mindstudio-probe 1.0.1__py3-none-any.whl → 1.0.4__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (323) hide show
  1. {mindstudio_probe-1.0.1.dist-info → mindstudio_probe-1.0.4.dist-info}/LICENSE +201 -201
  2. {mindstudio_probe-1.0.1.dist-info → mindstudio_probe-1.0.4.dist-info}/METADATA +36 -30
  3. mindstudio_probe-1.0.4.dist-info/RECORD +276 -0
  4. {mindstudio_probe-1.0.1.dist-info → mindstudio_probe-1.0.4.dist-info}/WHEEL +1 -1
  5. {mindstudio_probe-1.0.1.dist-info → mindstudio_probe-1.0.4.dist-info}/entry_points.txt +1 -0
  6. msprobe/README.md +101 -182
  7. msprobe/__init__.py +1 -0
  8. msprobe/{config/config.json → config.json} +49 -27
  9. msprobe/core/__init__.py +0 -0
  10. msprobe/{pytorch → core}/advisor/advisor.py +124 -124
  11. msprobe/{pytorch → core}/advisor/advisor_const.py +59 -59
  12. msprobe/{pytorch → core}/advisor/advisor_result.py +58 -58
  13. msprobe/core/common/const.py +341 -241
  14. msprobe/core/common/exceptions.py +100 -88
  15. msprobe/core/common/{file_check.py → file_utils.py} +478 -265
  16. msprobe/core/common/log.py +76 -55
  17. msprobe/core/common/utils.py +385 -516
  18. msprobe/core/common_config.py +85 -58
  19. msprobe/core/compare/acc_compare.py +300 -0
  20. msprobe/core/compare/check.py +95 -0
  21. msprobe/core/compare/compare_cli.py +49 -0
  22. msprobe/core/compare/highlight.py +223 -0
  23. msprobe/core/compare/multiprocessing_compute.py +149 -0
  24. msprobe/{pytorch → core}/compare/npy_compare.py +295 -244
  25. msprobe/core/compare/utils.py +430 -0
  26. msprobe/core/data_dump/data_collector.py +154 -140
  27. msprobe/core/data_dump/data_processor/base.py +314 -245
  28. msprobe/core/data_dump/data_processor/factory.py +59 -61
  29. msprobe/core/data_dump/data_processor/mindspore_processor.py +186 -0
  30. msprobe/core/data_dump/data_processor/pytorch_processor.py +366 -346
  31. msprobe/core/data_dump/json_writer.py +96 -116
  32. msprobe/core/data_dump/scope.py +178 -178
  33. msprobe/core/grad_probe/__init__.py +0 -0
  34. msprobe/core/grad_probe/constant.py +71 -0
  35. msprobe/core/grad_probe/grad_compare.py +171 -0
  36. msprobe/core/grad_probe/utils.py +64 -0
  37. msprobe/docs/01.installation.md +89 -0
  38. msprobe/docs/02.config_introduction.md +165 -0
  39. msprobe/docs/03.config_examples.md +247 -0
  40. msprobe/docs/04.acl_config_examples.md +76 -0
  41. msprobe/docs/05.data_dump_PyTorch.md +198 -0
  42. msprobe/docs/06.data_dump_MindSpore.md +243 -0
  43. msprobe/docs/07.accuracy_checker_PyTorch.md +274 -0
  44. msprobe/docs/08.accuracy_checker_online_PyTorch.md +198 -0
  45. msprobe/docs/09.accuracy_checker_MindSpore.md +68 -0
  46. msprobe/docs/10.accuracy_compare_PyTorch.md +245 -0
  47. msprobe/docs/11.accuracy_compare_MindSpore.md +202 -0
  48. msprobe/docs/12.overflow_check_PyTorch.md +79 -0
  49. msprobe/docs/13.overflow_check_MindSpore.md +31 -0
  50. msprobe/{pytorch/doc/parse_tool.md → docs/14.data_parse_PyTorch.md} +283 -286
  51. msprobe/docs/15.free_benchmarking_PyTorch.md +164 -0
  52. msprobe/docs/17.grad_probe.md +207 -0
  53. msprobe/docs/FAQ_PyTorch.md +177 -0
  54. msprobe/docs/S02.report_free_benchmarking_validation_performance_baseline.md +146 -0
  55. msprobe/docs/img/free_benchmark_framework.png +0 -0
  56. msprobe/docs/img/grad_probe_image-1.png +0 -0
  57. msprobe/docs/img/grad_probe_image-2.png +0 -0
  58. msprobe/docs/img/grad_probe_image-3.png +0 -0
  59. msprobe/docs/img/grad_probe_image-4.png +0 -0
  60. msprobe/docs/img/grad_probe_image.png +0 -0
  61. msprobe/mindspore/__init__.py +1 -1
  62. msprobe/mindspore/api_accuracy_checker/__init__.py +0 -0
  63. msprobe/mindspore/api_accuracy_checker/api_accuracy_checker.py +255 -0
  64. msprobe/mindspore/api_accuracy_checker/api_info.py +69 -0
  65. msprobe/mindspore/api_accuracy_checker/api_runner.py +156 -0
  66. msprobe/mindspore/api_accuracy_checker/base_compare_algorithm.py +197 -0
  67. msprobe/mindspore/api_accuracy_checker/cmd_parser.py +6 -0
  68. msprobe/mindspore/api_accuracy_checker/compute_element.py +239 -0
  69. msprobe/mindspore/api_accuracy_checker/main.py +9 -0
  70. msprobe/mindspore/api_accuracy_checker/type_mapping.py +114 -0
  71. msprobe/mindspore/api_accuracy_checker/utils.py +80 -0
  72. msprobe/mindspore/cell_processor.py +34 -0
  73. msprobe/mindspore/common/const.py +106 -0
  74. msprobe/mindspore/common/log.py +38 -0
  75. msprobe/mindspore/common/utils.py +81 -0
  76. msprobe/mindspore/compare/distributed_compare.py +75 -0
  77. msprobe/mindspore/compare/ms_compare.py +219 -0
  78. msprobe/mindspore/compare/ms_graph_compare.py +348 -0
  79. msprobe/mindspore/compare/ms_to_pt_api.yaml +399 -0
  80. msprobe/mindspore/debugger/debugger_config.py +66 -51
  81. msprobe/mindspore/debugger/precision_debugger.py +126 -32
  82. msprobe/mindspore/dump/dump_tool_factory.py +35 -38
  83. msprobe/mindspore/dump/hook_cell/api_registry.py +118 -0
  84. msprobe/mindspore/dump/hook_cell/hook_cell.py +55 -0
  85. msprobe/mindspore/dump/hook_cell/support_wrap_ops.yaml +922 -0
  86. msprobe/mindspore/dump/hook_cell/wrap_api.py +113 -0
  87. msprobe/mindspore/dump/jit_dump.py +72 -0
  88. msprobe/mindspore/dump/kernel_graph_dump.py +59 -60
  89. msprobe/mindspore/dump/kernel_kbyk_dump.py +64 -0
  90. msprobe/mindspore/free_benchmark/__init__.py +0 -0
  91. msprobe/mindspore/free_benchmark/api_pynative_self_check.py +116 -0
  92. msprobe/mindspore/free_benchmark/common/__init__.py +0 -0
  93. msprobe/mindspore/free_benchmark/common/config.py +12 -0
  94. msprobe/mindspore/free_benchmark/common/handler_params.py +17 -0
  95. msprobe/mindspore/free_benchmark/common/utils.py +71 -0
  96. msprobe/mindspore/free_benchmark/data/support_wrap_ops.yaml +842 -0
  97. msprobe/mindspore/free_benchmark/decorator/__init__.py +0 -0
  98. msprobe/mindspore/free_benchmark/decorator/dec_forward.py +43 -0
  99. msprobe/mindspore/free_benchmark/decorator/decorator_factory.py +107 -0
  100. msprobe/mindspore/free_benchmark/handler/__init__.py +0 -0
  101. msprobe/mindspore/free_benchmark/handler/base_handler.py +90 -0
  102. msprobe/mindspore/free_benchmark/handler/check_handler.py +41 -0
  103. msprobe/mindspore/free_benchmark/handler/fix_handler.py +36 -0
  104. msprobe/mindspore/free_benchmark/handler/handler_factory.py +21 -0
