mindspore 2.7.0__cp310-cp310-win_amd64.whl → 2.7.1__cp310-cp310-win_amd64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of mindspore might be problematic. Click here for more details.
- mindspore/.commit_id +1 -1
- mindspore/__init__.py +4 -1
- mindspore/_c_dataengine.cp310-win_amd64.pyd +0 -0
- mindspore/_c_expression.cp310-win_amd64.pyd +0 -0
- mindspore/_c_mindrecord.cp310-win_amd64.pyd +0 -0
- mindspore/_extends/parse/compile_config.py +24 -1
- mindspore/_extends/parse/deprecated/deprecated_tensor_method.py +6 -2
- mindspore/_extends/parse/resources.py +1 -1
- mindspore/_extends/parse/standard_method.py +8 -1
- mindspore/_extends/parse/trope.py +2 -1
- mindspore/_extends/pijit/pijit_func_white_list.py +7 -22
- mindspore/avcodec-59.dll +0 -0
- mindspore/avdevice-59.dll +0 -0
- mindspore/avfilter-8.dll +0 -0
- mindspore/avformat-59.dll +0 -0
- mindspore/avutil-57.dll +0 -0
- mindspore/boost/base.py +29 -2
- mindspore/common/_decorator.py +3 -2
- mindspore/common/_grad_function.py +3 -1
- mindspore/common/_tensor_cpp_method.py +1 -1
- mindspore/common/_tensor_docs.py +275 -64
- mindspore/common/_utils.py +0 -44
- mindspore/common/api.py +285 -35
- mindspore/common/dump.py +7 -108
- mindspore/common/dynamic_shape/auto_dynamic_shape.py +1 -3
- mindspore/common/hook_handle.py +60 -0
- mindspore/common/jit_config.py +5 -1
- mindspore/common/jit_trace.py +27 -12
- mindspore/common/lazy_inline.py +5 -3
- mindspore/common/parameter.py +13 -107
- mindspore/common/recompute.py +4 -11
- mindspore/common/tensor.py +16 -169
- mindspore/communication/_comm_helper.py +11 -1
- mindspore/communication/comm_func.py +138 -4
- mindspore/communication/management.py +85 -1
- mindspore/config/op_info.config +0 -15
- mindspore/context.py +5 -85
- mindspore/dataset/engine/datasets.py +8 -4
- mindspore/dataset/engine/datasets_vision.py +1 -1
- mindspore/dataset/engine/validators.py +1 -15
- mindspore/dnnl.dll +0 -0
- mindspore/{experimental/llm_boost/ascend_native → graph}/__init__.py +7 -7
- mindspore/graph/custom_pass.py +55 -0
- mindspore/include/dataset/execute.h +2 -2
- mindspore/jpeg62.dll +0 -0
- mindspore/mindrecord/__init__.py +3 -3
- mindspore/mindrecord/common/exceptions.py +1 -0
- mindspore/mindrecord/config.py +1 -1
- mindspore/{parallel/mpi → mindrecord/core}/__init__.py +4 -1
- mindspore/mindrecord/{shardheader.py → core/shardheader.py} +2 -1
- mindspore/mindrecord/{shardindexgenerator.py → core/shardindexgenerator.py} +1 -1
- mindspore/mindrecord/{shardreader.py → core/shardreader.py} +2 -1
- mindspore/mindrecord/{shardsegment.py → core/shardsegment.py} +2 -2
- mindspore/mindrecord/{shardutils.py → core/shardutils.py} +1 -1
- mindspore/mindrecord/{shardwriter.py → core/shardwriter.py} +1 -1
- mindspore/mindrecord/filereader.py +4 -4
- mindspore/mindrecord/filewriter.py +5 -5
- mindspore/mindrecord/mindpage.py +2 -2
- mindspore/mindrecord/tools/cifar10.py +1 -1
- mindspore/mindrecord/tools/cifar100.py +1 -1
- mindspore/mindrecord/tools/cifar100_to_mr.py +1 -1
- mindspore/mindrecord/tools/cifar10_to_mr.py +1 -1
- mindspore/mindrecord/tools/csv_to_mr.py +1 -1
- mindspore/mindrecord/tools/imagenet_to_mr.py +1 -1
- mindspore/mindrecord/tools/mnist_to_mr.py +1 -1
- mindspore/mindrecord/tools/tfrecord_to_mr.py +1 -1
- mindspore/mindspore_backend_common.dll +0 -0
- mindspore/mindspore_backend_manager.dll +0 -0
- mindspore/mindspore_cluster.dll +0 -0
- mindspore/mindspore_common.dll +0 -0
- mindspore/mindspore_core.dll +0 -0
- mindspore/mindspore_cpu.dll +0 -0
- mindspore/mindspore_dump.dll +0 -0
- mindspore/mindspore_frontend.dll +0 -0
- mindspore/mindspore_glog.dll +0 -0
- mindspore/mindspore_hardware_abstract.dll +0 -0
- mindspore/mindspore_memory_pool.dll +0 -0
- mindspore/mindspore_ms_backend.dll +0 -0
- mindspore/mindspore_ops.dll +0 -0
