mindspore 2.6.0rc1__cp39-cp39-win_amd64.whl → 2.7.0rc1__cp39-cp39-win_amd64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of mindspore might be problematic. Click here for more details.
- mindspore/.commit_id +1 -1
- mindspore/__init__.py +1 -1
- mindspore/_c_dataengine.cp39-win_amd64.pyd +0 -0
- mindspore/_c_expression.cp39-win_amd64.pyd +0 -0
- mindspore/_c_mindrecord.cp39-win_amd64.pyd +0 -0
- mindspore/_checkparam.py +40 -9
- mindspore/{_deprecated → _extends/optimize}/__init__.py +9 -3
- mindspore/_extends/optimize/cell_utils.py +96 -0
- mindspore/_extends/parse/__init__.py +2 -2
- mindspore/_extends/parse/compile_config.py +44 -22
- mindspore/_extends/parse/deprecated/deprecated_tensor_method.py +1 -1
- mindspore/_extends/parse/parser.py +37 -62
- mindspore/_extends/parse/resources.py +39 -0
- mindspore/_extends/parse/standard_method.py +43 -13
- mindspore/_extends/parse/trope.py +8 -1
- mindspore/_extends/pijit/__init__.py +1 -2
- mindspore/amp.py +4 -4
- mindspore/avcodec-59.dll +0 -0
- mindspore/avdevice-59.dll +0 -0
- mindspore/avfilter-8.dll +0 -0
- mindspore/avformat-59.dll +0 -0
- mindspore/avutil-57.dll +0 -0
- mindspore/boost/adasum.py +1 -1
- mindspore/boost/boost_cell_wrapper.py +4 -4
- mindspore/common/__init__.py +27 -2
- mindspore/common/_grad_function.py +2 -1
- mindspore/common/_pijit_context.py +28 -7
- mindspore/common/_stub_tensor.py +1 -209
- mindspore/common/_tensor_cpp_method.py +1 -1
- mindspore/common/_tensor_docs.py +77 -16
- mindspore/common/api.py +238 -113
- mindspore/common/dtype.py +21 -11
- mindspore/common/dump.py +10 -15
- mindspore/common/generator.py +5 -3
- mindspore/common/hook_handle.py +11 -2
- mindspore/common/jit_config.py +1 -1
- mindspore/common/jit_trace.py +84 -105
- mindspore/common/parameter.py +26 -12
- mindspore/common/recompute.py +3 -3
- mindspore/common/sparse_tensor.py +0 -3
- mindspore/common/symbol.py +0 -1
- mindspore/common/tensor.py +81 -81
- mindspore/communication/_comm_helper.py +46 -4
- mindspore/communication/management.py +79 -7
- mindspore/context.py +58 -40
- mindspore/dataset/core/config.py +3 -3
- mindspore/dataset/engine/datasets.py +20 -7
- mindspore/dataset/engine/datasets_user_defined.py +33 -3
- mindspore/dataset/engine/iterators.py +2 -2
- mindspore/dataset/engine/obs/config_loader.py +2 -2
- mindspore/dataset/engine/obs/obs_mindrecord_dataset.py +8 -0
- mindspore/dataset/transforms/py_transforms.py +7 -3
- mindspore/dataset/transforms/transforms.py +7 -3
- mindspore/dataset/vision/validators.py +1 -0
- mindspore/device_context/ascend/device.py +1 -1
- mindspore/device_context/gpu/__init__.py +2 -2
- mindspore/device_context/gpu/device.py +1 -1
- mindspore/device_context/gpu/op_precision.py +4 -2
- mindspore/device_context/gpu/op_tuning.py +6 -3
- mindspore/device_manager.py +16 -9
- mindspore/dnnl.dll +0 -0
- mindspore/experimental/llm_boost/ascend_native/llama_boost_ascend_native.py +3 -7
- mindspore/experimental/llm_boost/atb/boost_base.py +2 -3
- mindspore/experimental/optim/adadelta.py +13 -20
- mindspore/experimental/optim/adagrad.py +15 -22
- mindspore/experimental/optim/adam.py +17 -24
- mindspore/experimental/optim/adamax.py +14 -22
- mindspore/experimental/optim/adamw.py +28 -34
- mindspore/experimental/optim/asgd.py +15 -25
- mindspore/experimental/optim/lr_scheduler.py +27 -45
- mindspore/experimental/optim/nadam.py +14 -24
- mindspore/experimental/optim/optimizer.py +13 -23
- mindspore/experimental/optim/radam.py +18 -24
- mindspore/experimental/optim/rmsprop.py +14 -25
- mindspore/experimental/optim/rprop.py +15 -26
- mindspore/experimental/optim/sgd.py +9 -19
- mindspore/hal/__init__.py +4 -4
- mindspore/hal/contiguous_tensors_handle.py +2 -2
- mindspore/hal/memory.py +27 -7
- mindspore/include/api/cell.h +37 -1
- mindspore/include/api/delegate.h +10 -0
- mindspore/include/api/model.h +3 -0
- mindspore/include/api/types.h +2 -2
- mindspore/include/c_api/model_c.h +0 -58
- mindspore/include/c_api/tensor_c.h +0 -26
- mindspore/include/dataset/vision_ascend.h +1 -1
- mindspore/jpeg62.dll +0 -0
- mindspore/mindrecord/tools/cifar10.py +60 -11
