mindstudio-probe 1.0.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- mindstudio_probe-1.0.1.dist-info/LICENSE +201 -0
- mindstudio_probe-1.0.1.dist-info/METADATA +30 -0
- mindstudio_probe-1.0.1.dist-info/RECORD +228 -0
- mindstudio_probe-1.0.1.dist-info/WHEEL +5 -0
- mindstudio_probe-1.0.1.dist-info/entry_points.txt +2 -0
- mindstudio_probe-1.0.1.dist-info/top_level.txt +1 -0
- msprobe/README.md +182 -0
- msprobe/__init__.py +0 -0
- msprobe/config/README.md +397 -0
- msprobe/config/config.json +28 -0
- msprobe/config/img/free_benchmark.png +0 -0
- msprobe/core/common/const.py +241 -0
- msprobe/core/common/exceptions.py +88 -0
- msprobe/core/common/file_check.py +265 -0
- msprobe/core/common/log.py +55 -0
- msprobe/core/common/utils.py +516 -0
- msprobe/core/common_config.py +58 -0
- msprobe/core/data_dump/data_collector.py +140 -0
- msprobe/core/data_dump/data_processor/base.py +245 -0
- msprobe/core/data_dump/data_processor/factory.py +61 -0
- msprobe/core/data_dump/data_processor/pytorch_processor.py +346 -0
- msprobe/core/data_dump/json_writer.py +116 -0
- msprobe/core/data_dump/scope.py +178 -0
- msprobe/mindspore/__init__.py +1 -0
- msprobe/mindspore/debugger/__init__.py +0 -0
- msprobe/mindspore/debugger/debugger_config.py +51 -0
- msprobe/mindspore/debugger/precision_debugger.py +32 -0
- msprobe/mindspore/doc/dump.md +65 -0
- msprobe/mindspore/dump/__init__.py +0 -0
- msprobe/mindspore/dump/api_kbk_dump.py +55 -0
- msprobe/mindspore/dump/dump_tool_factory.py +38 -0
- msprobe/mindspore/dump/kernel_graph_dump.py +60 -0
- msprobe/mindspore/ms_config.py +78 -0
- msprobe/mindspore/overflow_check/__init__.py +0 -0
- msprobe/mindspore/overflow_check/kernel_graph_overflow_check.py +45 -0
- msprobe/mindspore/overflow_check/overflow_check_tool_factory.py +32 -0
- msprobe/mindspore/task_handler_factory.py +21 -0
- msprobe/msprobe.py +67 -0
- msprobe/pytorch/__init__.py +4 -0
- msprobe/pytorch/advisor/advisor.py +124 -0
- msprobe/pytorch/advisor/advisor_const.py +59 -0
- msprobe/pytorch/advisor/advisor_result.py +58 -0
- msprobe/pytorch/api_accuracy_checker/.keep +0 -0
- msprobe/pytorch/api_accuracy_checker/__init__.py +0 -0
- msprobe/pytorch/api_accuracy_checker/common/.keep +0 -0
- msprobe/pytorch/api_accuracy_checker/common/__init__.py +0 -0
- msprobe/pytorch/api_accuracy_checker/common/config.py +50 -0
- msprobe/pytorch/api_accuracy_checker/common/utils.py +224 -0
- msprobe/pytorch/api_accuracy_checker/compare/__init__.py +0 -0
- msprobe/pytorch/api_accuracy_checker/compare/algorithm.py +216 -0
- msprobe/pytorch/api_accuracy_checker/compare/api_precision_compare.py +545 -0
- msprobe/pytorch/api_accuracy_checker/compare/api_precision_standard.yaml +133 -0
- msprobe/pytorch/api_accuracy_checker/compare/api_precision_threshold.yaml +390 -0
- msprobe/pytorch/api_accuracy_checker/compare/compare.py +345 -0
- msprobe/pytorch/api_accuracy_checker/compare/compare_column.py +74 -0
- msprobe/pytorch/api_accuracy_checker/compare/compare_utils.py +249 -0
- msprobe/pytorch/api_accuracy_checker/config.yaml +4 -0
- msprobe/pytorch/api_accuracy_checker/run_ut/.keep +0 -0
- msprobe/pytorch/api_accuracy_checker/run_ut/__init__.py +0 -0
- msprobe/pytorch/api_accuracy_checker/run_ut/data_generate.py +328 -0
- msprobe/pytorch/api_accuracy_checker/run_ut/multi_run_ut.py +203 -0
- msprobe/pytorch/api_accuracy_checker/run_ut/run_overflow_check.py +127 -0
- msprobe/pytorch/api_accuracy_checker/run_ut/run_ut.py +493 -0
- msprobe/pytorch/api_accuracy_checker/run_ut/run_ut_utils.py +7 -0
- msprobe/pytorch/api_accuracy_checker/run_ut/torch_ut_setting.json +5 -0
- msprobe/pytorch/common/__init__.py +2 -0
- msprobe/pytorch/common/compare_script.template +14 -0
- msprobe/pytorch/common/log.py +32 -0
- msprobe/pytorch/common/parse_json.py +37 -0
- msprobe/pytorch/common/utils.py +224 -0
- msprobe/pytorch/compare/acc_compare.py +1024 -0
- msprobe/pytorch/compare/distributed_compare.py +111 -0
- msprobe/pytorch/compare/highlight.py +100 -0
- msprobe/pytorch/compare/mapping.yaml +607 -0
- msprobe/pytorch/compare/match.py +36 -0
- msprobe/pytorch/compare/npy_compare.py +244 -0
- msprobe/pytorch/debugger/__init__.py +0 -0
- msprobe/pytorch/debugger/debugger_config.py +86 -0
- msprobe/pytorch/debugger/precision_debugger.py +95 -0
- msprobe/pytorch/doc/FAQ.md +193 -0
- msprobe/pytorch/doc/api_accuracy_checker.md +269 -0
- msprobe/pytorch/doc/atat/321/207/342/226/223/342/225/233/321/205/342/225/221/320/266/321/205/342/225/226/320/265/321/205/320/225/342/225/226/321/206/320/245/342/226/221/321/206/320/235/320/276dump/321/206/320/260/320/227/321/205/320/227/320/226/321/206/320/220/320/267/321/210/320/223/342/225/234/321/205/320/257/342/225/221/321/207/342/225/221/342/224/220/321/206/320/232/320/265/321/205/320/241/320/232.md +182 -0
- msprobe/pytorch/doc/dump.md +207 -0
- msprobe/pytorch/doc/img/BLOOM-7B_1.png +0 -0
- msprobe/pytorch/doc/img/BLOOM-7B_2.png +0 -0
- msprobe/pytorch/doc/img/BLOOM-7B_3.png +0 -0
- msprobe/pytorch/doc/img/BLOOM-7B_4.png +0 -0
- msprobe/pytorch/doc/img/GPT-3_1.png +0 -0
- msprobe/pytorch/doc/img/GPT-3_2.png +0 -0
- msprobe/pytorch/doc/img/GPT-3_3.png +0 -0
- msprobe/pytorch/doc/img/GPT-3_4.png +0 -0
- msprobe/pytorch/doc/img/GPT-3_5.png +0 -0
- msprobe/pytorch/doc/img/GPT-3_6.png +0 -0
- msprobe/pytorch/doc/img/GPT-3_7.png +0 -0