- mindspore/{mindspore_ops_host.dll → mindspore_ops_cpu.dll} +0 -0
- mindspore/mindspore_profiler.dll +0 -0
- mindspore/mindspore_pyboost.dll +0 -0
- mindspore/mindspore_pynative.dll +0 -0
- mindspore/mindspore_runtime_pipeline.dll +0 -0
- mindspore/mindspore_runtime_utils.dll +0 -0
- mindspore/mindspore_tools.dll +0 -0
- mindspore/mint/__init__.py +15 -10
- mindspore/mint/distributed/distributed.py +182 -62
- mindspore/mint/nn/__init__.py +2 -16
- mindspore/mint/nn/functional.py +4 -110
- mindspore/mint/nn/layer/__init__.py +0 -2
- mindspore/mint/nn/layer/activation.py +0 -6
- mindspore/mint/nn/layer/basic.py +0 -47
- mindspore/mint/nn/layer/conv.py +4 -4
- mindspore/mint/nn/layer/normalization.py +8 -13
- mindspore/mint/nn/layer/pooling.py +0 -4
- mindspore/nn/__init__.py +1 -3
- mindspore/nn/cell.py +16 -66
- mindspore/nn/layer/basic.py +49 -1
- mindspore/nn/layer/container.py +16 -0
- mindspore/nn/layer/embedding.py +4 -169
- mindspore/nn/layer/normalization.py +2 -1
- mindspore/nn/layer/thor_layer.py +4 -85
- mindspore/nn/optim/ada_grad.py +0 -1
- mindspore/nn/optim/adafactor.py +0 -1
- mindspore/nn/optim/adam.py +31 -124
- mindspore/nn/optim/adamax.py +0 -1
- mindspore/nn/optim/asgd.py +0 -1
- mindspore/nn/optim/ftrl.py +8 -102
- mindspore/nn/optim/lamb.py +0 -1
- mindspore/nn/optim/lars.py +0 -3
- mindspore/nn/optim/lazyadam.py +25 -218
- mindspore/nn/optim/momentum.py +5 -43
- mindspore/nn/optim/optimizer.py +6 -55
- mindspore/nn/optim/proximal_ada_grad.py +0 -1
- mindspore/nn/optim/rmsprop.py +0 -1
- mindspore/nn/optim/rprop.py +0 -1
- mindspore/nn/optim/sgd.py +0 -1
- mindspore/nn/optim/tft_wrapper.py +0 -1
- mindspore/nn/optim/thor.py +0 -2
- mindspore/nn/probability/bijector/bijector.py +7 -8
- mindspore/nn/probability/bijector/gumbel_cdf.py +2 -2
- mindspore/nn/probability/bijector/power_transform.py +20 -21
- mindspore/nn/probability/bijector/scalar_affine.py +5 -5
- mindspore/nn/probability/bijector/softplus.py +13 -14
- mindspore/nn/wrap/grad_reducer.py +4 -74
- mindspore/numpy/array_creations.py +2 -2
- mindspore/numpy/fft.py +9 -9
- mindspore/{nn/reinforcement → onnx}/__init__.py +5 -8
- mindspore/onnx/onnx_export.py +137 -0
- mindspore/opencv_core4110.dll +0 -0
- mindspore/opencv_imgcodecs4110.dll +0 -0
- mindspore/{opencv_imgproc452.dll → opencv_imgproc4110.dll} +0 -0
- mindspore/ops/__init__.py +2 -0
- mindspore/ops/_grad_experimental/grad_comm_ops.py +38 -2
- mindspore/ops/_op_impl/aicpu/__init__.py +0 -10
- mindspore/ops/_op_impl/cpu/__init__.py +0 -5
- mindspore/ops/auto_generate/cpp_create_prim_instance_helper.py +16 -22
- mindspore/ops/auto_generate/gen_extend_func.py +2 -7
- mindspore/ops/auto_generate/gen_ops_def.py +98 -141
- mindspore/ops/auto_generate/gen_ops_prim.py +12708 -12686
- mindspore/ops/communication.py +97 -0
- mindspore/ops/composite/__init__.py +5 -2
- mindspore/ops/composite/base.py +15 -1
- mindspore/ops/composite/multitype_ops/__init__.py +3 -1
- mindspore/ops/composite/multitype_ops/_compile_utils.py +150 -8
- mindspore/ops/composite/multitype_ops/add_impl.py +7 -0
- mindspore/ops/composite/multitype_ops/mod_impl.py +27 -0
- mindspore/ops/function/__init__.py +1 -0
- mindspore/ops/function/array_func.py +14 -12
- mindspore/ops/function/comm_func.py +3883 -0
- mindspore/ops/function/debug_func.py +3 -4
- mindspore/ops/function/math_func.py +45 -54
- mindspore/ops/function/nn_func.py +75 -294
- mindspore/ops/function/random_func.py +9 -18
- mindspore/ops/functional.py +2 -0
- mindspore/ops/functional_overload.py +354 -18
- mindspore/ops/operations/__init__.py +2 -5
- mindspore/ops/operations/_custom_ops_utils.py +7 -9
- mindspore/ops/operations/_inner_ops.py +1 -38
- mindspore/ops/operations/_rl_inner_ops.py +0 -933
- mindspore/ops/operations/array_ops.py +1 -0
- mindspore/ops/operations/comm_ops.py +94 -2