- mindspore/mindrecord/tools/cifar10_to_mr.py +5 -0
- mindspore/mindspore_backend_common.dll +0 -0
- mindspore/mindspore_backend_manager.dll +0 -0
- mindspore/mindspore_common.dll +0 -0
- mindspore/mindspore_core.dll +0 -0
- mindspore/mindspore_cpu_res_manager.dll +0 -0
- mindspore/mindspore_dump.dll +0 -0
- mindspore/mindspore_frontend.dll +0 -0
- mindspore/mindspore_glog.dll +0 -0
- mindspore/mindspore_memory_pool.dll +0 -0
- mindspore/mindspore_ms_backend.dll +0 -0
- mindspore/mindspore_ops.dll +0 -0
- mindspore/mindspore_ops_host.dll +0 -0
- mindspore/mindspore_ops_kernel_common.dll +0 -0
- mindspore/mindspore_profiler.dll +0 -0
- mindspore/mindspore_pyboost.dll +0 -0
- mindspore/mindspore_pynative.dll +0 -0
- mindspore/mindspore_res_manager.dll +0 -0
- mindspore/mindspore_runtime_pipeline.dll +0 -0
- mindspore/mint/__init__.py +6 -46
- mindspore/mint/distributed/__init__.py +1 -0
- mindspore/mint/distributed/distributed.py +212 -9
- mindspore/mint/nn/__init__.py +1 -1
- mindspore/mint/nn/functional.py +53 -6
- mindspore/mint/nn/layer/_functions.py +164 -294
- mindspore/mint/nn/layer/activation.py +8 -6
- mindspore/mint/nn/layer/conv.py +137 -101
- mindspore/mint/nn/layer/normalization.py +8 -22
- mindspore/mint/optim/adam.py +19 -18
- mindspore/mint/optim/adamw.py +14 -8
- mindspore/mint/optim/sgd.py +5 -5
- mindspore/nn/cell.py +328 -502
- mindspore/nn/grad/cell_grad.py +11 -12
- mindspore/nn/layer/activation.py +32 -34
- mindspore/nn/layer/basic.py +67 -64
- mindspore/nn/layer/channel_shuffle.py +4 -4
- mindspore/nn/layer/combined.py +4 -2
- mindspore/nn/layer/conv.py +117 -110
- mindspore/nn/layer/dense.py +9 -7
- mindspore/nn/layer/embedding.py +50 -52
- mindspore/nn/layer/image.py +37 -39
- mindspore/nn/layer/math.py +111 -112
- mindspore/nn/layer/normalization.py +56 -44
- mindspore/nn/layer/pooling.py +58 -63
- mindspore/nn/layer/rnn_cells.py +33 -33
- mindspore/nn/layer/rnns.py +56 -56
- mindspore/nn/layer/thor_layer.py +74 -73
- mindspore/nn/layer/transformer.py +11 -1
- mindspore/nn/learning_rate_schedule.py +20 -20
- mindspore/nn/loss/loss.py +79 -81
- mindspore/nn/optim/adam.py +3 -3
- mindspore/nn/optim/adasum.py +2 -2
- mindspore/nn/optim/asgd.py +2 -0
- mindspore/nn/optim/optimizer.py +1 -1
- mindspore/nn/optim/thor.py +2 -2
- mindspore/nn/probability/distribution/exponential.py +2 -1
- mindspore/nn/probability/distribution/poisson.py +2 -1
- mindspore/nn/sparse/sparse.py +3 -3
- mindspore/nn/wrap/cell_wrapper.py +34 -37
- mindspore/nn/wrap/grad_reducer.py +37 -37
- mindspore/nn/wrap/loss_scale.py +72 -74
- mindspore/numpy/array_creations.py +5 -5
- mindspore/numpy/fft.py +1 -1
- mindspore/numpy/math_ops.py +5 -5
- mindspore/opencv_core452.dll +0 -0
- mindspore/opencv_imgcodecs452.dll +0 -0
- mindspore/opencv_imgproc452.dll +0 -0
- mindspore/ops/_grad_experimental/grad_comm_ops.py +51 -13
- mindspore/ops/_grad_experimental/grad_debug_ops.py +14 -0
- mindspore/ops/_vmap/vmap_array_ops.py +31 -13
- mindspore/ops/_vmap/vmap_nn_ops.py +8 -16
- mindspore/ops/auto_generate/cpp_create_prim_instance_helper.py +42 -11
- mindspore/ops/auto_generate/gen_extend_func.py +23 -141
- mindspore/ops/auto_generate/gen_ops_def.py +727 -321
- mindspore/ops/auto_generate/gen_ops_prim.py +1721 -984
- mindspore/ops/auto_generate/pyboost_inner_prim.py +31 -1
- mindspore/ops/composite/__init__.py +10 -0
- mindspore/ops/composite/base.py +8 -4
- mindspore/ops/composite/multitype_ops/__init__.py +12 -1
- mindspore/ops/composite/multitype_ops/_compile_utils.py +133 -109
- mindspore/ops/composite/multitype_ops/add_impl.py +70 -2
- mindspore/ops/composite/multitype_ops/div_impl.py +49 -0
- mindspore/ops/composite/multitype_ops/floordiv_impl.py +29 -0
- mindspore/ops/composite/multitype_ops/getitem_impl.py +11 -0
- mindspore/ops/composite/multitype_ops/mod_impl.py +5 -3
- mindspore/ops/composite/multitype_ops/mul_impl.py +49 -0
- mindspore/ops/composite/multitype_ops/setitem_impl.py +57 -0
- mindspore/ops/composite/multitype_ops/sub_impl.py +34 -0
- mindspore/ops/composite/multitype_ops/zeros_like_impl.py +14 -0
- mindspore/ops/function/__init__.py +3 -1
