 overflow_check
|
|
118
85
|
|
|
119
|
-
PyTorch 与 MindSpore 动态图场景下,"level"须为"L1";MindSpore 静态图场景下,"level"须为"L2"。
|
|
86
|
+
PyTorch 与 MindSpore 动态图场景下,"level"须为"L0"或"L1";MindSpore 静态图场景下,"level"须为"L2",且模型编译优化等级(jit_level)须为"O2"。
|
|
120
87
|
|
|
121
|
-
|
|
|
88
|
+
| 参数 | 解释 | 是否必选 |
|
|
122
89
|
| ------------- | ---------------------- | -------- |
|
|
123
90
|
| overflow_nums | 最大溢出次数,int 类型,默认为 1,仅 PyTorch 与 MindSpore 动态图场景支持。表示第 N 次溢出后,不再进行溢出检测。过程中检测到溢出 API 对应的 输入输出 数据均 dump。<br/>**配置示例**:"overflow_nums": 3。配置为 -1 时,表示持续检测溢出直到训练结束。 | 否 |
|
|
124
|
-
| check_mode |
|
|
91
|
+
| check_mode | 溢出类型,str 类型,仅 MindSpore 场景支持,可选参数:<br/>"aicore":开启 AI Core 的溢出检测,不支持 MindSpore v2.3.0 以上版本;<br/>"atomic":开启 Atomic 的溢出检测,不支持 MindSpore v2.3.0 以上版本;<br/>"all":开启算子的溢出检测,默认值。<br/>**配置示例**:"check_mode": "all"。 | 否 |
|
|
125
92
|
|
|
126
93
|
### 1.6 task 配置为 free_benchmark
|
|
127
94
|
|
|
@@ -133,18 +100,21 @@ PyTorch 与 MindSpore 动态图场景下,"level"须为"L1";MindSpore 静态
|
|
|
133
100
|
|
|
134
101
|
- 建议配置白名单(配置 scope 或 list)控制少量 API 进行无标杆比对,一次对过多 API 执行无标杆比对可能导致显存溢出或性能膨胀。
|
|
135
102
|
|
|
136
|
-
|
|
137
|
-
|
|
138
|
-
|
|
139
|
-
|
|
140
|
-
|
|
141
|
-
|
|
142
|
-
|
|
143
|
-
|
|
144
|
-
|
|
145
|
-
|
|
146
|
-
|
|
147
|
-
|
|
103
|
+
<table>
|
|
104
|
+
<tr><th>参数</th><th>解释</th><th>是否必选</th></tr>
|
|
105
|
+
<tr><td>scope</td><td>自定义检测 API 列表(仅 PyTorch 场景支持),list[str] 类型,默认值为空列表,当 list 也为空列表时,表示检测所有 API。需要在 [ ] 内配置具体 API 名(在 dump 的结果中查看)。与 list 参数不能同时配置。<br/><b>配置示例</b>:"scope": ["Torch.matmul.0.forward", "Tensor.pow.4.forward"]。</td><td>否</td></tr>
|
|
106
|
+
<tr><td rowspan="3">list</td><td>自定义检测 API 类型或 API 名称,list[str] 类型,默认值为空列表,表示检测所有 API(PyTorch 场景下还需 scope 也为空列表)。与 scope 参数不能同时配置。</td><td rowspan="3">否</td></tr>
|
|
107
|
+
<tr><td>PyTorch 场景:指定某一类 API,对某一类的 API 进行无标杆比对。<br/><b>配置示例</b>:"list": ["relu"]。</td></tr>
|
|
108
|
+
<tr><td>MindSpore 场景:指定 API 名称,对列表中的 API 进行检测。<br/><b>配置示例</b>:"list": ["mindspore.mint.div", "mindspore.ops.bmm", "mindspore.Tensor.__add__"]。</td></tr>
|
|
109
|
+
<tr><td>fuzz_device</td><td>标杆设备,str 类型。可选参数:<br/> "npu":无标杆,通过添加扰动因子进行比对,默认值;<br/> "cpu":以 CPU 为标杆,pert_mode 须配置为"to_cpu"(仅 PyTorch 场景支持)。<br/><b>配置示例</b>:"fuzz_device": "npu"。</td><td>否</td></tr>
|
|
110
|
+
