mindspore 2.7.0__cp310-cp310-win_amd64.whl → 2.7.1__cp310-cp310-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of mindspore might be problematic. Click here for more details.

Files changed (290) hide show
  1. mindspore/.commit_id +1 -1
  2. mindspore/__init__.py +4 -1
  3. mindspore/_c_dataengine.cp310-win_amd64.pyd +0 -0
  4. mindspore/_c_expression.cp310-win_amd64.pyd +0 -0
  5. mindspore/_c_mindrecord.cp310-win_amd64.pyd +0 -0
  6. mindspore/_extends/parse/compile_config.py +24 -1
  7. mindspore/_extends/parse/deprecated/deprecated_tensor_method.py +6 -2
  8. mindspore/_extends/parse/resources.py +1 -1
  9. mindspore/_extends/parse/standard_method.py +8 -1
  10. mindspore/_extends/parse/trope.py +2 -1
  11. mindspore/_extends/pijit/pijit_func_white_list.py +7 -22
  12. mindspore/avcodec-59.dll +0 -0
  13. mindspore/avdevice-59.dll +0 -0
  14. mindspore/avfilter-8.dll +0 -0
  15. mindspore/avformat-59.dll +0 -0
  16. mindspore/avutil-57.dll +0 -0
  17. mindspore/boost/base.py +29 -2
  18. mindspore/common/_decorator.py +3 -2
  19. mindspore/common/_grad_function.py +3 -1
  20. mindspore/common/_tensor_cpp_method.py +1 -1
  21. mindspore/common/_tensor_docs.py +275 -64
  22. mindspore/common/_utils.py +0 -44
  23. mindspore/common/api.py +285 -35
  24. mindspore/common/dump.py +7 -108
  25. mindspore/common/dynamic_shape/auto_dynamic_shape.py +1 -3
  26. mindspore/common/hook_handle.py +60 -0
  27. mindspore/common/jit_config.py +5 -1
  28. mindspore/common/jit_trace.py +27 -12
  29. mindspore/common/lazy_inline.py +5 -3
  30. mindspore/common/parameter.py +13 -107
  31. mindspore/common/recompute.py +4 -11
  32. mindspore/common/tensor.py +16 -169
  33. mindspore/communication/_comm_helper.py +11 -1
  34. mindspore/communication/comm_func.py +138 -4
  35. mindspore/communication/management.py +85 -1
  36. mindspore/config/op_info.config +0 -15
  37. mindspore/context.py +5 -85
  38. mindspore/dataset/engine/datasets.py +8 -4
  39. mindspore/dataset/engine/datasets_vision.py +1 -1
  40. mindspore/dataset/engine/validators.py +1 -15
  41. mindspore/dnnl.dll +0 -0
  42. mindspore/{experimental/llm_boost/ascend_native → graph}/__init__.py +7 -7
  43. mindspore/graph/custom_pass.py +55 -0
  44. mindspore/include/dataset/execute.h +2 -2
  45. mindspore/jpeg62.dll +0 -0
  46. mindspore/mindrecord/__init__.py +3 -3
  47. mindspore/mindrecord/common/exceptions.py +1 -0
  48. mindspore/mindrecord/config.py +1 -1
  49. mindspore/{parallel/mpi → mindrecord/core}/__init__.py +4 -1
  50. mindspore/mindrecord/{shardheader.py → core/shardheader.py} +2 -1
  51. mindspore/mindrecord/{shardindexgenerator.py → core/shardindexgenerator.py} +1 -1
  52. mindspore/mindrecord/{shardreader.py → core/shardreader.py} +2 -1
  53. mindspore/mindrecord/{shardsegment.py → core/shardsegment.py} +2 -2
  54. mindspore/mindrecord/{shardutils.py → core/shardutils.py} +1 -1
  55. mindspore/mindrecord/{shardwriter.py → core/shardwriter.py} +1 -1
  56. mindspore/mindrecord/filereader.py +4 -4
  57. mindspore/mindrecord/filewriter.py +5 -5
  58. mindspore/mindrecord/mindpage.py +2 -2
  59. mindspore/mindrecord/tools/cifar10.py +1 -1
  60. mindspore/mindrecord/tools/cifar100.py +1 -1
  61. mindspore/mindrecord/tools/cifar100_to_mr.py +1 -1
  62. mindspore/mindrecord/tools/cifar10_to_mr.py +1 -1
  63. mindspore/mindrecord/tools/csv_to_mr.py +1 -1
  64. mindspore/mindrecord/tools/imagenet_to_mr.py +1 -1
  65. mindspore/mindrecord/tools/mnist_to_mr.py +1 -1
  66. mindspore/mindrecord/tools/tfrecord_to_mr.py +1 -1
  67. mindspore/mindspore_backend_common.dll +0 -0
  68. mindspore/mindspore_backend_manager.dll +0 -0
  69. mindspore/mindspore_cluster.dll +0 -0
  70. mindspore/mindspore_common.dll +0 -0
  71. mindspore/mindspore_core.dll +0 -0
  72. mindspore/mindspore_cpu.dll +0 -0
  73. mindspore/mindspore_dump.dll +0 -0
  74. mindspore/mindspore_frontend.dll +0 -0
  75. mindspore/mindspore_glog.dll +0 -0
  76. mindspore/mindspore_hardware_abstract.dll +0 -0
  77. mindspore/mindspore_memory_pool.dll +0 -0
  78. mindspore/mindspore_ms_backend.dll +0 -0
  79. mindspore/mindspore_ops.dll +0 -0
