mindspore 2.7.0rc1__cp311-cp311-win_amd64.whl → 2.7.1__cp311-cp311-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of mindspore might be problematic. Click here for more details.

Files changed (370) hide show
  1. mindspore/.commit_id +1 -1
  2. mindspore/__init__.py +5 -2
  3. mindspore/_c_dataengine.cp311-win_amd64.pyd +0 -0
  4. mindspore/_c_expression.cp311-win_amd64.pyd +0 -0
  5. mindspore/_c_mindrecord.cp311-win_amd64.pyd +0 -0
  6. mindspore/_checkparam.py +2 -2
  7. mindspore/_extends/builtin_operations.py +3 -3
  8. mindspore/_extends/parallel_compile/akg_compiler/custom.py +1109 -0
  9. mindspore/_extends/parallel_compile/akg_compiler/gen_custom_op_files.py +1 -1
  10. mindspore/_extends/parse/__init__.py +3 -3
  11. mindspore/_extends/parse/compile_config.py +24 -1
  12. mindspore/_extends/parse/deprecated/deprecated_tensor_method.py +6 -3
  13. mindspore/_extends/parse/parser.py +28 -22
  14. mindspore/_extends/parse/resources.py +1 -1
  15. mindspore/_extends/parse/standard_method.py +23 -2
  16. mindspore/_extends/parse/trope.py +2 -1
  17. mindspore/_extends/pijit/pijit_func_white_list.py +9 -27
  18. mindspore/amp.py +0 -18
  19. mindspore/avcodec-59.dll +0 -0
  20. mindspore/avdevice-59.dll +0 -0
  21. mindspore/avfilter-8.dll +0 -0
  22. mindspore/avformat-59.dll +0 -0
  23. mindspore/avutil-57.dll +0 -0
  24. mindspore/boost/base.py +29 -2
  25. mindspore/common/__init__.py +18 -12
  26. mindspore/common/_decorator.py +3 -2
  27. mindspore/common/_grad_function.py +3 -1
  28. mindspore/common/_tensor_cpp_method.py +1 -1
  29. mindspore/common/_tensor_docs.py +371 -96
  30. mindspore/common/_utils.py +7 -43
  31. mindspore/common/api.py +434 -135
  32. mindspore/common/dtype.py +98 -57
  33. mindspore/common/dump.py +7 -108
  34. mindspore/common/dynamic_shape/__init__.py +0 -0
  35. mindspore/common/{auto_dynamic_shape.py → dynamic_shape/auto_dynamic_shape.py} +15 -23
  36. mindspore/common/dynamic_shape/enable_dynamic.py +197 -0
  37. mindspore/common/file_system.py +59 -9
  38. mindspore/common/hook_handle.py +82 -3
  39. mindspore/common/jit_config.py +5 -1
  40. mindspore/common/jit_trace.py +27 -12
  41. mindspore/common/lazy_inline.py +5 -3
  42. mindspore/common/np_dtype.py +3 -3
  43. mindspore/common/parameter.py +17 -127
  44. mindspore/common/recompute.py +4 -13
  45. mindspore/common/tensor.py +50 -217
  46. mindspore/communication/_comm_helper.py +11 -1
  47. mindspore/communication/comm_func.py +138 -4
  48. mindspore/communication/management.py +85 -1
  49. mindspore/config/op_info.config +0 -15
  50. mindspore/context.py +20 -106
  51. mindspore/dataset/__init__.py +1 -1
  52. mindspore/dataset/audio/transforms.py +1 -1
  53. mindspore/dataset/core/config.py +35 -1
  54. mindspore/dataset/engine/datasets.py +338 -319
  55. mindspore/dataset/engine/datasets_user_defined.py +38 -22
  56. mindspore/dataset/engine/datasets_vision.py +1 -1
  57. mindspore/dataset/engine/validators.py +1 -15
  58. mindspore/dataset/transforms/c_transforms.py +2 -2
  59. mindspore/dataset/transforms/transforms.py +3 -3
  60. mindspore/dataset/vision/__init__.py +1 -1
  61. mindspore/dataset/vision/py_transforms.py +8 -8
  62. mindspore/dataset/vision/transforms.py +17 -5
  63. mindspore/dataset/vision/utils.py +632 -21
  64. mindspore/device_context/ascend/op_tuning.py +35 -1
  65. mindspore/dnnl.dll +0 -0
  66. mindspore/{profiler/common/validator → graph}/__init__.py +9 -1
  67. mindspore/graph/custom_pass.py +55 -0
  68. mindspore/include/api/cell.h +28 -4
  69. mindspore/include/api/cfg.h +24 -7
  70. mindspore/include/api/context.h +1 -0
  71. mindspore/include/api/delegate.h +0 -2
  72. mindspore/include/api/dual_abi_helper.h +100 -19
  73. mindspore/include/api/graph.h +14 -1
  74. mindspore/include/api/kernel.h +16 -3
  75. mindspore/include/api/kernel_api.h +9 -1
  76. mindspore/include/api/metrics/accuracy.h +9 -0
  77. mindspore/include/api/model.h +5 -1
  78. mindspore/include/api/model_group.h +4 -0
  79. mindspore/include/api/model_parallel_runner.h +2 -0
  80. mindspore/include/api/status.h +48 -10
  81. mindspore/include/api/types.h +6 -1
  82. mindspore/include/dataset/constants.h +9 -0
  83. mindspore/include/dataset/execute.h +2 -2
  84. mindspore/jpeg62.dll +0 -0
  85. mindspore/mindrecord/__init__.py +3 -3
  86. mindspore/mindrecord/common/exceptions.py +1 -0
  87. mindspore/mindrecord/config.py +1 -1
  88. mindspore/{parallel/mpi → mindrecord/core}/__init__.py +4 -1
  89. mindspore/mindrecord/{shardheader.py → core/shardheader.py} +2 -1
  90. mindspore/mindrecord/{shardindexgenerator.py → core/shardindexgenerator.py} +1 -1
  91. mindspore/mindrecord/{shardreader.py → core/shardreader.py} +2 -1
  92. mindspore/mindrecord/{shardsegment.py → core/shardsegment.py} +2 -2
  93. mindspore/mindrecord/{shardutils.py → core/shardutils.py} +1 -1
  94. mindspore/mindrecord/{shardwriter.py → core/shardwriter.py} +1 -1
  95. mindspore/mindrecord/filereader.py +4 -4
  96. mindspore/mindrecord/filewriter.py +5 -5
  97. mindspore/mindrecord/mindpage.py +2 -2
  98. mindspore/mindrecord/tools/cifar10.py +4 -3
  99. mindspore/mindrecord/tools/cifar100.py +1 -1
  100. mindspore/mindrecord/tools/cifar100_to_mr.py +1 -1
  101. mindspore/mindrecord/tools/cifar10_to_mr.py +6 -6
  102. mindspore/mindrecord/tools/csv_to_mr.py +1 -1
  103. mindspore/mindrecord/tools/imagenet_to_mr.py +1 -1
  104. mindspore/mindrecord/tools/mnist_to_mr.py +1 -1
  105. mindspore/mindrecord/tools/tfrecord_to_mr.py +1 -1
  106. mindspore/mindspore_backend_common.dll +0 -0
  107. mindspore/mindspore_backend_manager.dll +0 -0
  108. mindspore/mindspore_cluster.dll +0 -0
  109. mindspore/mindspore_common.dll +0 -0
  110. mindspore/mindspore_core.dll +0 -0
  111. mindspore/mindspore_cpu.dll +0 -0
  112. mindspore/mindspore_dump.dll +0 -0
  113. mindspore/mindspore_frontend.dll +0 -0
  114. mindspore/mindspore_glog.dll +0 -0
  115. mindspore/mindspore_hardware_abstract.dll +0 -0
  116. mindspore/mindspore_memory_pool.dll +0 -0
  117. mindspore/mindspore_ms_backend.dll +0 -0
  118. mindspore/mindspore_ops.dll +0 -0
  119. mindspore/{mindspore_ops_host.dll → mindspore_ops_cpu.dll} +0 -0
  120. mindspore/mindspore_profiler.dll +0 -0
  121. mindspore/mindspore_pyboost.dll +0 -0
  122. mindspore/mindspore_pynative.dll +0 -0
  123. mindspore/mindspore_runtime_pipeline.dll +0 -0
  124. mindspore/mindspore_runtime_utils.dll +0 -0
  125. mindspore/mindspore_tools.dll +0 -0
  126. mindspore/mint/__init__.py +15 -10
  127. mindspore/mint/distributed/__init__.py +4 -0
  128. mindspore/mint/distributed/distributed.py +392 -69
  129. mindspore/mint/nn/__init__.py +2 -16
  130. mindspore/mint/nn/functional.py +4 -110
  131. mindspore/mint/nn/layer/__init__.py +0 -2
  132. mindspore/mint/nn/layer/_functions.py +1 -2
  133. mindspore/mint/nn/layer/activation.py +0 -6
  134. mindspore/mint/nn/layer/basic.py +0 -47
  135. mindspore/mint/nn/layer/conv.py +10 -10