- msprobe/pytorch/doc/img/GPT-3_8.png +0 -0
- msprobe/pytorch/doc/img/YOLOV5S_1.png +0 -0
- msprobe/pytorch/doc/img/YOLOV5S_2.png +0 -0
- msprobe/pytorch/doc/img/accuracy_checking_details.png +0 -0
- msprobe/pytorch/doc/img/accuracy_checking_result.png +0 -0
- msprobe/pytorch/doc/img/api_precision_compare_details.png +0 -0
- msprobe/pytorch/doc/img/api_precision_compare_result.png +0 -0
- msprobe/pytorch/doc/img/auto_analyze_log.png +0 -0
- msprobe/pytorch/doc/img/compare_result_pkl.png +0 -0
- msprobe/pytorch/doc/img/compare_result_pkl_md5.png.png +0 -0
- msprobe/pytorch/doc/img/cpu_info.png +0 -0
- msprobe/pytorch/doc/img/module_compare.png +0 -0
- msprobe/pytorch/doc/parse_tool.md +286 -0
- msprobe/pytorch/doc/ptdbg_ascend_compare.md +176 -0
- msprobe/pytorch/doc/ptdbg_ascend_overview.md +68 -0
- msprobe/pytorch/doc/ptdbg_ascend_quickstart.md +381 -0
- msprobe/pytorch/doc/run_overflow_check.md +25 -0
- msprobe/pytorch/doc//321/205/320/254/320/270/321/207/342/225/221/342/224/220/321/207/342/226/223/342/225/233/321/205/342/225/221/320/266/321/206/320/277/320/244/321/205/320/277/342/225/243.md +90 -0
- msprobe/pytorch/free_benchmark/__init__.py +8 -0
- msprobe/pytorch/free_benchmark/common/__init__.py +0 -0
- msprobe/pytorch/free_benchmark/common/constant.py +67 -0
- msprobe/pytorch/free_benchmark/common/counter.py +72 -0
- msprobe/pytorch/free_benchmark/common/enums.py +37 -0
- msprobe/pytorch/free_benchmark/common/params.py +129 -0
- msprobe/pytorch/free_benchmark/common/utils.py +98 -0
- msprobe/pytorch/free_benchmark/compare/grad_saver.py +183 -0
- msprobe/pytorch/free_benchmark/compare/single_benchmark.py +104 -0
- msprobe/pytorch/free_benchmark/main.py +102 -0
- msprobe/pytorch/free_benchmark/perturbed_layers/__init__.py +0 -0
- msprobe/pytorch/free_benchmark/perturbed_layers/base_layer.py +13 -0
- msprobe/pytorch/free_benchmark/perturbed_layers/layer_factory.py +41 -0
- msprobe/pytorch/free_benchmark/perturbed_layers/npu/__init__.py +0 -0
- msprobe/pytorch/free_benchmark/perturbed_layers/npu/add_noise.py +90 -0
- msprobe/pytorch/free_benchmark/perturbed_layers/npu/bit_noise.py +104 -0
- msprobe/pytorch/free_benchmark/perturbed_layers/npu/change_value.py +63 -0
- msprobe/pytorch/free_benchmark/perturbed_layers/npu/improve_precision.py +68 -0
- msprobe/pytorch/free_benchmark/perturbed_layers/npu/no_change.py +28 -0
- msprobe/pytorch/free_benchmark/perturbed_layers/npu/npu_base_layser.py +45 -0
- msprobe/pytorch/free_benchmark/perturbed_layers/run_cpu.py +19 -0
- msprobe/pytorch/free_benchmark/result_handlers/__init__.py +0 -0
- msprobe/pytorch/free_benchmark/result_handlers/base_handler.py +203 -0
- msprobe/pytorch/free_benchmark/result_handlers/check_handler.py +39 -0
- msprobe/pytorch/free_benchmark/result_handlers/fix_handler.py +24 -0
- msprobe/pytorch/free_benchmark/result_handlers/handler_factory.py +31 -0
- msprobe/pytorch/free_benchmark/result_handlers/preheat_handler.py +170 -0
- msprobe/pytorch/functional/__init__.py +0 -0
- msprobe/pytorch/functional/data_processor.py +0 -0
- msprobe/pytorch/functional/dump_module.py +39 -0
- msprobe/pytorch/hook_module/__init__.py +1 -0
- msprobe/pytorch/hook_module/api_registry.py +161 -0
- msprobe/pytorch/hook_module/hook_module.py +109 -0
- msprobe/pytorch/hook_module/support_wrap_ops.yaml +1876 -0
- msprobe/pytorch/hook_module/utils.py +29 -0
- msprobe/pytorch/hook_module/wrap_aten.py +100 -0
- msprobe/pytorch/hook_module/wrap_distributed.py +75 -0
- msprobe/pytorch/hook_module/wrap_functional.py +108 -0
- msprobe/pytorch/hook_module/wrap_npu_custom.py +73 -0
- msprobe/pytorch/hook_module/wrap_tensor.py +72 -0
- msprobe/pytorch/hook_module/wrap_torch.py +88 -0
- msprobe/pytorch/hook_module/wrap_vf.py +64 -0
- msprobe/pytorch/module_processer.py +98 -0
- msprobe/pytorch/online_dispatch/__init__.py +20 -0
- msprobe/pytorch/online_dispatch/compare.py +236 -0
- msprobe/pytorch/online_dispatch/dispatch.py +274 -0
- msprobe/pytorch/online_dispatch/dump_compare.py +186 -0
- msprobe/pytorch/online_dispatch/single_compare.py +391 -0
- msprobe/pytorch/online_dispatch/torch_ops_config.yaml +50 -0
- msprobe/pytorch/online_dispatch/utils.py +187 -0
- msprobe/pytorch/parse.py +4 -0
- msprobe/pytorch/parse_tool/__init__.py +0 -0
- msprobe/pytorch/parse_tool/cli.py +32 -0
- msprobe/pytorch/parse_tool/lib/__init__.py +0 -0
- msprobe/pytorch/parse_tool/lib/compare.py +259 -0
- msprobe/pytorch/parse_tool/lib/config.py +51 -0
- msprobe/pytorch/parse_tool/lib/file_desc.py +31 -0
- msprobe/pytorch/parse_tool/lib/interactive_cli.py +102 -0
- msprobe/pytorch/parse_tool/lib/parse_exception.py +54 -0
- msprobe/pytorch/parse_tool/lib/parse_tool.py +158 -0
- msprobe/pytorch/parse_tool/lib/utils.py +367 -0
- msprobe/pytorch/parse_tool/lib/visualization.py +90 -0
- msprobe/pytorch/pt_config.py +93 -0
- msprobe/pytorch/service.py +167 -0
- msprobe/test/core_ut/common/test_utils.py +345 -0
- msprobe/test/core_ut/data_dump/test_data_collector.py +47 -0
- msprobe/test/core_ut/data_dump/test_json_writer.py +183 -0
- msprobe/test/core_ut/data_dump/test_scope.py +151 -0
- msprobe/test/core_ut/test_common_config.py +152 -0
- msprobe/test/core_ut/test_file_check.py +218 -0
- msprobe/test/core_ut/test_log.py +109 -0
- msprobe/test/mindspore_ut/test_api_kbk_dump.py +51 -0
- msprobe/test/mindspore_ut/test_debugger_config.py +42 -0