  80. mindspore/{mindspore_ops_host.dll → mindspore_ops_cpu.dll} +0 -0
  81. mindspore/mindspore_profiler.dll +0 -0
  82. mindspore/mindspore_pyboost.dll +0 -0
  83. mindspore/mindspore_pynative.dll +0 -0
  84. mindspore/mindspore_runtime_pipeline.dll +0 -0
  85. mindspore/mindspore_runtime_utils.dll +0 -0
  86. mindspore/mindspore_tools.dll +0 -0
  87. mindspore/mint/__init__.py +15 -10
  88. mindspore/mint/distributed/distributed.py +182 -62
  89. mindspore/mint/nn/__init__.py +2 -16
  90. mindspore/mint/nn/functional.py +4 -110
  91. mindspore/mint/nn/layer/__init__.py +0 -2
  92. mindspore/mint/nn/layer/activation.py +0 -6
  93. mindspore/mint/nn/layer/basic.py +0 -47
  94. mindspore/mint/nn/layer/conv.py +4 -4
  95. mindspore/mint/nn/layer/normalization.py +8 -13
  96. mindspore/mint/nn/layer/pooling.py +0 -4
  97. mindspore/nn/__init__.py +1 -3
  98. mindspore/nn/cell.py +16 -66
  99. mindspore/nn/layer/basic.py +49 -1
  100. mindspore/nn/layer/container.py +16 -0
  101. mindspore/nn/layer/embedding.py +4 -169
  102. mindspore/nn/layer/normalization.py +2 -1
  103. mindspore/nn/layer/thor_layer.py +4 -85
  104. mindspore/nn/optim/ada_grad.py +0 -1
  105. mindspore/nn/optim/adafactor.py +0 -1
  106. mindspore/nn/optim/adam.py +31 -124
  107. mindspore/nn/optim/adamax.py +0 -1
  108. mindspore/nn/optim/asgd.py +0 -1
  109. mindspore/nn/optim/ftrl.py +8 -102
  110. mindspore/nn/optim/lamb.py +0 -1
  111. mindspore/nn/optim/lars.py +0 -3
  112. mindspore/nn/optim/lazyadam.py +25 -218
  113. mindspore/nn/optim/momentum.py +5 -43
  114. mindspore/nn/optim/optimizer.py +6 -55
  115. mindspore/nn/optim/proximal_ada_grad.py +0 -1
  116. mindspore/nn/optim/rmsprop.py +0 -1
  117. mindspore/nn/optim/rprop.py +0 -1
  118. mindspore/nn/optim/sgd.py +0 -1
  119. mindspore/nn/optim/tft_wrapper.py +0 -1
  120. mindspore/nn/optim/thor.py +0 -2
  121. mindspore/nn/probability/bijector/bijector.py +7 -8
  122. mindspore/nn/probability/bijector/gumbel_cdf.py +2 -2
  123. mindspore/nn/probability/bijector/power_transform.py +20 -21
  124. mindspore/nn/probability/bijector/scalar_affine.py +5 -5
  125. mindspore/nn/probability/bijector/softplus.py +13 -14
  126. mindspore/nn/wrap/grad_reducer.py +4 -74
  127. mindspore/numpy/array_creations.py +2 -2
  128. mindspore/numpy/fft.py +9 -9
  129. mindspore/{nn/reinforcement → onnx}/__init__.py +5 -8
  130. mindspore/onnx/onnx_export.py +137 -0
  131. mindspore/opencv_core4110.dll +0 -0
  132. mindspore/opencv_imgcodecs4110.dll +0 -0
  133. mindspore/{opencv_imgproc452.dll → opencv_imgproc4110.dll} +0 -0
  134. mindspore/ops/__init__.py +2 -0
  135. mindspore/ops/_grad_experimental/grad_comm_ops.py +38 -2
  136. mindspore/ops/_op_impl/aicpu/__init__.py +0 -10
  137. mindspore/ops/_op_impl/cpu/__init__.py +0 -5
  138. mindspore/ops/auto_generate/cpp_create_prim_instance_helper.py +16 -22
  139. mindspore/ops/auto_generate/gen_extend_func.py +2 -7
  140. mindspore/ops/auto_generate/gen_ops_def.py +98 -141
  141. mindspore/ops/auto_generate/gen_ops_prim.py +12708 -12686
  142. mindspore/ops/communication.py +97 -0
  143. mindspore/ops/composite/__init__.py +5 -2
  144. mindspore/ops/composite/base.py +15 -1
  145. mindspore/ops/composite/multitype_ops/__init__.py +3 -1
  146. mindspore/ops/composite/multitype_ops/_compile_utils.py +150 -8
  147. mindspore/ops/composite/multitype_ops/add_impl.py +7 -0
  148. mindspore/ops/composite/multitype_ops/mod_impl.py +27 -0
  149. mindspore/ops/function/__init__.py +1 -0
  150. mindspore/ops/function/array_func.py +14 -12
  151. mindspore/ops/function/comm_func.py +3883 -0
  152. mindspore/ops/function/debug_func.py +3 -4
  153. mindspore/ops/function/math_func.py +45 -54
  154. mindspore/ops/function/nn_func.py +75 -294
  155. mindspore/ops/function/random_func.py +9 -18
  156. mindspore/ops/functional.py +2 -0
  157. mindspore/ops/functional_overload.py +354 -18
  158. mindspore/ops/operations/__init__.py +2 -5
  159. mindspore/ops/operations/_custom_ops_utils.py +7 -9
  160. mindspore/ops/operations/_inner_ops.py +1 -38
  161. mindspore/ops/operations/_rl_inner_ops.py +0 -933
  162. mindspore/ops/operations/array_ops.py +1 -0