  105. msprobe/mindspore/free_benchmark/perturbation/add_noise.py +67 -0
  106. msprobe/mindspore/free_benchmark/perturbation/base_perturbation.py +21 -0
  107. msprobe/mindspore/free_benchmark/perturbation/bit_noise.py +63 -0
  108. msprobe/mindspore/free_benchmark/perturbation/exchange_value.py +51 -0
  109. msprobe/mindspore/free_benchmark/perturbation/improve_precision.py +35 -0
  110. msprobe/mindspore/free_benchmark/perturbation/no_change.py +12 -0
  111. msprobe/mindspore/free_benchmark/perturbation/perturbation_factory.py +29 -0
  112. msprobe/mindspore/free_benchmark/self_check_tool_factory.py +33 -0
  113. msprobe/mindspore/grad_probe/__init__.py +0 -0
  114. msprobe/mindspore/grad_probe/global_context.py +90 -0
  115. msprobe/mindspore/grad_probe/grad_analyzer.py +231 -0
  116. msprobe/mindspore/grad_probe/grad_monitor.py +27 -0
  117. msprobe/mindspore/grad_probe/grad_stat_csv.py +132 -0
  118. msprobe/mindspore/grad_probe/hook.py +94 -0
  119. msprobe/mindspore/grad_probe/utils.py +30 -0
  120. msprobe/mindspore/ms_config.py +128 -78
  121. msprobe/mindspore/overflow_check/kernel_graph_overflow_check.py +44 -45
  122. msprobe/mindspore/overflow_check/overflow_check_tool_factory.py +34 -32
  123. msprobe/mindspore/runtime.py +4 -0
  124. msprobe/mindspore/service.py +378 -0
  125. msprobe/mindspore/task_handler_factory.py +24 -21
  126. msprobe/msprobe.py +105 -67
  127. msprobe/pytorch/__init__.py +4 -4
  128. msprobe/pytorch/api_accuracy_checker/common/config.py +53 -50
  129. msprobe/pytorch/api_accuracy_checker/common/utils.py +214 -224
  130. msprobe/pytorch/api_accuracy_checker/compare/algorithm.py +213 -216
  131. msprobe/pytorch/api_accuracy_checker/compare/api_precision_compare.py +606 -545
  132. msprobe/pytorch/api_accuracy_checker/compare/api_precision_standard.yaml +132 -132
  133. msprobe/pytorch/api_accuracy_checker/compare/api_precision_threshold.yaml +390 -390
  134. msprobe/pytorch/api_accuracy_checker/compare/compare.py +386 -345
  135. msprobe/pytorch/api_accuracy_checker/compare/compare_column.py +73 -73
  136. msprobe/pytorch/api_accuracy_checker/compare/compare_utils.py +245 -248
  137. msprobe/pytorch/api_accuracy_checker/config.yaml +10 -4
  138. msprobe/pytorch/api_accuracy_checker/run_ut/data_generate.py +335 -328
  139. msprobe/pytorch/api_accuracy_checker/run_ut/multi_run_ut.py +200 -203
  140. msprobe/pytorch/api_accuracy_checker/run_ut/run_overflow_check.py +133 -127
  141. msprobe/pytorch/api_accuracy_checker/run_ut/run_ut.py +592 -493
  142. msprobe/pytorch/api_accuracy_checker/run_ut/run_ut_utils.py +70 -7
  143. msprobe/pytorch/api_accuracy_checker/run_ut/torch_ut_setting.json +7 -4
  144. msprobe/pytorch/api_accuracy_checker/tensor_transport_layer/__init__.py +0 -0
  145. msprobe/pytorch/api_accuracy_checker/tensor_transport_layer/attl.py +197 -0
  146. msprobe/pytorch/api_accuracy_checker/tensor_transport_layer/client.py +325 -0
  147. msprobe/pytorch/api_accuracy_checker/tensor_transport_layer/device_dispatch.py +204 -0
  148. msprobe/pytorch/api_accuracy_checker/tensor_transport_layer/server.py +219 -0
  149. msprobe/pytorch/api_accuracy_checker/tensor_transport_layer/ssl_config.py +10 -0
  150. msprobe/pytorch/bench_functions/__init__.py +15 -0
  151. msprobe/pytorch/bench_functions/apply_adam_w.py +28 -0
  152. msprobe/pytorch/bench_functions/confusion_transpose.py +19 -0
  153. msprobe/pytorch/bench_functions/fast_gelu.py +55 -0
  154. msprobe/pytorch/bench_functions/layer_norm_eval.py +6 -0
  155. msprobe/pytorch/bench_functions/linear.py +12 -0
  156. msprobe/pytorch/bench_functions/matmul_backward.py +48 -0
  157. msprobe/pytorch/bench_functions/npu_fusion_attention.py +509 -0
  158. msprobe/pytorch/bench_functions/rms_norm.py +15 -0
  159. msprobe/pytorch/bench_functions/rotary_mul.py +52 -0
  160. msprobe/pytorch/bench_functions/scaled_mask_softmax.py +26 -0
  161. msprobe/pytorch/bench_functions/swiglu.py +55 -0
  162. msprobe/pytorch/common/__init__.py +2 -2
  163. msprobe/pytorch/common/compare_script.template +14 -14
  164. msprobe/pytorch/common/log.py +20 -31
  165. msprobe/pytorch/common/parse_json.py +39 -37
  166. msprobe/pytorch/common/utils.py +305 -224
  167. msprobe/pytorch/compare/distributed_compare.py +66 -111
  168. msprobe/pytorch/compare/mapping.yaml +607 -607
  169. msprobe/pytorch/compare/match.py +34 -36
  170. msprobe/pytorch/compare/pt_compare.py +50 -0
  171. msprobe/pytorch/debugger/debugger_config.py +95 -86
  172. msprobe/pytorch/debugger/precision_debugger.py +125 -95
  173. msprobe/pytorch/free_benchmark/__init__.py +8 -8
  174. msprobe/pytorch/free_benchmark/common/constant.py +70 -67
  175. msprobe/pytorch/free_benchmark/common/counter.py +71 -71
  176. msprobe/pytorch/free_benchmark/common/enums.py +37 -37
  177. msprobe/pytorch/free_benchmark/common/params.py +129 -129
  178. msprobe/pytorch/free_benchmark/common/utils.py +102 -98
  179. msprobe/pytorch/free_benchmark/compare/grad_saver.py +179 -183
  180. msprobe/pytorch/free_benchmark/compare/single_benchmark.py +104 -104
  181. msprobe/pytorch/free_benchmark/main.py +105 -102
  182. msprobe/pytorch/free_benchmark/perturbed_layers/base_layer.py +13 -13
  183. msprobe/pytorch/free_benchmark/perturbed_layers/layer_factory.py +41 -41
  184. msprobe/pytorch/free_benchmark/perturbed_layers/npu/add_noise.py +90 -90
  185. msprobe/pytorch/free_benchmark/perturbed_layers/npu/bit_noise.py +104 -104
  186. msprobe/pytorch/free_benchmark/perturbed_layers/npu/change_value.py +63 -63
  187. msprobe/pytorch/free_benchmark/perturbed_layers/npu/improve_precision.py +68 -68
  188. msprobe/pytorch/free_benchmark/perturbed_layers/npu/no_change.py +28 -28
  189. msprobe/pytorch/free_benchmark/perturbed_layers/npu/npu_base_layser.py +45 -45
  190. msprobe/pytorch/free_benchmark/perturbed_layers/run_cpu.py +19 -19
  191. msprobe/pytorch/free_benchmark/result_handlers/base_handler.py +217 -203
  192. msprobe/pytorch/free_benchmark/result_handlers/check_handler.py +39 -39
  193. msprobe/pytorch/free_benchmark/result_handlers/fix_handler.py +23 -23
  194. msprobe/pytorch/free_benchmark/result_handlers/handler_factory.py +30 -31
  195. msprobe/pytorch/free_benchmark/result_handlers/preheat_handler.py +170 -170
  196. msprobe/pytorch/function_factory.py +76 -0
  197. msprobe/pytorch/functional/dump_module.py +39 -39
