mindstudio-probe 1.0.4__py3-none-any.whl → 1.1.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (194) hide show
  1. {mindstudio_probe-1.0.4.dist-info → mindstudio_probe-1.1.0.dist-info}/METADATA +1 -1
  2. mindstudio_probe-1.1.0.dist-info/RECORD +287 -0
  3. msprobe/README.md +46 -16
  4. msprobe/__init__.py +16 -1
  5. msprobe/config.json +0 -2
  6. msprobe/core/advisor/advisor.py +8 -8
  7. msprobe/core/advisor/advisor_const.py +6 -7
  8. msprobe/core/advisor/advisor_result.py +12 -12
  9. msprobe/core/common/const.py +64 -3
  10. msprobe/core/common/exceptions.py +2 -2
  11. msprobe/core/common/file_utils.py +54 -9
  12. msprobe/core/common/inplace_op_checker.py +38 -0
  13. msprobe/core/common/inplace_ops.yaml +251 -0
  14. msprobe/core/common/log.py +21 -11
  15. msprobe/core/common/utils.py +153 -167
  16. msprobe/core/common_config.py +18 -25
  17. msprobe/core/compare/acc_compare.py +209 -36
  18. msprobe/core/compare/check.py +102 -17
  19. msprobe/core/compare/compare_cli.py +21 -1
  20. msprobe/core/compare/highlight.py +41 -5
  21. msprobe/core/compare/multiprocessing_compute.py +33 -8
  22. msprobe/core/compare/npy_compare.py +21 -6
  23. msprobe/core/compare/utils.py +82 -48
  24. msprobe/core/data_dump/data_collector.py +31 -32
  25. msprobe/core/data_dump/data_processor/base.py +45 -22
  26. msprobe/core/data_dump/data_processor/factory.py +20 -3
  27. msprobe/core/data_dump/data_processor/mindspore_processor.py +11 -5
  28. msprobe/core/data_dump/data_processor/pytorch_processor.py +24 -7
  29. msprobe/core/data_dump/json_writer.py +63 -42
  30. msprobe/core/data_dump/scope.py +32 -16
  31. msprobe/core/grad_probe/constant.py +4 -0
  32. msprobe/core/grad_probe/grad_compare.py +2 -3
  33. msprobe/core/grad_probe/utils.py +16 -3
  34. msprobe/docs/01.installation.md +19 -9
  35. msprobe/docs/02.config_introduction.md +52 -80
  36. msprobe/docs/03.config_examples.md +3 -13
  37. msprobe/docs/04.acl_config_examples.md +11 -9
  38. msprobe/docs/05.data_dump_PyTorch.md +140 -12
  39. msprobe/docs/06.data_dump_MindSpore.md +47 -5
  40. msprobe/docs/07.accuracy_checker_PyTorch.md +57 -34
  41. msprobe/docs/08.accuracy_checker_online_PyTorch.md +51 -11
  42. msprobe/docs/09.accuracy_checker_MindSpore.md +8 -8
  43. msprobe/docs/10.accuracy_compare_PyTorch.md +181 -99
  44. msprobe/docs/11.accuracy_compare_MindSpore.md +162 -31
  45. msprobe/docs/13.overflow_check_MindSpore.md +1 -1
  46. msprobe/docs/15.free_benchmarking_PyTorch.md +59 -53
  47. msprobe/docs/16.free_benchmarking_MindSpore.md +140 -0
  48. msprobe/docs/17.grad_probe.md +14 -16
  49. msprobe/docs/18.online_dispatch.md +89 -0
  50. msprobe/docs/{FAQ_PyTorch.md → FAQ.md} +22 -10
  51. msprobe/docs/img/ms_dump.png +0 -0
  52. msprobe/docs/img/ms_layer.png +0 -0
  53. msprobe/docs/img/pt_dump.png +0 -0
  54. msprobe/mindspore/__init__.py +1 -0
  55. msprobe/mindspore/api_accuracy_checker/api_accuracy_checker.py +35 -11
  56. msprobe/mindspore/api_accuracy_checker/api_info.py +7 -0
  57. msprobe/mindspore/cell_processor.py +27 -3
  58. msprobe/mindspore/common/const.py +2 -0
  59. msprobe/mindspore/common/utils.py +18 -2
  60. msprobe/mindspore/compare/distributed_compare.py +9 -22
  61. msprobe/mindspore/compare/layer_mapping.py +146 -0
  62. msprobe/mindspore/compare/modify_mapping.py +107 -0
  63. msprobe/mindspore/compare/ms_compare.py +173 -35
  64. msprobe/mindspore/compare/ms_graph_compare.py +27 -11
  65. msprobe/mindspore/debugger/debugger_config.py +16 -13
  66. msprobe/mindspore/debugger/precision_debugger.py +37 -13
  67. msprobe/mindspore/dump/dump_tool_factory.py +16 -1
  68. msprobe/mindspore/dump/hook_cell/api_registry.py +11 -1
  69. msprobe/mindspore/dump/hook_cell/primitive_hooks.py +206 -0
  70. msprobe/mindspore/dump/hook_cell/support_wrap_ops.yaml +82 -10
  71. msprobe/mindspore/dump/hook_cell/wrap_api.py +21 -13
  72. msprobe/mindspore/dump/jit_dump.py +41 -17
  73. msprobe/mindspore/dump/kernel_graph_dump.py +19 -3
  74. msprobe/mindspore/dump/kernel_kbyk_dump.py +19 -4
  75. msprobe/mindspore/free_benchmark/api_pynative_self_check.py +19 -4
  76. msprobe/mindspore/free_benchmark/common/config.py +15 -0
  77. msprobe/mindspore/free_benchmark/common/handler_params.py +15 -0
  78. msprobe/mindspore/free_benchmark/common/utils.py +19 -5
  79. msprobe/mindspore/free_benchmark/decorator/dec_forward.py +16 -2
  80. msprobe/mindspore/free_benchmark/decorator/decorator_factory.py +18 -3
  81. msprobe/mindspore/free_benchmark/handler/base_handler.py +18 -3
  82. msprobe/mindspore/free_benchmark/handler/check_handler.py +18 -3
  83. msprobe/mindspore/free_benchmark/handler/fix_handler.py +15 -0
  84. msprobe/mindspore/free_benchmark/handler/handler_factory.py +18 -3
  85. msprobe/mindspore/free_benchmark/perturbation/add_noise.py +22 -7
  86. msprobe/mindspore/free_benchmark/perturbation/base_perturbation.py +15 -0
  87. msprobe/mindspore/free_benchmark/perturbation/bit_noise.py +22 -7
  88. msprobe/mindspore/free_benchmark/perturbation/exchange_value.py +44 -18
  89. msprobe/mindspore/free_benchmark/perturbation/improve_precision.py +18 -4
  90. msprobe/mindspore/free_benchmark/perturbation/no_change.py +16 -1
  91. msprobe/mindspore/free_benchmark/perturbation/perturbation_factory.py +20 -5
  92. msprobe/mindspore/free_benchmark/self_check_tool_factory.py +15 -0
  93. msprobe/mindspore/grad_probe/global_context.py +18 -8
  94. msprobe/mindspore/overflow_check/kernel_graph_overflow_check.py +20 -4
  95. msprobe/mindspore/overflow_check/overflow_check_tool_factory.py +15 -0
  96. msprobe/mindspore/service.py +42 -123
  97. msprobe/pytorch/__init__.py +20 -1
  98. msprobe/pytorch/api_accuracy_checker/common/config.py +19 -2
  99. msprobe/pytorch/api_accuracy_checker/common/utils.py +53 -21
  100. msprobe/pytorch/api_accuracy_checker/compare/algorithm.py +19 -2
  101. msprobe/pytorch/api_accuracy_checker/compare/api_precision_compare.py +47 -21
  102. msprobe/pytorch/api_accuracy_checker/compare/compare.py +51 -21
  103. msprobe/pytorch/api_accuracy_checker/compare/compare_column.py +23 -6