  136. mindspore/mint/nn/layer/normalization.py +11 -16
  137. mindspore/mint/nn/layer/pooling.py +0 -4
  138. mindspore/nn/__init__.py +1 -3
  139. mindspore/nn/cell.py +231 -239
  140. mindspore/nn/layer/activation.py +4 -2
  141. mindspore/nn/layer/basic.py +56 -14
  142. mindspore/nn/layer/container.py +16 -0
  143. mindspore/nn/layer/embedding.py +4 -169
  144. mindspore/nn/layer/image.py +1 -1
  145. mindspore/nn/layer/normalization.py +2 -1
  146. mindspore/nn/layer/thor_layer.py +4 -85
  147. mindspore/nn/optim/ada_grad.py +0 -1
  148. mindspore/nn/optim/adafactor.py +0 -1
  149. mindspore/nn/optim/adam.py +32 -127
  150. mindspore/nn/optim/adamax.py +0 -1
  151. mindspore/nn/optim/asgd.py +0 -1
  152. mindspore/nn/optim/ftrl.py +8 -102
  153. mindspore/nn/optim/lamb.py +1 -4
  154. mindspore/nn/optim/lars.py +0 -3
  155. mindspore/nn/optim/lazyadam.py +25 -218
  156. mindspore/nn/optim/momentum.py +5 -43
  157. mindspore/nn/optim/optimizer.py +6 -55
  158. mindspore/nn/optim/proximal_ada_grad.py +0 -1
  159. mindspore/nn/optim/rmsprop.py +0 -1
  160. mindspore/nn/optim/rprop.py +0 -1
  161. mindspore/nn/optim/sgd.py +0 -1
  162. mindspore/nn/optim/tft_wrapper.py +2 -4
  163. mindspore/nn/optim/thor.py +0 -2
  164. mindspore/nn/probability/bijector/bijector.py +7 -8
  165. mindspore/nn/probability/bijector/gumbel_cdf.py +2 -2
  166. mindspore/nn/probability/bijector/power_transform.py +20 -21
  167. mindspore/nn/probability/bijector/scalar_affine.py +5 -5
  168. mindspore/nn/probability/bijector/softplus.py +13 -14
  169. mindspore/nn/probability/distribution/_utils/utils.py +2 -2
  170. mindspore/nn/wrap/cell_wrapper.py +39 -5
  171. mindspore/nn/wrap/grad_reducer.py +4 -89
  172. mindspore/numpy/array_creations.py +4 -4
  173. mindspore/numpy/fft.py +9 -9
  174. mindspore/numpy/utils_const.py +1 -1
  175. mindspore/{nn/reinforcement → onnx}/__init__.py +5 -8
  176. mindspore/onnx/onnx_export.py +137 -0
  177. mindspore/opencv_core4110.dll +0 -0
  178. mindspore/opencv_imgcodecs4110.dll +0 -0
  179. mindspore/{opencv_imgproc452.dll → opencv_imgproc4110.dll} +0 -0
  180. mindspore/ops/__init__.py +2 -0
  181. mindspore/ops/_grad_experimental/grad_comm_ops.py +38 -2
  182. mindspore/ops/_grad_experimental/grad_inner_ops.py +0 -9
  183. mindspore/ops/_op_impl/aicpu/__init__.py +0 -10
  184. mindspore/ops/_op_impl/cpu/__init__.py +1 -5
  185. mindspore/ops/_op_impl/cpu/{buffer_append.py → joinedstr_op.py} +8 -8
  186. mindspore/ops/auto_generate/cpp_create_prim_instance_helper.py +28 -24
  187. mindspore/ops/auto_generate/gen_extend_func.py +6 -11
  188. mindspore/ops/auto_generate/gen_ops_def.py +385 -154
  189. mindspore/ops/auto_generate/gen_ops_prim.py +5676 -5167
  190. mindspore/ops/communication.py +97 -0
  191. mindspore/ops/composite/__init__.py +5 -2
  192. mindspore/ops/composite/base.py +16 -2
  193. mindspore/ops/composite/multitype_ops/__init__.py +3 -1
  194. mindspore/ops/composite/multitype_ops/_compile_utils.py +150 -8
  195. mindspore/ops/composite/multitype_ops/_constexpr_utils.py +1 -1
  196. mindspore/ops/composite/multitype_ops/add_impl.py +7 -0
  197. mindspore/ops/composite/multitype_ops/mod_impl.py +27 -0
  198. mindspore/ops/function/__init__.py +2 -0
  199. mindspore/ops/function/array_func.py +24 -18
  200. mindspore/ops/function/comm_func.py +3883 -0
  201. mindspore/ops/function/debug_func.py +7 -6
  202. mindspore/ops/function/grad/grad_func.py +4 -12
  203. mindspore/ops/function/math_func.py +89 -86
  204. mindspore/ops/function/nn_func.py +92 -313
  205. mindspore/ops/function/random_func.py +9 -18
  206. mindspore/ops/functional.py +4 -1
  207. mindspore/ops/functional_overload.py +377 -30
  208. mindspore/ops/operations/__init__.py +2 -5
  209. mindspore/ops/operations/_custom_ops_utils.py +7 -9
  210. mindspore/ops/operations/_inner_ops.py +12 -50
  211. mindspore/ops/operations/_rl_inner_ops.py +0 -933
  212. mindspore/ops/operations/array_ops.py +5 -50
  213. mindspore/ops/operations/comm_ops.py +95 -17
  214. mindspore/ops/operations/custom_ops.py +237 -22
  215. mindspore/ops/operations/debug_ops.py +33 -35
  216. mindspore/ops/operations/manually_defined/ops_def.py +39 -318
  217. mindspore/ops/operations/math_ops.py +5 -5
  218. mindspore/ops/operations/nn_ops.py +3 -3
  219. mindspore/ops/operations/sparse_ops.py +0 -83
  220. mindspore/ops/primitive.py +4 -27
  221. mindspore/ops/tensor_method.py +88 -10
  222. mindspore/ops_generate/aclnn/aclnn_kernel_register_auto_cc_generator.py +5 -5
  223. mindspore/ops_generate/aclnn/gen_aclnn_implement.py +8 -8
  224. mindspore/ops_generate/api/functions_cc_generator.py +53 -4
  225. mindspore/ops_generate/api/tensor_func_reg_cpp_generator.py +25 -11
  226. mindspore/ops_generate/common/gen_constants.py +11 -10
  227. mindspore/ops_generate/common/op_proto.py +18 -1
  228. mindspore/ops_generate/common/template.py +102 -245
  229. mindspore/ops_generate/common/template_utils.py +212 -0
  230. mindspore/ops_generate/gen_custom_ops.py +69 -0
  231. mindspore/ops_generate/op_def/ops_def_cc_generator.py +78 -7
  232. mindspore/ops_generate/op_def_py/base_op_prim_py_generator.py +360 -0
  233. mindspore/ops_generate/op_def_py/custom_op_prim_py_generator.py +140 -0
  234. mindspore/ops_generate/op_def_py/op_def_py_generator.py +54 -7
  235. mindspore/ops_generate/op_def_py/op_prim_py_generator.py +5 -312
  236. mindspore/ops_generate/pyboost/auto_grad_impl_cc_generator.py +74 -17
  237. mindspore/ops_generate/pyboost/auto_grad_reg_cc_generator.py +22 -5
  238. mindspore/ops_generate/pyboost/gen_pyboost_func.py +0 -16
  239. mindspore/ops_generate/pyboost/op_template_parser.py +3 -2
  240. mindspore/ops_generate/pyboost/pyboost_functions_cpp_generator.py +21 -5
  241. mindspore/ops_generate/pyboost/pyboost_functions_h_generator.py +2 -2
  242. mindspore/ops_generate/pyboost/pyboost_functions_impl_cpp_generator.py +30 -10
  243. mindspore/ops_generate/pyboost/pyboost_grad_function_cpp_generator.py +10 -3
  244. mindspore/ops_generate/pyboost/pyboost_internal_kernel_info_adapter_generator.py +1 -1
  245. mindspore/ops_generate/pyboost/pyboost_native_grad_functions_generator.py +19 -9
  246. mindspore/ops_generate/pyboost/pyboost_op_cpp_code_generator.py +71 -28
  247. mindspore/ops_generate/pyboost/pyboost_overload_functions_cpp_generator.py +10 -9
  248. mindspore/ops_generate/pyboost/pyboost_utils.py +27 -16
  249. mindspore/ops_generate/resources/yaml_loader.py +13 -0
  250. mindspore/ops_generate/tensor_py_cc_generator.py +2 -2
  251. mindspore/parallel/_auto_parallel_context.py +5 -15
  252. mindspore/parallel/_cell_wrapper.py +1 -1
  253. mindspore/parallel/_parallel_serialization.py +4 -6
  254. mindspore/parallel/_ps_context.py +2 -2
  255. mindspore/parallel/_utils.py +34 -17
  256. mindspore/parallel/auto_parallel.py +23 -9
  257. mindspore/parallel/checkpoint_transform.py +20 -2
  258. mindspore/parallel/cluster/process_entity/_api.py +28 -33
  259. mindspore/parallel/cluster/process_entity/_utils.py +9 -5