- mindspore/ops/operations/custom_ops.py +228 -19
- mindspore/ops/operations/debug_ops.py +27 -29
- mindspore/ops/operations/manually_defined/ops_def.py +27 -306
- mindspore/ops/operations/nn_ops.py +2 -2
- mindspore/ops/operations/sparse_ops.py +0 -83
- mindspore/ops/primitive.py +1 -17
- mindspore/ops/tensor_method.py +72 -3
- mindspore/ops_generate/aclnn/aclnn_kernel_register_auto_cc_generator.py +5 -5
- mindspore/ops_generate/aclnn/gen_aclnn_implement.py +8 -8
- mindspore/ops_generate/api/functions_cc_generator.py +53 -4
- mindspore/ops_generate/api/tensor_func_reg_cpp_generator.py +25 -11
- mindspore/ops_generate/common/gen_constants.py +11 -10
- mindspore/ops_generate/common/op_proto.py +18 -1
- mindspore/ops_generate/common/template.py +102 -245
- mindspore/ops_generate/common/template_utils.py +212 -0
- mindspore/ops_generate/gen_custom_ops.py +69 -0
- mindspore/ops_generate/op_def/ops_def_cc_generator.py +78 -7
- mindspore/ops_generate/op_def_py/base_op_prim_py_generator.py +360 -0
- mindspore/ops_generate/op_def_py/custom_op_prim_py_generator.py +140 -0
- mindspore/ops_generate/op_def_py/op_def_py_generator.py +54 -7
- mindspore/ops_generate/op_def_py/op_prim_py_generator.py +5 -312
- mindspore/ops_generate/pyboost/auto_grad_impl_cc_generator.py +74 -17
- mindspore/ops_generate/pyboost/auto_grad_reg_cc_generator.py +22 -5
- mindspore/ops_generate/pyboost/op_template_parser.py +3 -2
- mindspore/ops_generate/pyboost/pyboost_functions_cpp_generator.py +21 -5
- mindspore/ops_generate/pyboost/pyboost_functions_h_generator.py +2 -2
- mindspore/ops_generate/pyboost/pyboost_functions_impl_cpp_generator.py +30 -10
- mindspore/ops_generate/pyboost/pyboost_grad_function_cpp_generator.py +10 -3
- mindspore/ops_generate/pyboost/pyboost_internal_kernel_info_adapter_generator.py +1 -1
- mindspore/ops_generate/pyboost/pyboost_native_grad_functions_generator.py +19 -9
- mindspore/ops_generate/pyboost/pyboost_op_cpp_code_generator.py +71 -28
- mindspore/ops_generate/pyboost/pyboost_overload_functions_cpp_generator.py +10 -9
- mindspore/ops_generate/pyboost/pyboost_utils.py +27 -16
- mindspore/ops_generate/resources/yaml_loader.py +13 -0
- mindspore/ops_generate/tensor_py_cc_generator.py +2 -2
- mindspore/parallel/_cell_wrapper.py +1 -1
- mindspore/parallel/_parallel_serialization.py +1 -4
- mindspore/parallel/_utils.py +29 -6
- mindspore/parallel/checkpoint_transform.py +18 -2
- mindspore/parallel/cluster/process_entity/_api.py +24 -32
- mindspore/parallel/cluster/process_entity/_utils.py +9 -5
- mindspore/{experimental/llm_boost/atb → parallel/distributed}/__init__.py +21 -23
- mindspore/parallel/distributed/distributed_data_parallel.py +393 -0
- mindspore/parallel/distributed/flatten_grad_buffer.py +295 -0
- mindspore/parallel/strategy.py +336 -0
- mindspore/parallel/transform_safetensors.py +117 -16
- mindspore/profiler/analysis/viewer/ascend_kernel_details_viewer.py +3 -0
- mindspore/profiler/analysis/viewer/ms_minddata_viewer.py +1 -1
- mindspore/profiler/common/constant.py +5 -0
- mindspore/profiler/common/file_manager.py +9 -0
- mindspore/profiler/common/msprof_cmd_tool.py +38 -2
- mindspore/profiler/common/path_manager.py +56 -24
- mindspore/profiler/common/profiler_context.py +2 -12
- mindspore/profiler/common/profiler_info.py +3 -3
- mindspore/profiler/common/profiler_path_manager.py +13 -0
- mindspore/profiler/common/util.py +30 -3
- mindspore/profiler/experimental_config.py +2 -1
- mindspore/profiler/platform/npu_profiler.py +33 -6
- mindspore/run_check/_check_version.py +108 -24
- mindspore/runtime/__init__.py +3 -2
- mindspore/runtime/executor.py +11 -3
- mindspore/runtime/memory.py +112 -0
- mindspore/swresample-4.dll +0 -0
- mindspore/swscale-6.dll +0 -0
- mindspore/tinyxml2.dll +0 -0
- mindspore/{experimental/llm_boost → tools}/__init__.py +5 -5