  163. mindspore/ops/operations/comm_ops.py +94 -2
  164. mindspore/ops/operations/custom_ops.py +228 -19
  165. mindspore/ops/operations/debug_ops.py +27 -29
  166. mindspore/ops/operations/manually_defined/ops_def.py +27 -306
  167. mindspore/ops/operations/nn_ops.py +2 -2
  168. mindspore/ops/operations/sparse_ops.py +0 -83
  169. mindspore/ops/primitive.py +1 -17
  170. mindspore/ops/tensor_method.py +72 -3
  171. mindspore/ops_generate/aclnn/aclnn_kernel_register_auto_cc_generator.py +5 -5
  172. mindspore/ops_generate/aclnn/gen_aclnn_implement.py +8 -8
  173. mindspore/ops_generate/api/functions_cc_generator.py +53 -4
  174. mindspore/ops_generate/api/tensor_func_reg_cpp_generator.py +25 -11
  175. mindspore/ops_generate/common/gen_constants.py +11 -10
  176. mindspore/ops_generate/common/op_proto.py +18 -1
  177. mindspore/ops_generate/common/template.py +102 -245
  178. mindspore/ops_generate/common/template_utils.py +212 -0
  179. mindspore/ops_generate/gen_custom_ops.py +69 -0
  180. mindspore/ops_generate/op_def/ops_def_cc_generator.py +78 -7
  181. mindspore/ops_generate/op_def_py/base_op_prim_py_generator.py +360 -0
  182. mindspore/ops_generate/op_def_py/custom_op_prim_py_generator.py +140 -0
  183. mindspore/ops_generate/op_def_py/op_def_py_generator.py +54 -7
  184. mindspore/ops_generate/op_def_py/op_prim_py_generator.py +5 -312
  185. mindspore/ops_generate/pyboost/auto_grad_impl_cc_generator.py +74 -17
  186. mindspore/ops_generate/pyboost/auto_grad_reg_cc_generator.py +22 -5
  187. mindspore/ops_generate/pyboost/op_template_parser.py +3 -2
  188. mindspore/ops_generate/pyboost/pyboost_functions_cpp_generator.py +21 -5
  189. mindspore/ops_generate/pyboost/pyboost_functions_h_generator.py +2 -2
  190. mindspore/ops_generate/pyboost/pyboost_functions_impl_cpp_generator.py +30 -10
  191. mindspore/ops_generate/pyboost/pyboost_grad_function_cpp_generator.py +10 -3
  192. mindspore/ops_generate/pyboost/pyboost_internal_kernel_info_adapter_generator.py +1 -1
  193. mindspore/ops_generate/pyboost/pyboost_native_grad_functions_generator.py +19 -9
  194. mindspore/ops_generate/pyboost/pyboost_op_cpp_code_generator.py +71 -28
  195. mindspore/ops_generate/pyboost/pyboost_overload_functions_cpp_generator.py +10 -9
  196. mindspore/ops_generate/pyboost/pyboost_utils.py +27 -16
  197. mindspore/ops_generate/resources/yaml_loader.py +13 -0
  198. mindspore/ops_generate/tensor_py_cc_generator.py +2 -2
  199. mindspore/parallel/_cell_wrapper.py +1 -1
  200. mindspore/parallel/_parallel_serialization.py +1 -4
  201. mindspore/parallel/_utils.py +29 -6
  202. mindspore/parallel/checkpoint_transform.py +18 -2
  203. mindspore/parallel/cluster/process_entity/_api.py +24 -32
  204. mindspore/parallel/cluster/process_entity/_utils.py +9 -5
  205. mindspore/{experimental/llm_boost/atb → parallel/distributed}/__init__.py +21 -23
  206. mindspore/parallel/distributed/distributed_data_parallel.py +393 -0
  207. mindspore/parallel/distributed/flatten_grad_buffer.py +295 -0
  208. mindspore/parallel/strategy.py +336 -0
  209. mindspore/parallel/transform_safetensors.py +117 -16
  210. mindspore/profiler/analysis/viewer/ascend_kernel_details_viewer.py +3 -0
  211. mindspore/profiler/analysis/viewer/ms_minddata_viewer.py +1 -1
  212. mindspore/profiler/common/constant.py +5 -0
  213. mindspore/profiler/common/file_manager.py +9 -0
  214. mindspore/profiler/common/msprof_cmd_tool.py +38 -2
  215. mindspore/profiler/common/path_manager.py +56 -24
  216. mindspore/profiler/common/profiler_context.py +2 -12
  217. mindspore/profiler/common/profiler_info.py +3 -3
  218. mindspore/profiler/common/profiler_path_manager.py +13 -0
  219. mindspore/profiler/common/util.py +30 -3
  220. mindspore/profiler/experimental_config.py +2 -1
  221. mindspore/profiler/platform/npu_profiler.py +33 -6
  222. mindspore/run_check/_check_version.py +108 -24
  223. mindspore/runtime/__init__.py +3 -2
  224. mindspore/runtime/executor.py +11 -3
  225. mindspore/runtime/memory.py +112 -0
  226. mindspore/swresample-4.dll +0 -0
  227. mindspore/swscale-6.dll +0 -0
  228. mindspore/tinyxml2.dll +0 -0
  229. mindspore/{experimental/llm_boost → tools}/__init__.py +5 -5