  104. msprobe/pytorch/api_accuracy_checker/compare/compare_utils.py +28 -8
  105. msprobe/pytorch/api_accuracy_checker/config.yaml +1 -1
  106. msprobe/pytorch/api_accuracy_checker/run_ut/data_generate.py +67 -32
  107. msprobe/pytorch/api_accuracy_checker/run_ut/multi_run_ut.py +26 -5
  108. msprobe/pytorch/api_accuracy_checker/run_ut/run_overflow_check.py +19 -2
  109. msprobe/pytorch/api_accuracy_checker/run_ut/run_ut.py +51 -125
  110. msprobe/pytorch/api_accuracy_checker/run_ut/run_ut_utils.py +146 -3
  111. msprobe/pytorch/api_accuracy_checker/tensor_transport_layer/attl.py +21 -0
  112. msprobe/pytorch/api_accuracy_checker/tensor_transport_layer/client.py +78 -33
  113. msprobe/pytorch/api_accuracy_checker/tensor_transport_layer/device_dispatch.py +27 -4
  114. msprobe/pytorch/api_accuracy_checker/tensor_transport_layer/dump_dispatch.py +110 -0
  115. msprobe/pytorch/api_accuracy_checker/tensor_transport_layer/server.py +36 -11
  116. msprobe/pytorch/api_accuracy_checker/tensor_transport_layer/torch_ops_config.yaml +63 -0
  117. msprobe/pytorch/api_accuracy_checker/tensor_transport_layer/utils.py +44 -0
  118. msprobe/pytorch/bench_functions/__init__.py +18 -3
  119. msprobe/pytorch/bench_functions/apply_adam_w.py +15 -0
  120. msprobe/pytorch/bench_functions/confusion_transpose.py +15 -0
  121. msprobe/pytorch/bench_functions/fast_gelu.py +15 -0
  122. msprobe/pytorch/bench_functions/layer_norm_eval.py +15 -0
  123. msprobe/pytorch/bench_functions/linear.py +15 -0
  124. msprobe/pytorch/bench_functions/matmul_backward.py +21 -6
  125. msprobe/pytorch/bench_functions/npu_fusion_attention.py +180 -151
  126. msprobe/pytorch/bench_functions/rms_norm.py +15 -0
  127. msprobe/pytorch/bench_functions/rotary_mul.py +28 -9
  128. msprobe/pytorch/bench_functions/scaled_mask_softmax.py +15 -0
  129. msprobe/pytorch/bench_functions/swiglu.py +20 -5
  130. msprobe/pytorch/common/__init__.py +15 -0
  131. msprobe/pytorch/common/log.py +18 -6
  132. msprobe/pytorch/common/parse_json.py +26 -11
  133. msprobe/pytorch/common/utils.py +40 -35
  134. msprobe/pytorch/compare/distributed_compare.py +11 -11
  135. msprobe/pytorch/compare/match.py +15 -0
  136. msprobe/pytorch/compare/pt_compare.py +38 -6
  137. msprobe/pytorch/debugger/debugger_config.py +52 -39
  138. msprobe/pytorch/debugger/precision_debugger.py +72 -24
  139. msprobe/pytorch/free_benchmark/__init__.py +20 -5
  140. msprobe/pytorch/free_benchmark/common/enums.py +28 -0
  141. msprobe/pytorch/free_benchmark/common/params.py +15 -0
  142. msprobe/pytorch/free_benchmark/common/utils.py +17 -1
  143. msprobe/pytorch/free_benchmark/compare/grad_saver.py +28 -7
  144. msprobe/pytorch/free_benchmark/compare/single_benchmark.py +15 -0
  145. msprobe/pytorch/free_benchmark/main.py +19 -4
  146. msprobe/pytorch/free_benchmark/perturbed_layers/base_layer.py +15 -0
  147. msprobe/pytorch/free_benchmark/perturbed_layers/layer_factory.py +19 -4
  148. msprobe/pytorch/free_benchmark/perturbed_layers/npu/add_noise.py +15 -0
  149. msprobe/pytorch/free_benchmark/perturbed_layers/npu/bit_noise.py +15 -0
  150. msprobe/pytorch/free_benchmark/perturbed_layers/npu/change_value.py +26 -2
  151. msprobe/pytorch/free_benchmark/perturbed_layers/npu/improve_precision.py +15 -0
  152. msprobe/pytorch/free_benchmark/perturbed_layers/npu/no_change.py +15 -0
  153. msprobe/pytorch/free_benchmark/perturbed_layers/npu/npu_base_layser.py +15 -0
  154. msprobe/pytorch/free_benchmark/perturbed_layers/run_cpu.py +15 -0
  155. msprobe/pytorch/free_benchmark/result_handlers/base_handler.py +55 -16
  156. msprobe/pytorch/free_benchmark/result_handlers/check_handler.py +15 -0
  157. msprobe/pytorch/free_benchmark/result_handlers/fix_handler.py +15 -0
  158. msprobe/pytorch/free_benchmark/result_handlers/handler_factory.py +15 -0
  159. msprobe/pytorch/free_benchmark/result_handlers/preheat_handler.py +19 -4
  160. msprobe/pytorch/function_factory.py +17 -2
  161. msprobe/pytorch/functional/module_dump.py +84 -0
  162. msprobe/pytorch/grad_probe/grad_stat_csv.py +2 -2
  163. msprobe/pytorch/hook_module/__init__.py +16 -1
  164. msprobe/pytorch/hook_module/api_registry.py +13 -8
  165. msprobe/pytorch/hook_module/hook_module.py +17 -19
  166. msprobe/pytorch/hook_module/utils.py +4 -6
  167. msprobe/pytorch/hook_module/wrap_aten.py +12 -11
  168. msprobe/pytorch/hook_module/wrap_distributed.py +6 -7
  169. msprobe/pytorch/hook_module/wrap_functional.py +10 -11
  170. msprobe/pytorch/hook_module/wrap_npu_custom.py +9 -17
  171. msprobe/pytorch/hook_module/wrap_tensor.py +4 -6
  172. msprobe/pytorch/hook_module/wrap_torch.py +4 -6
  173. msprobe/pytorch/hook_module/wrap_vf.py +4 -6
  174. msprobe/pytorch/module_processer.py +17 -2
  175. msprobe/pytorch/online_dispatch/compare.py +11 -12
  176. msprobe/pytorch/online_dispatch/single_compare.py +7 -7
  177. msprobe/pytorch/online_dispatch/torch_ops_config.yaml +8 -0
  178. msprobe/pytorch/online_dispatch/utils.py +1 -4
  179. msprobe/pytorch/parse.py +15 -0
  180. msprobe/pytorch/parse_tool/cli.py +5 -6
  181. msprobe/pytorch/parse_tool/lib/compare.py +9 -10
  182. msprobe/pytorch/parse_tool/lib/parse_tool.py +3 -0
  183. msprobe/pytorch/parse_tool/lib/utils.py +28 -24
  184. msprobe/pytorch/parse_tool/lib/visualization.py +1 -1
  185. msprobe/pytorch/pt_config.py +167 -38
  186. msprobe/pytorch/service.py +97 -32
  187. mindstudio_probe-1.0.4.dist-info/RECORD +0 -276
  188. msprobe/pytorch/api_accuracy_checker/tensor_transport_layer/ssl_config.py +0 -10
  189. msprobe/pytorch/functional/data_processor.py +0 -0
  190. msprobe/pytorch/functional/dump_module.py +0 -39
  191. {mindstudio_probe-1.0.4.dist-info → mindstudio_probe-1.1.0.dist-info}/LICENSE +0 -0
  192. {mindstudio_probe-1.0.4.dist-info → mindstudio_probe-1.1.0.dist-info}/WHEEL +0 -0
  193. {mindstudio_probe-1.0.4.dist-info → mindstudio_probe-1.1.0.dist-info}/entry_points.txt +0 -0
  194. {mindstudio_probe-1.0.4.dist-info → mindstudio_probe-1.1.0.dist-info}/top_level.txt +0 -0
@@ -4,19 +4,25 @@
4
4
 