- msprobe/test/mindspore_ut/test_dump_tool_factory.py +51 -0
- msprobe/test/mindspore_ut/test_kernel_graph_dump.py +66 -0
- msprobe/test/mindspore_ut/test_kernel_graph_overflow_check.py +63 -0
- msprobe/test/mindspore_ut/test_ms_config.py +69 -0
- msprobe/test/mindspore_ut/test_overflow_check_tool_factory.py +51 -0
- msprobe/test/mindspore_ut/test_precision_debugger.py +56 -0
- msprobe/test/mindspore_ut/test_task_handler_factory.py +58 -0
- msprobe/test/pytorch_ut/advisor/test_advisor.py +83 -0
- msprobe/test/pytorch_ut/api_accuracy_checker/common/test_common_utils.py +108 -0
- msprobe/test/pytorch_ut/api_accuracy_checker/common/test_config.py +39 -0
- msprobe/test/pytorch_ut/api_accuracy_checker/compare/test_algorithm.py +112 -0
- msprobe/test/pytorch_ut/api_accuracy_checker/compare/test_api_precision_compare.py +77 -0
- msprobe/test/pytorch_ut/api_accuracy_checker/compare/test_compare.py +125 -0
- msprobe/test/pytorch_ut/api_accuracy_checker/compare/test_compare_column.py +10 -0
- msprobe/test/pytorch_ut/api_accuracy_checker/compare/test_compare_utils.py +43 -0
- msprobe/test/pytorch_ut/api_accuracy_checker/run_ut/dump.json +179 -0
- msprobe/test/pytorch_ut/api_accuracy_checker/run_ut/forward.json +63 -0
- msprobe/test/pytorch_ut/api_accuracy_checker/run_ut/test_data_generate.py +99 -0
- msprobe/test/pytorch_ut/api_accuracy_checker/run_ut/test_multi_run_ut.py +115 -0
- msprobe/test/pytorch_ut/api_accuracy_checker/run_ut/test_run_ut.py +72 -0
- msprobe/test/pytorch_ut/compare/test_acc_compare.py +17 -0
- msprobe/test/pytorch_ut/free_benchmark/perturbed_layers/test_perturbed_layser.py +105 -0
- msprobe/test/pytorch_ut/free_benchmark/result_handlers/test_result_handler.py +121 -0
- msprobe/test/pytorch_ut/free_benchmark/test_main.py +101 -0
- msprobe/test/pytorch_ut/functional/test_dump_module.py +15 -0
- msprobe/test/pytorch_ut/hook_module/test_api_registry.py +130 -0
- msprobe/test/pytorch_ut/hook_module/test_hook_module.py +42 -0
- msprobe/test/pytorch_ut/hook_module/test_wrap_aten.py +65 -0
- msprobe/test/pytorch_ut/hook_module/test_wrap_distributed.py +35 -0
- msprobe/test/pytorch_ut/hook_module/test_wrap_functional.py +20 -0
- msprobe/test/pytorch_ut/hook_module/test_wrap_tensor.py +35 -0
- msprobe/test/pytorch_ut/hook_module/test_wrap_torch.py +43 -0
- msprobe/test/pytorch_ut/hook_module/test_wrap_vf.py +11 -0
- msprobe/test/pytorch_ut/test_pt_config.py +69 -0
- msprobe/test/pytorch_ut/test_service.py +59 -0
- msprobe/test/resources/advisor.txt +3 -0
- msprobe/test/resources/compare_result_20230703104808.csv +9 -0
- msprobe/test/resources/compare_result_without_accuracy.csv +9 -0
- msprobe/test/resources/config.yaml +3 -0
- msprobe/test/resources/npu_test.pkl +8 -0
- msprobe/test/run_test.sh +30 -0
- msprobe/test/run_ut.py +58 -0
- msprobe/test/test_module_processer.py +64 -0
|
@@ -0,0 +1,186 @@
|
|
|
1
|
+
import os
|
|
2
|
+
import json
|
|
3
|
+
import copy
|
|
4
|
+
from datetime import datetime, timezone
|
|
5
|
+
|
|
6
|
+
import pandas as pd
|
|
7
|
+
import torch
|
|
8
|
+
from .utils import np_save_data, logger_debug, logger_error, logger_warn, logger_user, COLOR_RED, COLOR_GREEN, \
|
|
9
|
+
COLOR_RESET, CSV_COLUMN_NAME
|
|
10
|
+
from msprobe.core.common.file_check import FileOpen, change_mode
|
|
11
|
+
from msprobe.core.common.const import CompareConst, FileCheckConst, Const
|
|
12
|
+
from msprobe.pytorch.common.log import logger
|
|
13
|
+
|
|
14
|
+
class DispatchRunParam:
|
|
15
|
+
def __init__(self, debug_flag, device_id, root_npu_path, root_cpu_path, process_num, comparator):
|
|
16
|
+
# static parameters are initialized by constructors, and dynamic parameters are constructed at run time
|
|
17
|
+
self.debug_flag = debug_flag
|
|
18
|
+
self.device_id = device_id
|
|
19
|
+
self.root_npu_path = root_npu_path
|
|
20
|
+
self.root_cpu_path = root_cpu_path
|
|
21
|
+
self.process_num = process_num
|
|
22
|
+
self.process_flag = False
|
|
23
|
+
self.func_name = None
|
|
24
|
+
self.func_namespace = None
|
|
25
|
+
self.aten_api = None
|
|
26
|
+
self.aten_api_overload_name = None
|
|
27
|
+
self.single_api_index = None
|
|
28
|
+
self.api_index = None
|
|
29
|
+
self.dump_flag = None
|
|
30
|
+
self.auto_dump_flag = None
|
|
31
|
+
self.comparator = comparator
|
|
32
|
+
|
|
33
|
+
|
|
34
|
+
class DisPatchDataInfo:
|
|
35
|
+
def __init__(self, cpu_args, cpu_kwargs, all_summery, func, npu_out_cpu, cpu_out, lock):
|
|
36
|
+
self.cpu_args = cpu_args
|
|
37
|
+
self.cpu_kwargs = cpu_kwargs
|
|
38
|
+
self.all_summery = all_summery
|
|
39
|
+
self.func = func
|
|
40
|
+
self.npu_out_cpu = npu_out_cpu
|
|
41
|
+
self.cpu_out = cpu_out
|
|
42
|
+
self.lock = lock
|
|
43
|
+
|
|
44
|
+
|
|
45
|
+
class TimeStatistics:
|
|
46
|
+
def __init__(self, name_tag, run_param, timeout=5):
|
|
47
|
+
self.debug = run_param.debug_flag
|
|
48
|
+
if self.debug:
|
|
49
|
+
self.fun = run_param.func_name
|
|
50
|
+
self.device = run_param.device_id
|
|
51
|
+
self.process = run_param.process_num
|
|
52
|
+
self.index = run_param.single_api_index
|
|
53
|
+
self.tag = name_tag
|
|
54
|
+
self.timeout = timeout
|
|
55
|
+
self.time = None
|
|
56
|
+
|
|
57
|
+
def __enter__(self):
|
|
58
|
+
if self.debug:
|
|
59
|
+
self.time = datetime.now(tz=timezone.utc)
|
|
60
|
+
logger_debug(f'Time[{self.tag}]-ENTER: Dev[{self.device}], Pid[{os.getpid()}], Fun[{self.fun}], ' \