- mindspore/ops/function/_add_attr_func.py +11 -6
- mindspore/ops/function/array_func.py +9 -96
- mindspore/ops/function/debug_func.py +4 -3
- mindspore/ops/function/grad/grad_func.py +1 -1
- mindspore/ops/function/math_func.py +33 -540
- mindspore/ops/function/nn_func.py +28 -74
- mindspore/ops/function/other_func.py +4 -1
- mindspore/ops/function/random_func.py +44 -5
- mindspore/ops/function/vmap_func.py +2 -1
- mindspore/ops/functional.py +2 -3
- mindspore/ops/functional_overload.py +571 -6
- mindspore/ops/op_info_register.py +21 -0
- mindspore/ops/operations/__init__.py +16 -11
- mindspore/ops/operations/_custom_ops_utils.py +689 -34
- mindspore/ops/operations/_inner_ops.py +3 -6
- mindspore/ops/operations/_sequence_ops.py +1 -1
- mindspore/ops/operations/array_ops.py +2 -2
- mindspore/ops/operations/comm_ops.py +185 -26
- mindspore/ops/operations/custom_ops.py +294 -174
- mindspore/ops/operations/debug_ops.py +59 -4
- mindspore/ops/operations/image_ops.py +13 -13
- mindspore/ops/operations/manually_defined/ops_def.py +15 -16
- mindspore/ops/operations/math_ops.py +3 -4
- mindspore/ops/operations/nn_ops.py +7 -39
- mindspore/ops/primitive.py +6 -10
- mindspore/ops/tensor_method.py +47 -8
- mindspore/ops_generate/api/cpp_create_prim_instance_helper_generator.py +1 -1
- mindspore/ops_generate/api/functional_map_cpp_generator.py +10 -9
- mindspore/ops_generate/api/functions_cc_generator.py +58 -10
- mindspore/ops_generate/api/tensor_func_reg_cpp_generator.py +1 -1
- mindspore/ops_generate/common/base_generator.py +14 -0
- mindspore/ops_generate/common/gen_constants.py +8 -3
- mindspore/ops_generate/common/gen_utils.py +0 -19
- mindspore/ops_generate/common/op_proto.py +11 -4
- mindspore/ops_generate/common/template.py +88 -11
- mindspore/ops_generate/gen_ops.py +1 -1
- mindspore/ops_generate/op_def/lite_ops_cpp_generator.py +4 -4
- mindspore/ops_generate/op_def/ops_def_cc_generator.py +0 -3
- mindspore/ops_generate/op_def/ops_name_h_generator.py +0 -3
- mindspore/ops_generate/op_def/ops_primitive_h_generator.py +0 -4
- mindspore/ops_generate/op_def_py/op_prim_py_generator.py +5 -2
- mindspore/ops_generate/pyboost/auto_grad_impl_cc_generator.py +49 -8
- mindspore/ops_generate/pyboost/auto_grad_reg_cc_generator.py +2 -2
- mindspore/ops_generate/pyboost/gen_pyboost_func.py +31 -0
- mindspore/ops_generate/pyboost/op_template_parser.py +98 -72
- mindspore/ops_generate/pyboost/pyboost_functions_cpp_generator.py +70 -273
- mindspore/ops_generate/pyboost/pyboost_functions_h_generator.py +14 -6
- mindspore/ops_generate/pyboost/pyboost_functions_impl_cpp_generator.py +316 -0
- mindspore/ops_generate/pyboost/pyboost_functions_py_generator.py +1 -1
- mindspore/ops_generate/pyboost/pyboost_grad_function_cpp_generator.py +5 -3
- mindspore/ops_generate/pyboost/pyboost_inner_prim_generator.py +1 -1
- mindspore/ops_generate/pyboost/pyboost_internal_functions_cpp_generator.py +76 -0
- mindspore/ops_generate/pyboost/pyboost_internal_functions_h_generator.py +76 -0
- mindspore/ops_generate/pyboost/pyboost_internal_kernel_info_adapter_generator.py +125 -0
- mindspore/ops_generate/pyboost/pyboost_native_grad_functions_generator.py +4 -3
- mindspore/ops_generate/pyboost/pyboost_op_cpp_code_generator.py +348 -61
- mindspore/ops_generate/pyboost/pyboost_overload_functions_cpp_generator.py +1 -1
- mindspore/ops_generate/pyboost/pyboost_utils.py +118 -9
- mindspore/ops_generate/tensor_py_cc_generator.py +1 -24
- mindspore/parallel/_auto_parallel_context.py +11 -8
- mindspore/parallel/_cell_wrapper.py +113 -45
- mindspore/parallel/_parallel_serialization.py +1 -1
- mindspore/parallel/_ps_context.py +4 -6
- mindspore/parallel/_tensor.py +167 -12
- mindspore/parallel/_transformer/moe.py +1 -1
- mindspore/parallel/_transformer/transformer.py +13 -8
- mindspore/parallel/auto_parallel.py +14 -7
- mindspore/parallel/checkpoint_convert.py +3 -3
- mindspore/parallel/checkpoint_transform.py +11 -7
- mindspore/parallel/cluster/process_entity/_api.py +84 -48
- mindspore/parallel/cluster/process_entity/_utils.py +95 -7
- mindspore/parallel/cluster/run.py +43 -4