5
5
  msprobe精度比对工具主要用于如下场景:
6
6
 
7
- - 通过对同一个网络模型,在两个不同版本的MindSpore静态图环境下,输入相同的训练数据,在分别得到API dump数据后,对这两个API dump数据进行全量自动比对,从而快速定位不同版本之间的精度问题。
8
- - 通过对同一个网络模型,在两个不同版本的MindSpore静态图环境下,输入相同的训练数据,在分别得到kernel dump数据后,对这两个kernel dump数据进行全量自动比对,从而快速定位不同版本之间的精度问题。
9
- - 通过对同一个网络模型,在两个不同版本的MindSpore动态图环境下,输入相同的训练数据,在分别得到cell dump数据后,对这两个cell模块进行全量自动比对,从而快速定位不同版本之间的精度问题。
10
- - 通过对同一个网络模型,在整网环境下分别在MindSpore动态图和PyTorch环境下获得API dump数据,以PyTorch数据作为标杆,进行自动比对,从而实现跨框架的精度对比。
11
- - 通过对同一个网络模型,在整网环境下分别在MindSpore动态图和PyTorch环境下获得cell dump数据,由用户指定可以比对的cell list,以PyTorch数据作为标杆,进行自动比对,从而实现跨框架的精度对比。
7
+ - MindSpore框架内比对
8
+ - 通过对同一个网络模型,在两个不同版本的MindSpore静态图环境下,输入相同的训练数据,在分别得到API dump数据后,对这两个API dump数据进行全量自动比对,从而快速定位不同版本之间的精度问题。
9
+ - 通过对同一个网络模型,在两个不同版本的MindSpore静态图环境下,输入相同的训练数据,在分别得到kernel dump数据后,对这两个kernel dump数据进行全量自动比对,从而快速定位不同版本之间的精度问题。
10
+ - 通过对同一个网络模型,在两个不同版本的MindSpore动态图环境下,输入相同的训练数据,在分别得到cell dump数据后,对这两个cell模块进行全量自动比对,从而快速定位不同版本之间的精度问题。
11
+ - MindSporePyTorch跨框架比对
12
+ - 通过对同一个网络模型,在整网环境下分别在MindSpore动态图和PyTorch环境下获得API dump数据,以PyTorch数据作为标杆,进行自动比对,从而实现跨框架的精度对比。
13
+ - 通过对同一个网络模型,在整网环境下分别在MindSpore动态图和PyTorch环境下获得cell dump数据,由用户指定可以比对的cell list,以PyTorch数据作为标杆,进行自动比对,从而实现跨框架的精度对比。
14
+ - 通过对同一个网络模型,在整网环境下分别在MindSpore动态图和PyTorch环境下获得API或模块dump数据,由用户指定可以比对的API或模块,以PyTorch数据作为标杆,进行自动比对,从而实现跨框架的精度对比。
15
+ - 通过对同一个网络模型,在整网环境下分别在MindSpore动态图和PyTorch环境下获得API或模块dump数据,由用户指定可以比对的模型代码中的Layer层,以PyTorch数据作为标杆,进行自动比对,从而实现跨框架的精度对比。
12
16
 
13
- 执行精度比对操作需要安装msprobe工具。详见《[MindStudio精度调试工具](../../README.md)》的“工具安装”章节。
17
+ 执行精度比对操作需要安装msprobe工具。详见《[MindStudio精度调试工具](../README.md)》的“工具安装”章节。
14
18
 
15
- ## 2 命令行方式
19
+ ## 2 命令行比对
16
20
 
17
21
  精度比对工具目前使用方式为命令行形式。
18
22
 
19
- ### 2.1 命令格式说明
23
+ ### 2.1 比对命令说明
24
+
25
+ 命令示例如下:
20
26
 
21
27
  ```shell
22
28
  msprobe -f mindspore compare -i ./compare.json -o ./output -s
@@ -24,15 +30,17 @@ msprobe -f mindspore compare -i ./compare.json -o ./output -s
24
30
 
25
31
  **完整参数说明**
26
32
 
27
- | 参数名 | 说明 | 是否必选 |
28
- | ------------------- | ------------------------------------------------------------ | -------- |
29
- | -i或--input_path | 指定比对文件。比对文件内容及示例请参见[比对文件](#31-比对文件)或[比对文件(kernel)](#32-比对文件(kernel)(比对文件(kernel)仅[不同版本下的全量kernel比对](#23-不同版本下的全量kernel比对)场景支持)。 | 是 |
30
- | -o或--output_path | 配置比对结果文件存盘目录。文件名称基于时间戳自动生成,格式为:<br> `compare_result_{timestamp}.xlsx`<br/> `compare_result_{rank_id}_{step_id}_{timestamp}.xlsx`(仅[不同版本下的全量kernel比对](#23-不同版本下的全量kernel比对)场景支持)。 | 是 |
31
- | -s或--stack_mode | 配置stack_mode的开关。仅当[比对文件](#31-比对文件)配置"stack_path"需要开启。通过直接配置该参数开启,默认未配置,表示关闭。 | 否 |
32
- | -c或--compare_only | 仅比对开关。该参数默认未配置,表示关闭仅比对,使用自动精度分析,工具自动针对比对结果进行分析,识别到第一个精度不达标节点(在比对结果文件中的“Accuracy Reached or Not”列显示为No),并给出问题可能产生的原因(打屏展示并生成advisor_{timestamp}.txt文件)。配置该参数开启仅比对,关闭自动精度分析,仅输出比对结果表格。 | 否 |
33
- | -f或--fuzzy_match | 模糊匹配。开启后,对于网络中同一层级且命名仅调用次数不同的API,可匹配并进行比对。通过直接配置该参数开启,默认未配置,表示关闭。 | 否 |
34
- | -am或--api_mapping | 跨框架比对。配置该参数时表示开启跨框架API比对功能。仅[跨框架的API比对](#25-跨框架的API比对)场景支持。 | 否 |
35
- | -cm或--cell_mapping | 跨框架比对。配置该参数时表示开启跨框架cell模块比对功能,可以指定自定义映射文件*.yaml,不指定映射文件时按照msprobe定义的默认映射关系进行比对。自定义映射文件的格式请参见[自定义映射文件](#33-自定义映射文件)。仅[跨框架的cell模块比对](#26-跨框架的cell模块比对)场景支持。 | 否 |
33
+ | 参数名 | 说明 | 是否必选 |
34
+ | -------------------- | ------------------------------------------------------------ | -------- |
35
+ | -i或--input_path | 指定比对文件。比对文件内容及示例请参见[比对文件](#31-比对文件)或[比对文件(kernel)](#32-比对文件kernel)(比对文件(kernel)仅[不同版本下的全量kernel比对](#23-不同版本下的全量kernel比对)场景支持)。 | 是 |
36
+ | -o或--output_path | 配置比对结果文件存盘目录。文件名称基于时间戳自动生成,格式为:<br> `compare_result_{timestamp}.xlsx`<br/> `compare_result_{rank_id}_{step_id}_{timestamp}.xlsx`(仅[不同版本下的全量kernel比对](#23-不同版本下的全量kernel比对)场景支持)。 | 是 |
37
+ | -s或--stack_mode | 配置stack_mode的开关。仅当[比对文件](#31-比对文件)配置"stack_path"需要开启。通过直接配置该参数开启,默认未配置,表示关闭。 | 否 |
38
+ | -c或--compare_only | 仅比对开关,bool 类型。该参数默认未配置,会启用自动精度分析,工具自动针对比对结果进行分析,识别到第一个精度可能不达标节点(在比对结果文件中的 Accuracy Reached or Not 列显示为 No),并给出问题可能产生的原因(打屏展示并生成 `advisor_{timestamp}.txt` 文件)。通过配置该参数取消自动精度分析,仅输出比对结果表格。 | 否 |
39
+ | -f或--fuzzy_match | 模糊匹配。开启后,对于网络中同一层级且命名仅调用次数不同的API,可匹配并进行比对。通过直接配置该参数开启,默认未配置,表示关闭。 | 否 |
40
+ | -am或--api_mapping | 跨框架比对。配置该参数时表示开启跨框架API比对功能。仅[跨框架的API比对](#25-跨框架的api比对)场景需要配置。 | 否 |
41
+ | -cm或--cell_mapping | 跨框架比对。配置该参数时表示开启跨框架cell模块比对功能,可以指定自定义映射文件*.yaml,不指定映射文件时按照msprobe定义的默认映射关系进行比对。自定义映射文件的格式请参见[自定义映射文件(cell)](#33-自定义映射文件cell)。仅[跨框架的cell模块比对](#26-跨框架的cell模块比对)场景需要配置。 | 否 |
42
+ | -dm或--data_mapping | 跨框架比对。配置该参数时表示开启跨框架API或模块的比对功能,需要指定自定义映射文件*.yaml。自定义映射文件的格式请参见[自定义映射文件(API和模块)](#34-自定义映射文件api和模块)。仅[跨框架的API或模块比对](#27-跨框架的api或模块比对)场景需要配置。 | 否 |
43
+ | -lm或--layer_mapping | 跨框架比对。配置该参数时表示开启跨框架Layer层的比对功能,指定模型代码中的Layer层后,可以识别对应dump数据中的模块或API。需要指定自定义映射文件*.yaml。自定义映射文件的格式请参见[自定义映射文件(Layer)](#35-自定义映射文件layer)。仅[跨框架的Layer层比对](#28-跨框架的layer层比对)场景需要配置。 | 否 |
36
44
 
37
45
  ### 2.2 不同版本下的全量API比对
38
46
 
@@ -46,13 +54,13 @@ msprobe -f mindspore compare -i ./compare.json -o ./output -s
46
54
  msprobe -f mindspore compare -i ./compare.json -o ./output -s
47
55
  ```
48
56
 