|
|
61
|
+
f'Id[{self.index}]')
|
|
62
|
+
|
|
63
|
+
def __exit__(self, exc_type, exc_val, exc_tb):
|
|
64
|
+
if self.debug:
|
|
65
|
+
cost_time = datetime.now(tz=timezone.utc) - self.time
|
|
66
|
+
time_cost = f'Time[{self.tag}]-EXIT: Dev[{self.device}], Pid[{os.getpid()}], Fun[{self.fun}], ' \
|
|
67
|
+
f'Id[{self.index}], time[{cost_time}]'
|
|
68
|
+
hot_time_cost = "Hotspot " + time_cost
|
|
69
|
+
|
|
70
|
+
if cost_time.total_seconds() > self.timeout:
|
|
71
|
+
logger_debug(hot_time_cost)
|
|
72
|
+
else:
|
|
73
|
+
logger_debug(time_cost)
|
|
74
|
+
|
|
75
|
+
|
|
76
|
+
def support_basic_type(data):
|
|
77
|
+
if isinstance(data, (bool, int, float, torch.Tensor)):
|
|
78
|
+
return True
|
|
79
|
+
return False
|
|
80
|
+
|
|
81
|
+
|
|
82
|
+
def dump_data(data, prefix, dump_path):
|
|
83
|
+
if isinstance(data, (tuple, list)) and data:
|
|
84
|
+
for i, item in enumerate(data):
|
|
85
|
+
dump_data(item, "{}.{}".format(prefix, i), dump_path)
|
|
86
|
+
return
|
|
87
|
+
elif support_basic_type(data):
|
|
88
|
+
if isinstance(data, torch.Tensor) and data.is_meta:
|
|
89
|
+
return
|
|
90
|
+
# dump data may greater than summery_list collect
|
|
91
|
+
np_save_data(data, prefix, dump_path)
|
|
92
|
+
|
|
93
|
+
|
|
94
|
+
def save_temp_summery(api_index, single_api_summery, path, lock):
|
|
95
|
+
summery_path = os.path.join(path, f'summery.json')
|
|
96
|
+
lock.acquire()
|
|
97
|
+
with FileOpen(summery_path, "a") as f:
|
|
98
|
+
json.dump([api_index, single_api_summery], f)
|
|
99
|
+
f.write('\n')
|
|
100
|
+
lock.release()
|
|
101
|
+
|
|
102
|
+
|
|
103
|
+
def dispatch_workflow(run_param: DispatchRunParam, data_info: DisPatchDataInfo):
|
|
104
|
+
cpu_args, cpu_kwargs = data_info.cpu_args, data_info.cpu_kwargs
|
|
105
|
+
all_summery, func = data_info.all_summery, data_info.func
|
|
106
|
+
npu_out_cpu, cpu_out, lock = data_info.npu_out_cpu, data_info.cpu_out, data_info.lock
|
|
107
|
+
single_api_summery = []
|
|
108
|
+
|
|
109
|
+
prefix_input = f'{run_param.aten_api}_{run_param.single_api_index}_input'
|
|
110
|
+
prefix_output = f'{run_param.aten_api}_{run_param.single_api_index}_output'
|
|
111
|
+
|
|
112
|
+
accuracy_reached = False
|
|
113
|
+
with TimeStatistics("COMPARE OUTPUT", run_param):
|
|
114
|
+
run_param.comparator.compare_output(prefix_output, cpu_out, npu_out_cpu, None, None)
|
|
115
|
+
|
|
116
|
+
# user set dump or auto mode will dump
|
|
117
|
+
if run_param.dump_flag or (run_param.auto_dump_flag and not accuracy_reached):
|
|
118
|
+
with TimeStatistics("DUMP INPUT", run_param):
|
|
119
|
+
dump_data(cpu_args, prefix_input, run_param.root_npu_path)
|
|
120
|
+
if len(cpu_kwargs) > 0:
|
|
121
|
+
for k, v in cpu_kwargs.items():
|
|
122
|
+
kwargs_prefix_name = prefix_input + f'_{k}'
|
|
123
|
+
dump_data(v, kwargs_prefix_name, run_param.root_npu_path)
|
|
124
|
+
|
|
125
|
+
with TimeStatistics("DUMP OUTPUT", run_param):
|
|
126
|
+
dump_data(cpu_out, prefix_output, run_param.root_cpu_path)
|
|
127
|
+
dump_data(npu_out_cpu, prefix_output, run_param.root_npu_path)
|
|
128
|
+
|
|
129
|
+
if run_param.process_num == 0:
|
|
130
|
+
all_summery[run_param.api_index - 1] = copy.deepcopy(single_api_summery)
|
|
131
|
+
else:
|
|
132
|
+
save_temp_summery(run_param.api_index - 1, single_api_summery, run_param.root_cpu_path, lock)
|
|
133
|
+
|
|
134
|
+
|
|
135
|
+
def get_torch_func(run_param):
|
|
136
|
+
if hasattr(torch.ops, run_param.func_namespace):
|
|
137
|
+
ops_func = getattr(torch.ops, run_param.func_namespace)
|
|
138
|
+
if hasattr(ops_func, run_param.aten_api):
|
|
139
|
+
ops_aten_func = getattr(ops_func, run_param.aten_api)
|
|
140
|
+
if hasattr(ops_aten_func, run_param.aten_api_overload_name):
|
|
141
|
+
ops_aten_overlaod_func = getattr(ops_aten_func, run_param.aten_api_overload_name)
|
|
142
|
+
return ops_aten_overlaod_func
|
|
143
|
+
return None
|
|
144
|
+
|
|
145
|
+
|
|
146
|
+
def dispatch_multiprocess(run_param, dispatch_data_info):
|
|
147
|
+
torch_func = get_torch_func(run_param)
|
|
148
|
+
if torch_func is None:
|
|
149
|
+
logger.error(f'can not find suitable call api:{run_param.aten_api}')
|
|
150
|
+
else:
|
|
151
|
+
dispatch_data_info.func = torch_func
|
|
152
|
+
dispatch_workflow(run_param, dispatch_data_info)
|
|
153
|
+
|
|
154
|
+
|
|
155
|
+
def error_call(err):
|
|
156
|
+
logger.error(f'multiprocess {err}')
|
|
157
|
+
|
|
158
|
+
|
|
159
|
+
def save_csv(all_summery, call_stack_list, csv_path):
|
|
160
|
+
df = pd.DataFrame(columns=CSV_COLUMN_NAME)
|
|
161
|
+
|
|
162
|
+
for index, list_data in enumerate(all_summery):
|
|
163
|
+
for data in list_data:
|
|
164
|
+
csv_row_data = {CompareConst.NPU_NAME: data[CompareConst.NPU_NAME],
|
|
165
|
+
CompareConst.BENCH_NAME: data[CompareConst.BENCH_NAME],
|
|
166
|
+
CompareConst.NPU_DTYPE: data[CompareConst.NPU_DTYPE],
|
|
167
|
+
CompareConst.BENCH_DTYPE: data[CompareConst.BENCH_DTYPE],
|
|
168
|
+
CompareConst.NPU_SHAPE: data[CompareConst.NPU_SHAPE],
|
|
169
|
+
CompareConst.BENCH_SHAPE: data[CompareConst.BENCH_SHAPE],
|
|
170
|
+
CompareConst.NPU_MAX: data[CompareConst.NPU_MAX],
|
|
171
|
+
CompareConst.NPU_MIN: data[CompareConst.NPU_MIN],
|
|
172
|
+
CompareConst.NPU_MEAN: data[CompareConst.NPU_MEAN],
|
|
173
|
+
CompareConst.BENCH_MAX: data[CompareConst.BENCH_MAX],
|
|
174
|
+