  230. mindspore/tools/data_dump.py +130 -0
  231. mindspore/tools/sdc_detect.py +91 -0
  232. mindspore/tools/stress_detect.py +63 -0
  233. mindspore/train/__init__.py +6 -6
  234. mindspore/train/_utils.py +5 -18
  235. mindspore/train/amp.py +6 -4
  236. mindspore/train/callback/_checkpoint.py +0 -9
  237. mindspore/train/callback/_train_fault_tolerance.py +69 -18
  238. mindspore/train/data_sink.py +1 -5
  239. mindspore/train/model.py +38 -211
  240. mindspore/train/serialization.py +126 -387
  241. mindspore/turbojpeg.dll +0 -0
  242. mindspore/utils/__init__.py +6 -3
  243. mindspore/utils/dlpack.py +92 -0
  244. mindspore/utils/dryrun.py +1 -1
  245. mindspore/utils/runtime_execution_order_check.py +10 -0
  246. mindspore/utils/sdc_detect.py +14 -12
  247. mindspore/utils/stress_detect.py +43 -0
  248. mindspore/utils/utils.py +144 -8
  249. mindspore/version.py +1 -1
  250. {mindspore-2.7.0.dist-info → mindspore-2.7.1.dist-info}/METADATA +3 -2
  251. {mindspore-2.7.0.dist-info → mindspore-2.7.1.dist-info}/RECORD +254 -267
  252. mindspore/experimental/llm_boost/ascend_native/llama_boost_ascend_native.py +0 -210
  253. mindspore/experimental/llm_boost/ascend_native/llm_boost.py +0 -52
  254. mindspore/experimental/llm_boost/atb/boost_base.py +0 -385
  255. mindspore/experimental/llm_boost/atb/llama_boost.py +0 -137
  256. mindspore/experimental/llm_boost/atb/qwen_boost.py +0 -124
  257. mindspore/experimental/llm_boost/register.py +0 -130
  258. mindspore/experimental/llm_boost/utils.py +0 -31
  259. mindspore/include/OWNERS +0 -7
  260. mindspore/mindspore_cpu_res_manager.dll +0 -0
  261. mindspore/mindspore_ops_kernel_common.dll +0 -0
  262. mindspore/mindspore_res_manager.dll +0 -0
  263. mindspore/nn/optim/_dist_optimizer_registry.py +0 -111
  264. mindspore/nn/reinforcement/_batch_read_write.py +0 -142
  265. mindspore/nn/reinforcement/_tensors_queue.py +0 -152
  266. mindspore/nn/reinforcement/tensor_array.py +0 -145
  267. mindspore/opencv_core452.dll +0 -0
  268. mindspore/opencv_imgcodecs452.dll +0 -0
  269. mindspore/ops/_op_impl/aicpu/priority_replay_buffer.py +0 -113
  270. mindspore/ops/_op_impl/aicpu/reservoir_replay_buffer.py +0 -96
  271. mindspore/ops/_op_impl/aicpu/sparse_cross.py +0 -42
  272. mindspore/ops/_op_impl/cpu/buffer_append.py +0 -28
  273. mindspore/ops/_op_impl/cpu/buffer_get.py +0 -28
  274. mindspore/ops/_op_impl/cpu/buffer_sample.py +0 -28
  275. mindspore/ops/_op_impl/cpu/priority_replay_buffer.py +0 -42
  276. mindspore/ops/operations/_tensor_array.py +0 -359
  277. mindspore/ops/operations/rl_ops.py +0 -288
  278. mindspore/parallel/_offload_context.py +0 -275
  279. mindspore/parallel/_recovery_context.py +0 -115
  280. mindspore/parallel/_transformer/__init__.py +0 -35
  281. mindspore/parallel/_transformer/layers.py +0 -765
  282. mindspore/parallel/_transformer/loss.py +0 -251
  283. mindspore/parallel/_transformer/moe.py +0 -693
  284. mindspore/parallel/_transformer/op_parallel_config.py +0 -222
  285. mindspore/parallel/_transformer/transformer.py +0 -3124
  286. mindspore/parallel/mpi/_mpi_config.py +0 -116
  287. mindspore/train/memory_profiling_pb2.py +0 -298
  288. {mindspore-2.7.0.dist-info → mindspore-2.7.1.dist-info}/WHEEL +0 -0
  289. {mindspore-2.7.0.dist-info → mindspore-2.7.1.dist-info}/entry_points.txt +0 -0
  290. {mindspore-2.7.0.dist-info → mindspore-2.7.1.dist-info}/top_level.txt +0 -0
@@ -28,8 +28,7 @@ def print_(*input_x):
28
28
  Outputs the inputs to stdout.
29
29
  The outputs are printed to screen by default.
30
30
  It can also be saved in a file by setting the parameter `print_file_path` in `context`.
31
- :func:`mindspore.parse_print` can be employed to reload the data.
32
- For more information, please refer to :func:`mindspore.set_context` and :func:`mindspore.parse_print`.
31
+ For more information, please refer to :func:`mindspore.set_context`.
33
32
  In Ascend platform with graph mode, the environment variables `MS_DUMP_SLICE_SIZE` and `MS_DUMP_WAIT_TIME`
34
33
  can be set to solve operator execution failure when outputting big tensor or outputting tensor intensively.
35
34
 