  198. msprobe/pytorch/grad_probe/__init__.py +0 -0
  199. msprobe/pytorch/grad_probe/grad_monitor.py +91 -0
  200. msprobe/pytorch/grad_probe/grad_stat_csv.py +129 -0
  201. msprobe/pytorch/hook_module/api_registry.py +161 -161
  202. msprobe/pytorch/hook_module/hook_module.py +120 -109
  203. msprobe/pytorch/hook_module/support_wrap_ops.yaml +1879 -1876
  204. msprobe/pytorch/hook_module/utils.py +30 -29
  205. msprobe/pytorch/hook_module/wrap_aten.py +110 -100
  206. msprobe/pytorch/hook_module/wrap_distributed.py +78 -75
  207. msprobe/pytorch/hook_module/wrap_functional.py +105 -108
  208. msprobe/pytorch/hook_module/wrap_npu_custom.py +93 -73
  209. msprobe/pytorch/hook_module/wrap_tensor.py +71 -72
  210. msprobe/pytorch/hook_module/wrap_torch.py +86 -88
  211. msprobe/pytorch/hook_module/wrap_vf.py +62 -64
  212. msprobe/pytorch/module_processer.py +138 -98
  213. msprobe/pytorch/online_dispatch/__init__.py +20 -20
  214. msprobe/pytorch/online_dispatch/compare.py +236 -236
  215. msprobe/pytorch/online_dispatch/dispatch.py +271 -273
  216. msprobe/pytorch/online_dispatch/dump_compare.py +155 -186
  217. msprobe/pytorch/online_dispatch/single_compare.py +391 -391
  218. msprobe/pytorch/online_dispatch/torch_ops_config.yaml +49 -49
  219. msprobe/pytorch/online_dispatch/utils.py +130 -187
  220. msprobe/pytorch/parse.py +4 -4
  221. msprobe/pytorch/parse_tool/cli.py +32 -32
  222. msprobe/pytorch/parse_tool/lib/compare.py +260 -259
  223. msprobe/pytorch/parse_tool/lib/config.py +52 -51
  224. msprobe/pytorch/parse_tool/lib/file_desc.py +31 -31
  225. msprobe/pytorch/parse_tool/lib/interactive_cli.py +102 -102
  226. msprobe/pytorch/parse_tool/lib/parse_exception.py +54 -54
  227. msprobe/pytorch/parse_tool/lib/parse_tool.py +158 -158
  228. msprobe/pytorch/parse_tool/lib/utils.py +316 -367
  229. msprobe/pytorch/parse_tool/lib/visualization.py +85 -90
  230. msprobe/pytorch/pt_config.py +188 -93
  231. msprobe/pytorch/service.py +246 -167
  232. mindstudio_probe-1.0.1.dist-info/RECORD +0 -228
  233. msprobe/config/README.md +0 -397
  234. msprobe/mindspore/doc/dump.md +0 -65
  235. msprobe/mindspore/dump/api_kbk_dump.py +0 -55
  236. msprobe/pytorch/compare/acc_compare.py +0 -1024
  237. msprobe/pytorch/compare/highlight.py +0 -100
  238. msprobe/pytorch/doc/FAQ.md +0 -193
  239. msprobe/pytorch/doc/api_accuracy_checker.md +0 -269
  240. msprobe/pytorch/doc/atat/321/207/342/226/223/342/225/233/321/205/342/225/221/320/266/321/205/342/225/226/320/265/321/205/320/225/342/225/226/321/206/320/245/342/226/221/321/206/320/235/320/276dump/321/206/320/260/320/227/321/205/320/227/320/226/321/206/320/220/320/267/321/210/320/223/342/225/234/321/205/320/257/342/225/221/321/207/342/225/221/342/224/220/321/206/320/232/320/265/321/205/320/241/320/232.md +0 -182
  241. msprobe/pytorch/doc/dump.md +0 -207
  242. msprobe/pytorch/doc/ptdbg_ascend_compare.md +0 -176
  243. msprobe/pytorch/doc/ptdbg_ascend_overview.md +0 -68
  244. msprobe/pytorch/doc/ptdbg_ascend_quickstart.md +0 -381
  245. msprobe/pytorch/doc/run_overflow_check.md +0 -25
  246. msprobe/pytorch/doc//321/205/320/254/320/270/321/207/342/225/221/342/224/220/321/207/342/226/223/342/225/233/321/205/342/225/221/320/266/321/206/320/277/320/244/321/205/320/277/342/225/243.md +0 -90
  247. msprobe/test/core_ut/common/test_utils.py +0 -345
  248. msprobe/test/core_ut/data_dump/test_data_collector.py +0 -47
  249. msprobe/test/core_ut/data_dump/test_json_writer.py +0 -183
  250. msprobe/test/core_ut/data_dump/test_scope.py +0 -151
  251. msprobe/test/core_ut/test_common_config.py +0 -152
  252. msprobe/test/core_ut/test_file_check.py +0 -218
  253. msprobe/test/core_ut/test_log.py +0 -109
  254. msprobe/test/mindspore_ut/test_api_kbk_dump.py +0 -51
  255. msprobe/test/mindspore_ut/test_debugger_config.py +0 -42
  256. msprobe/test/mindspore_ut/test_dump_tool_factory.py +0 -51
  257. msprobe/test/mindspore_ut/test_kernel_graph_dump.py +0 -66
  258. msprobe/test/mindspore_ut/test_kernel_graph_overflow_check.py +0 -63
  259. msprobe/test/mindspore_ut/test_ms_config.py +0 -69
  260. msprobe/test/mindspore_ut/test_overflow_check_tool_factory.py +0 -51
  261. msprobe/test/mindspore_ut/test_precision_debugger.py +0 -56
  262. msprobe/test/mindspore_ut/test_task_handler_factory.py +0 -58
  263. msprobe/test/pytorch_ut/advisor/test_advisor.py +0 -83
  264. msprobe/test/pytorch_ut/api_accuracy_checker/common/test_common_utils.py +0 -108
  265. msprobe/test/pytorch_ut/api_accuracy_checker/common/test_config.py +0 -39
  266. msprobe/test/pytorch_ut/api_accuracy_checker/compare/test_algorithm.py +0 -112
  267. msprobe/test/pytorch_ut/api_accuracy_checker/compare/test_api_precision_compare.py +0 -77
  268. msprobe/test/pytorch_ut/api_accuracy_checker/compare/test_compare.py +0 -125
  269. msprobe/test/pytorch_ut/api_accuracy_checker/compare/test_compare_column.py +0 -10
  270. msprobe/test/pytorch_ut/api_accuracy_checker/compare/test_compare_utils.py +0 -43
  271. msprobe/test/pytorch_ut/api_accuracy_checker/run_ut/dump.json +0 -179
  272. msprobe/test/pytorch_ut/api_accuracy_checker/run_ut/forward.json +0 -63
  273. msprobe/test/pytorch_ut/api_accuracy_checker/run_ut/test_data_generate.py +0 -99
  274. msprobe/test/pytorch_ut/api_accuracy_checker/run_ut/test_multi_run_ut.py +0 -115
  275. msprobe/test/pytorch_ut/api_accuracy_checker/run_ut/test_run_ut.py +0 -72
  276. msprobe/test/pytorch_ut/compare/test_acc_compare.py +0 -17
  277. msprobe/test/pytorch_ut/free_benchmark/perturbed_layers/test_perturbed_layser.py +0 -105
  278. msprobe/test/pytorch_ut/free_benchmark/result_handlers/test_result_handler.py +0 -121
  279. msprobe/test/pytorch_ut/free_benchmark/test_main.py +0 -101
  280. msprobe/test/pytorch_ut/functional/test_dump_module.py +0 -15
  281. msprobe/test/pytorch_ut/hook_module/test_api_registry.py +0 -130
  282. msprobe/test/pytorch_ut/hook_module/test_hook_module.py +0 -42
  283. msprobe/test/pytorch_ut/hook_module/test_wrap_aten.py +0 -65
  284. msprobe/test/pytorch_ut/hook_module/test_wrap_distributed.py +0 -35
  285. msprobe/test/pytorch_ut/hook_module/test_wrap_functional.py +0 -20
  286. msprobe/test/pytorch_ut/hook_module/test_wrap_tensor.py +0 -35
  287. msprobe/test/pytorch_ut/hook_module/test_wrap_torch.py +0 -43