- mindspore/tools/data_dump.py +130 -0
- mindspore/tools/sdc_detect.py +91 -0
- mindspore/tools/stress_detect.py +63 -0
- mindspore/train/__init__.py +6 -6
- mindspore/train/_utils.py +5 -18
- mindspore/train/amp.py +6 -4
- mindspore/train/callback/_checkpoint.py +0 -9
- mindspore/train/callback/_train_fault_tolerance.py +69 -18
- mindspore/train/data_sink.py +1 -5
- mindspore/train/model.py +38 -211
- mindspore/train/serialization.py +126 -387
- mindspore/turbojpeg.dll +0 -0
- mindspore/utils/__init__.py +6 -3
- mindspore/utils/dlpack.py +92 -0
- mindspore/utils/dryrun.py +1 -1
- mindspore/utils/runtime_execution_order_check.py +10 -0
- mindspore/utils/sdc_detect.py +14 -12
- mindspore/utils/stress_detect.py +43 -0
- mindspore/utils/utils.py +144 -8
- mindspore/version.py +1 -1
- {mindspore-2.7.0.dist-info → mindspore-2.7.1.dist-info}/METADATA +3 -2
- {mindspore-2.7.0.dist-info → mindspore-2.7.1.dist-info}/RECORD +254 -267
- mindspore/experimental/llm_boost/ascend_native/llama_boost_ascend_native.py +0 -210
- mindspore/experimental/llm_boost/ascend_native/llm_boost.py +0 -52
- mindspore/experimental/llm_boost/atb/boost_base.py +0 -385
- mindspore/experimental/llm_boost/atb/llama_boost.py +0 -137
- mindspore/experimental/llm_boost/atb/qwen_boost.py +0 -124
- mindspore/experimental/llm_boost/register.py +0 -130
- mindspore/experimental/llm_boost/utils.py +0 -31
- mindspore/include/OWNERS +0 -7
- mindspore/mindspore_cpu_res_manager.dll +0 -0
- mindspore/mindspore_ops_kernel_common.dll +0 -0
- mindspore/mindspore_res_manager.dll +0 -0
- mindspore/nn/optim/_dist_optimizer_registry.py +0 -111
- mindspore/nn/reinforcement/_batch_read_write.py +0 -142
- mindspore/nn/reinforcement/_tensors_queue.py +0 -152
- mindspore/nn/reinforcement/tensor_array.py +0 -145
- mindspore/opencv_core452.dll +0 -0
- mindspore/opencv_imgcodecs452.dll +0 -0
- mindspore/ops/_op_impl/aicpu/priority_replay_buffer.py +0 -113
- mindspore/ops/_op_impl/aicpu/reservoir_replay_buffer.py +0 -96
- mindspore/ops/_op_impl/aicpu/sparse_cross.py +0 -42
- mindspore/ops/_op_impl/cpu/buffer_append.py +0 -28
- mindspore/ops/_op_impl/cpu/buffer_get.py +0 -28
- mindspore/ops/_op_impl/cpu/buffer_sample.py +0 -28
- mindspore/ops/_op_impl/cpu/priority_replay_buffer.py +0 -42
- mindspore/ops/operations/_tensor_array.py +0 -359
- mindspore/ops/operations/rl_ops.py +0 -288
- mindspore/parallel/_offload_context.py +0 -275
- mindspore/parallel/_recovery_context.py +0 -115
- mindspore/parallel/_transformer/__init__.py +0 -35
- mindspore/parallel/_transformer/layers.py +0 -765
- mindspore/parallel/_transformer/loss.py +0 -251
- mindspore/parallel/_transformer/moe.py +0 -693
- mindspore/parallel/_transformer/op_parallel_config.py +0 -222
- mindspore/parallel/_transformer/transformer.py +0 -3124
- mindspore/parallel/mpi/_mpi_config.py +0 -116
- mindspore/train/memory_profiling_pb2.py +0 -298
- {mindspore-2.7.0.dist-info → mindspore-2.7.1.dist-info}/WHEEL +0 -0
- {mindspore-2.7.0.dist-info → mindspore-2.7.1.dist-info}/entry_points.txt +0 -0
- {mindspore-2.7.0.dist-info → mindspore-2.7.1.dist-info}/top_level.txt +0 -0
|
@@ -28,8 +28,7 @@ def print_(*input_x):
|
|
|
28
28
|
Outputs the inputs to stdout.
|
|
29
29
|
The outputs are printed to screen by default.
|
|
30
30
|
It can also be saved in a file by setting the parameter `print_file_path` in `context`.
|
|
31
|
-
|
|
32
|
-
For more information, please refer to :func:`mindspore.set_context` and :func:`mindspore.parse_print`.
|
|
31
|
+
For more information, please refer to :func:`mindspore.set_context`.
|
|
33
32
|
In Ascend platform with graph mode, the environment variables `MS_DUMP_SLICE_SIZE` and `MS_DUMP_WAIT_TIME`
|
|
34
33
|
can be set to solve operator execution failure when outputting big tensor or outputting tensor intensively.