CompareConst.BENCH_MIN: data[CompareConst.BENCH_MIN],
|
|
175
|
+
CompareConst.BENCH_MEAN: data[CompareConst.BENCH_MEAN],
|
|
176
|
+
CompareConst.COSINE: data[CompareConst.COSINE],
|
|
177
|
+
CompareConst.MAX_ABS_ERR: data[CompareConst.MAX_ABS_ERR],
|
|
178
|
+
CompareConst.MAX_RELATIVE_ERR: data[CompareConst.MAX_RELATIVE_ERR],
|
|
179
|
+
CompareConst.ACCURACY: data[CompareConst.ACCURACY],
|
|
180
|
+
CompareConst.STACK: call_stack_list[index],
|
|
181
|
+
CompareConst.ERROR_MESSAGE: data[CompareConst.ERROR_MESSAGE]}
|
|
182
|
+
row_df = pd.DataFrame.from_dict(csv_row_data, orient='index').T
|
|
183
|
+
df = pd.concat([df, row_df])
|
|
184
|
+
|
|
185
|
+
df.to_csv(csv_path, index=False)
|
|
186
|
+
change_mode(csv_path, FileCheckConst.DATA_FILE_AUTHORITY)
|
|
@@ -0,0 +1,391 @@
|
|
|
1
|
+
import logging
|
|
2
|
+
from functools import wraps
|
|
3
|
+
import torch
|
|
4
|
+
from prettytable import PrettyTable
|
|
5
|
+
from collections import namedtuple
|
|
6
|
+
from .utils import logger_user, logger_debug
|
|
7
|
+
|
|
8
|
+
def func_log_wrapper():
|
|
9
|
+
def _out_wrapper(func):
|
|
10
|
+
@wraps(func)
|
|
11
|
+
def _in_wrapper(*kargs, **kwargs):
|
|
12
|
+
logger_debug("start to run: {}".format(func.__name__))
|
|
13
|
+
x = func(*kargs, **kwargs)
|
|
14
|
+
logger_debug("end to run: {}".format(func.__name__))
|
|
15
|
+
return x
|
|
16
|
+
|
|
17
|
+
return _in_wrapper
|
|
18
|
+
|
|
19
|
+
return _out_wrapper
|
|
20
|
+
|
|
21
|
+
|
|
22
|
+
class SingleBenchmarkCompareStandard:
|
|
23
|
+
def __init__(self, high_precision=True):
|
|
24
|
+
self.high_precision = high_precision
|
|
25
|
+
self.small_value = 1.0
|
|
26
|
+
self.error_thd = {torch.float16: [2 ** -11, 2 ** -7],
|
|
27
|
+
torch.bfloat16: [2 ** -8, 2 ** -6],
|
|
28
|
+
torch.float32: [2 ** -14, 2 ** -11],
|
|
29
|
+
torch.float64: [2 ** -14, 2 ** -11]}
|
|
30
|
+
self.eb_thd = {torch.float16: 2 ** -10,
|
|
31
|
+
torch.bfloat16: 2 ** -7,
|
|
32
|
+
torch.float32: 2 ** -14,
|
|
33
|
+
torch.float64: 2 ** -14}
|
|
34
|
+
|
|
35
|
+
def get_error_thd(self, dtype):
|
|
36
|
+
if dtype in self.error_thd.keys():
|
|
37
|
+
if dtype == torch.float64:
|
|
38
|
+
logging.warning("the output data of fp64 uses the same standard as fp32.")
|
|
39
|
+
return self.error_thd.get(dtype)[0] if self.high_precision else self.error_thd.get(dtype)[1]
|
|
40
|
+
logging.error(
|
|
41
|
+
"Single benchmark compare only supports floating point "
|
|
42
|
+
"in fp16, bf16, fp32. "
|
|
43
|
+
)
|
|
44
|
+
return None
|
|
45
|
+
|
|
46
|
+
def get_eb_thd(self, dtype):
|
|
47
|
+
if dtype in self.eb_thd.keys():
|
|
48
|
+
return self.eb_thd.get(dtype)
|
|
49
|
+
return None
|
|
50
|
+
|
|
51
|
+
|
|
52
|
+
class SingleBenchmarkAccuracyResult:
|
|
53
|
+
def __init__(
|
|
54
|
+
self,
|
|
55
|
+
result=True,
|
|
56
|
+
error_balance=None,
|
|
57
|
+
max_abs_diff=None,
|
|
58
|
+
max_abs_idx=None,
|
|
59
|
+
max_rel_diff=None,
|
|
60
|
+
max_rel_idx=None
|
|
61
|
+
):
|
|
62
|
+
self.result = result
|
|
63
|
+
self.error_balance = error_balance
|
|
64
|
+
self.max_abs_diff = max_abs_diff
|
|
65
|
+
self.max_abs_idx = max_abs_idx
|
|
66
|
+
self.max_rel_diff = max_rel_diff
|
|
67
|
+
self.max_rel_idx = max_rel_idx
|
|
68
|
+
|
|
69
|
+
def get_result(self, eb_thd, error_thd):
|
|
70
|
+
if (
|
|
71
|
+
self.error_balance > eb_thd
|
|
72
|
+
or self.max_abs_diff > error_thd
|
|
73
|
+
or self.max_rel_diff > error_thd
|
|
74
|
+
):
|
|
75
|
+
self.result = False
|
|
76
|
+
else:
|
|
77
|
+
self.result = True
|
|
78
|
+
|
|
79
|
+
|
|
80
|
+
class SingleBenchmarkAccuracyCompare:
|
|
81
|
+
@classmethod
|
|
82
|
+
@func_log_wrapper()
|
|
83
|
+
def check_output_size(cls, npu_out, bench_out):
|
|
84
|
+
acc_result = None
|
|
85
|
+
if npu_out.numel() == 0 and bench_out.nuimel() == 0:
|
|
86
|
+
info = (
|
|
87
|
+
"The npu_output is [], and it is same as benchmark_output, "
|
|
88
|
+
"the result of data_compare is Pass"
|
|
89
|
+
)
|
|
90
|
+
logging.debug(info)
|
|
91
|
+
acc_result = SingleBenchmarkAccuracyResult(result=True)
|
|
92
|
+
|
|
93
|
+
if npu_out.size() != bench_out.size():
|
|
94
|
+
error_info = (
|
|
95
|
+
f"the size of npu output[{npu_out.size()}] and"
|
|
96
|
+
f"benchmark[{bench_out.size()}] is not equal"
|
|
97
|
+
)
|
|
98
|
+
|
|
99
|
+
logging.error(error_info)
|
|
100
|
+
acc_result = SingleBenchmarkAccuracyResult(result=False)
|
|
101
|
+
return acc_result
|
|
102
|
+
|
|
103
|
+
@classmethod
|
|
104
|
+
@func_log_wrapper()
|
|
105
|
+
def check_output_invalid_value(cls, output):
|
|
106
|
+
has_nan = torch.isnan(output).any()
|
|
107
|
+
has_inf = torch.isinf(output).any()
|
|
108
|
+
return has_nan or has_inf
|
|
109
|
+
|
|
110
|
+
@classmethod
|
|
111
|
+
@func_log_wrapper()
|
|
112
|
+
def precision_compare_for_case(cls, npu_out, bench_out, benchmark_standard: SingleBenchmarkCompareStandard):
|
|
113
|
+
error_thd = None
|
|
114
|
+
eb_thd = None
|
|
115
|
+
acc_result = cls.check_output_size(npu_out, bench_out)
|
|
116
|
+
CompareResultInfo = namedtuple("CompareResultInfo",
|
|
117
|
+
['accuracy_result', 'error_threshold', 'eb_threshold', 'failed_information'])
|
|
118
|
+
|
|
119
|
+
if acc_result:
|
|
120
|
+
failed_info = "比对数据的shape不一致"
|
|
121
|
+
return CompareResultInfo(acc_result, error_thd, eb_thd, failed_info)
|
|
122
|
+
|
|
123
|
+
if cls.check_output_invalid_value(bench_out):