  288. msprobe/test/pytorch_ut/hook_module/test_wrap_vf.py +0 -11
  289. msprobe/test/pytorch_ut/test_pt_config.py +0 -69
  290. msprobe/test/pytorch_ut/test_service.py +0 -59
  291. msprobe/test/resources/advisor.txt +0 -3
  292. msprobe/test/resources/compare_result_20230703104808.csv +0 -9
  293. msprobe/test/resources/compare_result_without_accuracy.csv +0 -9
  294. msprobe/test/resources/config.yaml +0 -3
  295. msprobe/test/resources/npu_test.pkl +0 -8
  296. msprobe/test/run_test.sh +0 -30
  297. msprobe/test/run_ut.py +0 -58
  298. msprobe/test/test_module_processer.py +0 -64
  299. {mindstudio_probe-1.0.1.dist-info → mindstudio_probe-1.0.4.dist-info}/top_level.txt +0 -0
  300. /msprobe/{pytorch/doc → docs}/img/BLOOM-7B_1.png +0 -0
  301. /msprobe/{pytorch/doc → docs}/img/BLOOM-7B_2.png +0 -0
  302. /msprobe/{pytorch/doc → docs}/img/BLOOM-7B_3.png +0 -0
  303. /msprobe/{pytorch/doc → docs}/img/BLOOM-7B_4.png +0 -0
  304. /msprobe/{pytorch/doc → docs}/img/GPT-3_1.png +0 -0
  305. /msprobe/{pytorch/doc → docs}/img/GPT-3_2.png +0 -0
  306. /msprobe/{pytorch/doc → docs}/img/GPT-3_3.png +0 -0
  307. /msprobe/{pytorch/doc → docs}/img/GPT-3_4.png +0 -0
  308. /msprobe/{pytorch/doc → docs}/img/GPT-3_5.png +0 -0
  309. /msprobe/{pytorch/doc → docs}/img/GPT-3_6.png +0 -0
  310. /msprobe/{pytorch/doc → docs}/img/GPT-3_7.png +0 -0
  311. /msprobe/{pytorch/doc → docs}/img/GPT-3_8.png +0 -0
  312. /msprobe/{pytorch/doc → docs}/img/YOLOV5S_1.png +0 -0
  313. /msprobe/{pytorch/doc → docs}/img/YOLOV5S_2.png +0 -0
  314. /msprobe/{pytorch/doc → docs}/img/accuracy_checking_details.png +0 -0
  315. /msprobe/{pytorch/doc → docs}/img/accuracy_checking_result.png +0 -0
  316. /msprobe/{pytorch/doc → docs}/img/api_precision_compare_details.png +0 -0
  317. /msprobe/{pytorch/doc → docs}/img/api_precision_compare_result.png +0 -0
  318. /msprobe/{pytorch/doc → docs}/img/auto_analyze_log.png +0 -0
  319. /msprobe/{pytorch/doc → docs}/img/compare_result_pkl.png +0 -0
  320. /msprobe/{pytorch/doc → docs}/img/compare_result_pkl_md5.png.png +0 -0
  321. /msprobe/{pytorch/doc → docs}/img/cpu_info.png +0 -0
  322. /msprobe/{config → docs}/img/free_benchmark.png +0 -0
  323. /msprobe/{pytorch/doc → docs}/img/module_compare.png +0 -0
@@ -1,391 +1,391 @@
1
- import logging
2
- from functools import wraps
3
- import torch
4
- from prettytable import PrettyTable
5
- from collections import namedtuple
6
- from .utils import logger_user, logger_debug
7
-
8
- def func_log_wrapper():
9
- def _out_wrapper(func):
10
- @wraps(func)
11
- def _in_wrapper(*kargs, **kwargs):
12
- logger_debug("start to run: {}".format(func.__name__))
13
- x = func(*kargs, **kwargs)
14
- logger_debug("end to run: {}".format(func.__name__))
15
- return x
16
-
17
- return _in_wrapper
18
-
19
- return _out_wrapper
20
-
21
-
22
- class SingleBenchmarkCompareStandard:
23
- def __init__(self, high_precision=True):
24
- self.high_precision = high_precision
25
- self.small_value = 1.0
26
- self.error_thd = {torch.float16: [2 ** -11, 2 ** -7],
27
- torch.bfloat16: [2 ** -8, 2 ** -6],
28
- torch.float32: [2 ** -14, 2 ** -11],
29
- torch.float64: [2 ** -14, 2 ** -11]}
30
- self.eb_thd = {torch.float16: 2 ** -10,
31
- torch.bfloat16: 2 ** -7,
32
- torch.float32: 2 ** -14,
33
- torch.float64: 2 ** -14}
34
-
35
- def get_error_thd(self, dtype):
36
- if dtype in self.error_thd.keys():
37
- if dtype == torch.float64:
38
- logging.warning("the output data of fp64 uses the same standard as fp32.")
39
- return self.error_thd.get(dtype)[0] if self.high_precision else self.error_thd.get(dtype)[1]
40
- logging.error(
41
- "Single benchmark compare only supports floating point "
42
- "in fp16, bf16, fp32. "
43
- )
44
- return None
45
-
46
- def get_eb_thd(self, dtype):
47
- if dtype in self.eb_thd.keys():
48
- return self.eb_thd.get(dtype)
49
- return None
50
-
51
-
52
- class SingleBenchmarkAccuracyResult:
53
- def __init__(
54
- self,
55
- result=True,
56
- error_balance=None,
57
- max_abs_diff=None,
58
- max_abs_idx=None,
59
- max_rel_diff=None,
60
- max_rel_idx=None
61
- ):
62
- self.result = result
63
- self.error_balance = error_balance
64
- self.max_abs_diff = max_abs_diff
65
- self.max_abs_idx = max_abs_idx
66
- self.max_rel_diff = max_rel_diff
67
- self.max_rel_idx = max_rel_idx
68
-
69
- def get_result(self, eb_thd, error_thd):
70
- if (
71
- self.error_balance > eb_thd
72
- or self.max_abs_diff > error_thd
73
- or self.max_rel_diff > error_thd
74
- ):
75
- self.result = False
76
- else:
77
- self.result = True
78
-
79
-
80
- class SingleBenchmarkAccuracyCompare:
81
- @classmethod
82
- @func_log_wrapper()
83
- def check_output_size(cls, npu_out, bench_out):
84
- acc_result = None
85
- if npu_out.numel() == 0 and bench_out.nuimel() == 0:
86
- info = (
87
- "The npu_output is [], and it is same as benchmark_output, "
88
- "the result of data_compare is Pass"
89
- )
90
- logging.debug(info)
91
- acc_result = SingleBenchmarkAccuracyResult(result=True)
92
-
93
- if npu_out.size() != bench_out.size():
94
- error_info = (
95
- f"the size of npu output[{npu_out.size()}] and"
96
- f"benchmark[{bench_out.size()}] is not equal"
97
- )
98
-
99
- logging.error(error_info)
100
- acc_result = SingleBenchmarkAccuracyResult(result=False)
101
- return acc_result
102
-
103
- @classmethod
104
- @func_log_wrapper()
105
- def check_output_invalid_value(cls, output):
106
- has_nan = torch.isnan(output).any()
107
- has_inf = torch.isinf(output).any()
108
- return has_nan or has_inf
109
-
110
- @classmethod
111
- @func_log_wrapper()
112
- def precision_compare_for_case(cls, npu_out, bench_out, benchmark_standard: SingleBenchmarkCompareStandard):
113
- error_thd = None
114
- eb_thd = None
115
- acc_result = cls.check_output_size(npu_out, bench_out)
116
- CompareResultInfo = namedtuple("CompareResultInfo",
117
- ['accuracy_result', 'error_threshold', 'eb_threshold', 'failed_information'])
118
-
119
- if acc_result:
120
- failed_info = "比对数据的shape不一致"
121
- return CompareResultInfo(acc_result, error_thd, eb_thd, failed_info)
122
-
123
- if cls.check_output_invalid_value(bench_out):
124
- logging.info("The benchmark result contains nan/inf value. ")
125
- failed_info = "标杆结果存在nan值或inf值, 依照单标杆标准该用例通过"
126
- acc_result = SingleBenchmarkAccuracyResult(result=True)
127
- return CompareResultInfo(acc_result, error_thd, eb_thd, failed_info)