@@ -159,11 +158,11 @@ def tensordump(file_name, tensor, mode='out'):
159
158
  >>> parallel_net.dataset_strategy(config="full_batch")
160
159
  >>> out = parallel_net(x, y, b)
161
160
  >>> print(f"out shape is: {out.shape}")
162
- >>> # out shape is (64, 64)
161
+ out shape is (64, 64)
163
162
  >>> time.sleep(0.5) # npy file is generated asynchronously, spend an interval time then load it.
164
163
  >>> matmul1_output_slice = np.load(f'rank_{rank_id}_mul1_mul2_float32_0.npy') # load matmul1's output slice
165
164
  >>> print(f"matmul1_output_slice is loaded, shape is: {matmul1_output_slice.shape}")
166
- >>> # matmul1_output_slice is loaded, shape is: (64, 64)
165
+ matmul1_output_slice is loaded, shape is: (64, 64)
167
166
  """
168
167
 
169
168
  if not isinstance(file_name, str):
@@ -44,7 +44,7 @@ from mindspore.ops.auto_generate.pyboost_inner_prim import reduce_max_impl, redu
44
44
  from mindspore.ops.operations.math_ops import Ormqr
45
45
  from mindspore.ops.operations.math_ops import DivMod
46
46
  from mindspore.ops.auto_generate import multi_scale_deformable_attn_op
47
- from mindspore.ops.operations.array_ops import MatrixSetDiagV3, Transpose
47
+ from mindspore.ops.operations.array_ops import MatrixSetDiagV3
48
48
  # 1
49
49
  from mindspore.ops.auto_generate import (minimum, maximum, mul, muls, sin, sinc, sinh, cummax, real, conj, add, sub,
50
50
  cos,
@@ -58,7 +58,7 @@ from mindspore.ops.auto_generate import (minimum, maximum, mul, muls, sin, sinc,
58
58
  xlogy_op, xlogy_scalar_other_op, xlogy_scalar_self_op, trunc, histc_ext, roll,
59
59
  bincount_ext, rotated_iou_op, cat, narrow, var_op, pow, inplace_erfinv_op,
60
60
  frac_ext, pow_tensor_scalar_op, not_equal_op, isinf, addmv_op, cdist,
61
- addbmm_op, addmm_op, pow_scalar_tensor_op)
61
+ addbmm_op, addmm_op, pow_scalar_tensor_op, transpose_op)
62
62
  # 2
63
63
  from mindspore.ops.functional_overload import gmm
64
64
  # 3
@@ -183,7 +183,6 @@ tensor_muls = muls
183
183
  tensor_pow = P.Pow()
184
184
  pows = tensor_pow
185
185
  tensor_sub = P.Sub()
186
- transpose_ = P.Transpose()
187
186
  xdivy_ = P.Xdivy()
188
187
  tensor_div_ = P.Div()
189
188
  tensor_divmod_ = DivMod()
@@ -707,7 +706,7 @@ def permute(input, axis):
707
706
  [ 8. 11.]
708
707
  [ 9. 12.]]]
709
708
  """
710
- return transpose_(input, axis)
709
+ return transpose_op(input, axis)
711
710
 