<tr><td>pert_mode</td><td>无标杆扰动因子,str 类型。可选参数:<br/> "improve_precision":对输入做升精度,默认值;<br/> "add_noise":对输入增加噪声;<br/> "no_change":不加扰动直接二次执行;<br/> "bit_noise":输入的末位比特翻转,MindSpore 场景不支持 BF16 类型的向量;<br/> "change_value":输入的张量首尾值调换;<br/> "to_cpu":在 CPU 等价执行(仅 PyTorch 场景支持)。<br/><b>配置示例</b>:"pert_mode": "improve_precision"。</td><td>否</td></tr>
|
|
111
|
+
<tr><td>handler_type</td><td>处理类型,可选参数:<br/> "check":进行无标杆比对检查,默认值;<br/> "fix":将扰动后的 API 输出结果覆盖原始 API 输出结果,尝试将 Loss 曲线恢复正常,该模式下不支持预热功能与反向过程,且仅支持"improve_precision"、"to_cpu"( PyTorch 场景)两种扰动因子。<br/> <b>配置示例</b>:"handler_type": "check"。</td><td>否</td></tr>
|
|
112
|
+
<tr><td>fuzz_level</td><td>无标杆数据 dump 级别,即选择比对结果文件应输出的表头属性,当前仅支持取值为:"L1"。输出结果详见 <a href="#161-无标杆比对数据存盘格式">1.6.1 无标杆比对数据存盘格式</a>。</td><td>否</td></tr>
|
|
113
|
+
<tr><td>fuzz_stage</td><td>比对过程,选择对 API 前向或反向进行无标杆比对,可选参数:<br/> "forward":前向,默认值;<br/> "backward":反向。当 fuzz_stage 为 "backward" 时,handler_type 只能为 "check"。<br/> <b>配置示例</b>:"fuzz_stage": "backward"。</td><td>否</td></tr>
|
|
114
|
+
<tr><td>if_preheat</td><td>预热功能(仅 PyTorch 场景支持),bool 类型。开启功能后工具可以根据每次迭代的输出调整精度算法的阈值,从而更准确地找出存在精度问题的 API。当"handler_type": "fix"时,不支持预热。可选参数:<br/> true(开启)或 false(关闭),默认关闭。<br/> <b>配置示例</b>:"if_preheat": "true"。</td><td>否</td></tr>
|
|
115
|
+
<tr><td>preheat_step</td><td>开启预热的迭代数量(仅 PyTorch 场景支持),int 类型,默认值为 15。须配置 "if_preheat": "true"。</td><td>否</td></tr>
|
|
116
|
+
<tr><td>max_sample</td><td>每个算子预热的采样次数的最大阈值(仅 PyTorch 场景支持),int 类型,默认值为 20。须配置 "if_preheat": "true"。</td><td>否</td></tr>
|
|
117
|
+
</table>
|
|
148
118
|
|
|
149
119
|
#### 1.6.1 无标杆比对数据存盘格式
|
|
150
120
|
|
|
@@ -152,7 +122,7 @@ PyTorch 与 MindSpore 动态图场景下,"level"须为"L1";MindSpore 静态
|
|
|
152
122
|
|
|
153
123
|

|
|
154
124
|
|
|
155
|
-
| 字段 |
|
|
125
|
+
| 字段 | 解释 |
|
|
156
126
|
| ------------ | --------------------- |
|
|
157
127
|
| rank | Rank ID,int 类型。 |
|
|
158
128
|
| pert_mode | 扰动因子的类型,string 类型。 |
|
|
@@ -163,3 +133,32 @@ PyTorch 与 MindSpore 动态图场景下,"level"须为"L1";MindSpore 静态
|
|
|
163
133
|
| dtype | 输入的 dtype,string 类型。 |
|
|
164
134
|
| shape | 输入的 shape,tuple 类型。 |
|
|
165
135
|
| output_index | 如果输出为列表或元组,其中一个元素检测不一致,则会有该元素的 index,否则为空,int 类型。 |
|
|
136
|
+
|
|
137
|
+
|
|
138
|
+
### 1.7 task 配置为 grad_probe
|
|
139
|
+
|
|
140
|
+
**参数说明**
|
|
141
|
+
|
|
142
|
+
| 参数 | 说明 | 输入类型 | 是否必选 |
|
|
143
|
+