- mindspore/parallel/function/__init__.py +8 -1
- mindspore/parallel/function/reshard_func.py +6 -7
- mindspore/parallel/nn/__init__.py +15 -2
- mindspore/parallel/nn/parallel_cell_wrapper.py +9 -10
- mindspore/parallel/nn/parallel_grad_reducer.py +7 -6
- mindspore/parallel/shard.py +3 -4
- mindspore/parallel/transform_safetensors.py +463 -174
- mindspore/profiler/__init__.py +2 -1
- mindspore/profiler/analysis/parser/timeline_assembly_factory/ascend_timeline_assembler.py +7 -7
- mindspore/profiler/analysis/parser/timeline_assembly_factory/base_timeline_assembler.py +3 -0
- mindspore/profiler/analysis/parser/timeline_assembly_factory/trace_view_container.py +12 -6
- mindspore/profiler/analysis/parser/timeline_creator/cpu_op_timeline_creator.py +3 -3
- mindspore/profiler/analysis/parser/timeline_creator/fwk_timeline_creator.py +3 -3
- mindspore/profiler/analysis/parser/timeline_creator/msprof_timeline_creator.py +4 -4
- mindspore/profiler/analysis/parser/timeline_creator/scope_layer_timeline_creator.py +3 -3
- mindspore/profiler/analysis/parser/timeline_event/fwk_event.py +4 -1
- mindspore/profiler/analysis/parser/timeline_event/timeline_event_pool.py +2 -1
- mindspore/profiler/analysis/task_manager.py +1 -1
- mindspore/profiler/analysis/viewer/ascend_communication_viewer.py +5 -1
- mindspore/profiler/analysis/viewer/ascend_integrate_viewer.py +2 -1
- mindspore/profiler/analysis/viewer/ascend_op_memory_viewer.py +42 -22
- mindspore/profiler/analysis/viewer/ascend_step_trace_time_viewer.py +3 -2
- mindspore/profiler/analysis/viewer/ms_minddata_viewer.py +9 -5
- mindspore/profiler/analysis/viewer/ms_operator_details_viewer.py +132 -0
- mindspore/profiler/common/constant.py +16 -0
- mindspore/profiler/common/profiler_context.py +25 -27
- mindspore/profiler/common/profiler_info.py +0 -16
- mindspore/profiler/common/profiler_op_analyse.py +235 -0
- mindspore/profiler/common/profiler_output_path.py +23 -8
- mindspore/profiler/common/profiler_parameters.py +128 -35
- mindspore/profiler/dynamic_profile/__init__.py +0 -0
- mindspore/profiler/dynamic_profile/dynamic_monitor_proxy.py +39 -0
- mindspore/profiler/dynamic_profile/dynamic_profiler_config_context.py +666 -0
- mindspore/profiler/dynamic_profile/dynamic_profiler_utils.py +62 -0
- mindspore/profiler/dynamic_profiler.py +305 -314
- mindspore/profiler/envprofiler.py +12 -7
- mindspore/profiler/experimental_config.py +96 -6
- mindspore/profiler/mstx.py +33 -12
- mindspore/profiler/platform/__init__.py +2 -3
- mindspore/profiler/platform/npu_profiler.py +29 -19
- mindspore/profiler/profiler.py +35 -19
- mindspore/profiler/profiler_action_controller.py +64 -76
- mindspore/profiler/schedule.py +10 -4
- mindspore/rewrite/common/config.py +1 -0
- mindspore/rewrite/common/namer.py +1 -0
- mindspore/rewrite/common/namespace.py +1 -0
- mindspore/rewrite/node/node.py +31 -11
- mindspore/rewrite/parsers/assign_parser.py +1 -1
- mindspore/rewrite/symbol_tree/symbol_tree.py +1 -1
- mindspore/run_check/_check_version.py +7 -10
- mindspore/runtime/__init__.py +5 -5
- mindspore/runtime/event.py +10 -4
- mindspore/runtime/executor.py +60 -45
- mindspore/runtime/memory.py +30 -32
- mindspore/runtime/thread_bind_core.py +298 -164
- mindspore/safeguard/rewrite_obfuscation.py +12 -13
- mindspore/swresample-4.dll +0 -0
- mindspore/swscale-6.dll +0 -0
- mindspore/tinyxml2.dll +0 -0
- mindspore/train/_utils.py +14 -4
- mindspore/train/amp.py +43 -20
- mindspore/train/callback/__init__.py +5 -5
- mindspore/train/callback/_checkpoint.py +3 -6
- mindspore/train/callback/_flops_collector.py +1 -1
- mindspore/train/callback/_landscape.py +0 -1
- mindspore/train/callback/_train_fault_tolerance.py +97 -16
- mindspore/train/data_sink.py +11 -2
- mindspore/train/dataset_helper.py +9 -0
- mindspore/train/model.py +135 -55
- mindspore/train/serialization.py +133 -111
- mindspore/train/summary/summary_record.py +13 -2
- mindspore/turbojpeg.dll +0 -0
- mindspore/utils/__init__.py +3 -2
- mindspore/utils/dryrun.py +0 -6
- mindspore/utils/runtime_execution_order_check.py +163 -77
- mindspore/utils/sdc_detect.py +68 -0