  260. mindspore/parallel/cluster/run.py +5 -3
  261. mindspore/{experimental/llm_boost/ascend_native → parallel/distributed}/__init__.py +21 -22
  262. mindspore/parallel/distributed/distributed_data_parallel.py +393 -0
  263. mindspore/parallel/distributed/flatten_grad_buffer.py +295 -0
  264. mindspore/parallel/function/reshard_func.py +6 -5
  265. mindspore/parallel/nn/parallel_cell_wrapper.py +40 -3
  266. mindspore/parallel/nn/parallel_grad_reducer.py +0 -8
  267. mindspore/parallel/shard.py +7 -21
  268. mindspore/parallel/strategy.py +336 -0
  269. mindspore/parallel/transform_safetensors.py +127 -20
  270. mindspore/profiler/analysis/viewer/ascend_kernel_details_viewer.py +13 -9
  271. mindspore/profiler/analysis/viewer/ascend_op_memory_viewer.py +1 -1
  272. mindspore/profiler/analysis/viewer/ms_minddata_viewer.py +1 -1
  273. mindspore/profiler/common/constant.py +5 -0
  274. mindspore/profiler/common/file_manager.py +9 -0
  275. mindspore/profiler/common/msprof_cmd_tool.py +40 -4
  276. mindspore/profiler/common/path_manager.py +65 -24
  277. mindspore/profiler/common/profiler_context.py +27 -14
  278. mindspore/profiler/common/profiler_info.py +3 -3
  279. mindspore/profiler/common/profiler_meta_data.py +1 -0
  280. mindspore/profiler/common/profiler_op_analyse.py +10 -6
  281. mindspore/profiler/common/profiler_path_manager.py +13 -0
  282. mindspore/profiler/common/util.py +30 -3
  283. mindspore/profiler/dynamic_profiler.py +91 -46
  284. mindspore/profiler/envprofiler.py +30 -5
  285. mindspore/profiler/experimental_config.py +18 -2
  286. mindspore/profiler/platform/cpu_profiler.py +10 -4
  287. mindspore/profiler/platform/npu_profiler.py +34 -7
  288. mindspore/profiler/profiler.py +193 -145
  289. mindspore/profiler/profiler_action_controller.py +1 -1
  290. mindspore/profiler/profiler_interface.py +2 -2
  291. mindspore/rewrite/symbol_tree/symbol_tree.py +1 -1
  292. mindspore/run_check/_check_version.py +108 -24
  293. mindspore/runtime/__init__.py +9 -6
  294. mindspore/runtime/executor.py +35 -0
  295. mindspore/runtime/memory.py +113 -0
  296. mindspore/runtime/thread_bind_core.py +1 -1
  297. mindspore/swresample-4.dll +0 -0
  298. mindspore/swscale-6.dll +0 -0
  299. mindspore/tinyxml2.dll +0 -0
  300. mindspore/{experimental/llm_boost → tools}/__init__.py +5 -5
  301. mindspore/tools/data_dump.py +130 -0
  302. mindspore/tools/sdc_detect.py +91 -0
  303. mindspore/tools/stress_detect.py +63 -0
  304. mindspore/train/__init__.py +6 -6
  305. mindspore/train/_utils.py +8 -21
  306. mindspore/train/amp.py +6 -7
  307. mindspore/train/callback/_callback.py +2 -1
  308. mindspore/train/callback/_checkpoint.py +1 -17
  309. mindspore/train/callback/_flops_collector.py +10 -6
  310. mindspore/train/callback/_train_fault_tolerance.py +72 -25
  311. mindspore/train/data_sink.py +5 -9
  312. mindspore/train/dataset_helper.py +5 -5
  313. mindspore/train/model.py +41 -230
  314. mindspore/train/serialization.py +160 -401
  315. mindspore/train/train_thor/model_thor.py +2 -2
  316. mindspore/turbojpeg.dll +0 -0
  317. mindspore/utils/__init__.py +6 -3
  318. mindspore/utils/dlpack.py +92 -0
  319. mindspore/utils/dryrun.py +1 -1
  320. mindspore/utils/runtime_execution_order_check.py +10 -0
  321. mindspore/utils/sdc_detect.py +14 -12
  322. mindspore/utils/stress_detect.py +43 -0
  323. mindspore/utils/utils.py +152 -16
  324. mindspore/version.py +1 -1
  325. {mindspore-2.7.0rc1.dist-info → mindspore-2.7.1.dist-info}/METADATA +3 -2
  326. {mindspore-2.7.0rc1.dist-info → mindspore-2.7.1.dist-info}/RECORD +330 -344
  327. mindspore/_extends/remote/kernel_build_server_ascend.py +0 -75
  328. mindspore/communication/_hccl_management.py +0 -297
  329. mindspore/experimental/llm_boost/ascend_native/llama_boost_ascend_native.py +0 -207
  330. mindspore/experimental/llm_boost/ascend_native/llm_boost.py +0 -52
  331. mindspore/experimental/llm_boost/atb/__init__.py +0 -23
  332. mindspore/experimental/llm_boost/atb/boost_base.py +0 -385
  333. mindspore/experimental/llm_boost/atb/llama_boost.py +0 -137
  334. mindspore/experimental/llm_boost/atb/qwen_boost.py +0 -124
  335. mindspore/experimental/llm_boost/register.py +0 -130
  336. mindspore/experimental/llm_boost/utils.py +0 -31
  337. mindspore/include/OWNERS +0 -7
  338. mindspore/mindspore_cpu_res_manager.dll +0 -0
  339. mindspore/mindspore_ops_kernel_common.dll +0 -0
  340. mindspore/mindspore_res_manager.dll +0 -0
  341. mindspore/nn/optim/_dist_optimizer_registry.py +0 -111
  342. mindspore/nn/reinforcement/_batch_read_write.py +0 -142
  343. mindspore/nn/reinforcement/_tensors_queue.py +0 -152
  344. mindspore/nn/reinforcement/tensor_array.py +0 -145
  345. mindspore/opencv_core452.dll +0 -0
  346. mindspore/opencv_imgcodecs452.dll +0 -0
  347. mindspore/ops/_op_impl/aicpu/priority_replay_buffer.py +0 -113
  348. mindspore/ops/_op_impl/aicpu/reservoir_replay_buffer.py +0 -96
  349. mindspore/ops/_op_impl/aicpu/sparse_cross.py +0 -42
  350. mindspore/ops/_op_impl/cpu/buffer_get.py +0 -28
  351. mindspore/ops/_op_impl/cpu/buffer_sample.py +0 -28
  352. mindspore/ops/_op_impl/cpu/priority_replay_buffer.py +0 -42
  353. mindspore/ops/operations/_tensor_array.py +0 -359
  354. mindspore/ops/operations/rl_ops.py +0 -288
  355. mindspore/parallel/_offload_context.py +0 -275
  356. mindspore/parallel/_recovery_context.py +0 -115
  357. mindspore/parallel/_transformer/__init__.py +0 -35
  358. mindspore/parallel/_transformer/layers.py +0 -765
  359. mindspore/parallel/_transformer/loss.py +0 -251
  360. mindspore/parallel/_transformer/moe.py +0 -693
  361. mindspore/parallel/_transformer/op_parallel_config.py +0 -222
  362. mindspore/parallel/_transformer/transformer.py +0 -3124
  363. mindspore/parallel/mpi/_mpi_config.py +0 -116
  364. mindspore/profiler/common/validator/validate_path.py +0 -84
  365. mindspore/train/memory_profiling_pb2.py +0 -298
  366. mindspore/utils/hooks.py +0 -81
  367. /mindspore/common/{_auto_dynamic.py → dynamic_shape/_auto_dynamic.py} +0 -0
  368. {mindspore-2.7.0rc1.dist-info → mindspore-2.7.1.dist-info}/WHEEL +0 -0
  369. {mindspore-2.7.0rc1.dist-info → mindspore-2.7.1.dist-info}/entry_points.txt +0 -0
  370. {mindspore-2.7.0rc1.dist-info → mindspore-2.7.1.dist-info}/top_level.txt +0 -0
@@ -13,8 +13,7 @@
13
13
  # limitations under the License.
14
14
  # ============================================================================
15
15
  """PowerTransform Bijector"""
16
- from mindspore.ops import operations as P
17
- from mindspore.ops import functional as F
16
+ import mindspore.ops as ops
18
17
  from ..distribution._utils.utils import check_greater_equal_zero
19
18
  from ..distribution._utils.custom_ops import exp_generic, log_generic
20
19
  from .bijector import Bijector
@@ -76,16 +75,16 @@ class PowerTransform(Bijector):
76
75
  self._power = self._add_parameter(power, 'power')
77
76
  check_greater_equal_zero(self._power, 'Power')
78
77
 