712
711
 
713
712
  def subtract(input, other, *, alpha=1):
@@ -1595,7 +1594,7 @@ def t(input):
1595
1594
  [3, 4]])
1596
1595
  """
1597
1596
  if input.ndim == 2:
1598
- return transpose_(input, (1, 0))
1597
+ return transpose_op(input, (1, 0))
1599
1598
  return input
1600
1599
 
1601
1600
 
@@ -4215,33 +4214,33 @@ def var_mean(input, axis=None, ddof=0, keepdims=False):
4215
4214
  Tensor(shape=[], dtype=Float32, value= 3.16667))
4216
4215
  >>>
4217
4216
  >>> # case 2: Compute the variance and mean along axis 0.
4218
- >>> output = mindspore.ops.var_mean(input, axis=0)
4217
+ >>> mindspore.ops.var_mean(input, axis=0)
4219
4218
  (Tensor(shape=[4], dtype=Float32, value= [ 2.88888884e+00, 6.66666687e-01, 1.55555570e+00, 2.22222194e-01]),
4220
4219
  Tensor(shape=[4], dtype=Float32, value= [ 3.33333325e+00, 3.00000000e+00, 3.66666675e+00, 2.66666675e+00]))
4221
4220
  >>>
4222
4221
  >>> # case 3: If keepdims=True, the output shape will be same of that of the input.
4223
- >>> output = mindspore.ops.var_mean(input, axis=0, keepdims=True)
4222
+ >>> mindspore.ops.var_mean(input, axis=0, keepdims=True)
4224
4223
  (Tensor(shape=[1, 4], dtype=Float32, value=
4225
4224
  [[ 2.88888884e+00, 6.66666687e-01, 1.55555570e+00, 2.22222194e-01]]),
4226
4225
  Tensor(shape=[1, 4], dtype=Float32, value=
4227
4226
  [[ 3.33333325e+00, 3.00000000e+00, 3.66666675e+00, 2.66666675e+00]]))
4228
4227
  >>>
4229
4228
  >>> # case 4: If ddof=1:
4230
- >>> output = mindspore.ops.var_mean(input, axis=0, keepdims=True, ddof=1)
4229
+ >>> mindspore.ops.var_mean(input, axis=0, keepdims=True, ddof=1)
4231
4230
  (Tensor(shape=[1, 4], dtype=Float32, value=
4232
4231
  [[ 4.33333349e+00, 1.00000000e+00, 2.33333349e+00, 3.33333313e-01]]),
4233
4232
  Tensor(shape=[1, 4], dtype=Float32, value=
4234
4233
  [[ 3.33333325e+00, 3.00000000e+00, 3.66666675e+00, 2.66666675e+00]]))
4235
4234
  >>>
4236
4235
  >>> # case 5: If ddof=True, same as ddof=1:
4237
- >>> output = mindspore.ops.var_mean(input, axis=0, keepdims=True, ddof=True)
4236
+ >>> mindspore.ops.var_mean(input, axis=0, keepdims=True, ddof=True)
4238
4237
  (Tensor(shape=[1, 4], dtype=Float32, value=
4239
4238
  [[ 4.33333349e+00, 1.00000000e+00, 2.33333349e+00, 3.33333313e-01]]),
4240
4239
  Tensor(shape=[1, 4], dtype=Float32, value=
4241
4240
  [[ 3.33333325e+00, 3.00000000e+00, 3.66666675e+00, 2.66666675e+00]]))
4242
4241
  >>>
4243
4242
  >>> # case 6: If ddof=False, same as ddof=0:
4244
- >>> output = mindspore.ops.var_mean(input, axis=0, keepdims=True, ddof=False)
4243
+ >>> mindspore.ops.var_mean(input, axis=0, keepdims=True, ddof=False)
4245
4244
  (Tensor(shape=[1, 4], dtype=Float32, value=
4246
4245
  [[ 2.88888884e+00, 6.66666687e-01, 1.55555570e+00, 2.22222194e-01]]),
4247
4246
  Tensor(shape=[1, 4], dtype=Float32, value=
@@ -5102,9 +5101,6 @@ def bernoulli_ext(input, *, generator=None):
5102
5101
  .. math::
5103
5102
  output_{i} \sim Bernoulli(p=input_{i})
5104
5103
 
5105
- .. warning::
5106
- This is an experimental API that is subject to change or deletion.
5107
-
5108
5104
  Args:
5109
5105
  input (Tensor): The input tensor of Bernoulli distribution, where the i^{th} element 'input_{i}' represents the
5110
5106
  probability that the corresponding output element 'output_{i}' is set to '1', therefore each element in
@@ -5436,10 +5432,10 @@ def cummin(input, axis):
5436
5432
  else:
5437
5433
  x_shape = shape_(input)
5438
5434
  prem = _create_cummin_perm(axis, x_shape)
5439
- input = transpose_(input, prem)
5435
+ input = transpose_op(input, prem)
5440
5436
  out1, out2 = cummin_op(input)
5441
- out1 = transpose_(out1, prem)
5442
- out2 = transpose_(out2, prem)
5437
+ out1 = transpose_op(out1, prem)
5438
+ out2 = transpose_op(out2, prem)
5443
5439
  return (out1, out2)
5444
5440
 