- mindspore/utils/utils.py +6 -9
- mindspore/version.py +1 -1
- {mindspore-2.6.0rc1.dist-info → mindspore-2.7.0rc1.dist-info}/METADATA +5 -4
- {mindspore-2.6.0rc1.dist-info → mindspore-2.7.0rc1.dist-info}/RECORD +333 -371
- mindspore/_deprecated/jit.py +0 -198
- mindspore/experimental/es/__init__.py +0 -22
- mindspore/experimental/es/embedding_service.py +0 -891
- mindspore/experimental/es/embedding_service_layer.py +0 -581
- mindspore/profiler/parser/__init__.py +0 -14
- mindspore/profiler/parser/aicpu_data_parser.py +0 -272
- mindspore/profiler/parser/ascend_analysis/__init__.py +0 -14
- mindspore/profiler/parser/ascend_analysis/constant.py +0 -71
- mindspore/profiler/parser/ascend_analysis/file_manager.py +0 -180
- mindspore/profiler/parser/ascend_analysis/function_event.py +0 -185
- mindspore/profiler/parser/ascend_analysis/fwk_cann_parser.py +0 -136
- mindspore/profiler/parser/ascend_analysis/fwk_file_parser.py +0 -131
- mindspore/profiler/parser/ascend_analysis/msprof_timeline_parser.py +0 -104
- mindspore/profiler/parser/ascend_analysis/path_manager.py +0 -313
- mindspore/profiler/parser/ascend_analysis/profiler_info_parser.py +0 -123
- mindspore/profiler/parser/ascend_analysis/tlv_decoder.py +0 -86
- mindspore/profiler/parser/ascend_analysis/trace_event_manager.py +0 -75
- mindspore/profiler/parser/ascend_cluster_generator.py +0 -116
- mindspore/profiler/parser/ascend_communicate_generator.py +0 -314
- mindspore/profiler/parser/ascend_flops_generator.py +0 -116
- mindspore/profiler/parser/ascend_fpbp_generator.py +0 -82
- mindspore/profiler/parser/ascend_hccl_generator.py +0 -271
- mindspore/profiler/parser/ascend_integrate_generator.py +0 -42
- mindspore/profiler/parser/ascend_memory_generator.py +0 -185
- mindspore/profiler/parser/ascend_msprof_exporter.py +0 -282
- mindspore/profiler/parser/ascend_msprof_generator.py +0 -187
- mindspore/profiler/parser/ascend_op_generator.py +0 -334
- mindspore/profiler/parser/ascend_steptrace_generator.py +0 -94
- mindspore/profiler/parser/ascend_timeline_generator.py +0 -545
- mindspore/profiler/parser/base_timeline_generator.py +0 -483
- mindspore/profiler/parser/container.py +0 -229
- mindspore/profiler/parser/cpu_gpu_timeline_generator.py +0 -697
- mindspore/profiler/parser/flops_parser.py +0 -531
- mindspore/profiler/parser/framework_enum.py +0 -111
- mindspore/profiler/parser/framework_parser.py +0 -464
- mindspore/profiler/parser/framework_struct.py +0 -61
- mindspore/profiler/parser/gpu_analysis/__init__.py +0 -14
- mindspore/profiler/parser/gpu_analysis/function_event.py +0 -44
- mindspore/profiler/parser/gpu_analysis/fwk_file_parser.py +0 -89
- mindspore/profiler/parser/gpu_analysis/profiler_info_parser.py +0 -72
- mindspore/profiler/parser/hccl_parser.py +0 -573
- mindspore/profiler/parser/hwts_log_parser.py +0 -122
- mindspore/profiler/parser/integrator.py +0 -526
- mindspore/profiler/parser/memory_usage_parser.py +0 -277
- mindspore/profiler/parser/minddata_analyzer.py +0 -800
- mindspore/profiler/parser/minddata_parser.py +0 -186
- mindspore/profiler/parser/minddata_pipeline_parser.py +0 -299
- mindspore/profiler/parser/op_intermediate_parser.py +0 -149
- mindspore/profiler/parser/optime_parser.py +0 -250
- mindspore/profiler/parser/profiler_info.py +0 -213
- mindspore/profiler/parser/step_trace_parser.py +0 -666
- {mindspore-2.6.0rc1.dist-info → mindspore-2.7.0rc1.dist-info}/WHEEL +0 -0
- {mindspore-2.6.0rc1.dist-info → mindspore-2.7.0rc1.dist-info}/entry_points.txt +0 -0
- {mindspore-2.6.0rc1.dist-info → mindspore-2.7.0rc1.dist-info}/top_level.txt +0 -0
|
@@ -2068,14 +2068,15 @@ def get_sparse_apply_adagrad_vmap_rule(prim, axis_size):
|
|
|
2068
2068
|
indices, indices_dim = indices_bdim
|
|
2069
2069
|
if var_dim is None:
|
|
2070
2070
|
if any(dim is not None for dim in [accum_dim, grad_dim, indices_dim]):
|
|
2071
|
-
|
|
2072
|
-
|
|
2073
|
-
|
|
2071
|
+
_raise_value_error("The source axis of `var` is None, but the source "
|
|
2072
|
+
"axis of `accum/grad/indices` is not None. The execution "
|
|
2073
|
+
"order of operator `{}` cannot be guaranteed.".format(prim_name))
|
|