49
- 4. 查看比对结果,请详见PyTorch目录下的《[PyTorch 场景的精度比对-精度比对结果分析](./10.accuracy_compare_PyTorch.md#3-精度比对结果分析)]》章节。
57
+ 4. 查看比对结果,请详见PyTorch目录下的《[PyTorch 场景的精度比对-精度比对结果分析](./10.accuracy_compare_PyTorch.md#3-精度比对结果分析)》章节。
50
58
 
51
59
  ### 2.3 不同版本下的全量kernel比对
52
60
 
53
61
  1. 参见《[MindSpore 场景的精度数据采集](./06.data_dump_MindSpore.md)》完成不同环境下MindSpore静态图精度数据的采集,得到不同框架版本的kernel dump数据。
54
62
 
55
- 2. 创建比对文件,文件内容及示例请参见[比对文件(kernel)](#32-比对文件(kernel)。
63
+ 2. 创建比对文件,文件内容及示例请参见[比对文件(kernel)](#32-比对文件kernel)。
56
64
 
57
65
  3. 执行如下示例命令进行比对:
58
66
 
@@ -60,7 +68,9 @@ msprobe -f mindspore compare -i ./compare.json -o ./output -s
60
68
  msprobe -f mindspore compare -i ./compare.json -o ./output
61
69
  ```
62
70
 
63
- 4. 查看比对结果,请详见PyTorch目录下的《[PyTorch 场景的精度比对-精度比对结果分析](./10.accuracy_compare_PyTorch.md#3-精度比对结果分析)]》章节。
71
+ 该场景仅支持compare的-i和-o参数。
72
+
73
+ 4. 查看比对结果,请详见PyTorch目录下的《[PyTorch 场景的精度比对-精度比对结果分析](./10.accuracy_compare_PyTorch.md#3-精度比对结果分析)》章节。
64
74
 
65
75
  ### 2.4 不同版本下的cell模块比对
66
76
 
@@ -76,7 +86,7 @@ msprobe -f mindspore compare -i ./compare.json -o ./output -s
76
86
  msprobe -f mindspore compare -i ./compare.json -o ./output -s
77
87
  ```
78
88
 
79
- 5. 查看比对结果,请详见PyTorch目录下的《[PyTorch 场景的精度比对-精度比对结果分析](./10.accuracy_compare_PyTorch.md#3-精度比对结果分析)]》章节。
89
+ 5. 查看比对结果,请详见PyTorch目录下的《[PyTorch 场景的精度比对-精度比对结果分析](./10.accuracy_compare_PyTorch.md#3-精度比对结果分析)》章节。
80
90
 
81
91
  ### 2.5 跨框架的API比对
82
92
 
@@ -92,7 +102,7 @@ msprobe -f mindspore compare -i ./compare.json -o ./output -s
92
102
  msprobe -f mindspore compare -i ./compare.json -o ./output -s -am
93
103
  ```
94
104
 
95
- 5. 查看比对结果,请详见PyTorch目录下的《[PyTorch 场景的精度比对-精度比对结果分析](./10.accuracy_compare_PyTorch.md#3-精度比对结果分析)]》章节。
105
+ 5. 查看比对结果,请详见PyTorch目录下的《[PyTorch 场景的精度比对-精度比对结果分析](./10.accuracy_compare_PyTorch.md#3-精度比对结果分析)》章节。
96
106
 
97
107
  ### 2.6 跨框架的cell模块比对
98
108
 
@@ -114,7 +124,49 @@ msprobe -f mindspore compare -i ./compare.json -o ./output -s
114
124
  msprobe -f mindspore compare -i ./compare.json -o ./output -s -cm cell_mapping.yaml
115
125
  ```
116
126
 
117
- 5. 查看比对结果,请详见PyTorch目录下的《[PyTorch 场景的精度比对-精度比对结果分析](./10.accuracy_compare_PyTorch.md#3-精度比对结果分析)]》章节。
127
+ cell_mapping.yaml文件配置请参见[自定义映射文件(cell)](#33-自定义映射文件cell)
128
+
129
+ 5. 查看比对结果,请详见PyTorch目录下的《[PyTorch 场景的精度比对-精度比对结果分析](./10.accuracy_compare_PyTorch.md#3-精度比对结果分析)》章节。
130
+
131
+ ### 2.7 跨框架的API或模块比对
132
+
133
+ 该场景可用于在“**跨框架的API比对**”和“**跨框架的cell模块比对**”场景均无法完全覆盖模型中的API和模块时,通过手动指定映射关系来补全未被比对的API或模块。
134
+
135
+ 1. 配置[config.json](../config.json)文件level配置为L0或L1、task配置为tensor或statistics并指定需要dump的API或模块名。
136
+
137
+ 2. 参见《[MindSpore 场景的精度数据采集](./06.data_dump_MindSpore.md)》和《[PyTorch 场景的精度数据采集](./05.data_dump_PyTorch.md)》完成不同环境下API或模块精度数据的采集,得到两个框架的API或模块dump数据。
138
+
139
+ 3. 创建比对文件,文件内容及示例请参见[比对文件](#31-比对文件)。
140
+
141
+ 4. 执行如下示例命令进行比对:
142
+
143
+ ```shell
144
+ msprobe -f mindspore compare -i ./compare.json -o ./output -s -dm data_mapping.yaml
145
+ ```
146
+
147
+ data_mapping.yaml文件配置请参见[自定义映射文件(all)](#34-自定义映射文件all)。
148
+
149
+ 5. 查看比对结果,请详见PyTorch目录下的《[PyTorch 场景的精度比对-精度比对结果分析](./10.accuracy_compare_PyTorch.md#3-精度比对结果分析)》章节。
150
+
151
+ ### 2.8 跨框架的Layer层比对
152
+
153
+ 该场景可简化API或模块场景的配置,从Layer层识别整网的API和模块。
154
+
155
+ 1. 配置[config.json](../config.json)文件level配置为L0或mix、task配置为tensor或statistics并指定需要dump的API或模块名。
156
+
157
+ 2. 参见《[MindSpore 场景的精度数据采集](./06.data_dump_MindSpore.md)》和《[PyTorch 场景的精度数据采集](./05.data_dump_PyTorch.md)》完成不同环境下API或模块精度数据的采集,得到两个框架的API或模块dump数据。
158
+
159
+ 3. 创建比对文件,文件内容及示例请参见[比对文件](#31-比对文件)。
160
+
161
+ 4. 执行如下示例命令进行比对:
162
+
163
+ ```shell
164
+ msprobe -f mindspore compare -i ./compare.json -o ./output -s -lm layer_mapping.yaml
165
+ ```
166
+
167
+ layer_mapping.yaml文件配置请参见[自定义映射文件(Layer)](#35-自定义映射文件layer)。
168
+
169
+ 5. 查看比对结果,请详见PyTorch目录下的《[PyTorch 场景的精度比对-精度比对结果分析](./10.accuracy_compare_PyTorch.md#3-精度比对结果分析)》章节。
118
170
 