5445
5441
 
@@ -7705,9 +7701,6 @@ def norm_ext(input, p='fro', dim=None, keepdim=False, *, dtype=None):
7705
7701
  other `int` or `float` -- not supported -- :math:`sum(abs(x)^{p})^{(1 / p)}`
7706
7702
  ====================== ================================ ==========================================
7707
7703
 
7708
- .. warning::
7709
- This is an experimental API that is subject to change or deletion.
7710
-
7711
7704
  Args:
7712
7705
  input (Tensor): The shape is :math:`(*)` or :math:`(*, m, n)`
7713
7706
  where :math:`*` means, any number of additional dimensions.
@@ -8218,6 +8211,10 @@ def kaiser_window(window_length, periodic=True, beta=12.0, *, dtype=None):
8218
8211
  [5.27734413e-05 2.15672745e-01 1.00000000e+00 2.15672745e-01
8219
8212
  5.27734413e-05]
8220
8213
  """
8214
+ if not isinstance(periodic, bool):
8215
+ raise TypeError(
8216
+ f"For 'kaiser_window', 'periodic' must be a variable of Boolean type, but got {type(periodic)}"
8217
+ )
8221
8218
  if not isinstance(window_length, int):
8222
8219
  raise TypeError(
8223
8220
  f"For 'kaiser_window', 'window_length' must be a non-negative integer, but got {type(window_length)}"
@@ -8228,10 +8225,6 @@ def kaiser_window(window_length, periodic=True, beta=12.0, *, dtype=None):
8228
8225
  )
8229
8226
  if window_length <= 1:
8230
8227
  return Tensor(np.ones(window_length))
8231
- if not isinstance(periodic, bool):
8232
- raise TypeError(
8233
- f"For 'kaiser_window', 'periodic' must be a variable of Boolean type, but got {type(periodic)}"
8234
- )
8235
8228
  if dtype is not None and dtype not in mstype.float_type:
8236
8229
  raise TypeError(f"For 'kaiser_window', 'dtype' must be floating point dtypes, but got {dtype}.")
8237
8230
  if periodic:
@@ -8323,12 +8316,9 @@ def stft(x, n_fft, hop_length=None, win_length=None, window=None, center=True,
8323
8316
  >>> print(output.shape)
8324
8317
  (2, 33, 450, 2)
8325
8318
  """
8326
- if hop_length is None:
8327
- hop_length = int(n_fft // 4)
8328
- if win_length is None:
8329
- win_length = int(n_fft // 1)
8330
- if window is None:
8331
- window = ops.ones(win_length, mstype.float32)
8319
+ hop_length = int(n_fft // 4) if hop_length is None else hop_length
8320
+ win_length = int(n_fft // 1) if win_length is None else win_length
8321
+ window = ops.ones(win_length, mstype.float32) if window is None else window
8332
8322
 
8333
8323
  def _is_complex(x):
8334
8324
  return dtype_(x) in [mstype.complex64, mstype.complex128]
@@ -8433,8 +8423,10 @@ def matmul(input, other):
8433
8423
  Return the matrix product of two tensors.
8434
8424
 
8435
8425
  Note:
8436
- - The dtype of `input` and `other` must be same.
8426
+ - `input` and `other` must have same data type, and both of them must be not scalar and support broadcast.
8437
8427
  - On Ascend, the rank of `input` or `other` must be between 1 and 6.
8428
+ - `input` and `other` must not be empty tensor when executing the backward process for dynamic shape case in
8429
+ JIT mode.
8438
8430
 
8439
8431
  Args:
8440
8432
  input (Tensor): The first input tensor.
@@ -8453,18 +8445,19 @@ def matmul(input, other):
8453
8445
  >>> other = mindspore.ops.arange(20, dtype=mindspore.float32).reshape(4, 5)
8454
8446
  >>> output = mindspore.ops.matmul(input, other)
8455
8447
  >>> print(output)
8456
- [[[ 70, 76, 82, 88, 94],
8457
- [ 190, 212, 234, 256, 278],
8458
- [ 310, 348, 386, 424, 462]],
8459
- [[ 430, 484, 538, 592, 646],
8460
- [ 550, 620, 690, 760, 830],
8461
- [ 670, 756, 842, 928, 1014]]]
8448
+ [[[ 70. 76. 82. 88. 94.]
8449
+ [ 190. 212. 234. 256. 278.]
8450
+ [ 310. 348. 386. 424. 462.]]
8451
+ [[ 430. 484. 538. 592. 646.]
8452
+ [ 550. 620. 690. 760. 830.]
8453
+ [ 670. 756. 842. 928. 1014.]]]
8462
8454
  >>>
8463
8455
  >>> # case 2 : The rank of `input` is 1.
8464
8456
  >>> input = mindspore.ops.ones(([1, 2]))
8465
8457
  >>> other = mindspore.ops.ones(([2]))
8466
- >>> mindspore.ops.matmul(input, other)
8467
- Tensor(shape=[1], dtype=Float32, value= [ 2.00000000e+00])
8458
+ >>> output = mindspore.ops.matmul(input, other)
8459
+ >>> print(output)
8460
+ [2.]
8468
8461
  """
8469
8462
  return auto_generate.matmul_ext(input, other)
8470
8463
 