|--------------------------------|-----------------------------------|-----------------|----------|
|
|
144
|
+
| task | 填为"grad_probe"。 | str | 是 |
|
|
145
|
+
| dump_path | 输出目录。如果不存在就会创建一个新目录。 | str | 是 |
|
|
146
|
+
| rank | rank id列表,在多卡场景下,表示需要导出梯度数据的进程的rank id。列表为空就表示导出所有rank的数据。默认为空。采集特定 rank 时,须指定为训练脚本中存在的 rank_id,可逐个配置,也可以指定范围。<br/> **配置示例**:"rank": [0, 1 , 2, "4-6"]。(MindSpore静态图模式下,当前暂不支持指定rank功能) | list[Union[int, str]] | 否 |
|
|
147
|
+
| step | step列表,表示需要导出数据的step列表。列表为空就表示导出所有step的数据。默认为空。采集特定 step 时,须指定为训练脚本中存在的 step,可逐个配置,也可以指定范围。<br/> **配置示例**:"step": [0, 1 , 2, "4-6"]。(MindSpore静态图模式下,当前暂不支持指定step功能) | list[Union[int, str]] | 否 |
|
|
148
|
+
| grad_level | 输出级别。决定导出数据的详细程度,级别越大导出数据越详细。可取值:L0, L1, L2。默认L1。|str | 否 |
|
|
149
|
+
| param_list | 权重名称列表,表示需要监控的权重。列表为空就表示监控所有权重。默认为空。 | List[str] | 否 |
|
|
150
|
+
| bounds | 区间列表,用来划分区间以统计数值的分布。需要保证由数据小到大排列,并且列表中的元素需要在int64取值范围内。可以使用默认值[-1, 0, 1]。 | List[float, int] | 否 |
|
|
151
|
+
|
|
152
|
+
|
|
153
|
+
**不同级别的level的导出数据**
|
|
154
|
+
|
|
155
|
+
|
|
156
|
+
| 级别 | 特征数据表头 | 是否有方向数据 |
|
|
157
|
+
| ---- | ------------------------------------------------------------ | -------------- |
|
|
158
|
+
| L0 | ("param_name", "MD5", "max", "min", "norm", "shape") | 否 |
|
|
159
|
+
| L1 | ("param_name", "max", "min", "norm", "shape") | 是 |
|
|
160
|
+
| L2 | ("param_name", *intervals, "=0", "max", "min", "norm", "shape") | 是 |
|
|
161
|
+
|
|
162
|
+
intervals就是根据值分布bounds划分出的区间。
|
|
163
|
+
MindSpore静态图模式下,L0级别中暂不支持"MD5"
|
|
164
|
+
|
|
@@ -13,9 +13,6 @@
|
|
|
13
13
|
"rank": [],
|
|
14
14
|
"step": [],
|
|
15
15
|
"level": "L1",
|
|
16
|
-
"seed": 1234,
|
|
17
|
-
"is_deterministic": false,
|
|
18
|
-
"enable_dataloader": false,
|
|
19
16
|
|
|
20
17
|
"statistics": {
|
|
21
18
|
"scope": [],
|
|
@@ -35,15 +32,11 @@
|
|
|
35
32
|
"rank": [],
|
|
36
33
|
"step": [],
|
|
37
34
|
"level": "L1",
|
|
38
|
-
"seed": 1234,
|
|
39
|
-
"is_deterministic": false,
|
|
40
|
-
"enable_dataloader": false,
|
|
41
35
|
|
|
42
36
|
"tensor": {
|
|
43
37
|
"scope": [],
|
|
44
38
|
"list":[],
|
|
45
|
-
"data_mode": ["all"]
|
|
46
|
-
"backward_input": ""
|
|
39
|
+
"data_mode": ["all"]
|
|
47
40
|
}
|
|
48
41
|
}
|
|
49
42
|
```
|
|
@@ -57,9 +50,6 @@
|
|
|
57
50
|
"rank": [],
|
|
58
51
|
"step": [],