119
171
  ## 3 附录
120
172
 
@@ -140,7 +192,7 @@ msprobe -f mindspore compare -i ./compare.json -o ./output -s
140
192
  | npu_path | 配置NPU环境下的dump.json文件(单卡场景)。跨框架场景指定为MindSpore的json文件。数据类型:str。 | 是 |
141
193
  | bench_path | 配置CPU、GPU或NPU环境下的dump.json文件(单卡场景)。 跨框架场景指定为PyTorch的json文件。数据类型:str。 | 是 |
142
194
  | stack_path | 配置NPU dump目录下的stack.json文件。数据类型:str。 | 是 |
143
- | is_print_compare_log | 配置是否开启日志打屏。可取值true或false,默认为true。数据类型:bool | 否 |
195
+ | is_print_compare_log | 配置是否开启单个算子的日志打屏。可取值true或false,默认为true。关闭后则只输出常规日志。数据类型:bool | 否 |
144
196
 
145
197
  ### 3.2 比对文件(kernel)
146
198
 
@@ -175,24 +227,24 @@ msprobe -f mindspore compare -i ./compare.json -o ./output -s
175
227
 
176
228
  | 参数名 | 说明 | 是否必选 |
177
229
  | ---------- | ------------------------------------------------------------ | -------- |
178
- | npu_path | 配置NPU环境下的dump.json文件目录(单卡场景)或真实数据目录(多卡场景)。数据类型:str。 | 是 |
179
- | bench_path | 配置CPU、GPU或NPU环境下的dump.json文件目录(单卡场景)或真实数据目录(多卡场景)。数据类型:str。 | 是 |
230
+ | npu_path | 配置NPU环境下的真实数据目录。数据类型:str。 | 是 |
231
+ | bench_path | 配置NPU环境下的真实数据目录。数据类型:str。 | 是 |
180
232
  | rank_id | 配置比对的Rank ID。npu_path和bench_path目录下的dump文件需要存在对应Rank的数据。默认为空,表示比对所有Rank。可配置一个或多个Rank,多个Rank ID用逗号隔开,例如:"rank_id": [1,2,3]。数据类型:list[int]。 | 否 |
181
- | step_id | 配置比对的Step ID。npu_path和bench_path目录下的dump文件需要存在对应Step的数据。默认为空,表示比对所有Sank。可配置一个或多个Sank,多个Sank ID用逗号隔开,例如:"step_id": [1,2,3]。数据类型:list[int]。 | 否 |
233
+ | step_id | 配置比对的Step ID。npu_path和bench_path目录下的dump文件需要存在对应Step的数据。默认为空,表示比对所有Step。可配置一个或多个Step,多个Step ID用逗号隔开,例如:"step_id": [1,2,3]。数据类型:list[int]。 | 否 |
182
234
 
183
- ### 3.3 自定义映射文件
235
+ ### 3.3 自定义映射文件(cell)
184
236
 
185
237
  文件名格式:\*.yaml,*为文件名,可自定义。
186
238
 
187
239
  文件内容格式:
188
240
 
189
241
  ```yaml
190
- {cell_name}.{class_name}: {cell_name}.{class_name}
242
+ {cell_name}.{class_name}: {module_name}.{class_name}
191
243
  ```
192
244
 
193
- 左侧为MindSpore框架cell模块的{cell_name}.{class_name},右侧为PyTorch框架cell模块的{cell_name}.{class_name}。
245
+ 冒号左侧为MindSpore框架cell模块的{cell_name}.{class_name},冒号右侧为PyTorch框架module模块的{module_name}.{class_name}。
194
246
 
195
- {cell_name}.{class_name}从dump cell模块级.npy文件名获取,命名格式为:`{Cell}_{cell_name}_{class_name}_{前向反向}.{index}.{input/output}.{参数序号}`
247
+ {cell_name}.{class_name}从dump cell模块级.npy文件名获取,命名格式为:`{Cell}.{cell_name}.{class_name}.{前向反向}.{index}.{input/output}.{参数序号}`
196
248
 