|
|
124
|
+
logging.info("The benchmark result contains nan/inf value. ")
|
|
125
|
+
failed_info = "标杆结果存在nan值或inf值, 依照单标杆标准该用例通过"
|
|
126
|
+
acc_result = SingleBenchmarkAccuracyResult(result=True)
|
|
127
|
+
return CompareResultInfo(acc_result, error_thd, eb_thd, failed_info)
|
|
128
|
+
|
|
129
|
+
if cls.check_output_invalid_value(npu_out):
|
|
130
|
+
logging.info("The NPU result contains nan/inf value. ")
|
|
131
|
+
failed_info = "NPU结果存在nan值或inf值, 依照单标杆标准该用例不通过"
|
|
132
|
+
acc_result = SingleBenchmarkAccuracyResult(result=False)
|
|
133
|
+
return CompareResultInfo(acc_result, error_thd, eb_thd, failed_info)
|
|
134
|
+
|
|
135
|
+
data_type = npu_out.dtype
|
|
136
|
+
if data_type not in [torch.float16, torch.float32, torch.float64, torch.bfloat16]:
|
|
137
|
+
acc_result = cls.compute_binary_diff(npu_out, bench_out)
|
|
138
|
+
else:
|
|
139
|
+
error_thd = benchmark_standard.get_error_thd(data_type)
|
|
140
|
+
eb_thd = benchmark_standard.get_eb_thd(data_type)
|
|
141
|
+
if error_thd is None:
|
|
142
|
+
logging.error(
|
|
143
|
+
"single benchmark not support the comparison of %s", str(data_type)
|
|
144
|
+
)
|
|
145
|
+
acc_result = SingleBenchmarkAccuracyResult(result=False)
|
|
146
|
+
else:
|
|
147
|
+
if npu_out.dtype in [torch.float16, torch.bfloat16] and bench_out.dtype in [torch.float32]:
|
|
148
|
+
npu_out = npu_out.to(torch.float32)
|
|
149
|
+
error_balance = cls.compute_error_balance(npu_out, bench_out, benchmark_standard)
|
|
150
|
+
max_abs_diff, max_abs_idx = cls.compute_abs_diff(npu_out, bench_out, error_thd, benchmark_standard)
|
|
151
|
+
max_rel_diff, max_rel_idx = cls.compute_rel_diff(npu_out, bench_out, error_thd, benchmark_standard)
|
|
152
|
+
acc_result = SingleBenchmarkAccuracyResult(
|
|
153
|
+
error_balance=error_balance,
|
|
154
|
+
max_abs_diff=max_abs_diff,
|
|
155
|
+
max_abs_idx=max_abs_idx,
|
|
156
|
+
max_rel_diff=max_rel_diff,
|
|
157
|
+
max_rel_idx=max_rel_idx
|
|
158
|
+
)
|
|
159
|
+
acc_result.get_result(eb_thd, error_thd)
|
|
160
|
+
return CompareResultInfo(acc_result, error_thd, eb_thd, None)
|
|
161
|
+
return None
|
|
162
|
+
|
|
163
|
+
@classmethod
|
|
164
|
+
@func_log_wrapper()
|
|
165
|
+
def compute_binary_diff(cls, npu_out, bench_out):
|
|
166
|
+
result = torch.equal(npu_out, bench_out)
|
|
167
|
+
if result:
|
|
168
|
+
logger_user("二进制精度比对通过, 无需单标杆比对法验证")
|
|
169
|
+
return SingleBenchmarkAccuracyResult(result=result, max_abs_diff=0, max_rel_diff=0, error_balance=0)
|
|
170
|
+
|
|
171
|
+
@classmethod
|
|
172
|
+
@func_log_wrapper()
|
|
173
|
+
def compute_error_balance(cls, npu_out, bench_out, benchmark_standard: SingleBenchmarkCompareStandard):
|
|
174
|
+
ones = torch.ones_like(npu_out)
|
|
175
|
+
zeros = torch.zeros_like(npu_out)
|
|
176
|
+
abs_mask_idx = torch.where(torch.abs(bench_out) < benchmark_standard.small_value, ones, zeros)
|
|
177
|
+
abs_mask_idx = abs_mask_idx.type(torch.bool)
|
|
178
|
+
diff_value = torch.subtract(npu_out, bench_out)
|
|
179
|
+
diff_value_rel = diff_value / (torch.abs(bench_out) + torch.finfo(torch.float).eps )
|
|
180
|
+
rel_and_abs = torch.where(abs_mask_idx, diff_value, diff_value_rel)
|
|
181
|
+
eb_float = float(torch.mean(rel_and_abs))
|
|
182
|
+
return eb_float
|
|
183
|
+
|
|
184
|
+
@classmethod
|
|
185
|
+
@func_log_wrapper()
|
|
186
|
+
def compute_abs_diff(cls, npu_out, bench_out, error_thd, benchmark_standard: SingleBenchmarkCompareStandard):
|
|
187
|
+
max_abs_diff = 0
|
|
188
|
+
max_abs_idx = None
|
|
189
|
+
|
|
190
|
+
ones = torch.ones_like(npu_out)
|
|
191
|
+
zeros = torch.zeros_like(npu_out)
|
|
192
|
+
diff_value = torch.subtract(npu_out, bench_out)
|
|
193
|
+
diff_abs = torch.abs(diff_value)
|
|
194
|
+
abs_mask_idx = torch.where(torch.abs(bench_out) < benchmark_standard.small_value, ones, zeros)
|
|
195
|
+
abs_err_idx = torch.where(diff_abs > error_thd, ones, zeros)
|
|
196
|
+
abs_err_idx = abs_err_idx * abs_mask_idx
|
|
197
|
+
abs_err = diff_abs[torch.where(abs_err_idx == 1)]
|
|
198
|
+
|
|
199
|
+
if len(abs_err) > 0:
|
|
200
|
+
err_for_max = torch.where(abs_err_idx == 1, diff_abs, zeros)
|
|
201
|
+
logging.debug("err_for_max for abs %s", err_for_max)
|
|
202
|
+
max_abs_idx = torch.argmax(err_for_max)
|
|
203
|
+
max_abs_diff = diff_abs[max_abs_idx]
|
|
204
|
+
elif torch.sum(abs_mask_idx) > 0:
|
|
205
|
+
err_for_max = torch.where(abs_mask_idx == 1, diff_abs, zeros)
|
|
206
|
+
logging.debug("error_for_max for abs %s", err_for_max)
|
|
207
|
+
max_abs_idx = torch.argmax(err_for_max)
|
|
208
|
+
if err_for_max.max() != 0:
|
|
209
|
+
max_abs_diff = diff_abs[max_abs_idx]
|
|
210
|
+
return (float(max_abs_diff), int(max_abs_idx) if torch.is_tensor(max_abs_idx) else max_abs_idx)
|
|
211
|
+
|
|
212
|
+
@classmethod
|
|
213
|
+
@func_log_wrapper()
|
|
214
|
+
def compute_rel_diff(cls, npu_out, bench_out, error_thd, benchmark_standard: SingleBenchmarkCompareStandard):
|
|
215
|
+
max_rel_diff = 0
|
|
216
|
+
max_rel_idx = None
|
|
217
|
+
|
|
218
|
+
ones = torch.ones_like(npu_out)
|
|
219
|
+
zeros = torch.zeros_like(npu_out)
|
|
220
|
+
diff_value = torch.subtract(npu_out, bench_out)
|
|
221
|
+
diff_abs = torch.abs(diff_value)
|
|
222
|
+
|
|
223
|
+
rel_mask_idx = torch.where(torch.abs(bench_out) >= benchmark_standard.small_value, ones, zeros)
|
|
224
|
+