|
|
35
34
|
|
|
@@ -159,11 +158,11 @@ def tensordump(file_name, tensor, mode='out'):
|
|
|
159
158
|
>>> parallel_net.dataset_strategy(config="full_batch")
|
|
160
159
|
>>> out = parallel_net(x, y, b)
|
|
161
160
|
>>> print(f"out shape is: {out.shape}")
|
|
162
|
-
|
|
161
|
+
out shape is (64, 64)
|
|
163
162
|
>>> time.sleep(0.5) # npy file is generated asynchronously, spend an interval time then load it.
|
|
164
163
|
>>> matmul1_output_slice = np.load(f'rank_{rank_id}_mul1_mul2_float32_0.npy') # load matmul1's output slice
|
|
165
164
|
>>> print(f"matmul1_output_slice is loaded, shape is: {matmul1_output_slice.shape}")
|
|
166
|
-
|
|
165
|
+
matmul1_output_slice is loaded, shape is: (64, 64)
|
|
167
166
|
"""
|
|
168
167
|
|
|
169
168
|
if not isinstance(file_name, str):
|
|
@@ -44,7 +44,7 @@ from mindspore.ops.auto_generate.pyboost_inner_prim import reduce_max_impl, redu
|
|
|
44
44
|
from mindspore.ops.operations.math_ops import Ormqr
|
|
45
45
|
from mindspore.ops.operations.math_ops import DivMod
|
|
46
46
|
from mindspore.ops.auto_generate import multi_scale_deformable_attn_op
|
|
47
|
-
from mindspore.ops.operations.array_ops import MatrixSetDiagV3
|
|
47
|
+
from mindspore.ops.operations.array_ops import MatrixSetDiagV3
|
|
48
48
|
# 1
|
|
49
49
|
from mindspore.ops.auto_generate import (minimum, maximum, mul, muls, sin, sinc, sinh, cummax, real, conj, add, sub,
|
|
50
50
|
cos,
|
|
@@ -58,7 +58,7 @@ from mindspore.ops.auto_generate import (minimum, maximum, mul, muls, sin, sinc,
|
|
|
58
58
|
xlogy_op, xlogy_scalar_other_op, xlogy_scalar_self_op, trunc, histc_ext, roll,
|
|
59
59
|
bincount_ext, rotated_iou_op, cat, narrow, var_op, pow, inplace_erfinv_op,
|
|
60
60
|
frac_ext, pow_tensor_scalar_op, not_equal_op, isinf, addmv_op, cdist,
|
|
61
|
-
addbmm_op, addmm_op, pow_scalar_tensor_op)
|
|
61
|
+
addbmm_op, addmm_op, pow_scalar_tensor_op, transpose_op)
|
|
62
62
|
# 2
|
|
63
63
|
from mindspore.ops.functional_overload import gmm
|
|
64
64
|
# 3
|
|
@@ -183,7 +183,6 @@ tensor_muls = muls
|
|
|
183
183
|
tensor_pow = P.Pow()
|
|
184
184
|
pows = tensor_pow
|
|
185
185
|
tensor_sub = P.Sub()
|
|
186
|
-
transpose_ = P.Transpose()
|
|
187
186
|
xdivy_ = P.Xdivy()
|
|
188
187
|
tensor_div_ = P.Div()
|
|
189
188
|
tensor_divmod_ = DivMod()
|
|
@@ -707,7 +706,7 @@ def permute(input, axis):
|
|
|
707
706
|
[ 8. 11.]
|
|
708
707
|
[ 9. 12.]]]
|
|
709
708
|
"""
|
|
710
|
-
return
|
|
709
|
+
return transpose_op(input, axis)
|
|
711
710
|
|
|
712
711
|
|
|
713
712
|
def subtract(input, other, *, alpha=1):
|
|
@@ -1595,7 +1594,7 @@ def t(input):
|
|
|
1595
1594
|
[3, 4]])
|
|
1596
1595
|
"""
|
|
1597
1596
|
if input.ndim == 2:
|
|
1598
|
-
return
|
|
1597
|
+
return transpose_op(input, (1, 0))
|
|
1599
1598
|
return input
|
|
1600
1599
|
|
|
1601
1600
|
|
|
@@ -4215,33 +4214,33 @@ def var_mean(input, axis=None, ddof=0, keepdims=False):
|
|
|
4215
4214
|
Tensor(shape=[], dtype=Float32, value= 3.16667))
|
|
4216
4215
|
>>>
|
|
4217
4216
|
>>> # case 2: Compute the variance and mean along axis 0.
|
|
4218
|
-
>>>
|
|
4217
|
+
>>> mindspore.ops.var_mean(input, axis=0)
|
|
4219
4218
|
(Tensor(shape=[4], dtype=Float32, value= [ 2.88888884e+00, 6.66666687e-01, 1.55555570e+00, 2.22222194e-01]),
|
|
4220
4219
|
Tensor(shape=[4], dtype=Float32, value= [ 3.33333325e+00, 3.00000000e+00, 3.66666675e+00, 2.66666675e+00]))
|
|
4221
4220
|
>>>
|
|
4222
4221
|
>>> # case 3: If keepdims=True, the output shape will be same of that of the input.