2074
2074
|
var, accum = prim(var, accum, grad, indices, u_monad)
|
|
2075
2075
|
return (var, None), (accum, None)
|
|
2076
2076
|
if var_dim != 0 or accum_dim != var_dim:
|
|
2077
|
-
|
|
2078
|
-
|
|
2077
|
+
_raise_value_error("For `{}`, the source axis of `var` must be equal to `accum`, "
|
|
2078
|
+
"and not equal to 0, but got the source axis of `var`: {}, "
|
|
2079
|
+
"`accum`: {}.".format(prim_name, var_dim, accum_dim))
|
|
2079
2080
|
|
|
2080
2081
|
grad = _bdim_at_front(grad, grad_dim, axis_size)
|
|
2081
2082
|
indices = _bdim_at_front(indices, indices_dim, axis_size)
|
|
@@ -2094,27 +2095,18 @@ def get_sparse_apply_ftrl_vmap_rule(prim, axis_size):
|
|
|
2094
2095
|
else:
|
|
2095
2096
|
batch_rank = 1
|
|
2096
2097
|
|
|
2097
|
-
prim_name = prim.name
|
|
2098
2098
|
batch_prim = _vmap_clone_prim(prim)
|
|
2099
2099
|
batch_prim.add_prim_attr('batch_rank', batch_rank)
|
|
2100
2100
|
|
|
2101
2101
|
def vmap_rule(var_bdim, accum_bdim, linear_bdim, grad_bdim, indices_bdim, u_monad):
|
|
2102
2102
|
var, var_dim = var_bdim
|
|
2103
|
-
accum,
|
|
2104
|
-
linear,
|
|
2103
|
+
accum, _ = accum_bdim
|
|
2104
|
+
linear, _ = linear_bdim
|
|
2105
2105
|
grad, grad_dim = grad_bdim
|
|
2106
2106
|
indices, indices_dim = indices_bdim
|
|
2107
2107
|
if var_dim is None:
|
|
2108
|
-
if any(dim is not None for dim in [accum_dim, linear_dim, grad_dim, indices_dim]):
|
|
2109
|
-
ValueError("The source axis of `var` is None, but the source "
|
|
2110
|
-
"axis of `accum/linear/grad/indices` is not None. The execution order of "
|
|
2111
|
-
"operator `{}` cannot be guaranteed.".format(prim_name))
|
|
2112
2108
|
var, accum, linear = prim(var, accum, linear, grad, indices, u_monad)
|
|
2113
2109
|
return (var, None), (accum, None), (linear, None)
|
|
2114
|
-
if var_dim != 0 or accum_dim != var_dim or linear_dim != var_dim:
|
|
2115
|
-
ValueError("For `{}`, the source axis of `var`, `accum` and `linear` must be equal, and "
|
|
2116
|
-
"not equal to 0, but got the source axis of `var`: {}, `accum`: {}, "
|
|
2117
|
-
"`linear`:{}.".format(prim_name, var_dim, accum_dim, linear_dim))
|
|
2118
2110
|
|
|
2119
2111
|
grad = _bdim_at_front(grad, grad_dim, axis_size)
|
|
2120
2112
|
indices = _bdim_at_front(indices, indices_dim, axis_size)
|
|
@@ -53,9 +53,9 @@ op_args_default_value = {
|
|
|
53
53
|
"Baddbmm": {"beta": 1, "alpha": 1},
|
|
54
54
|
"BatchMatMul": {"transpose_a": False, "transpose_b": False},
|
|
55
55
|
"BatchNormElemt": {"weight": None, "bias": None, "mean": None, "invstd": None, "eps": 1e-5},
|
|
56
|
-
"BatchNormExt": {"running_mean": None, "runnning_var": None, "training": False, "momentum": 0.1, "epsilon": 1e-5},
|
|
56
|
+
"BatchNormExt": {"weight": None, "bias": None, "running_mean": None, "runnning_var": None, "training": False, "momentum": 0.1, "epsilon": 1e-5},
|
|
57
57
|
"BatchNormGatherStatsWithCounts": {"running_mean": None, "running_var": None, "momentum": 1e-1, "eps": 1e-5, "counts": None},
|
|
58
|
-
"BatchNormGradExt": {"running_mean": None, "running_var": None, "saved_mean": None, "saved_rstd": None, "training": False, "eps": 1e-5, "output_mask": (1, 1, 1)},
|
|
58
|
+
"BatchNormGradExt": {"weight": None, "running_mean": None, "running_var": None, "saved_mean": None, "saved_rstd": None, "training": False, "eps": 1e-5, "output_mask": (1, 1, 1)},
|
|
59
59
|
"BatchNormGradGrad": {"is_training": False, "epsilon": 1e-5, "data_format": 'NCHW'},
|
|
60
60
|
"BatchNormGrad": {"is_training": False, "epsilon": 1e-5, "data_format": 'NCHW'},
|
|
61
61
|
"BatchNormGradWithActivation": {"is_training": False, "epsilon": 1e-5, "data_format": 'NCHW'},
|
|
@@ -76,6 +76,7 @@ op_args_default_value = {
|
|
|
76
76
|
"CholeskyInverse": {"upper": False},
|
|
77
77
|
"Cholesky": {"upper": False},
|
|
78
78
|
"Chunk": {"dim": 0},
|
|
79
|
+
"ChunkView": {"dim": 0},
|
|
79
80
|
"ClampScalar": {"min": None, "max": None},
|
|
80
81
|
"ClampTensor": {"min": None, "max": None},
|
|
81
82
|
"Col2ImExt": {"dilation": 1, "padding": 0, "stride": 1},
|
|
@@ -103,6 +104,7 @@ op_args_default_value = {
|
|
|
103
104
|