79
- self.pow = P.Pow()
80
- self.dtypeop = P.DType()
81
- self.cast = P.Cast()
82
- self.equal_base = P.Equal()
78
+ self.pow = ops.Pow()
79
+ self.dtypeop = ops.DType()
80
+ self.cast = ops.Cast()
81
+ self.equal_base = ops.Equal()
83
82
  self.exp = exp_generic
84
- self.expm1 = P.Expm1()
83
+ self.expm1 = ops.Expm1()
85
84
  self.log = log_generic
86
- self.log1p = P.Log1p()
87
- self.select_base = P.Select()
88
- self.shape = P.Shape()
85
+ self.log1p = ops.Log1p()
86
+ self.select_base = ops.Select()
87
+ self.shape = ops.Shape()
89
88
 
90
89
  @property
91
90
  def power(self):
@@ -113,17 +112,17 @@ class PowerTransform(Bijector):
113
112
  power_local = self.cast_param_by_value(x, self.power)
114
113
 
115
114
  # broad cast the value of x and power
116
- ones = F.fill(self.dtypeop(power_local), self.shape(x + power_local),
117
- 1.)
115
+ ones = ops.fill(self.dtypeop(power_local), self.shape(x + power_local),
116
+ 1.)
118
117
  power_local = power_local * ones
119
118
  x = x * ones
120
119
  safe_power = self.select_base(
121
120
  self.equal_base(power_local,
122
- P.ZerosLike()(power_local)), ones, power_local)
121
+ ops.ZerosLike()(power_local)), ones, power_local)
123
122
 
124
123
  forward_v = self.select_base(
125
124
  self.equal_base(power_local,
126
- P.ZerosLike()(power_local)), self.exp(x),
125
+ ops.ZerosLike()(power_local)), self.exp(x),
127
126
  self.exp(self.log1p(x * safe_power) / safe_power))
128
127
  return forward_v
129
128
 