rel_err = diff_abs / (torch.abs(bench_out) + torch.finfo(torch.float).eps )
|
|
225
|
+
diff_rel = rel_err
|
|
226
|
+
rel_err_idx = torch.where(rel_err > error_thd, ones, zeros)
|
|
227
|
+
rel_err_idx = rel_err_idx * rel_mask_idx
|
|
228
|
+
rel_err = rel_err[torch.where(rel_err_idx == 1)]
|
|
229
|
+
if len(rel_err) > 0:
|
|
230
|
+
err_for_max = torch.where(rel_err_idx == 1, diff_rel, zeros)
|
|
231
|
+
logging.debug("error_for_max for rel %s", err_for_max)
|
|
232
|
+
max_rel_idx = torch.argmax(err_for_max)
|
|
233
|
+
max_rel_diff = diff_rel[max_rel_idx]
|
|
234
|
+
elif torch.sum(rel_mask_idx > 0):
|
|
235
|
+
err_for_max = torch.where(rel_mask_idx == 1, diff_rel, zeros)
|
|
236
|
+
logging.debug("err_for_max for rel %s", err_for_max)
|
|
237
|
+
max_rel_idx = torch.argmax(err_for_max)
|
|
238
|
+
if torch.sum(err_for_max) != 0:
|
|
239
|
+
max_rel_diff = diff_rel[max_rel_idx]
|
|
240
|
+
return (float(max_rel_diff), int(max_rel_idx) if torch.is_tensor(max_rel_idx) else max_rel_idx)
|
|
241
|
+
|
|
242
|
+
|
|
243
|
+
class SingleBenchSummary:
|
|
244
|
+
def __init__(self, precision_result: SingleBenchmarkAccuracyResult, npu_dtype=None,
|
|
245
|
+
bench_dtype=None, shape=None, error_thd=None, eb_thd=None, failed_info=None):
|
|
246
|
+
self.npu_dtype = npu_dtype
|
|
247
|
+
self.bench_dtype = bench_dtype
|
|
248
|
+
self.shape = shape
|
|
249
|
+
self.result = precision_result.result
|
|
250
|
+
self.error_balance = precision_result.error_balance
|
|
251
|
+
self.max_abs_diff = precision_result.max_abs_diff
|
|
252
|
+
self.max_abs_idx = precision_result.max_abs_idx
|
|
253
|
+
self.max_rel_diff = precision_result.max_rel_diff
|
|
254
|
+
self.max_rel_idx = precision_result.max_rel_idx
|
|
255
|
+
self.eb_thd = eb_thd
|
|
256
|
+
self.error_thd = error_thd
|
|
257
|
+
self.failed_info = failed_info
|
|
258
|
+
|
|
259
|
+
def get_check_result(self):
|
|
260
|
+
if self.result:
|
|
261
|
+
return "PASS"
|
|
262
|
+
else:
|
|
263
|
+
return "FAILED"
|
|
264
|
+
|
|
265
|
+
def get_result_msg(self):
|
|
266
|
+
result_str = ""
|
|
267
|
+
if self.failed_info:
|
|
268
|
+
return self.failed_info
|
|
269
|
+
|
|
270
|
+
if self.result:
|
|
271
|
+
result_str += "误差均衡性EB: %s <= 阈值%s\n" % (self.error_balance, self.eb_thd)
|
|
272
|
+
result_str += "最大绝对误差: %s <= 阈值%s\n" % (self.max_abs_diff, self.error_thd)
|
|
273
|
+
result_str += "最大相对误差: %s <= 阈值%s\n" % (self.max_rel_diff, self.error_thd)
|
|
274
|
+
else:
|
|
275
|
+
if self.error_balance > self.eb_thd:
|
|
276
|
+
result_str += "误差均衡性EB超过阈值%s: EB = %s\n" % (
|
|
277
|
+
self.eb_thd,
|
|
278
|
+
self.error_balance,
|
|
279
|
+
)
|
|
280
|
+
if self.max_abs_diff > self.error_thd:
|
|
281
|
+
result_str += "小值域最大绝对误差超过阈值%s: idx = %s, 绝对误差 = %s\n" % (
|
|
282
|
+
self.error_thd,
|
|
283
|
+
self.max_abs_idx,
|
|
284
|
+
self.max_abs_diff
|
|
285
|
+
)
|
|
286
|
+
if self.max_rel_diff > self.error_thd:
|
|
287
|
+
result_str += "大值域最大相对误差超过阈值%s: idx = %s, 相对误差 = %s\n" % (
|
|
288
|
+
self.error_thd,
|
|
289
|
+
self.max_rel_idx,
|
|
290
|
+
self.max_rel_diff,
|
|
291
|
+
)
|
|
292
|
+
return result_str
|
|
293
|
+
|
|
294
|
+
def print_detail_table(self):
|
|
295
|
+
table = PrettyTable()
|
|
296
|
+
table.title = "Single Benchmark Metrics Info"
|
|
297
|
+
table.field_names = ["Index", "Result", "Threshold"]
|
|
298
|
+
table.add_row(["error_balance", self.error_balance, self.eb_thd])
|
|
299
|
+
table.add_row(["max_abs_diff", self.max_abs_diff, self.error_thd])
|
|
300
|
+
table.add_row(["max_abs_idx", self.max_abs_idx, "-"])
|
|
301
|
+
table.add_row(["max_rel_diff", self.max_rel_diff, self.error_thd])
|
|
302
|
+
table.add_row(["max_rel_idx", self.max_rel_idx, "-"])
|
|
303
|
+
|
|
304
|
+
logger_user(table)
|
|
305
|
+
|
|
306
|
+
def to_column_value(self):
|
|
307
|
+
return [self.bench_dtype, self.npu_dtype, self.shape, self.error_balance,
|
|
308
|
+
self.max_abs_diff, self.max_abs_idx, self.max_rel_diff, self.max_rel_idx,
|
|
309
|
+
self.eb_thd, self.error_thd, self.result, self.failed_info]
|
|
310
|
+
|
|
311
|
+
|
|
312
|
+
def single_benchmark_compare(npu_out: torch.Tensor, bench_out: torch.Tensor, high_precision: bool = True):
|
|
313
|
+
benchmark_standard = SingleBenchmarkCompareStandard(high_precision)
|
|
314
|
+
npu_out = npu_out.flatten()
|
|
315
|
+
bench_out = bench_out.flatten()
|
|
316
|
+
|
|
317
|
+
compare_results = SingleBenchmarkAccuracyCompare.precision_compare_for_case(npu_out, bench_out, benchmark_standard)
|
|
318
|
+
(
|
|
319
|
+
precision_result,
|
|
320
|
+
error_thd,
|
|
321
|
+
eb_thd,
|
|
322
|
+
failed_info
|
|
323
|
+
) = (compare_results.accuracy_result, compare_results.error_threshold,
|
|
324
|
+
compare_results.eb_threshold, compare_results.failed_information)
|
|
325
|
+
|
|
326
|
+
summary = SingleBenchSummary(precision_result, str(npu_out.dtype), str(bench_out.dtype), tuple(npu_out.shape), error_thd, eb_thd, failed_info)
|
|
327
|
+
result = summary.result
|
|
328
|
+
details = summary.to_column_value()
|
|
329
|
+
return result, details
|
|
330
|
+
|
|
331
|
+
|
|
332
|
+
def calc_status_details_list_tuple(npu_out, bench_out, high_precision, summary):
|
|
333
|
+
status, details = [], []
|
|
334
|
+
if len(bench_out) != len(npu_out):
|
|
335
|
+
summary.result = False
|
|
336
|
+
summary.failed_info = "bench and npu output structure is different."