"DCT": {"type": 2, "n": None, "axis": -1, "norm": None},
|
|
104
105
|
"Dense": {"bias": None},
|
|
105
106
|
"Diagonal": {"offset": 0, "dim1": 0, "dim2": 1},
|
|
107
|
+
"DiagonalView": {"offset": 0, "dim1": 0, "dim2": 1},
|
|
106
108
|
"DiagExt": {"diagonal": 0},
|
|
107
109
|
"DivMods": {"rounding_mode": None},
|
|
108
110
|
"DivMod": {"rounding_mode": None},
|
|
@@ -140,13 +142,12 @@ op_args_default_value = {
|
|
|
140
142
|
"FlashAttentionScore": {"real_shift": None, "drop_mask": None, "padding_mask": None, "attn_mask": None, "prefix": None, "actual_seq_qlen": None, "actual_seq_kvlen": None, "keep_prob": 1.0, "scale_value": 1.0, "pre_tokens": 2147483647, "next_tokens": 2147483647, "inner_precise": 0, "input_layout": 'BSH', "sparse_mode": 0},
|
|
141
143
|
"FlattenExt": {"start_dim": 0, "end_dim": -1},
|
|
142
144
|
"FullLike": {"dtype": None},
|
|
145
|
+
"FusedAddTopKDiv": {"activate_type": 0, "is_norm": True, "scale": 2.5, "mapping_num": None, "mapping_table": None, "enable_expert_mapping": False},
|
|
143
146
|
"Gather": {"batch_dims": 0},
|
|
144
147
|
"GeluExt": {"approximate": 'none'},
|
|
145
148
|
"GeluGradExt": {"approximate": 'none'},
|
|
146
149
|
"GenerateEodMaskV2": {"start": 0, "steps": 1, "error_mode": 'cycle', "flip_mode": 'bitflip', "multiply_factor": 0.0, "bit_pos": 0, "flip_probability": 0.0},
|
|
147
150
|
"GLU": {"axis": -1},
|
|
148
|
-
"GmmBackward": {"group_list": None},
|
|
149
|
-
"GmmV2Backward": {"group_list": None, "group_list_type": 0},
|
|
150
151
|
"GridSampler2DGrad": {"interpolation_mode": 'bilinear', "padding_mode": 'zeros', "align_corners": False, "output_mask": (1, 1)},
|
|
151
152
|
"GridSampler2D": {"interpolation_mode": 'bilinear', "padding_mode": 'zeros', "align_corners": False},
|
|
152
153
|
"GridSampler3DGrad": {"interpolation_mode": 'bilinear', "padding_mode": 'zeros', "align_corners": False, "output_mask": (1, 1)},
|
|
@@ -175,6 +176,7 @@ op_args_default_value = {
|
|
|
175
176
|
"IncreFlashAttention": {"attn_mask": None, "actual_seq_lengths": None, "pse_shift": None, "dequant_scale1": None, "quant_scale1": None, "dequant_scale2": None, "quant_scale2": None, "quant_offset2": None, "antiquant_scale": None, "antiquant_offset": None, "block_table": None, "kv_padding_size": None, "num_heads": 1, "input_layout": 'BSH', "scale_value": 1.0, "num_key_value_heads": 0, "block_size": 0, "inner_precise": 1},
|
|
176
177
|
"IndexAddExt": {"alpha": 1},
|
|
177
178
|
"InnerInplaceIndexPut": {"accumulate": False},
|
|
179
|
+
"InnerMoeTokenUnpermute": {"probs": None, "padded_mode": False, "restore_shape": None},
|
|
178
180
|
"InplaceAddmm": {"beta": 1, "alpha": 1},
|
|
179
181
|
"InplaceAddsExt": {"alpha": 1},
|
|
180
182
|
"InplaceAddExt": {"alpha": 1},
|
|
@@ -237,15 +239,17 @@ op_args_default_value = {
|
|
|
237
239
|
"Meshgrid": {"indexing": 'xy'},
|
|
238
240
|
"MinimumGrad": {"grad_x": True, "grad_y": True},
|
|
239
241
|
"MinDim": {"keepdim": False},
|
|
242
|
+
"MoeDistributeCombine": {"tp_send_counts": None, "x_active_mask": None, "activate_scale": None, "weight_scale": None, "group_list": None, "expand_scales": None, "group_ep": None, "group_tp": None, "tp_world_size": 0, "tp_rank_id": 0, "expert_shard_type": 0, "shared_expert_num": 0, "shared_export_rank_num": 0, "global_bs": 0, "out_dtype": 0, "common_quant_mode": 0, "group_list_type": 0},
|
|
243
|
+
"MoeDistributeDispatch": {"expert_scales": None, "scales": None, "x_active_mask": None, "group_ep": None, "group_tp": None, "tp_world_size": 0, "tp_rank_id": 0, "expert_shard_type": 0, "shared_expert_num": 0, "shared_expert_rank_num": 0, "quant_mode": 0, "global_bs": 0, "expert_token_nums_type": 0},
|
|
240
244
|
"MoeTokenPermuteGrad": {"num_topk": 1, "padded_mode": False},
|
|
241
245
|
"MoeTokenPermute": {"num_out_tokens": None, "padded_mode": False},
|
|
242
246
|
"MoeTokenUnpermuteGrad": {"probs": None, "padded_mode": False, "restore_shape": None},
|
|
243
|
-
"MoeTokenUnpermute": {"probs": None, "padded_mode": False, "restore_shape": None},
|
|
244
247
|
"MSELossExt": {"reduction": 'mean'},
|
|
245
248
|
"MSELossGradExt": {"reduction": 'mean'},
|
|
246