@@ -8556,14 +8549,14 @@ def bmm(input_x, mat2):
8556
8549
  >>> mat2 = mindspore.ops.arange(72, dtype=mindspore.float32).reshape(2, 4, 3, 3)
8557
8550
  >>> out = mindspore.ops.bmm(input_x, mat2)
8558
8551
  >>> print(out)
8559
- [[[[ 15, 18, 21]],
8560
- [[ 150, 162, 174]],
8561
- [[ 447, 468, 489]],
8562
- [[ 906, 936, 966]]],
8563
- [[[1527, 1566, 1605]],
8564
- [[2310, 2358, 2406]],
8565
- [[3255, 3312, 3369]],
8566
- [[4362, 4428, 4494]]]]
8552
+ [[[[ 15. 18. 21.]]
8553
+ [[ 150. 162. 174.]]
8554
+ [[ 447. 468. 489.]]
8555
+ [[ 906. 936. 966.]]]
8556
+ [[[1527. 1566. 1605.]]
8557
+ [[2310. 2358. 2406.]]
8558
+ [[3255. 3312. 3369.]]
8559
+ [[4362. 4428. 4494.]]]]
8567
8560
  """
8568
8561
  return batch_matmul_(input_x, mat2)
8569
8562
 
@@ -10346,8 +10339,6 @@ def diag_embed(input, offset=0, dim1=-2, dim2=-1):
10346
10339
  [[0, 0, 0], [0, 0, 0], [0, 0, 0], [3, 6, 9]],
10347
10340
  [[0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0]]])
10348
10341
  """
10349
-
10350
- transpose_op = Transpose()
10351
10342
  matrix_set_diag_op = MatrixSetDiagV3(align="LEFT_RIGHT")
10352
10343
  zeros = ops.Zeros()
10353
10344
  if not isinstance(input, (Tensor, Tensor_)):
@@ -10740,7 +10731,7 @@ def _permute_input(input, input_dim, ret_dim):
10740
10731
  dim_permute = dim_permute_a + dim_permute_b
10741
10732
 
10742
10733
  # permute
10743
- input = transpose_(input, tuple(dim_permute))
10734
+ input = transpose_op(input, tuple(dim_permute))
10744
10735
 
10745
10736
  return input, dim_permute
10746
10737
 
@@ -11450,8 +11441,8 @@ def tensor_dot(x1, x2, axes):
11450
11441
  x2_reshape_fwd, x2_transpose_fwd, x2_ret = _calc_new_shape(x2_shape, axes, 1)
11451
11442
  output_shape = x1_ret + x2_ret # combine free axes from both inputs
11452
11443
  # run tensor_dot op
11453
- x1_transposed = transpose_(x1, x1_transpose_fwd)
11454
- x2_transposed = transpose_(x2, x2_transpose_fwd)
11444
+ x1_transposed = transpose_op(x1, x1_transpose_fwd)
11445
+ x2_transposed = transpose_op(x2, x2_transpose_fwd)
11455
11446
  x1_reshaped = reshape_(x1_transposed, x1_reshape_fwd)
11456
11447
  x2_reshaped = reshape_(x2_transposed, x2_reshape_fwd)
11457
11448
  mul_result = matmul_op(x1_reshaped, x2_reshaped)
@@ -11619,7 +11610,7 @@ def dot(input, other):
11619
11610
 
11620
11611
  if len(input_shape) > 2 or len(other_shape) > 2:
11621
11612
  other_shape_transpose = _get_transpose_shape(other_shape)
11622
- other_transpose = transpose_(other, other_shape_transpose)
11613
+ other_transpose = transpose_op(other, other_shape_transpose)
11623
11614
  input_reshape = reshape_(input, (-1, input_shape[-1]))
11624
11615
  other_reshape = reshape_(other_transpose, (other_shape[-2], -1))
11625
11616
  mul_result = matmul_op(input_reshape, other_reshape)
@@ -11852,8 +11843,8 @@ def batch_dot(x1, x2, axes=None):
11852
11843
  x2_reshape_fwd, x2_transpose_fwd, x2_ret = _calc_new_shape_batchdot(x2_shape, axes, 1)
11853
11844
  output_shape = _get_output_shape(x1_batch_size, x1_ret, x2_ret)
11854
11845
 
11855
- x1_transposed = transpose_(x1, x1_transpose_fwd)
11856
- x2_transposed = transpose_(x2, x2_transpose_fwd)
11846
+ x1_transposed = transpose_op(x1, x1_transpose_fwd)
11847
+ x2_transposed = transpose_op(x2, x2_transpose_fwd)
11857
11848
  x1_reshaped = reshape_(x1_transposed, x1_reshape_fwd)
11858
11849
  x2_reshaped = reshape_(x2_transposed, x2_reshape_fwd)
11859
11850