@@ -135,17 +134,17 @@ class PowerTransform(Bijector):
135
134
  power_local = self.cast_param_by_value(y, self.power)
136
135
 
137
136
  # broad cast the value of x and power
138
- ones = F.fill(self.dtypeop(power_local), self.shape(y + power_local),
139
- 1.)
137
+ ones = ops.fill(self.dtypeop(power_local), self.shape(y + power_local),
138
+ 1.)
140
139
  power_local = power_local * ones
141
140
  y = y * ones
142
141
  safe_power = self.select_base(
143
142
  self.equal_base(power_local,
144
- P.ZerosLike()(power_local)), ones, power_local)
143
+ ops.ZerosLike()(power_local)), ones, power_local)
145
144
 
146
145
  inverse_v = self.select_base(
147
146
  self.equal_base(power_local,
148
- P.ZerosLike()(power_local)), self.log(y),
147
+ ops.ZerosLike()(power_local)), self.log(y),
149
148
  self.expm1(self.log(y) * safe_power) / safe_power)
150
149
 
151
150
  return inverse_v
@@ -166,14 +165,14 @@ class PowerTransform(Bijector):
166
165
  power_local = self.cast_param_by_value(x, self.power)
167
166
 
168
167
  # broad cast the value of x and power
169
- ones = F.fill(self.dtypeop(power_local), self.shape(x + power_local),
170
- 1.)
168
+ ones = ops.fill(self.dtypeop(power_local), self.shape(x + power_local),
169
+ 1.)
171
170
  power_local = power_local * ones
172
171
  x = x * ones
173
172
 
174
173
  forward_log_j = self.select_base(
175
174
  self.equal_base(power_local,
176
- P.ZerosLike()(power_local)), x,
175
+ ops.ZerosLike()(power_local)), x,
177
176
  (1. / power_local - 1) * self.log1p(x * power_local))
178
177
 
179
178
  return forward_log_j
@@ -13,7 +13,7 @@
13
13
  # limitations under the License.
14
14
  # ============================================================================
15
15
  """Scalar Affine Bijector"""
16
- from mindspore.ops import operations as P
16
+ import mindspore.ops as ops
17
17
  from ..distribution._utils.custom_ops import log_generic
18
18
  from .bijector import Bijector
19
19
 
@@ -86,10 +86,10 @@ class ScalarAffine(Bijector):
86
86
  self._scale = self._add_parameter(scale, 'scale')
87
87
  self._shift = self._add_parameter(shift, 'shift')
88
88
 
89
- self.abs = P.Abs()
90
- self.oneslike = P.OnesLike()
91
- self.dtypeop = P.DType()
92
- self.cast = P.Cast()
89
+ self.abs = ops.Abs()
90
+ self.oneslike = ops.OnesLike()
91
+ self.dtypeop = ops.DType()
92
+ self.cast = ops.Cast()
93
93
  self.log = log_generic
94
94
 
95
95
  @property
@@ -14,8 +14,7 @@
14
14
  # ============================================================================
15
15
  """Softplus Bijector"""
16
16
  import numpy as np
17
- from mindspore.ops import operations as P
18
- from mindspore.ops import functional as F
17
+ import mindspore.ops as ops
19
18
  from mindspore.nn.layer.activation import LogSigmoid
20
19
  from ..distribution._utils.custom_ops import exp_generic, log_generic
21
20
  from .bijector import Bijector
@@ -82,17 +81,17 @@ class Softplus(Bijector):
82
81
 
83
82
  self.exp = exp_generic
84
83
  self.log = log_generic
85
- self.expm1 = P.Expm1()
86
- self.abs = P.Abs()
87
- self.dtypeop = P.DType()
88
- self.cast = P.Cast()
89
- self.greater = P.Greater()
90
- self.less = P.Less()
84
+ self.expm1 = ops.Expm1()
85
+ self.abs = ops.Abs()
86
+ self.dtypeop = ops.DType()
87
+ self.cast = ops.Cast()
88
+ self.greater = ops.Greater()
89
+ self.less = ops.Less()
91
90
  self.log_sigmoid = LogSigmoid()
92
- self.logicalor = P.LogicalOr()
93
- self.select = P.Select()
94
- self.shape = P.Shape()
95
- self.sigmoid = P.Sigmoid()
91
+ self.logicalor = ops.LogicalOr()
92
+ self.select = ops.Select()
93
+ self.shape = ops.Shape()
94
+ self.sigmoid = ops.Sigmoid()
96
95
  self.softplus = self._softplus
97
96
  self.inverse_softplus = self._inverse_softplus
98
97
 
@@ -104,7 +103,7 @@ class Softplus(Bijector):
104
103
  too_large = self.greater(x, -self.threshold)
105
104
  too_small_value = self.exp(x)
106
105
  too_large_value = x
107
- ones = F.fill(self.dtypeop(x), self.shape(x), 1.0)
106
+ ones = ops.fill(self.dtypeop(x), self.shape(x), 1.0)
108
107
  too_small_or_too_large = self.logicalor(too_small, too_large)
109
108
  x = self.select(too_small_or_too_large, ones, x)
110
109
  y = self.log(self.exp(x) + 1.0)
@@ -120,7 +119,7 @@ class Softplus(Bijector):
120
119
  too_large = self.greater(x, (-1) * self.threshold)
121
120
  too_small_value = self.log(x)
122
121
  too_large_value = x
123
- ones = F.fill(self.dtypeop(x), self.shape(x), 1.0)
122
+ ones = ops.fill(self.dtypeop(x), self.shape(x), 1.0)
124
123
  too_small_or_too_large = self.logicalor(too_small, too_large)
125
124
  x = self.select(too_small_or_too_large, ones, x)
126
125
  y = x + self.log(self.abs(self.expm1((-1)*x)))
@@ -298,7 +298,7 @@ class CheckTuple(PrimitiveWithInfer):
298
298
  # The op is not used in a cell
299
299
  if isinstance(x, tuple):
300
300
  return x
301
- if context.get_context("mode") == 0:
301
+ if context.get_context("mode") == context.GRAPH_MODE:
302
302
  return x["value"]
303
303
  raise TypeError(f"For {name}, input type must be a tuple.")
304
304
 
@@ -349,7 +349,7 @@ def set_param_type(args, hint_type):
349
349
  for name, arg in args.items():
350
350
  if hasattr(arg, 'dtype'):
351
351
  if isinstance(arg, np.ndarray):
352
- cur_dtype = mstype.pytype_to_dtype(arg.dtype)
352
+ cur_dtype = mstype._pytype_to_dtype(arg.dtype) # pylint:disable=protected-access
353
353
  else:
354
354
  cur_dtype = arg.dtype
355
355
  if common_dtype is None:
@@ -23,7 +23,7 @@ from types import FunctionType, MethodType
23
23
 