128
-
129
- if cls.check_output_invalid_value(npu_out):
130
- logging.info("The NPU result contains nan/inf value. ")
131
- failed_info = "NPU结果存在nan值或inf值, 依照单标杆标准该用例不通过"
132
- acc_result = SingleBenchmarkAccuracyResult(result=False)
133
- return CompareResultInfo(acc_result, error_thd, eb_thd, failed_info)
134
-
135
- data_type = npu_out.dtype
136
- if data_type not in [torch.float16, torch.float32, torch.float64, torch.bfloat16]:
137
- acc_result = cls.compute_binary_diff(npu_out, bench_out)
138
- else:
139
- error_thd = benchmark_standard.get_error_thd(data_type)
140
- eb_thd = benchmark_standard.get_eb_thd(data_type)
141
- if error_thd is None:
142
- logging.error(
143
- "single benchmark not support the comparison of %s", str(data_type)
144
- )
145
- acc_result = SingleBenchmarkAccuracyResult(result=False)
146
- else:
147
- if npu_out.dtype in [torch.float16, torch.bfloat16] and bench_out.dtype in [torch.float32]:
148
- npu_out = npu_out.to(torch.float32)
149
- error_balance = cls.compute_error_balance(npu_out, bench_out, benchmark_standard)
150
- max_abs_diff, max_abs_idx = cls.compute_abs_diff(npu_out, bench_out, error_thd, benchmark_standard)
151
- max_rel_diff, max_rel_idx = cls.compute_rel_diff(npu_out, bench_out, error_thd, benchmark_standard)
152
- acc_result = SingleBenchmarkAccuracyResult(
153
- error_balance=error_balance,
154
- max_abs_diff=max_abs_diff,
155
- max_abs_idx=max_abs_idx,
156
- max_rel_diff=max_rel_diff,
157
- max_rel_idx=max_rel_idx
158
- )
159
- acc_result.get_result(eb_thd, error_thd)
160
- return CompareResultInfo(acc_result, error_thd, eb_thd, None)
161
- return None
162
-
163
- @classmethod
164
- @func_log_wrapper()
165
- def compute_binary_diff(cls, npu_out, bench_out):
166
- result = torch.equal(npu_out, bench_out)
167
- if result:
168
- logger_user("二进制精度比对通过, 无需单标杆比对法验证")
169
- return SingleBenchmarkAccuracyResult(result=result, max_abs_diff=0, max_rel_diff=0, error_balance=0)
170
-
171
- @classmethod
172
- @func_log_wrapper()
173
- def compute_error_balance(cls, npu_out, bench_out, benchmark_standard: SingleBenchmarkCompareStandard):
174
- ones = torch.ones_like(npu_out)
175
- zeros = torch.zeros_like(npu_out)
176
- abs_mask_idx = torch.where(torch.abs(bench_out) < benchmark_standard.small_value, ones, zeros)
177
- abs_mask_idx = abs_mask_idx.type(torch.bool)
178
- diff_value = torch.subtract(npu_out, bench_out)
179
- diff_value_rel = diff_value / (torch.abs(bench_out) + torch.finfo(torch.float).eps )
180
- rel_and_abs = torch.where(abs_mask_idx, diff_value, diff_value_rel)
181
- eb_float = float(torch.mean(rel_and_abs))
182
- return eb_float
183
-
184
- @classmethod
185
- @func_log_wrapper()
186
- def compute_abs_diff(cls, npu_out, bench_out, error_thd, benchmark_standard: SingleBenchmarkCompareStandard):
187
- max_abs_diff = 0
188
- max_abs_idx = None
189
-
190
- ones = torch.ones_like(npu_out)
191
- zeros = torch.zeros_like(npu_out)
192
- diff_value = torch.subtract(npu_out, bench_out)
193
- diff_abs = torch.abs(diff_value)
194
- abs_mask_idx = torch.where(torch.abs(bench_out) < benchmark_standard.small_value, ones, zeros)
195
- abs_err_idx = torch.where(diff_abs > error_thd, ones, zeros)
196
- abs_err_idx = abs_err_idx * abs_mask_idx
197
- abs_err = diff_abs[torch.where(abs_err_idx == 1)]
198
-
199
- if len(abs_err) > 0:
200
- err_for_max = torch.where(abs_err_idx == 1, diff_abs, zeros)
201
- logging.debug("err_for_max for abs %s", err_for_max)
202
- max_abs_idx = torch.argmax(err_for_max)
203
- max_abs_diff = diff_abs[max_abs_idx]
204
- elif torch.sum(abs_mask_idx) > 0:
205
- err_for_max = torch.where(abs_mask_idx == 1, diff_abs, zeros)
206
- logging.debug("error_for_max for abs %s", err_for_max)
207
- max_abs_idx = torch.argmax(err_for_max)
208
- if err_for_max.max() != 0:
209
- max_abs_diff = diff_abs[max_abs_idx]
210
- return (float(max_abs_diff), int(max_abs_idx) if torch.is_tensor(max_abs_idx) else max_abs_idx)
211
-
212
- @classmethod
213
- @func_log_wrapper()
214
- def compute_rel_diff(cls, npu_out, bench_out, error_thd, benchmark_standard: SingleBenchmarkCompareStandard):
215
- max_rel_diff = 0
216
- max_rel_idx = None
217
-
218
- ones = torch.ones_like(npu_out)
219
- zeros = torch.zeros_like(npu_out)
220
- diff_value = torch.subtract(npu_out, bench_out)
221
- diff_abs = torch.abs(diff_value)
222
-
223
- rel_mask_idx = torch.where(torch.abs(bench_out) >= benchmark_standard.small_value, ones, zeros)
224
- rel_err = diff_abs / (torch.abs(bench_out) + torch.finfo(torch.float).eps )
225
- diff_rel = rel_err
226
- rel_err_idx = torch.where(rel_err > error_thd, ones, zeros)
227
- rel_err_idx = rel_err_idx * rel_mask_idx
228
- rel_err = rel_err[torch.where(rel_err_idx == 1)]
229
- if len(rel_err) > 0:
230
- err_for_max = torch.where(rel_err_idx == 1, diff_rel, zeros)
231
- logging.debug("error_for_max for rel %s", err_for_max)
232
- max_rel_idx = torch.argmax(err_for_max)
233
- max_rel_diff = diff_rel[max_rel_idx]
234
- elif torch.sum(rel_mask_idx > 0):
235
- err_for_max = torch.where(rel_mask_idx == 1, diff_rel, zeros)
236
- logging.debug("err_for_max for rel %s", err_for_max)
237
- max_rel_idx = torch.argmax(err_for_max)
238
- if torch.sum(err_for_max) != 0:
239
- max_rel_diff = diff_rel[max_rel_idx]
240
- return (float(max_rel_diff), int(max_rel_idx) if torch.is_tensor(max_rel_idx) else max_rel_idx)
241
-
242
-
243
- class SingleBenchSummary:
244
- def __init__(self, precision_result: SingleBenchmarkAccuracyResult, npu_dtype=None,
245
- bench_dtype=None, shape=None, error_thd=None, eb_thd=None, failed_info=None):
246
- self.npu_dtype = npu_dtype
247
- self.bench_dtype = bench_dtype
248
- self.shape = shape
249
- self.result = precision_result.result
250
- self.error_balance = precision_result.error_balance
251
- self.max_abs_diff = precision_result.max_abs_diff
252
- self.max_abs_idx = precision_result.max_abs_idx
253
- self.max_rel_diff = precision_result.max_rel_diff
254
- self.max_rel_idx = precision_result.max_rel_idx
255
- self.eb_thd = eb_thd
256
- self.error_thd = error_thd
257
- self.failed_info = failed_info
258
-
259
- def get_check_result(self):
260
- if self.result:
261
- return "PASS"
262
- else:
263
- return "FAILED"
264
-
265
- def get_result_msg(self):
266
- result_str = ""
267
- if self.failed_info:
268