|
|
59
52
|
"level": "L1",
|
|
60
|
-
"seed": 1234,
|
|
61
|
-
"is_deterministic": false,
|
|
62
|
-
"enable_dataloader": false,
|
|
63
53
|
|
|
64
54
|
"run_ut": {
|
|
65
55
|
"white_list": [],
|
|
@@ -78,9 +68,6 @@
|
|
|
78
68
|
"rank": [],
|
|
79
69
|
"step": [],
|
|
80
70
|
"level": "L1",
|
|
81
|
-
"seed": 1234,
|
|
82
|
-
"is_deterministic": false,
|
|
83
|
-
"enable_dataloader": false,
|
|
84
71
|
|
|
85
72
|
"overflow_check": {
|
|
86
73
|
"overflow_nums": 1
|
|
@@ -97,9 +84,6 @@
|
|
|
97
84
|
"rank": [],
|
|
98
85
|
"step": [],
|
|
99
86
|
"level": "L1",
|
|
100
|
-
"seed": 1234,
|
|
101
|
-
"is_deterministic": false,
|
|
102
|
-
"enable_dataloader": false,
|
|
103
87
|
|
|
104
88
|
"free_benchmark": {
|
|
105
89
|
"scope": [],
|
|
@@ -116,7 +100,7 @@
|
|
|
116
100
|
}
|
|
117
101
|
```
|
|
118
102
|
|
|
119
|
-
## 2 MindSpore 静态图场景
|
|
103
|
+
## 2 MindSpore 静态图场景
|
|
120
104
|
|
|
121
105
|
### 2.1 task 配置为 statistics
|
|
122
106
|
|
|
@@ -148,8 +132,7 @@
|
|
|
148
132
|
|
|
149
133
|
"tensor": {
|
|
150
134
|
"list":[],
|
|
151
|
-
"data_mode": ["all"]
|
|
152
|
-
"backward_input": ""
|
|
135
|
+
"data_mode": ["all"]
|
|
153
136
|
}
|
|
154
137
|
}
|
|
155
138
|
```
|
|
@@ -0,0 +1,73 @@
|
|
|
1
|
+
# PyTorch 场景的 kernel dump 说明
|
|
2
|
+
|
|
3
|
+
当使用 msprobe 数据采集功能时,level 配置为 "L2" 表示采集 kernel 层级的算子数据,仅支持昇腾 NPU 平台。
|
|
4
|
+
|
|
5
|
+
本文主要介绍 kernel dump 的配置示例和采集结果介绍, msprobe 数据采集功能的详细使用参考 《[PyTorch 场景的精度数据采集](./05.data_dump_PyTorch.md)》。
|
|
6
|
+
|
|
7
|
+
## 1 kernel dump 配置示例
|
|
8
|
+
|
|
9
|
+
使用 kernel dump 时,list 必须要填一个 API 名称,kernel dump 目前每个 step 只支持采集一个 API 的数据。
|
|
10
|
+
API 名称填写参考 L1 dump 结果文件 dump.json 中的API名称,命名格式为:`{api_type}.{api_name}.{API调用次数}.{forward/backward}`。
|
|
11
|
+
|
|
12
|
+
```json
|
|
13
|
+
{
|
|
14
|
+
"task": "tensor",
|
|
15
|
+
"dump_path": "/home/data_dump",
|
|
16
|
+
"level": "L2",
|
|
17
|
+
"rank": [],
|
|
18
|
+
"step": [],
|
|
19
|
+
"tensor": {
|
|
20
|
+
"scope": [],
|
|
21
|
+
"list": ["Functional.linear.0.backward"]
|
|
22
|
+
}
|
|
23
|
+
}
|
|
24
|
+
```
|
|
25
|
+
|
|
26
|
+
## 2 结果文件介绍
|
|
27
|
+
|
|
28
|
+
### 2.1 采集结果说明
|
|
29
|
+
|
|
30
|
+
如果 API kernel 级数据采集成功,会打印以下信息:
|
|
31
|
+
|
|
32
|
+
```bash
|
|
33
|
+
The kernel data of {api_name} is dumped successfully.