24
24
  from mindspore import log as logger
25
25
  from mindspore.parallel._utils import _get_device_num, _get_gradients_mean,\
26
- _get_parallel_mode, _get_enable_parallel_optimizer, _is_pynative_parallel
26
+ _get_parallel_mode, _get_enable_parallel_optimizer
27
27
  from mindspore.context import ParallelMode
28
28
  from mindspore import _checkparam as validator
29
29
  from mindspore import ops, nn
@@ -397,8 +397,7 @@ class TrainOneStepCell(Cell):
397
397
  self.reducer_flag = False
398
398
  self.grad_reducer = nn.Identity()
399
399
  self.parallel_mode = _get_parallel_mode()
400
- self.reducer_flag = self.parallel_mode in (ParallelMode.DATA_PARALLEL, ParallelMode.HYBRID_PARALLEL) or \
401
- _is_pynative_parallel()
400
+ self.reducer_flag = self.parallel_mode in (ParallelMode.DATA_PARALLEL, ParallelMode.HYBRID_PARALLEL)
402
401
  if self.reducer_flag:
403
402
  self.mean = _get_gradients_mean()
404
403
  self.degree = _get_device_num()
@@ -860,7 +859,7 @@ class _BroadCastCell(Cell):
860
859
  from mindspore import context
861
860
  self.map_ = ops.Map()
862
861
  self.params = tuple(params)
863
- if context.get_context("device_target") == "Ascend" and context.get_context("mode") != context.PYNATIVE_MODE:
862
+ if context.get_context("device_target") == "Ascend":
864
863
  rank_list = [id for id in range(0, get_group_size())]
865
864
  create_group("BroadcastWorldGroup", rank_list)
866
865
  self.broadcast = ops.Broadcast(0, group="BroadcastWorldGroup")
@@ -889,6 +888,8 @@ class PipelineCell(Cell):
889
888
  micro_size (int): MicroBatch size.
890
889
  stage_config (dict, optional): The stage configuration for each cell's execution in pipeline parallel.
891
890
  Default ``None``.
891
+ segment_config (dict, optional): The segment configuration for each cell's execution in pipeline parallel.
892
+ Default ``None``.
892
893
 
893
894
  Supported Platforms:
894
895
  ``Ascend`` ``GPU``
@@ -900,7 +901,7 @@ class PipelineCell(Cell):
900
901
  >>> net = LeNet5()
901
902
  >>> net = nn.PipelineCell(net, 4)
902
903
  """
903
- def __init__(self, network, micro_size, stage_config=None):
904
+ def __init__(self, network, micro_size, stage_config=None, segment_config=None):
904
905
  super(PipelineCell, self).__init__(auto_prefix=False)
905
906
  self.network = network
906
907
  self.micro_inputs = nn.CellList()
@@ -956,6 +957,39 @@ class PipelineCell(Cell):
956
957
  print(cell_name)
957
958
  raise KeyError("For 'PipelineCell', the argument 'stage_config' : {} is not "
958
959
  "found in 'network' : {}".format(config_dict, network))
960
+ if segment_config is None:
961
+ return
962
+ self._config_segment(segment_config)
963
+
964
+
965
+ def _config_segment(self, segment_config=None):
966
+ """
967
+ Config segment num for cell.
968
+ """
969
+ config_dict = segment_config.copy()
970
+ for cell_name, cell in self.network.cells_and_names():
971
+ if cell_name in segment_config:
972
+ setattr(cell, "pipeline_segment", segment_config[cell_name])
973
+ del config_dict[cell_name]
974
+ if str(self.network) in segment_config:
975
+ setattr(self.network, "pipeline_segment", segment_config[str(self.network)])
976
+ del config_dict[str(self.network)]
977
+ # if there are any config elements left, print them
978
+ if config_dict:
979
+ for config_cell_name, config_segment_num in config_dict.items():
980
+ logger.error("pipeline_cell segment_config set pipeline_segment fail!")
981
+ logger.warning("config cell name:" + str(config_cell_name) +
982
+ " config segment num:" + str(config_segment_num))
983
+ logger.warning("network:" + str(self.network))
984
+ logger.warning("cell name available:")
985
+ for cell_name, _ in self.network.cells_and_names():
986
+ logger.warning(cell_name)
987
+ raise KeyError("For 'PipelineCell', the argument 'segment_config' : {} is not "
988
+ "found in 'network' : {}".format(config_dict, self.network))
989
+
990
+
991
+ def shard(self, in_strategy, out_strategy=None, parameter_plan=None, device="Ascend", level=0):
992
+ raise ValueError("For 'PipelineCell', no 'shard' on 'PipelineCell' is allowed.")
959
993
 
960
994
  def construct(self, *inputs):
961
995
  ret = None
@@ -140,34 +140,6 @@ def _tensors_allreduce_post(degree, mean, allreduce_filter, grad):
140
140
  return grad
141
141
 
142
142
 
143
- @reduce_opt.register("Tensor", "Bool", "Function", "Function", "Bool", "Tensor", "Bool")
144
- def _tensors_allreduce_ps(degree, mean, allgather, allreduce, allreduce_filter, grad, ps_parameter):
145
- """
146
- Apply allreduce on gradient.
147
-
148
- Args:
149
- degree (int): The mean coefficient.
150
- mean (bool): When mean is true, the mean coefficient (degree) would apply on gradients.
151
- allgather (Primitive): The communication operator for sparse gradients.
152
- allreduce (Primitive): The communication operator for gradients.
153
- allreduce_filter (bool): When it is true, allreduce would apply.
154
- grad (Tensor): The gradient tensor before operation.
155
- ps_parameter (bool): Use parameter server or not.
156
-
157
- Returns:
158
- Tensor, the gradient tensor after operation.
159
- """
160
- if ps_parameter:
161
- return grad
162
-
163
- if allreduce_filter:
164
- grad = allreduce(grad)
165
- if mean:
166
- grad = ops.tensor_mul(grad, ops.cast(degree, ops.dtype(grad)))
167
- return grad
168
- return grad
169
-
170
-
171
143
  @reduce_opt.register("Tensor", "Bool", "Function", "Function", "Bool", "RowTensor")
172
144
  def _tensors_allreduce_with_sparse(degree, mean, allgather, allreduce, allreduce_filter, grad):
173
145
  """
@@ -193,37 +165,6 @@ def _tensors_allreduce_with_sparse(degree, mean, allgather, allreduce, allreduce
193
165
  grad = RowTensorInner(indices, dout, grad.dense_shape)
194
166
  return grad
195
167
 
196
-
197
- @reduce_opt.register("Tensor", "Bool", "Function", "Function", "Bool", "RowTensor", "Bool")
198
- def _tensors_allreduce_with_sparse_ps(degree, mean, allgather, allreduce, allreduce_filter, grad, ps_parameter):
199
- """
200
- Apply allgather on gradient instead of allreduce for sparse feature.
201
- Allgather is a communication operation used for distributed deep learning.
202
-
203
- Args:
204
- degree (int): The mean coefficient.
205
- mean (bool): When mean is true, the mean coefficient (degree) would apply on gradients.
206
- allgather (Primitive): The communication operator for sparse gradients.
207
- allreduce (Primitive): The communication operator for gradients.
208
- allreduce_filter (bool): When it is true, allgather would apply.
209
- grad (tuple): The indices, gradient tensor and tensor_shape before operation.
210
- ps_parameter (bool): Use parameter server or not.
211
-
212
- Returns:
213
- RowTensor, the gradient after operation.
214
- """
215
- if ps_parameter:
216
- return grad
217
-
218
- if allreduce_filter:
219
- indices = allgather(grad.indices)
220
- dout = allgather(grad.values)
221
- if mean:
222
- dout = ops.tensor_mul(dout, ops.cast(degree, ops.dtype(dout)))
223
- grad = RowTensorInner(indices, dout, grad.dense_shape)
224
- return grad
225
-
226
-
227
168
  _get_datatype = ops.MultitypeFuncGraph("_get_datatype")
228
169
 