|
|
4223
|
-
>>>
|
|
4222
|
+
>>> mindspore.ops.var_mean(input, axis=0, keepdims=True)
|
|
4224
4223
|
(Tensor(shape=[1, 4], dtype=Float32, value=
|
|
4225
4224
|
[[ 2.88888884e+00, 6.66666687e-01, 1.55555570e+00, 2.22222194e-01]]),
|
|
4226
4225
|
Tensor(shape=[1, 4], dtype=Float32, value=
|
|
4227
4226
|
[[ 3.33333325e+00, 3.00000000e+00, 3.66666675e+00, 2.66666675e+00]]))
|
|
4228
4227
|
>>>
|
|
4229
4228
|
>>> # case 4: If ddof=1:
|
|
4230
|
-
>>>
|
|
4229
|
+
>>> mindspore.ops.var_mean(input, axis=0, keepdims=True, ddof=1)
|
|
4231
4230
|
(Tensor(shape=[1, 4], dtype=Float32, value=
|
|
4232
4231
|
[[ 4.33333349e+00, 1.00000000e+00, 2.33333349e+00, 3.33333313e-01]]),
|
|
4233
4232
|
Tensor(shape=[1, 4], dtype=Float32, value=
|
|
4234
4233
|
[[ 3.33333325e+00, 3.00000000e+00, 3.66666675e+00, 2.66666675e+00]]))
|
|
4235
4234
|
>>>
|
|
4236
4235
|
>>> # case 5: If ddof=True, same as ddof=1:
|
|
4237
|
-
>>>
|
|
4236
|
+
>>> mindspore.ops.var_mean(input, axis=0, keepdims=True, ddof=True)
|
|
4238
4237
|
(Tensor(shape=[1, 4], dtype=Float32, value=
|
|
4239
4238
|
[[ 4.33333349e+00, 1.00000000e+00, 2.33333349e+00, 3.33333313e-01]]),
|
|
4240
4239
|
Tensor(shape=[1, 4], dtype=Float32, value=
|
|
4241
4240
|
[[ 3.33333325e+00, 3.00000000e+00, 3.66666675e+00, 2.66666675e+00]]))
|
|
4242
4241
|
>>>
|
|
4243
4242
|
>>> # case 6: If ddof=False, same as ddof=0:
|
|
4244
|
-
>>>
|
|
4243
|
+
>>> mindspore.ops.var_mean(input, axis=0, keepdims=True, ddof=False)
|
|
4245
4244
|
(Tensor(shape=[1, 4], dtype=Float32, value=
|
|
4246
4245
|
[[ 2.88888884e+00, 6.66666687e-01, 1.55555570e+00, 2.22222194e-01]]),
|
|
4247
4246
|
Tensor(shape=[1, 4], dtype=Float32, value=
|
|
@@ -5102,9 +5101,6 @@ def bernoulli_ext(input, *, generator=None):
|
|
|
5102
5101
|
.. math::
|
|
5103
5102
|
output_{i} \sim Bernoulli(p=input_{i})
|
|
5104
5103
|
|
|
5105
|
-
.. warning::
|
|
5106
|
-
This is an experimental API that is subject to change or deletion.
|
|
5107
|
-
|
|
5108
5104
|
Args:
|
|
5109
5105
|
input (Tensor): The input tensor of Bernoulli distribution, where the i^{th} element 'input_{i}' represents the
|
|
5110
5106
|
probability that the corresponding output element 'output_{i}' is set to '1', therefore each element in
|
|
@@ -5436,10 +5432,10 @@ def cummin(input, axis):
|
|
|
5436
5432
|
else:
|
|
5437
5433
|
x_shape = shape_(input)
|
|
5438
5434
|
prem = _create_cummin_perm(axis, x_shape)
|
|
5439
|
-
input =
|
|
5435
|
+
input = transpose_op(input, prem)
|
|
5440
5436
|
out1, out2 = cummin_op(input)
|
|
5441
|
-
out1 =
|
|
5442
|
-
out2 =
|
|
5437
|
+
out1 = transpose_op(out1, prem)
|
|
5438
|
+
out2 = transpose_op(out2, prem)
|
|
5443
5439
|
return (out1, out2)
|
|
5444
5440
|
|
|
5445
5441
|
|
|
@@ -7705,9 +7701,6 @@ def norm_ext(input, p='fro', dim=None, keepdim=False, *, dtype=None):
|
|
|
7705
7701
|
other `int` or `float` -- not supported -- :math:`sum(abs(x)^{p})^{(1 / p)}`
|
|
7706
7702
|
====================== ================================ ==========================================
|
|
7707
7703
|
|
|
7708
|
-
.. warning::
|
|
7709
|
-
This is an experimental API that is subject to change or deletion.
|
|
7710
|
-
|
|
7711
7704
|
Args:
|
|
7712
7705
|
input (Tensor): The shape is :math:`(*)` or :math:`(*, m, n)`
|
|
7713
7706
|
where :math:`*` means, any number of additional dimensions.