- return self.failed_info
269
-
270
- if self.result:
271
- result_str += "误差均衡性EB: %s <= 阈值%s\n" % (self.error_balance, self.eb_thd)
272
- result_str += "最大绝对误差: %s <= 阈值%s\n" % (self.max_abs_diff, self.error_thd)
273
- result_str += "最大相对误差: %s <= 阈值%s\n" % (self.max_rel_diff, self.error_thd)
274
- else:
275
- if self.error_balance > self.eb_thd:
276
- result_str += "误差均衡性EB超过阈值%s: EB = %s\n" % (
277
- self.eb_thd,
278
- self.error_balance,
279
- )
280
- if self.max_abs_diff > self.error_thd:
281
- result_str += "小值域最大绝对误差超过阈值%s: idx = %s, 绝对误差 = %s\n" % (
282
- self.error_thd,
283
- self.max_abs_idx,
284
- self.max_abs_diff
285
- )
286
- if self.max_rel_diff > self.error_thd:
287
- result_str += "大值域最大相对误差超过阈值%s: idx = %s, 相对误差 = %s\n" % (
288
- self.error_thd,
289
- self.max_rel_idx,
290
- self.max_rel_diff,
291
- )
292
- return result_str
293
-
294
- def print_detail_table(self):
295
- table = PrettyTable()
296
- table.title = "Single Benchmark Metrics Info"
297
- table.field_names = ["Index", "Result", "Threshold"]
298
- table.add_row(["error_balance", self.error_balance, self.eb_thd])
299
- table.add_row(["max_abs_diff", self.max_abs_diff, self.error_thd])
300
- table.add_row(["max_abs_idx", self.max_abs_idx, "-"])
301
- table.add_row(["max_rel_diff", self.max_rel_diff, self.error_thd])
302
- table.add_row(["max_rel_idx", self.max_rel_idx, "-"])
303
-
304
- logger_user(table)
305
-
306
- def to_column_value(self):
307
- return [self.bench_dtype, self.npu_dtype, self.shape, self.error_balance,
308
- self.max_abs_diff, self.max_abs_idx, self.max_rel_diff, self.max_rel_idx,
309
- self.eb_thd, self.error_thd, self.result, self.failed_info]
310
-
311
-
312
- def single_benchmark_compare(npu_out: torch.Tensor, bench_out: torch.Tensor, high_precision: bool = True):
313
- benchmark_standard = SingleBenchmarkCompareStandard(high_precision)
314
- npu_out = npu_out.flatten()
315
- bench_out = bench_out.flatten()
316
-
317
- compare_results = SingleBenchmarkAccuracyCompare.precision_compare_for_case(npu_out, bench_out, benchmark_standard)
318
- (
319
- precision_result,
320
- error_thd,
321
- eb_thd,
322
- failed_info
323
- ) = (compare_results.accuracy_result, compare_results.error_threshold,
324
- compare_results.eb_threshold, compare_results.failed_information)
325
-
326
- summary = SingleBenchSummary(precision_result, str(npu_out.dtype), str(bench_out.dtype), tuple(npu_out.shape), error_thd, eb_thd, failed_info)
327
- result = summary.result
328
- details = summary.to_column_value()
329
- return result, details
330
-
331
-
332
- def calc_status_details_list_tuple(npu_out, bench_out, high_precision, summary):
333
- status, details = [], []
334
- if len(bench_out) != len(npu_out):
335
- summary.result = False
336
- summary.failed_info = "bench and npu output structure is different."
337
- return False, summary.to_column_value()
338
- for b_out_i, n_out_i in zip(bench_out, npu_out):
339
- status_i, details_i = single_benchmark_compare_wrap(n_out_i, b_out_i, high_precision)
340
- status.append(status_i)
341
- details.append(details_i)
342
- return status, details
343
-
344
-
345
- def calc_status_details_dict(npu_out, bench_out, high_precision, summary):
346
- b_keys, n_keys = set(bench_out.keys()), set(npu_out.keys())
347
- if b_keys != n_keys:
348
- summary.result = False
349
- summary.failed_info = "bench and npu_output dict keys are different."
350
- return False, summary.to_column_value()
351
- else:
352
- status, details = single_benchmark_compare_wrap(list(bench_out.values(), list(npu_out.values())))
353
- return status, details
354
-
355
-
356
- def calc_status_details_tensor(npu_out, bench_out, high_precision, summary):
357
- return single_benchmark_compare(bench_out, npu_out)
358
-
359
-
360
- def calc_status_details_builtin(npu_out, bench_out, summary):
361
- summary.bench_dtype = str(type(bench_out))
362
- summary.npu_dtype = str(type(npu_out))
363
- status = bench_out == npu_out
364
- summary.result = status
365
- return status, summary.to_column_value()
366
-
367
-
368
- def calc_status_details_none(npu_out, bench_out, high_precision, summary):
369
- summary.result = True
370
- summary.failed_info = "Output is None."
371
- return True, summary.to_column_value()
372
-
373
-
374
- def single_benchmark_compare_wrap(npu_output: torch.Tensor, bench_output: torch.Tensor, high_precision=True):
375
- type_method_dict = {
376
- (list, tuple): calc_status_details_list_tuple,
377
- dict: calc_status_details_dict,
378
- torch.Tensor: calc_status_details_tensor,
379
- (bool, int, float, str): calc_status_details_builtin,
380
- None: calc_status_details_none,
381
- }
382
-
383
- result = SingleBenchmarkAccuracyResult(result=True)
384
- bench_summary = SingleBenchSummary(result)
385
- for type1, func in type_method_dict.items():
386
- if isinstance(bench_output, type1):
387
- return func(npu_output, bench_output, high_precision, bench_summary)
388
-
389
- bench_summary.result = True
390
- bench_summary.failed_info = "Unexpected output type: {}".format(type(bench_output))
391
- return True, bench_summary.to_column_value()
1
+ import logging
2
+ from functools import wraps
3
+ import torch
4
+ from prettytable import PrettyTable
5
+ from collections import namedtuple
6
+ from msprobe.pytorch.common.log import logger
7
+
8
+ def func_log_wrapper():
9
+ def _out_wrapper(func):
10
+ @wraps(func)
11
+ def _in_wrapper(*kargs, **kwargs):
12
+ logger.info(f"start to run: {func.__name__}")
13
+ x = func(*kargs, **kwargs)
14
+ logger.info(f"end to run: {func.__name__}")
15
+ return x
16
+
17
+ return _in_wrapper
18
+
19
+ return _out_wrapper
20
+
21
+
22
+ class SingleBenchmarkCompareStandard:
23
+ def __init__(self, high_precision=True):
24
+ self.high_precision = high_precision
25
+ self.small_value = 1.0
26
+ self.error_thd = {torch.float16: [2 ** -11, 2 ** -7],
27
+ torch.bfloat16: [2 ** -8, 2 ** -6],
28
+ torch.float32: [2 ** -14, 2 ** -11],
29
+ torch.float64: [2 ** -14, 2 ** -11]}
30
+ self.eb_thd = {torch.float16: 2 ** -10,
31
+ torch.bfloat16: 2 ** -7,
32
+ torch.float32: 2 ** -14,
33
+ torch.float64: 2 ** -14}
34
+
35
+ def get_error_thd(self, dtype):
36
+ if dtype in self.error_thd.keys():
37
+ if dtype == torch.float64:
38
+ logging.warning("the output data of fp64 uses the same standard as fp32.")