229
170
 
@@ -394,7 +335,6 @@ class DistributedGradReducer(Cell):
394
335
 
395
336
  def __init__(self, parameters, mean=None, degree=None, fusion_type=1, group=GlobalComm.WORLD_COMM_GROUP):
396
337
  super(DistributedGradReducer, self).__init__(auto_prefix=False)
397
- self._check_parallel_mode()
398
338
  self.map_ = ops.Map()
399
339
  self.mean = mean
400
340
  if mean is None:
@@ -424,9 +364,6 @@ class DistributedGradReducer(Cell):
424
364
  self.split_fusion = False
425
365
  self.allreduce = AllReduce('sum', group).add_prim_attr('fusion', fusion_type)
426
366
  self.allgather = AllGather(group)
427
- ps_filter = lambda x: x.is_param_ps
428
- self.ps_parameters = tuple(ps_filter(x) for x in parameters)
429
- self.enable_parameter_server = any(self.ps_parameters)
430
367
  self.mode = context.get_context("mode")
431
368
  self.enable_tuple_broaden = True
432
369
 
@@ -447,29 +384,14 @@ class DistributedGradReducer(Cell):
447
384
  grads = self.map_(ops.partial(_cast_datatype, mstype.float32), grads)
448
385
 
449
386
  if self.split_fusion:
450
- if self.enable_parameter_server:
451
- new_grad = self.map_(ops.partial(reduce_opt, self.degree, self.mean, self.allgather),
452
- self.op_list, self.allreduce_filter, grads, self.ps_parameters)
453
- else:
454
- new_grad = self.map_(ops.partial(reduce_opt, self.degree, self.mean, self.allgather),
455
- self.op_list, self.allreduce_filter, grads)
387
+ new_grad = self.map_(ops.partial(reduce_opt, self.degree, self.mean, self.allgather),
388
+ self.op_list, self.allreduce_filter, grads)
456
389
  else:
457
- if self.enable_parameter_server:
458
- new_grad = self.map_(ops.partial(reduce_opt, self.degree, self.mean, self.allgather,
459
- self.allreduce), self.allreduce_filter, grads, self.ps_parameters)
460
- else:
461
- new_grad = self.map_(ops.partial(reduce_opt, self.degree, self.mean, self.allgather,
462
- self.allreduce), self.allreduce_filter, grads)
390
+ new_grad = self.map_(ops.partial(reduce_opt, self.degree, self.mean, self.allgather,
391
+ self.allreduce), self.allreduce_filter, grads)
463
392
  new_grad = self.map_(ops.partial(_cast_datatype), datatypes, new_grad)
464
393
  return new_grad
465
394
 
466
- def _check_parallel_mode(self):
467
- """check parallel mode"""
468
- parallel_mode = context.get_auto_parallel_context('parallel_mode')
469
- if context.get_context('mode') == context.GRAPH_MODE and parallel_mode in (
470
- context.ParallelMode.SEMI_AUTO_PARALLEL, context.ParallelMode.AUTO_PARALLEL):
471
- raise RuntimeError("{} can not use DistributedGradReducer in graph mode".format(parallel_mode))
472
-
473
395
 
474
396
  grad_scale = ops.MultitypeFuncGraph("grad_scale")
475
397
  shard_grad_scale = ops.MultitypeFuncGraph("shard_grad_scale")
@@ -587,7 +509,6 @@ class PipelineGradReducer(Cell):
587
509
  """
588
510
  def __init__(self, parameters, scale_sense=1.0, opt_shard=None):
589
511
  super(PipelineGradReducer, self).__init__(auto_prefix=False)
590
- self._check_mode()
591
512
  self.accu_grads = parameters.clone(prefix="accu_grads", init="zeros")
592
513
  self.grad_reducer = Identity()
593
514
  self.degree = Tensor(1, mstype.float32)
@@ -609,9 +530,3 @@ class PipelineGradReducer(Cell):
609
530
  accu_grads = self.grad_reducer(self.accu_grads)
610
531
  new_grads = self.hyper_map(ops.partial(grad_scale, self.scale_sense * self.degree), grads, accu_grads)
611
532
  return new_grads
612
-
613
- def _check_mode(self):
614
- """check parallel mode"""
615
- mode = context.get_context('mode')
616
- if mode != context.GRAPH_MODE:
617
- raise RuntimeError(f"PipelineGradReducer only support graph mode, but get {mode}")
@@ -127,7 +127,7 @@ def asarray_const(a, dtype=None):
127
127
  # If dtype is not specified, we keep consistent with numpy decision
128
128
  # only exceptions are: we use int/float32
129
129
  if dtype is None:
130
- dtype = mstype.pytype_to_dtype(a.dtype)
130
+ dtype = mstype._pytype_to_dtype(a.dtype) # pylint:disable=protected-access
131
131
  if dtype == mstype.float64:
132
132
  dtype = mstype.float32
133
133
  elif dtype == mstype.int64:
@@ -138,7 +138,7 @@ def asarray_const(a, dtype=None):
138
138
  if isinstance(a, onp.ndarray) and dtype is None:
139
139
  if a.dtype is onp.dtype('object'):
140
140
  raise TypeError(f"For Tensor conversion, the input_data is {a} that contains unsupported element.")
141
- dtype = mstype.pytype_to_dtype(a.dtype)
141
+ dtype = mstype._pytype_to_dtype(a.dtype) # pylint:disable=protected-access
142
142
  a = Tensor.from_numpy(a)
143
143
 
144
144
  return Tensor(a, dtype=dtype)
@@ -2622,7 +2622,7 @@ def pad(arr, pad_width, mode="constant", stat_length=None, constant_values=0,
2622
2622
  unique pad widths for each axis. ``((before, after),)`` yields same
2623
2623
  before and after pad for each axis. ``(pad,)`` or int is a shortcut
2624
2624
  for ``before = after = pad width`` for all axes.
2625
- mode (string, optional):
2625
+ mode (str, optional):
2626
2626
  One of the following string values:
2627
2627
 
2628
2628
  - constant (default): Pads with a constant value.
@@ -2660,7 +2660,7 @@ def pad(arr, pad_width, mode="constant", stat_length=None, constant_values=0,
2660
2660
  unique end values for each axis. ``((before, after),)`` yields same before
2661
2661
  and after end values for each axis. ``(constant,)`` or ``constant``
2662
2662
  is a shortcut for ``before = after = constant`` for all axes. Default: ``0`` .
2663
- reflect_type(string, optional) can choose between \'even\' and \'odd\'. Used in
2663
+ reflect_type(str, optional) can choose between \'even\' and \'odd\'. Used in
2664
2664
  \'reflect\', and \'symmetric\'. The \'even\' style is the default with an
2665
2665
  unaltered reflection around the edge value. For the \'odd\' style, the extended
2666
2666
  part of the `arr` is created by subtracting the reflected values from two times
mindspore/numpy/fft.py CHANGED
@@ -185,7 +185,7 @@ def rfft(a, n=None, axis=-1, norm=None):
185
185
  Default: ``None``.
186
186
  axis (int, optional): Axis over which to compute the `rfft`.
187
187
  Default: ``-1``, which means the last axis of `a` is used.
188
- norm (string, optional): Normalization mode. Default: ``None`` that means ``"backward"``.
188
+ norm (str, optional): Normalization mode. Default: ``None`` that means ``"backward"``.
189
189
  Three modes are defined as,
190
190
 