197
249
  文件内容示例:
198
250
 
@@ -200,3 +252,82 @@ msprobe -f mindspore compare -i ./compare.json -o ./output -s
200
252
  fc2.Dense: fc2.Linear
201
253
  conv1.Conv2d: conv3.Conv2d
202
254
  ```
255
+
256
+ ### 3.4 自定义映射文件(API和模块)
257
+
258
+ 文件名格式:\*.yaml,*为文件名,可自定义。
259
+
260
+ 文件内容格式:
261
+
262
+ ```yaml
263
+ # API
264
+ {api_type}.{api_name}.{API调用次数}.{前向反向}.{input/output}.{参数序号}: {api_type}.{api_name}.{API调用次数}.{前向反向}.{input/output}.{参数序号}
265
+ # 模块
266
+ {Cell}.{cell_name}.{class_name}.{前向反向}.{index}.{input/output}.{参数序号}: {Module}.{module_name}.{前向反向}.{index}.{input/output}.{参数序号}
267
+ ```
268
+
269
+ 冒号左侧为MindSpore框架API的名称和Cell模块的名称,冒号右侧为PyTorch框架API的名称和module模块名称。
270
+
271
+ API和模块名称请分别从《[MindSpore 场景的精度数据采集](./06.data_dump_MindSpore.md)》和《[PyTorch 场景的精度数据采集](./05.data_dump_PyTorch.md)》中的dump.json文件获取。
272
+
273
+ 文件内容示例:
274
+
275
+ ```yaml
276
+ # API
277
+ Functional.flash_attention_score.4.forward.input.0: NPU.npu_fusion_attention.4.forward.input.0
278
+ # 模块
279
+ Cell.relu.ReLU.forward.0.input.0: Module.module.language_model.embedding.word_embedding.VocabParallelEmbedding.forward.0.input.0
280
+ ```
281
+
282
+ API和模块名称在dump.json文件中的“data_name”字段展示,如下图红框处所示:
283
+
284
+ - MindSpore dump
285
+
286
+ ![ms_dump](./img/ms_dump.png)
287
+
288
+ - PyTorch dump
289
+
290
+ ![pt_dump](./img/pt_dump.png)
291
+
292
+ ### 3.5 自定义映射文件(Layer)
293
+
294
+ 文件名格式:\*.yaml,*为文件名,可自定义。
295
+
296
+ 文件内容示例:
297
+
298
+ ```yaml
299
+ ParallelAttention: # Layer层名称
300
+ qkv_proj: query_key_value # 冒号左侧为MindSpore框架模型代码中嵌套的Layer层名称,冒号右侧为PyTorch框架模型代码中嵌套的Layer层名称
301
+ out_proj: dense
302
+
303
+ ParallelTransformerLayer:
304
+ attention: self_attention
305
+
306
+ Embedding:
307
+ dropout: embedding_dropout
308
+
309
+ ParallelMLP:
310
+ mapping: dense_h_to_4h
311
+ projection: dense_4h_to_h
312
+
313
+ PipelineCell:
314
+ model: module
315
+
316
+ Cell:
317
+ network_with_loss: module
318
+
319
+ layers: # 手动映射MindSpore与PyTorch模型代码中的Layer层序号
320
+ '5': '0'
321
+ '6': '1'
322
+ '7': '2'
323
+ '8': '3'
324
+ '9': '4'
325
+ ```
326
+
327
+ Layer层名称需要从模型代码中获取。
328
+
329
+ yaml文件中只需配置MindSpore与PyTorch模型代码中功能一致但名称不同的Layer层,名称相同的Layer层会被自动识别并映射。
330
+
331
+ 模型代码示例:
332
+
333
+ ![ms_dump](./img/ms_layer.png)
@@ -1,6 +1,6 @@
1
1
  # MindSpore 场景的溢出检测
2
2
 
3
- msprobe 工具提供静态图O2编译等级下的过程溢出检测与动态图场景下的结果溢出检测。其中前者检测对象为 kernel 级别,对应 config.json 配置中的 "L2" level,后者检测对象为 API 级别,对应 config.json 配置中的 "L1" level。
3
+ msprobe 工具提供静态图O2编译等级下的过程溢出检测与动态图场景下的结果溢出检测。其中前者检测对象为 kernel 级别,对应 config.json 配置中的 "L2" level,后者检测对象为 API 级别(支持的API类型为ops、Tensor、mint和mint.nn.functional,不支持Primitive和Jit类API),对应 config.json 配置中的 "L1" level。
4
4
 
5
5
  需要注意,动态图场景下的溢出检测功能仅支持 INF/NAN 模式<sup>a</sup>。INF/NAN 模式的使能方式如下:
6
6
 
@@ -1,26 +1,26 @@
1
1
  # PyTorch 场景的无标杆比对
2
2
 
3
3
  ## 1 简介
4
- * 本工具的目标是在不依赖标杆数据的情况下、检测模型训练中可能存在的精度问题API级别算子,并提供升精度和tocpu接口快速验证;
5
- * 工具基于**数值病态分析理论**:对算子的输入增加很小的扰动、从而放大输出值异常现象;检测算子原始输出和扰动后输出间误差是否符合精度标准;
4
+ * 本工具的目标是在不依赖标杆数据的情况下,检测模型训练中可能存在的精度问题API级别算子,并提供升精度和tocpu接口快速验证。
5
+ * 工具基于**数值病态分析理论**:对算子的输入增加很小的扰动,从而放大输出值异常现象;检测算子原始输出和扰动后输出间误差是否符合精度标准。
6
6
 
7
7
  * 该工具的**特点**有:
8
- * 不依赖标杆模型、不需要离线对比
9
- * 提供接口,对可疑算子升精度、tocpu进行快速验证
8
+ * 不依赖标杆模型,不需要离线对比;
9
+ * 提供接口,对可疑算子升精度,tocpu进行快速验证。
10
10
  * 推荐使用场景(针对**算子精度问题**):
11
- * **暂无标杆数据**,模型Loss异常,要做精度问题算子排查
12
- * **验证可疑算子**,要做进一步确认、验证是否对模型Loss有影响
13
- * 低精度模型效果不如高精度,要做精度问题算子排查
11
+ * **暂无标杆数据**,模型Loss异常,要做精度问题算子排查;
12
+ * **验证可疑算子**,要做进一步确认,验证是否对模型Loss有影响;
13
+ * 低精度模型效果不如高精度,要做精度问题算子排查。
14
14
  * 该工具的约束
15
- * 仅支持Pytorch2.x场景
16
- * 推荐限定算子范围使用(白名单、或脚本中工具启用范围)、算子范围越大、性能和显存损耗越大;详情见[无标杆工具场景验证和性能基线报告(待补充)](./S02.report_free_benchmarking_validation_performance_baseline.md)
15
+ * 仅支持Pytorch2.x场景;
16
+ * 推荐限定算子范围使用(白名单,或脚本中工具启用范围),算子范围越大,性能和显存损耗越大;详情见[无标杆比对功能在 PyTorch 场景的性能基线报告](./S02.report_free_benchmarking_validation_performance_baseline.md)
17
17
 
18
18
  ## 2 工具实现原理
19
- 1. **扰动算子白名单**:根据算子名识别需要插桩算子范围
20
- 2. **扰动因子**:基于torch.nn.Module的hook机制、在注册的hook函数中对算子输入进行特定类型扰动
19
+ 1. **扰动算子白名单**:根据算子名识别需要插桩算子范围。
20
+ 2. **扰动因子**:基于torch.nn.Module的hook机制,在注册的hook函数中对算子输入进行特定类型扰动。
21
21
  3. **误差分析**:
22
- * **check**: 在hook函数中二次执行算子得到扰动后的算子输出、计算扰动后输出与原始输出的相对误差,查看是否符合精度标准
23
- * **fix**: 需要做验证时、可以选择将特定扰动类型(升精度、to cpu)的输出替换原始输出、观察对模型Loss是否有影响
22
+ * **check**: 在hook函数中二次执行算子得到扰动后的算子输出,计算扰动后输出与原始输出的相对误差,查看是否符合精度标准;
23
+ * **fix**: 需要做验证时,可以选择将特定扰动类型(升精度,to cpu)的输出替换原始输出,观察对模型Loss是否有影响。
24
24
  4. **精度风险算子**:不达标精度标准的,最终会在输出件中展示
25
25
 
26
26
  ![alt text](./img/free_benchmark_framework.png)
@@ -50,11 +50,11 @@ D-->config.json配置
50
50
  ```
51
51
  工具的推荐使用思路是:
52
52
 
53
- 1. 配置config.json开启精度风险算子的排查
54
- 2. 根据精度风险算子输出件、修改config.json开启验证功能、观察模型loss曲线是否改善
53
+ 1. 配置config.json开启精度风险算子的排查;
54
+ 2. 根据精度风险算子输出件,修改config.json开启验证功能,观察模型loss曲线是否改善。
55
55
 