|
|
34
|
+
```
|
|
35
|
+
|
|
36
|
+
注意:如果打印该信息后,没有数据生成,参考**常见问题3.1**进行排查。
|
|
37
|
+
|
|
38
|
+
如果 kernel dump 遇到不支持的 API, 会打印以下信息:
|
|
39
|
+
|
|
40
|
+
```bash
|
|
41
|
+
The kernel dump does not support the {api_name} API.
|
|
42
|
+
```
|
|
43
|
+
|
|
44
|
+
其中 {api_name} 是对应溢出的 API 名称。
|
|
45
|
+
|
|
46
|
+
### 2.2 输出文件说明
|
|
47
|
+
kernel dump 采集成功后,会在指定的 dump_path 目录下生成如下文件:
|
|
48
|
+
|
|
49
|
+
```
|
|
50
|
+
├── /home/data_dump/
|
|
51
|
+
│ ├── step0
|
|
52
|
+
│ │ ├── 20241201103000 # 日期时间格式,表示2024-12-01 10:30:00
|
|
53
|
+
│ │ │ ├── 0 # 表示 device id
|
|
54
|
+
│ │ │ │ ├──{op_type}.{op_name}.{task_id}.{stream_id}.{timestamp} # kernel 层算子数据
|
|
55
|
+
│ │ │ ...
|
|
56
|
+
│ │ ├── kernel_config_{device_id}.json # kernel dump 在接口调用过程中生成的中间文件,一般情况下无需关注
|
|
57
|
+
│ │ ...
|
|
58
|
+
│ ├── step1
|
|
59
|
+
│ ...
|
|
60
|
+
```
|
|
61
|
+
成功采集到数据后,可以使用 msprobe 工具提供的《[PyTorch 场景的数据解析](./14.data_parse_PyTorch.md)》功能分析数据。
|
|
62
|
+
|
|
63
|
+
## 3 常见问题
|
|
64
|
+
|
|
65
|
+
#### 3.1 采集结果文件为空,有可能是什么原因?
|
|
66
|
+
|
|
67
|
+
1. 首先需要确认工具使用方式、配置文件内容、list 填写的 API 名称格式是否都正确无误。
|
|
68
|
+
|
|
69
|
+
2. 其次需要确认 API 是否运行在昇腾 NPU 上,如果是运行在其他设备上则不会存在 kernel 级数据。
|
|
70
|
+
|
|
71
|
+
3. 如果排除上述两点仍然没有数据,您可以使用《[Ascend Extension for PyTorch 插件](https://gitee.com/ascend/pytorch)》提供的
|
|
72
|
+
torch_npu.npu 接口进行 kernel 层数据采集,工具的 kernel dump 也是基于其中的init_dump、set_dump和finalize_dump三个子接口实现的。
|
|
73
|
+
torch_npu.npu 接口详细描述见《[torch_npu.npu API 概述](https://www.hiascend.com/document/detail/zh/Pytorch/60RC3/apiref/apilist/ptaoplist_000192.html)》。
|