191
191
  - ``"backward"`` (no normalization).
@@ -224,7 +224,7 @@ def irfft(a, n=None, axis=-1, norm=None):
224
224
  Default: ``None``.
225
225
  axis (int, optional): Axis over which to compute the `irfft`.
226
226
  Default: ``-1``, which means the last axis of `a` is used.
227
- norm (string, optional): Normalization mode. Default: ``None`` that means ``"backward"``.
227
+ norm (str, optional): Normalization mode. Default: ``None`` that means ``"backward"``.
228
228
  Three modes are defined as,
229
229
 
230
230
  - ``"backward"`` (normalize by :math:`1/n`).
@@ -266,7 +266,7 @@ def fft2(a, s=None, axes=(-2, -1), norm=None):
266
266
  Default: ``None`` , which does not need to process `a`.
267
267
  axes (tuple[int], optional): The dimension along which to take the one dimensional `fft2`.
268
268
  Default: ``(-2, -1)`` , which means transform the last two dimension of `a`.
269
- norm (string, optional): Normalization mode. Default: ``None`` that means ``"backward"`` .
269
+ norm (str, optional): Normalization mode. Default: ``None`` that means ``"backward"`` .
270
270
  Three modes are defined as, where :math: `n = prod(s)`
271
271
 
272
272
  - ``"backward"`` (no normalization).
@@ -361,7 +361,7 @@ def fftn(a, s=None, axes=None, norm=None):
361
361
  axes (tuple[int], optional): The dimension along which to take the one dimensional `fftn`.
362
362
  Default: ``None`` , which means transform the all dimension of `a`,
363
363
  or the last `len(s)` dimensions if s is given.
364
- norm (string, optional): Normalization mode. Default: ``None`` that means ``"backward"`` .
364
+ norm (str, optional): Normalization mode. Default: ``None`` that means ``"backward"`` .
365
365
  Three modes are defined as, where :math: `n = prod(s)`
366
366
 
367
367
  - ``"backward"`` (no normalization).
@@ -409,7 +409,7 @@ def ifftn(a, s=None, axes=None, norm=None):
409
409
  axes (tuple[int], optional): The dimension along which to take the one dimensional `ifftn`.
410
410
  Default: ``None`` , which means transform the all dimension of `a`,
411
411
  or the last `len(s)` dimensions if s is given.
412
- norm (string, optional): Normalization mode. Default: ``None`` that means ``"backward"`` .
412
+ norm (str, optional): Normalization mode. Default: ``None`` that means ``"backward"`` .
413
413
  Three modes are defined as, where :math: `n = prod(s)`
414
414
 
415
415
  - ``"backward"`` (normalize by :math:`1/n`).
@@ -457,7 +457,7 @@ def rfft2(a, s=None, axes=(-2, -1), norm=None):
457
457
  Default: ``None`` , which does not need to process `a`.
458
458
  axes (tuple[int], optional): The dimension along which to take the one dimensional `rfft2`.
459
459
  Default: ``(-2, -1)`` , which means transform the last two dimension of `a`.
460
- norm (string, optional): Normalization mode. Default: ``None`` that means ``"backward"`` .
460
+ norm (str, optional): Normalization mode. Default: ``None`` that means ``"backward"`` .
461
461
  Three modes are defined as, where :math: `n = prod(s)`
462
462
 
463
463
  - ``"backward"`` (no normalization).
@@ -502,7 +502,7 @@ def irfft2(a, s=None, axes=(-2, -1), norm=None):
502
502
  Default: ``None`` , the axes[-1] of the `a` will be zero-padded to :math:`2*(a.shape[axes[-1]]-1)`.
503
503
  axes (tuple[int], optional): The dimension along which to take the one dimensional `irfft2`.
504
504
  Default: ``(-2, -1)`` , which means transform the last two dimension of `a`.
505
- norm (string, optional): Normalization mode. Default: ``None`` that means ``"backward"`` .
505
+ norm (str, optional): Normalization mode. Default: ``None`` that means ``"backward"`` .
506
506
  Three modes are defined as, where :math: `n = prod(s)`
507
507
 
508
508
  - ``"backward"`` (normalize by :math:`1/n`).
@@ -551,7 +551,7 @@ def rfftn(a, s=None, axes=None, norm=None):
551
551
  axes (tuple[int], optional): The dimension along which to take the one dimensional `rfftn`.
552
552
  Default: ``None`` , which means transform the all dimension of `a`,
553
553
  or the last `len(s)` dimensions if s is given.
554
- norm (string, optional): Normalization mode. Default: ``None`` that means ``"backward"`` .
554
+ norm (str, optional): Normalization mode. Default: ``None`` that means ``"backward"`` .
555
555
  Three modes are defined as, where :math: `n = prod(s)`
556
556
 
557
557
  - ``"backward"`` (no normalization).
@@ -599,7 +599,7 @@ def irfftn(a, s=None, axes=None, norm=None):
599
599
  axes (tuple[int], optional): The dimension along which to take the one dimensional `irfftn`.
600
600
  Default: ``None`` , which means transform the all dimension of `a`,
601
601
  or the last `len(s)` dimensions if s is given.
602
- norm (string, optional): Normalization mode. Default: ``None`` that means ``"backward"`` .
602
+ norm (str, optional): Normalization mode. Default: ``None`` that means ``"backward"`` .
603
603
  Three modes are defined as, where :math: `n = prod(s)`
604
604
 
605
605
  - ``"backward"`` (normalize by :math:`1/n`).
@@ -70,7 +70,7 @@ def _check_dtype(dtype):
70
70
  elif dtype is float:
71
71
  dtype = mstype.float32
72
72
  else:
73
- dtype = mstype.pytype_to_dtype(dtype)
73
+ dtype = mstype._pytype_to_dtype(dtype) # pylint:disable=protected-access
74
74
  if dtype not in dtype_tuple:
75
75
  raise TypeError(f"only {all_types} are allowed for dtype, but got {type(dtype)}")
76
76
  return dtype
@@ -1,4 +1,4 @@
1
- # Copyright 2021 Huawei Technologies Co., Ltd
1
+ # Copyright 2025 Huawei Technologies Co., Ltd
2
2
  #
3
3
  # Licensed under the Apache License, Version 2.0 (the "License");
4
4
  # you may not use this file except in compliance with the License.
@@ -12,13 +12,10 @@
12
12
  # See the License for the specific language governing permissions and
13
13
  # limitations under the License.
14
14
  # ============================================================================
15
- """
16
- TensorArray.
17
- """
15
+ """onnx module."""
16
+
18
17
  from __future__ import absolute_import
19
18
 
20
- from mindspore.nn.reinforcement.tensor_array import TensorArray
19
+ from .onnx_export import export
21
20
 
22
- __all__ = [
23
- "TensorArray",
24
- ]
21
+ __all__ = ["export"]