39
+ return self.error_thd.get(dtype)[0] if self.high_precision else self.error_thd.get(dtype)[1]
40
+ logging.error(
41
+ "Single benchmark compare only supports floating point "
42
+ "in fp16, bf16, fp32. "
43
+ )
44
+ return None
45
+
46
+ def get_eb_thd(self, dtype):
47
+ if dtype in self.eb_thd.keys():
48
+ return self.eb_thd.get(dtype)
49
+ return None
50
+
51
+
52
+ class SingleBenchmarkAccuracyResult:
53
+ def __init__(
54
+ self,
55
+ result=True,
56
+ error_balance=None,
57
+ max_abs_diff=None,
58
+ max_abs_idx=None,
59
+ max_rel_diff=None,
60
+ max_rel_idx=None
61
+ ):
62
+ self.result = result
63
+ self.error_balance = error_balance
64
+ self.max_abs_diff = max_abs_diff
65
+ self.max_abs_idx = max_abs_idx
66
+ self.max_rel_diff = max_rel_diff
67
+ self.max_rel_idx = max_rel_idx
68
+
69
+ def get_result(self, eb_thd, error_thd):
70
+ if (
71
+ self.error_balance > eb_thd
72
+ or self.max_abs_diff > error_thd
73
+ or self.max_rel_diff > error_thd
74
+ ):
75
+ self.result = False
76
+ else:
77
+ self.result = True
78
+
79
+
80
+ class SingleBenchmarkAccuracyCompare:
81
+ @classmethod
82
+ @func_log_wrapper()
83
+ def check_output_size(cls, npu_out, bench_out):
84
+ acc_result = None
85
+ if npu_out.numel() == 0 and bench_out.nuimel() == 0:
86
+ info = (
87
+ "The npu_output is [], and it is same as benchmark_output, "
88
+ "the result of data_compare is Pass"
89
+ )
90
+ logging.debug(info)
91
+ acc_result = SingleBenchmarkAccuracyResult(result=True)
92
+
93
+ if npu_out.size() != bench_out.size():
94
+ error_info = (
95
+ f"the size of npu output[{npu_out.size()}] and"
96
+ f"benchmark[{bench_out.size()}] is not equal"
97
+ )
98
+
99
+ logging.error(error_info)
100
+ acc_result = SingleBenchmarkAccuracyResult(result=False)
101
+ return acc_result
102
+
103
+ @classmethod
104
+ @func_log_wrapper()
105
+ def check_output_invalid_value(cls, output):
106
+ has_nan = torch.isnan(output).any()
107
+ has_inf = torch.isinf(output).any()
108
+ return has_nan or has_inf
109
+
110
+ @classmethod
111
+ @func_log_wrapper()
112
+ def precision_compare_for_case(cls, npu_out, bench_out, benchmark_standard: SingleBenchmarkCompareStandard):
113
+ error_thd = None
114
+ eb_thd = None
115
+ acc_result = cls.check_output_size(npu_out, bench_out)
116
+ CompareResultInfo = namedtuple("CompareResultInfo",
117
+ ['accuracy_result', 'error_threshold', 'eb_threshold', 'failed_information'])
118
+
119
+ if acc_result:
120
+ failed_info = "比对数据的shape不一致"
121
+ return CompareResultInfo(acc_result, error_thd, eb_thd, failed_info)
122
+
123
+ if cls.check_output_invalid_value(bench_out):
124
+ logging.info("The benchmark result contains nan/inf value. ")
125
+ failed_info = "标杆结果存在nan值或inf值, 依照单标杆标准该用例通过"
126
+ acc_result = SingleBenchmarkAccuracyResult(result=True)
127
+ return CompareResultInfo(acc_result, error_thd, eb_thd, failed_info)
128
+
129
+ if cls.check_output_invalid_value(npu_out):
130
+ logging.info("The NPU result contains nan/inf value. ")
131
+ failed_info = "NPU结果存在nan值或inf值, 依照单标杆标准该用例不通过"
132
+ acc_result = SingleBenchmarkAccuracyResult(result=False)
133
+ return CompareResultInfo(acc_result, error_thd, eb_thd, failed_info)
134
+
135
+ data_type = npu_out.dtype
136
+ if data_type not in [torch.float16, torch.float32, torch.float64, torch.bfloat16]:
137
+ acc_result = cls.compute_binary_diff(npu_out, bench_out)
138
+ else:
139
+ error_thd = benchmark_standard.get_error_thd(data_type)
140
+ eb_thd = benchmark_standard.get_eb_thd(data_type)
141
+ if error_thd is None:
142
+ logging.error(
143
+ "single benchmark not support the comparison of %s", str(data_type)
144
+ )
145
+ acc_result = SingleBenchmarkAccuracyResult(result=False)
146
+ else:
147
+ if npu_out.dtype in [torch.float16, torch.bfloat16] and bench_out.dtype in [torch.float32]:
148
+ npu_out = npu_out.to(torch.float32)
149
+ error_balance = cls.compute_error_balance(npu_out, bench_out, benchmark_standard)
150
+ max_abs_diff, max_abs_idx = cls.compute_abs_diff(npu_out, bench_out, error_thd, benchmark_standard)
151
+ max_rel_diff, max_rel_idx = cls.compute_rel_diff(npu_out, bench_out, error_thd, benchmark_standard)
152
+ acc_result = SingleBenchmarkAccuracyResult(
153
+ error_balance=error_balance,
154
+ max_abs_diff=max_abs_diff,
155
+ max_abs_idx=max_abs_idx,
156
+ max_rel_diff=max_rel_diff,
157
+ max_rel_idx=max_rel_idx
158
+ )
159
+ acc_result.get_result(eb_thd, error_thd)
160
+ return CompareResultInfo(acc_result, error_thd, eb_thd, None)
161
+
162
+
163
+ @classmethod
164
+ @func_log_wrapper()
165
+ def compute_binary_diff(cls, npu_out, bench_out):
166
+ result = torch.equal(npu_out, bench_out)
167
+ if result:
168
+ logger.info("二进制精度比对通过, 无需单标杆比对法验证")
169
+ return SingleBenchmarkAccuracyResult(result=result, max_abs_diff=0, max_rel_diff=0, error_balance=0)
170
+
171
+ @classmethod
172
+ @func_log_wrapper()
173
+ def compute_error_balance(cls, npu_out, bench_out, benchmark_standard: SingleBenchmarkCompareStandard):
174
+ ones = torch.ones_like(npu_out)
175
+ zeros = torch.zeros_like(npu_out)
176
+ abs_mask_idx = torch.where(torch.abs(bench_out) < benchmark_standard.small_value, ones, zeros)
177
+ abs_mask_idx = abs_mask_idx.type(torch.bool)
178
+ diff_value = torch.subtract(npu_out, bench_out)
179
+ diff_value_rel = diff_value / (torch.abs(bench_out) + torch.finfo(torch.float).eps )
180
+ rel_and_abs = torch.where(abs_mask_idx, diff_value, diff_value_rel)
181
+ eb_float = float(torch.mean(rel_and_abs))
182
+ return eb_float
183
+
184
+ @classmethod
185
+ @func_log_wrapper()
186
+ def compute_abs_diff(cls, npu_out, bench_out, error_thd, benchmark_standard: SingleBenchmarkCompareStandard):
187
+ max_abs_diff = 0
188
+ max_abs_idx = None
189
+
190
+ ones = torch.ones_like(npu_out)
191
+ zeros = torch.zeros_like(npu_out)
192
+ diff_value = torch.subtract(npu_out, bench_out)
193
+ diff_abs = torch.abs(diff_value)
194
+ abs_mask_idx = torch.where(torch.abs(bench_out) >= benchmark_standard.small_value, ones, zeros)
195
+ abs_err_idx = torch.where(diff_abs > error_thd, ones, zeros)
196
+ abs_err_idx = abs_err_idx * abs_mask_idx
197
+ abs_err = diff_abs[torch.where(abs_err_idx == 1)]
198
+
199
+ if len(abs_err) > 0:
200
+ err_for_max = torch.where(abs_err_idx == 1, diff_abs, zeros)
201
+ logging.debug("err_for_max for abs %s", err_for_max)
202
+ max_abs_idx = torch.argmax(err_for_max)
203
+ max_abs_diff = diff_abs[max_abs_idx]
204
+ elif torch.sum(abs_mask_idx) > 0:
205
+ err_for_max = torch.where(abs_mask_idx == 1, diff_abs, zeros)
206
+ logging.debug("error_for_max for abs %s", err_for_max)
207
+ max_abs_idx = torch.argmax(err_for_max)
208
+ if err_for_max.max() != 0:
209
+ max_abs_diff = diff_abs[max_abs_idx]
210
+ return (float(max_abs_diff), int(max_abs_idx) if torch.is_tensor(max_abs_idx) else max_abs_idx)
211
+
212
+ @classmethod
213
+ @func_log_wrapper()
214
+ def compute_rel_diff(cls, npu_out, bench_out, error_thd, benchmark_standard: SingleBenchmarkCompareStandard):
215
+ max_rel_diff = 0
216
+ max_rel_idx = None
217
+
218
+ ones = torch.ones_like(npu_out)
219
+ zeros = torch.zeros_like(npu_out)
220
+ diff_value = torch.subtract(npu_out, bench_out)