|
|
@@ -8218,6 +8211,10 @@ def kaiser_window(window_length, periodic=True, beta=12.0, *, dtype=None):
|
|
|
8218
8211
|
[5.27734413e-05 2.15672745e-01 1.00000000e+00 2.15672745e-01
|
|
8219
8212
|
5.27734413e-05]
|
|
8220
8213
|
"""
|
|
8214
|
+
if not isinstance(periodic, bool):
|
|
8215
|
+
raise TypeError(
|
|
8216
|
+
f"For 'kaiser_window', 'periodic' must be a variable of Boolean type, but got {type(periodic)}"
|
|
8217
|
+
)
|
|
8221
8218
|
if not isinstance(window_length, int):
|
|
8222
8219
|
raise TypeError(
|
|
8223
8220
|
f"For 'kaiser_window', 'window_length' must be a non-negative integer, but got {type(window_length)}"
|
|
@@ -8228,10 +8225,6 @@ def kaiser_window(window_length, periodic=True, beta=12.0, *, dtype=None):
|
|
|
8228
8225
|
)
|
|
8229
8226
|
if window_length <= 1:
|
|
8230
8227
|
return Tensor(np.ones(window_length))
|
|
8231
|
-
if not isinstance(periodic, bool):
|
|
8232
|
-
raise TypeError(
|
|
8233
|
-
f"For 'kaiser_window', 'periodic' must be a variable of Boolean type, but got {type(periodic)}"
|
|
8234
|
-
)
|
|
8235
8228
|
if dtype is not None and dtype not in mstype.float_type:
|
|
8236
8229
|
raise TypeError(f"For 'kaiser_window', 'dtype' must be floating point dtypes, but got {dtype}.")
|
|
8237
8230
|
if periodic:
|
|
@@ -8323,12 +8316,9 @@ def stft(x, n_fft, hop_length=None, win_length=None, window=None, center=True,
|
|
|
8323
8316
|
>>> print(output.shape)
|
|
8324
8317
|
(2, 33, 450, 2)
|
|
8325
8318
|
"""
|
|
8326
|
-
if hop_length is None
|
|
8327
|
-
|
|
8328
|
-
|
|
8329
|
-
win_length = int(n_fft // 1)
|
|
8330
|
-
if window is None:
|
|
8331
|
-
window = ops.ones(win_length, mstype.float32)
|
|
8319
|
+
hop_length = int(n_fft // 4) if hop_length is None else hop_length
|
|
8320
|
+
win_length = int(n_fft // 1) if win_length is None else win_length
|
|
8321
|
+
window = ops.ones(win_length, mstype.float32) if window is None else window
|
|
8332
8322
|
|
|
8333
8323
|
def _is_complex(x):
|
|
8334
8324
|
return dtype_(x) in [mstype.complex64, mstype.complex128]
|
|
@@ -8433,8 +8423,10 @@ def matmul(input, other):
|
|
|
8433
8423
|
Return the matrix product of two tensors.
|
|
8434
8424
|
|
|
8435
8425
|
Note:
|
|
8436
|
-
-
|
|
8426
|
+
- `input` and `other` must have same data type, and both of them must be not scalar and support broadcast.
|
|
8437
8427
|
- On Ascend, the rank of `input` or `other` must be between 1 and 6.
|
|
8428
|
+
- `input` and `other` must not be empty tensor when executing the backward process for dynamic shape case in
|
|
8429
|
+
JIT mode.
|
|
8438
8430
|
|
|
8439
8431
|
Args:
|
|
8440
8432
|
input (Tensor): The first input tensor.
|
|
@@ -8453,18 +8445,19 @@ def matmul(input, other):
|
|
|
8453
8445
|
>>> other = mindspore.ops.arange(20, dtype=mindspore.float32).reshape(4, 5)
|
|
8454
8446
|
>>> output = mindspore.ops.matmul(input, other)
|
|
8455
8447
|
>>> print(output)
|
|
8456
|
-
[[[ 70
|
|
8457
|
-
[ 190
|
|
8458
|
-
[ 310
|
|
8459
|
-
[[ 430
|
|
8460
|
-
[ 550
|
|
8461
|
-
[ 670
|
|
8448
|
+
[[[ 70. 76. 82. 88. 94.]
|
|
8449
|
+
[ 190. 212. 234. 256. 278.]
|
|
8450
|
+
[ 310. 348. 386. 424. 462.]]
|
|
8451
|
+
[[ 430. 484. 538. 592. 646.]
|
|
8452
|
+
[ 550. 620. 690. 760. 830.]
|
|
8453
|
+
[ 670. 756. 842. 928. 1014.]]]
|
|
8462
8454
|
>>>
|
|
8463
8455
|
>>> # case 2 : The rank of `input` is 1.
|
|
8464
8456
|
>>> input = mindspore.ops.ones(([1, 2]))
|
|
8465
8457
|
>>> other = mindspore.ops.ones(([2]))
|
|
8466
|
-
>>> mindspore.ops.matmul(input, other)
|
|
8467
|
-
|
|
8458
|
+
>>> output = mindspore.ops.matmul(input, other)
|
|
8459
|
+
>>> print(output)
|
|
8460
|
+
[2.]