56
56
  ### 3.1 安装msprobe工具
57
- 参照[msprobe安装](./docs/01.installation.md)
57
+ 参照[msprobe安装](./01.installation.md)
58
58
  ### 3.2 config.json配置
59
59
  修改[config.json](../config.json) 的task类型为"**free_benchmark**"开启无标杆功能。支持的配置项详见[配置文件介绍](./02.config_introduction.md),默认配置如下:
60
60
  ```json
@@ -81,34 +81,38 @@ D-->config.json配置
81
81
  }
82
82
  }
83
83
  ```
84
- 用户需根据自己的使用场景、对<a herf="2 工具实现原理">工具实现原理</a>中几个关键步骤进行配置
85
- #### 3.2.1 扰动算子白名单(确定插桩范围):
86
-
87
- | 相关参数名 | 是否必选 | 可配置项 | 适用场景 |
88
- | ---------- | -------- | ----------------- | ------------------------------------------------------------------------------------------- |
89
- | scope | 可选 | | 需要通过指定算子名来限制算子插桩范围 如:["Torch.matmul.0.forward", "Tensor.pow.4.forward"] |
90
- | list | 可选 | | 需要通过指定算子类型来限制算子插桩范围 如:\["relu"\] 会匹配所有算子名中包含relu的算子 |
91
- | fuzz_stage | 可选 | "forward"(默认) | 需要进行算子**前向**计算的精度问题排查或**验证可疑算子** |
92
- | | | "backward" | 需要进行算子**反向**计算的精度问题排查,不支持仅反向验证,前向验证包括反向 |
93
-
94
- #### 3.2.2. 选择扰动因子:
95
-
96
- | 相关参数 | 是否必选 | 可配置项 | 适用场景 |
97
- | ----------- | -------- | ---------------------------- | -------------------------------------------------------------------------------------------------------- |
98
- | pert_mode | 可选 | "improve_precision" (默认) | (常用)(可做验证) 插桩算子可能在**低精度**下有精度问题,扰动因子会将输入的低精度向量升精度 |
99
- | | | "bit_noise" | (常用)插桩算子可能在**轻微扰动**下暴露精度问题,扰动因子会将输入向量最后一个比特位翻转 |
100
- | | | "add_noise" | 插桩算子可能在**轻微扰动**下暴露精度问题,扰动因子会为输入向量增加一个极小值 |
101
- | | | "change_value" | 插桩算子可能存在**大数吃小数**问题,扰动因子会交换输入向量的首尾值 |
102
- | | | "no_change" | 插桩算子可能存在**数值稳定性**精度问题,扰动因子会复制原始输入 |
103
- | | | "to_cpu" | (可做验证) 插桩算子可能在**同cpu**精度表现不一致,扰动因子会将输入转至cpu,需要配合fuzz_device="cpu"使用 |
104
- | fuzz_device | 可选 | "npu" (默认) | 扰动因子不需要to cpu操作 |
105
- | | | "cpu" | 扰动因子需要to cpu操作,目前仅"to cpu"扰动因子 |
106
-
107
- #### 3.2.3. 选择处理方式:
108
- | 相关参数名 | 是否必选 | 可配置项 | 适用场景 |
109
- | ------------ | -------- | ----------------- | ----------------------------------------------------------------------------------------- |
110
- | handler_type | 可选 | "check" (默认) | 要做精度问题算子排查,输出扰动前后不符合精度标准的算子,支持所有扰动因子 |
111
- | | | "fix" | 要做可疑算子验证,用扰动后输出替换原始输出,支持"improve_precision"、"to_cpu"两种扰动因子 |
84
+ 用户需根据自己的使用场景,对[工具实现原理](#2-工具实现原理)中几个关键步骤进行配置。
85
+ #### 3.2.1 扰动算子白名单(确定插桩范围)
86
+
87
+ <table>
88
+ <tr><th>参数</th><th>是否必选</th><th>可配置项</th><th>适用场景</th></tr>
89
+ <tr><td>scope</td><td>否</td><td>自定义</td><td>需要通过指定算子名来限制算子插桩范围 如:["Torch.matmul.0.forward", "Tensor.pow.4.forward"]。</td></tr>
90
+ <tr><td>list</td><td>否</td><td>自定义</td><td>需要通过指定算子类型来限制算子插桩范围 如:["relu"] 会匹配所有算子名中包含relu的算子。</td></tr>
91
+ <tr><td rowspan="2">fuzz_stage</td><td rowspan="2">否</td><td>"forward"(默认)</td><td>需要进行算子<b>前向</b>计算的精度问题排查或<b>验证可疑算子。</b></td></tr>
92
+ <tr><td>"backward"</td><td>需要进行算子<b>反向</b>计算的精度问题排查,不支持仅反向验证,前向验证包括反向。</td><td></td></tr>
93
+ </table>
94
+
95
+ #### 3.2.2 选择扰动因子
96
+
97
+ <table>
98
+ <tr><th>参数</th><th>是否必选</th><th>可配置项</th><th>适用场景</th></tr>
99
+ <tr><td rowspan="6">pert_mode</td><td rowspan="6">否</td><td>"improve_precision" (默认)</td><td>(常用)(可做验证) 插桩算子可能在<b>低精度</b>下有精度问题,扰动因子会将输入的低精度向量升精度。</td></tr>
100
+ <tr><td>"bit_noise"</td><td>(常用)插桩算子可能在<b>轻微扰动</b>下暴露精度问题,扰动因子会将输入向量最后一个比特位翻转。</td></tr>
101
+ <tr><td>"add_noise"</td><td>插桩算子可能在<b>轻微扰动</b>下暴露精度问题,扰动因子会为输入向量增加一个极小。</td></tr>
102
+ <tr><td>"change_value"</td><td>插桩算子可能存在<b>大数吃小数</b>问题,扰动因子会交换输入向量的首尾。</td></tr>
103
+ <tr><td>"no_change"</td><td>插桩算子可能存在<b>数值稳定性</b>精度问题,扰动因子会复制原始输。</td></tr>
104
+ <tr><td>"to_cpu"</td><td>(可做验证) 插桩算子可能在<b>同 CPU </b>精度表现不一致,扰动因子会将输入转至 CPU,需要配合 fuzz_device="cpu"使用。</td></tr>
105
+ <tr><td rowspan="2">fuzz_device</td><td rowspan="2">否</td><td>"npu" (默认)</td><td>pert_mode 不需要to cpu操作。</td></tr>
106
+ <tr><td>"cpu"</td><td>pert_mode 须配置为"to_cpu",目前仅支持"to cpu"扰动因子。</td></tr>
107
+ </table>
108
+
109
+ #### 3.2.3 选择处理方式
110
+
111
+ <table>
112
+ <tr><th>参数</th><th>是否必选</th><th>可配置项</th><th>适用场景</th></tr>
113
+ <tr><td rowspan="2">handler_type</td><td rowspan="2">否</td><td>"check"(默认)</td><td>要做精度问题算子排查,输出扰动前后不符合精度标准的算子,支持所有扰动因子。</td></tr>
114
+ <tr><td>"fix"</td><td>要做可疑算子验证,用扰动后输出替换原始输出,支持"improve_precision","to_cpu"两种扰动因子。</td></tr>
115
+ </table>
112
116
 