221
+ diff_abs = torch.abs(diff_value)
222
+
223
+ rel_mask_idx = torch.where(torch.abs(bench_out) >= benchmark_standard.small_value, ones, zeros)
224
+ rel_err = diff_abs / (torch.abs(bench_out) + torch.finfo(torch.float).eps )
225
+ diff_rel = rel_err
226
+ rel_err_idx = torch.where(rel_err > error_thd, ones, zeros)
227
+ rel_err_idx = rel_err_idx * rel_mask_idx
228
+ rel_err = rel_err[torch.where(rel_err_idx == 1)]
229
+ if len(rel_err) > 0:
230
+ err_for_max = torch.where(rel_err_idx == 1, diff_rel, zeros)
231
+ logging.debug("error_for_max for rel %s", err_for_max)
232
+ max_rel_idx = torch.argmax(err_for_max)
233
+ max_rel_diff = diff_rel[max_rel_idx]
234
+ elif torch.sum(rel_mask_idx > 0):
235
+ err_for_max = torch.where(rel_mask_idx == 1, diff_rel, zeros)
236
+ logging.debug("err_for_max for rel %s", err_for_max)
237
+ max_rel_idx = torch.argmax(err_for_max)
238
+ if torch.sum(err_for_max) != 0:
239
+ max_rel_diff = diff_rel[max_rel_idx]
240
+ return (float(max_rel_diff), int(max_rel_idx) if torch.is_tensor(max_rel_idx) else max_rel_idx)
241
+
242
+
243
+ class SingleBenchSummary:
244
+ def __init__(self, precision_result: SingleBenchmarkAccuracyResult, npu_dtype=None,
245
+ bench_dtype=None, shape=None, error_thd=None, eb_thd=None, failed_info=None):
246
+ self.npu_dtype = npu_dtype
247
+ self.bench_dtype = bench_dtype
248
+ self.shape = shape
249
+ self.result = precision_result.result
250
+ self.error_balance = precision_result.error_balance
251
+ self.max_abs_diff = precision_result.max_abs_diff
252
+ self.max_abs_idx = precision_result.max_abs_idx
253
+ self.max_rel_diff = precision_result.max_rel_diff
254
+ self.max_rel_idx = precision_result.max_rel_idx
255
+ self.eb_thd = eb_thd
256
+ self.error_thd = error_thd
257
+ self.failed_info = failed_info
258
+
259
+ def get_check_result(self):
260
+ if self.result:
261
+ return "PASS"
262
+ else:
263
+ return "FAILED"
264
+
265
+ def get_result_msg(self):
266
+ result_str = ""
267
+ if self.failed_info:
268
+ return self.failed_info
269
+
270
+ if self.result:
271
+ result_str += "误差均衡性EB: %s <= 阈值%s\n" % (self.error_balance, self.eb_thd)
272
+ result_str += "最大绝对误差: %s <= 阈值%s\n" % (self.max_abs_diff, self.error_thd)
273
+ result_str += "最大相对误差: %s <= 阈值%s\n" % (self.max_rel_diff, self.error_thd)
274
+ else:
275
+ if self.error_balance > self.eb_thd:
276
+ result_str += "误差均衡性EB超过阈值%s: EB = %s\n" % (
277
+ self.eb_thd,
278
+ self.error_balance,
279
+ )
280
+ if self.max_abs_diff > self.error_thd:
281
+ result_str += "小值域最大绝对误差超过阈值%s: idx = %s, 绝对误差 = %s\n" % (
282
+ self.error_thd,
283
+ self.max_abs_idx,
284
+ self.max_abs_diff
285
+ )
286
+ if self.max_rel_diff > self.error_thd:
287
+ result_str += "大值域最大相对误差超过阈值%s: idx = %s, 相对误差 = %s\n" % (
288
+ self.error_thd,
289
+ self.max_rel_idx,
290
+ self.max_rel_diff,
291
+ )
292
+ return result_str
293
+
294
+ def print_detail_table(self):
295
+ table = PrettyTable()
296
+ table.title = "Single Benchmark Metrics Info"
297
+ table.field_names = ["Index", "Result", "Threshold"]
298
+ table.add_row(["error_balance", self.error_balance, self.eb_thd])
299
+ table.add_row(["max_abs_diff", self.max_abs_diff, self.error_thd])
300
+ table.add_row(["max_abs_idx", self.max_abs_idx, "-"])
301
+ table.add_row(["max_rel_diff", self.max_rel_diff, self.error_thd])
302
+ table.add_row(["max_rel_idx", self.max_rel_idx, "-"])
303
+
304
+ logger.info(table)
305
+
306
+ def to_column_value(self):
307
+ return [self.bench_dtype, self.npu_dtype, self.shape, self.error_balance,
308
+ self.max_abs_diff, self.max_abs_idx, self.max_rel_diff, self.max_rel_idx,
309
+ self.eb_thd, self.error_thd, self.result, self.failed_info]
310
+
311
+
312
+ def single_benchmark_compare(npu_out: torch.Tensor, bench_out: torch.Tensor, high_precision: bool = True):
313
+ benchmark_standard = SingleBenchmarkCompareStandard(high_precision)
314
+ npu_out = npu_out.flatten()
315
+ bench_out = bench_out.flatten()
316
+
317
+ compare_results = SingleBenchmarkAccuracyCompare.precision_compare_for_case(npu_out, bench_out, benchmark_standard)
318
+ (
319
+ precision_result,
320
+ error_thd,
321
+ eb_thd,
322
+ failed_info
323
+ ) = (compare_results.accuracy_result, compare_results.error_threshold,
324
+ compare_results.eb_threshold, compare_results.failed_information)
325
+
326
+ summary = SingleBenchSummary(precision_result, str(npu_out.dtype), str(bench_out.dtype), tuple(npu_out.shape), error_thd, eb_thd, failed_info)
327
+ result = summary.result
328
+ details = summary.to_column_value()
329
+ return result, details
330
+
331
+
332
+ def calc_status_details_list_tuple(npu_out, bench_out, high_precision, summary):
333
+ status, details = [], []
334
+ if len(bench_out) != len(npu_out):
335
+ summary.result = False
336
+ summary.failed_info = "bench and npu output structure is different."
337
+ return False, summary.to_column_value()
338
+ for b_out_i, n_out_i in zip(bench_out, npu_out):
339
+ status_i, details_i = single_benchmark_compare_wrap(n_out_i, b_out_i, high_precision)
340
+ status.append(status_i)
341
+ details.append(details_i)
342
+ return status, details
343
+
344
+
345
+ def calc_status_details_dict(npu_out, bench_out, high_precision, summary):
346
+ b_keys, n_keys = set(bench_out.keys()), set(npu_out.keys())
347
+ if b_keys != n_keys:
348
+ summary.result = False
349
+ summary.failed_info = "bench and npu_output dict keys are different."
350
+ return False, summary.to_column_value()
351
+ else:
352
+ status, details = single_benchmark_compare_wrap(list(bench_out.values(), list(npu_out.values())))
353
+ return status, details
354
+
355
+
356
+ def calc_status_details_tensor(npu_out, bench_out, high_precision, summary):
357
+ return single_benchmark_compare(npu_out, bench_out)
358
+
359
+
360
+ def calc_status_details_builtin(npu_out, bench_out, summary):
361
+ summary.bench_dtype = str(type(bench_out))
362
+ summary.npu_dtype = str(type(npu_out))
363
+ status = bench_out == npu_out
364
+ summary.result = status
365
+ return status, summary.to_column_value()
366
+
367
+
368
+ def calc_status_details_none(npu_out, bench_out, high_precision, summary):
369
+ summary.result = True
370
+ summary.failed_info = "Output is None."
371
+ return True, summary.to_column_value()
372
+
373
+
374
+ def single_benchmark_compare_wrap(npu_output: torch.Tensor, bench_output: torch.Tensor, high_precision=True):
375
+ type_method_dict = {
376
+ (list, tuple): calc_status_details_list_tuple,
377
+ dict: calc_status_details_dict,
378
+ torch.Tensor: calc_status_details_tensor,
379
+ (bool, int, float, str): calc_status_details_builtin,
380
+ None: calc_status_details_none,
381
+ }
382
+
383
+ result = SingleBenchmarkAccuracyResult(result=True)
384
+ bench_summary = SingleBenchSummary(result)
385
+ for type1, func in type_method_dict.items():
386
+ if isinstance(bench_output, type1):
387
+ return func(npu_output, bench_output, high_precision, bench_summary)
388
+
389
+ bench_summary.result = True
390
+ bench_summary.failed_info = "Unexpected output type: {}".format(type(bench_output))
391
+ return True, bench_summary.to_column_value()