|
|
8468
8461
|
"""
|
|
8469
8462
|
return auto_generate.matmul_ext(input, other)
|
|
8470
8463
|
|
|
@@ -8556,14 +8549,14 @@ def bmm(input_x, mat2):
|
|
|
8556
8549
|
>>> mat2 = mindspore.ops.arange(72, dtype=mindspore.float32).reshape(2, 4, 3, 3)
|
|
8557
8550
|
>>> out = mindspore.ops.bmm(input_x, mat2)
|
|
8558
8551
|
>>> print(out)
|
|
8559
|
-
[[[[ 15
|
|
8560
|
-
|
|
8561
|
-
|
|
8562
|
-
|
|
8563
|
-
[[[1527
|
|
8564
|
-
|
|
8565
|
-
|
|
8566
|
-
|
|
8552
|
+
[[[[ 15. 18. 21.]]
|
|
8553
|
+
[[ 150. 162. 174.]]
|
|
8554
|
+
[[ 447. 468. 489.]]
|
|
8555
|
+
[[ 906. 936. 966.]]]
|
|
8556
|
+
[[[1527. 1566. 1605.]]
|
|
8557
|
+
[[2310. 2358. 2406.]]
|
|
8558
|
+
[[3255. 3312. 3369.]]
|
|
8559
|
+
[[4362. 4428. 4494.]]]]
|
|
8567
8560
|
"""
|
|
8568
8561
|
return batch_matmul_(input_x, mat2)
|
|
8569
8562
|
|
|
@@ -10346,8 +10339,6 @@ def diag_embed(input, offset=0, dim1=-2, dim2=-1):
|
|
|
10346
10339
|
[[0, 0, 0], [0, 0, 0], [0, 0, 0], [3, 6, 9]],
|
|
10347
10340
|
[[0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0]]])
|
|
10348
10341
|
"""
|
|
10349
|
-
|
|
10350
|
-
transpose_op = Transpose()
|
|
10351
10342
|
matrix_set_diag_op = MatrixSetDiagV3(align="LEFT_RIGHT")
|
|
10352
10343
|
zeros = ops.Zeros()
|
|
10353
10344
|
if not isinstance(input, (Tensor, Tensor_)):
|
|
@@ -10740,7 +10731,7 @@ def _permute_input(input, input_dim, ret_dim):
|
|
|
10740
10731
|
dim_permute = dim_permute_a + dim_permute_b
|
|
10741
10732
|
|
|
10742
10733
|
# permute
|
|
10743
|
-
input =
|
|
10734
|
+
input = transpose_op(input, tuple(dim_permute))
|
|
10744
10735
|
|
|
10745
10736
|
return input, dim_permute
|
|
10746
10737
|
|
|
@@ -11450,8 +11441,8 @@ def tensor_dot(x1, x2, axes):
|
|
|
11450
11441
|
x2_reshape_fwd, x2_transpose_fwd, x2_ret = _calc_new_shape(x2_shape, axes, 1)
|
|
11451
11442
|
output_shape = x1_ret + x2_ret # combine free axes from both inputs
|
|
11452
11443
|
# run tensor_dot op
|
|
11453
|
-
x1_transposed =
|
|
11454
|
-
x2_transposed =
|
|
11444
|
+
x1_transposed = transpose_op(x1, x1_transpose_fwd)
|
|
11445
|
+
x2_transposed = transpose_op(x2, x2_transpose_fwd)
|
|
11455
11446
|
x1_reshaped = reshape_(x1_transposed, x1_reshape_fwd)
|
|
11456
11447
|
x2_reshaped = reshape_(x2_transposed, x2_reshape_fwd)
|
|
11457
11448
|
mul_result = matmul_op(x1_reshaped, x2_reshaped)
|
|
@@ -11619,7 +11610,7 @@ def dot(input, other):
|
|
|
11619
11610
|
|
|
11620
11611
|
if len(input_shape) > 2 or len(other_shape) > 2:
|
|
11621
11612
|
other_shape_transpose = _get_transpose_shape(other_shape)
|
|
11622
|
-
other_transpose =
|
|
11613
|
+
other_transpose = transpose_op(other, other_shape_transpose)
|
|
11623
11614
|
input_reshape = reshape_(input, (-1, input_shape[-1]))
|
|
11624
11615
|
other_reshape = reshape_(other_transpose, (other_shape[-2], -1))
|
|
11625
11616
|
mul_result = matmul_op(input_reshape, other_reshape)
|
|
@@ -11852,8 +11843,8 @@ def batch_dot(x1, x2, axes=None):
|
|
|
11852
11843
|
x2_reshape_fwd, x2_transpose_fwd, x2_ret = _calc_new_shape_batchdot(x2_shape, axes, 1)
|
|
11853
11844
|
output_shape = _get_output_shape(x1_batch_size, x1_ret, x2_ret)
|
|
11854
11845
|
|
|
11855
|
-
x1_transposed =
|
|
11856
|
-
x2_transposed =
|
|
11846
|
+
x1_transposed = transpose_op(x1, x1_transpose_fwd)
|
|
11847
|
+
x2_transposed = transpose_op(x2, x2_transpose_fwd)
|
|
11857
11848
|
x1_reshaped = reshape_(x1_transposed, x1_reshape_fwd)
|
|
11858
11849
|
x2_reshaped = reshape_(x2_transposed, x2_reshape_fwd)
|
|
11859
11850
|
|