|
|
337
|
+
return False, summary.to_column_value()
|
|
338
|
+
for b_out_i, n_out_i in zip(bench_out, npu_out):
|
|
339
|
+
status_i, details_i = single_benchmark_compare_wrap(n_out_i, b_out_i, high_precision)
|
|
340
|
+
status.append(status_i)
|
|
341
|
+
details.append(details_i)
|
|
342
|
+
return status, details
|
|
343
|
+
|
|
344
|
+
|
|
345
|
+
def calc_status_details_dict(npu_out, bench_out, high_precision, summary):
|
|
346
|
+
b_keys, n_keys = set(bench_out.keys()), set(npu_out.keys())
|
|
347
|
+
if b_keys != n_keys:
|
|
348
|
+
summary.result = False
|
|
349
|
+
summary.failed_info = "bench and npu_output dict keys are different."
|
|
350
|
+
return False, summary.to_column_value()
|
|
351
|
+
else:
|
|
352
|
+
status, details = single_benchmark_compare_wrap(list(bench_out.values(), list(npu_out.values())))
|
|
353
|
+
return status, details
|
|
354
|
+
|
|
355
|
+
|
|
356
|
+
def calc_status_details_tensor(npu_out, bench_out, high_precision, summary):
|
|
357
|
+
return single_benchmark_compare(bench_out, npu_out)
|
|
358
|
+
|
|
359
|
+
|
|
360
|
+
def calc_status_details_builtin(npu_out, bench_out, summary):
|
|
361
|
+
summary.bench_dtype = str(type(bench_out))
|
|
362
|
+
summary.npu_dtype = str(type(npu_out))
|
|
363
|
+
status = bench_out == npu_out
|
|
364
|
+
summary.result = status
|
|
365
|
+
return status, summary.to_column_value()
|
|
366
|
+
|
|
367
|
+
|
|
368
|
+
def calc_status_details_none(npu_out, bench_out, high_precision, summary):
|
|
369
|
+
summary.result = True
|
|
370
|
+
summary.failed_info = "Output is None."
|
|
371
|
+
return True, summary.to_column_value()
|
|
372
|
+
|
|
373
|
+
|
|
374
|
+
def single_benchmark_compare_wrap(npu_output: torch.Tensor, bench_output: torch.Tensor, high_precision=True):
|
|
375
|
+
type_method_dict = {
|
|
376
|
+
(list, tuple): calc_status_details_list_tuple,
|
|
377
|
+
dict: calc_status_details_dict,
|
|
378
|
+
torch.Tensor: calc_status_details_tensor,
|
|
379
|
+
(bool, int, float, str): calc_status_details_builtin,
|
|
380
|
+
None: calc_status_details_none,
|
|
381
|
+
}
|
|
382
|
+
|
|
383
|
+
result = SingleBenchmarkAccuracyResult(result=True)
|
|
384
|
+
bench_summary = SingleBenchSummary(result)
|
|
385
|
+
for type1, func in type_method_dict.items():
|
|
386
|
+
if isinstance(bench_output, type1):
|
|
387
|
+
return func(npu_output, bench_output, high_precision, bench_summary)
|
|
388
|
+
|
|
389
|
+
bench_summary.result = True
|
|
390
|
+
bench_summary.failed_info = "Unexpected output type: {}".format(type(bench_output))
|
|
391
|
+
return True, bench_summary.to_column_value()
|
|
@@ -0,0 +1,50 @@
|
|
|
1
|
+
aten_ops_blacklist:
|
|
2
|
+
- _cudnn_rnn
|
|
3
|
+
- _local_scalar_dense
|
|
4
|
+
- _pin_memory
|
|
5
|
+
- _to_copy
|
|
6
|
+
- _unsafe_view
|
|
7
|
+
- clone
|
|
8
|
+
- contiguous
|
|
9
|
+
- copy_
|
|
10
|
+
- cudnn_batch_norm
|
|
11
|
+
- cudnn_batch_norm_backward
|
|
12
|
+
- detach
|
|
13
|
+
- empty
|
|
14
|
+
- index_put_
|
|
15
|
+
- lift_fresh
|
|
16
|
+
- max_pool2d_with_indices_backward # shape unmatch
|
|
17
|
+
- native_batch_norm_backward
|
|
18
|
+
- new_empty
|
|
19
|
+
- new_empty_strided
|
|
20
|
+
- new_full
|
|
21
|
+
- new_ones
|
|
22
|
+
- new_zeros
|
|
23
|
+
- ones
|
|
24
|
+
- ones_like
|
|
25
|
+
- permute
|
|
26
|
+
- rand
|
|
27
|
+
- rand_like
|
|
28
|
+
- randint
|
|
29
|
+
- randint_like
|
|
30
|
+
- randn
|
|
31
|
+
- randn_like
|
|
32
|
+
- randperm
|
|
33
|
+
- scalar_tensor
|
|
34
|
+
- select
|
|
35
|
+
- to
|
|
36
|
+
- transpose
|
|
37
|
+
- unbind
|
|
38
|
+
- view
|
|
39
|
+
- zero
|
|
40
|
+
- zero_
|
|
41
|
+
- zeros
|
|
42
|
+
- zeros_like
|
|
43
|
+
|
|
44
|
+
npu_adjust_autogard:
|
|
45
|
+
- adaptive_avg_pool2d
|
|
46
|
+
- batch_norm
|
|
47
|
+
- log_softmax
|
|
48
|
+
- nll_loss
|
|
49
|
+
- to
|
|
50
|
+
|