113
117
  ### 3.3 在模型脚本中开启工具
114
118
 
@@ -126,15 +130,17 @@ debugger.step() # 在训练循环的最后需要重置工具,非循环场景
126
130
  ```
127
131
 
128
132
  ### 3.4 启动模型训练
129
- 训练过程中出现可以通过一下日志检查工具是否正常使用
130
- | 日志级别 | 日志内容 | 检查说明 |
131
- | -------- | --------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------- |
132
- | INFO | \[msprobe\] Free Benchmark: Perturbation is {扰动因子} of {算子名}. | 扰动因子与配置相符、算子名在插桩范围内 |
133
- | INFO | \[msprobe\] Free Benchmark: For {算子名},{原因}. Cancel perturbation. | 算子名在插桩范围内,但当前算子由于{原因}不支持添加扰动 |
134
- | INFO | \[msprobe\] Free benchmark: preheat sample in step {step} api_name {算子名} curr_called_seq: {当前采样数}/{总采样数}" | 仅开启预热、算子名在插桩范围内,在当前step的采样情况 |
135
- | WARNING | \[msprobe\] Free benchmark: 无标杆工具不支持当前算子的输入类型 {算子名}. | 算子名在插桩范围内,但当前算子没有可操作的输入(不存在Tensor、list类型等) |
136
-
137
- 其余日志均说明当前算子未能正常添加扰动、请检查日志信息判断是否更换扰动因子或不考虑当前算子结果。
133
+ 训练过程中出现以下日志,可以检查工具是否正常使用。
134
+
135
+ <table>
136
+ <tr><th>日志级别</th><th>日志内容</th><th>检查说明</th></tr>
137
+ <tr><td rowspan="3">INFO</td><td>[msprobe] Free Benchmark: Perturbation is {扰动因子} of {算子名}.</td><td>扰动因子与配置相符,算子名在插桩范围内。</td></tr>
138
+ <tr><td>[msprobe] Free Benchmark: For {算子名},{原因}. Cancel perturbation.</td><td>算子名在插桩范围内,但当前算子由于{原因}不支持添加扰动。</td></tr>
139
+ <tr><td>[msprobe] Free benchmark: preheat sample in step {step} api_name {算子名} curr_called_seq: {当前采样数}/{总采样数}"</td><td>仅开启预热,算子名在插桩范围内,在当前step的采样情况。</td></tr>
140
+ <tr><td>WARNING</td><td>[msprobe] Free benchmark: 无标杆工具不支持当前算子的输入类型 {算子名}.</td><td>算子名在插桩范围内,但当前算子没有可操作的输入(不存在Tensor,list类型等)。</td></tr>
141
+ </table>
142
+
143
+ 其余日志均说明当前算子未能正常添加扰动,请检查日志信息判断是否更换扰动因子或不考虑当前算子结果。
138
144
 
139
145
 
140
146
  ### 3.5 查看精度风险算子
@@ -0,0 +1,140 @@
1
+ # MindSpore 场景的无标杆比对
2
+
3
+ ## 1 简介
4
+ * 本工具的目标是在没有标杆数据的情况下,检测模型训练中可能存在精度问题的 API 级别算子,并提供升精度接口进行快速验证。
5
+ * 工具基于**数值病态分析理论**:对算子的输入增加很小的扰动、从而放大输出值异常现象;检测算子原始输出和扰动后输出间误差是否符合精度标准。
6
+
7
+ * 该工具的**特点**有:
8
+ * 不依赖标杆模型,在线对比。
9
+ * 提供升精度接口,对可疑算子进行快速验证。
10
+ * 推荐使用场景(针对**API 精度问题**):
11
+ * **暂无标杆数据**,模型 Loss 异常,要做精度问题 API 排查。
12
+ * 低精度模型效果不如高精度,要做精度问题 API 排查。
13
+ * **验证低精度可疑 API**,确认升精度后是否对模型 Loss 有影响。
14
+ * 该工具的约束
15
+ * 仅支持 MindSpore 动态图场景。支持的 API 类型为 ops、Tensor、mint 和 mint.nn.functional 类的非 inplace 计算 API,不支持 Primitive 和 Jit 类 API。
16
+ * 建议配置白名单(设置 list),控制对少量 API 进行无标杆比对。比对 API 越多,性能和显存损耗越大。
17
+
18
+ ## 2 工具实现原理
19
+ 1. **扰动算子白名单**:根据 API 名,控制需要进行无标杆比对的 API。
20
+
21
+ 2. **扰动因子**:基于 mindspore.nn.Cell 的 hook 机制,在注册的 hook 函数中对算子输入进行特定类型扰动。
22
+
23
+ 3. **误差分析**:
24
+ * **check**: 在 hook 函数中二次执行算子得到扰动后的算子输出、计算扰动后输出与原始输出的相对误差,查看是否符合精度标准。
25
+ * **fix**: 需要做验证时,可以将升精度的输出替换原始输出,观察对模型 Loss 是否有影响。
26
+
27
+ 4. **精度风险算子**:不达标精度标准的,最终会在输出件中展示。
28
+
29
+ ## 3 操作指导
30
+
31
+ ```mermaid
32
+ flowchart LR
33
+ A0[安装msprobe工具]
34
+ subgraph config.json配置
35
+ A1[确定比对范围]
36
+ A2[选择扰动因子]
37
+ A3[选择处理方式]
38
+ A1-->A2
39
+ A2-->A3
40
+ end
41
+ B(在模型脚本中开启工具)
42
+ C(启动模型训练)
43
+ D(查看精度风险API\n观察模型Loss曲线)
44
+
45
+ A0-->
46
+ config.json配置-->B
47
+ B-->C
48
+ C-->D
49
+ D-->config.json配置
50
+ ```
51
+ 工具的推荐使用思路是:
52
+
53
+ 1. 配置 config.json,选择无标杆比对任务,进行精度风险 API 的排查。
54
+
55
+ 2. 根据精度风险 API 输出件,修改 config.json 开启验证功能,观察模型loss曲线是否改善。
56
+
57
+ ### 3.1 安装msprobe工具
58
+ 参照 [msprobe安装](./01.installation.md)
59
+ ### 3.2 config.json配置
60
+ 修改 [config.json](../config.json) 的 task 类型为"**free_benchmark**"开启无标杆功能。支持的配置项详见[配置文件介绍](./02.config_introduction.md),默认配置如下:
61
+ ```json
62
+ {
63
+ "task": "free_benchmark",
64
+ "dump_path": "./dump_path",
65
+ "rank": [],
66
+ "step": [],
67
+ "level": "L1",
68
+
69
+ "free_benchmark": {
70
+ "list": [],
71
+ "fuzz_device": "npu",
72
+ "pert_mode": "improve_precision",
73
+ "handler_type": "check",
74
+ "fuzz_level": "L1",
75
+ "fuzz_stage": "forward"
76
+ }
77
+ }
78
+ ```
79
+ 用户需根据自己的使用场景,对照[工具实现原理](#2-工具实现原理)中几个关键步骤进行配置
80
+ #### 3.2.1 确定比对范围
81
+
82
+ | 相关参数名 | 是否必选 | 可配置项 | 适用场景 |
83
+ | ---------- | -------- | ----------------- | ------------------------------------------------------------------------------------------- |
84
+ | list | 可选 | | 需要通过指定 API 名来限制比对API个数 如:\["mindspore.ops.bmm"\] 会只对mindspore.ops.bmm API进行比对|
85
+ | fuzz_stage | 可选 | "forward"(默认) | 需要进行 API **前向**计算的精度问题排查或验证|
86
+
87
+ #### 3.2.2. 选择扰动因子
88
+
89
+ | 相关参数 | 是否必选 | 可配置项 | 适用场景 |
90
+ | ----------- | -------- | ---------------------------- | -------------------------------------------------------------------------------------------------------- |
91
+ | pert_mode | 可选 | "improve_precision" (默认) | (常用)(可做验证) API 可能在**低精度**下有精度问题,扰动因子会将输入的低精度向量升精度 |
92
+ | | | "add_noise" | API 可能在**轻微扰动**下暴露精度问题,扰动因子会为输入向量增加一个极小值 |
93
+ | | | "bit_noise" | API 可能在**轻微扰动**下暴露精度问题,扰动因子会翻转输入向量的最后一个比特位。不支持BF16类型向量 |
94
+ | | | "no_change" | API 可能存在**数值稳定性**精度问题,扰动因子会复制原始输入|
95
+ | | | "change_value" | API 可能存在**大数吃小数**问题,扰动因子会交换输入向量的首尾值 |
96
+
97
+ #### 3.2.3. 选择处理方式
98
+ | 相关参数名 | 是否必选 | 可配置项 | 适用场景 |
99
+ | ------------ | -------- | ----------------- | ----------------------------------------------------------------------------------------- |
100
+ | handler_type | 可选 | "check" (默认) | 要做精度问题 API 排查,输出扰动前后不符合精度标准的 API,支持所有扰动因子 |
101
+ | | | "fix" | 要做可疑 API 验证,用扰动后输出替换原始输出,仅支持 "improve_precision" 扰动因子 |
102
+
103
+ ### 3.3 在模型脚本中开启工具
104
+
105
+ 通过 PrecisionDebugger 统一接口开启工具,示例如下:
106
+
107
+ ```python
108
+ from msprobe.mindspore import PrecisionDebugger
109
+
110
+ debugger = PrecisionDebugger(config_path='./config.json')
111
+ ...
112
+ debugger.start() # 一般在训练循环开头启动工具
113
+ ... # 循环体
114
+ debugger.stop() # 一般在训练循环末尾结束工具
115
+ debugger.step() # 在训练循环的最后需要重置工具,非循环场景不需要
116
+ ```
117
+
118
+ ### 3.4 查看精度风险算子
119
+
120
+ check 模式下,若存在不符合精度标准的 API,则工具会在 dump_path 目录下将相应 API 信息输出在文件 free_benchmark.csv 中。csv 文件字段含义如下所示:
121
+
122
+ | 字段 | 说明 |
123
+ | ------------ | ---------------------------------------------------------------------------------------- |
124
+ | rank | Rank ID,int 类型 |
125
+ | pert_mode | 扰动因子的类型,string 类型 |
126
+ | stage | 前/反向,string 类型 |
127
+ | step | 迭代数,int 类型 |
128
+ | api_name | API 名称,string 类型 |
129
+ | max_rel | 输出对比最大相对误差,float 类型 |
130
+ | dtype | 输入的 dtype,string 类型 |
131
+ | shape | 输入的 shape,tuple 类型 |
132
+ | output_index | 如果输出为列表或元组,其中一个元素检测不一致,则会有该元素的 index,否则为空,int 类型 |
133
+
134
+ 无标杆比对使用的精度标准如下:
135
+
136
+ | 输出dtype | 相对误差阈值 |
137
+ | ----------------- | ------------ |
138
+ | mindspore.float16 | 0.002 |
139
+ | mindspore.float32 | 0.0002 |
140
+ | 其他 | 0.0002 |