249
|
"Nansum": {"dim": None, "keepdim": False, "dtype": None},
|
|
247
250
|
"NanToNum": {"nan": None, "posinf": None, "neginf": None},
|
|
248
251
|
"NewEmpty": {"dtype": None, "device": None},
|
|
252
|
+
"NewFull": {"dtype": None},
|
|
249
253
|
"NewOnes": {"dtype": None},
|
|
250
254
|
"NewZeros": {"dtype": None},
|
|
251
255
|
"NLLLoss2d": {"reduction": 'mean', "ignore_index": -100},
|
|
@@ -257,10 +261,9 @@ op_args_default_value = {
|
|
|
257
261
|
"OneHotExt": {"axis": -1},
|
|
258
262
|
"OneHot": {"axis": -1},
|
|
259
263
|
"PagedAttentionMask": {"antiquant_scale": None, "antiquant_offset": None, "alibi_mask": None, "kv_cache_quant_mode": 'DEFAULT'},
|
|
260
|
-
"PagedAttention": {"antiquant_scale": None, "antiquant_offset": None, "attn_mask": None, "q_seq_lens": None, "alibi_mask": None, "kv_cache_quant_mode": 'DEFAULT', "mask_mode": 'MASK_DEFAULT', "mla_v_dim": 0},
|
|
264
|
+
"PagedAttention": {"value_cache": None, "block_tables": None, "context_lens": None, "antiquant_scale": None, "antiquant_offset": None, "attn_mask": None, "q_seq_lens": None, "alibi_mask": None, "kv_cache_quant_mode": 'DEFAULT', "mask_mode": 'MASK_DEFAULT', "mla_v_dim": 0},
|
|
261
265
|
"ProdExt": {"dim": None, "keepdim": False, "dtype": None},
|
|
262
266
|
"PromptFlashAttention": {"attn_mask": None, "actual_seq_lengths": None, "actual_seq_lengths_kv": None, "pse_shift": None, "deq_scale1": None, "quant_scale1": None, "deq_scale2": None, "quant_scale2": None, "quant_offset2": None, "num_heads": 1, "scale_value": 1.0, "pre_tokens": 2147483647, "next_tokens": 0, "input_layout": 'BSH', "num_key_value_heads": 0, "sparse_mode": 0, "inner_precise": 1},
|
|
263
|
-
"PromptKVCache": {"align_mode": 'LEFT'},
|
|
264
267
|
"Qr": {"full_matrices": False},
|
|
265
268
|
"RandIntLike": {"dtype": None},
|
|
266
269
|
"RandInt": {"dtype": None},
|
|
@@ -326,7 +329,9 @@ op_args_default_value = {
|
|
|
326
329
|
"SpeedFusionAttention": {"pse": None, "padding_mask": None, "atten_mask": None, "scale": 1.0, "keep_prob": 1.0, "pre_tokens": 2147483647, "next_tokens": 2147483647, "inner_precise": 0, "prefix": None, "actual_seq_qlen": None, "actual_seq_kvlen": None, "sparse_mode": 0, "gen_mask_parallel": True, "sync": False, "pse_type": 1, "q_start_idx": None, "kv_start_idx": None},
|
|
327
330
|
"Split": {"axis": 0, "output_num": 1},
|
|
328
331
|
"SplitTensor": {"dim": 0},
|
|
332
|
+
"SplitTensorView": {"dim": 0},
|
|
329
333
|
"SplitWithSize": {"dim": 0},
|
|
334
|
+
"SplitWithSizeView": {"dim": 0},
|
|
330
335
|
"Squeeze": {"axis": ()},
|
|
331
336
|
"StackExt": {"dim": 0},
|
|
332
337
|
"StdMean": {"dim": None, "correction": 1, "keepdim": False},
|
|
@@ -341,6 +346,7 @@ op_args_default_value = {
|
|
|
341
346
|
"TensorScatterElements": {"axis": 0, "reduce": 'none'},
|
|
342
347
|
"TopKRouter": {"drop_type": 0},
|
|
343
348
|
"TopkExt": {"dim": -1, "largest": True, "sorted": True},
|
|
349
|
+
"TopPRouter": {"drop_type": 0, "threshold": 0.0, "router_prob": 0.0},
|
|
344
350
|
"TraceV2Grad": {"offset": 0, "axis1": 1, "axis2": 0},
|
|
345
351
|
"TraceV2": {"offset": 0, "axis1": 1, "axis2": 0, "dtype": None},
|
|
346
352
|
"TriangularSolve": {"upper": True, "transpose": False, "unitriangular": False},
|
|
@@ -349,7 +355,7 @@ op_args_default_value = {
|
|
|
349
355
|
"TupleToTensor": {"dtype": None},
|
|
350
356
|
"Unique2": {"sorted": True, "return_inverse": False, "return_counts": False},
|
|
351
357
|
"UniqueConsecutive": {"return_inverse": False, "return_counts": False, "dim": None},
|
|
352
|
-
"
|
|
358
|
+
"UnstackExtView": {"dim": 0},
|
|
353
359
|
"UpsampleBicubic2DGrad": {"output_size": None, "scales": None, "align_corners": False},
|
|
354
360
|
"UpsampleBicubic2D": {"output_size": None, "scales": None, "align_corners": False},
|
|
355
361
|
"UpsampleBilinear2DGrad": {"output_size": None, "scales": None, "align_corners": False},
|
|
@@ -370,6 +376,7 @@ op_args_default_value = {
|
|
|
370
376
|
"Zeros": {"dtype": None},
|
|
371
377
|
"AddRmsNormDynamicQuant": {"smooth_scale2": None, "epsilon": 1e-5},
|
|
372
378
|
"AddRmsNormQuantV2": {"epsilon": 1e-5},
|
|
379
|
+
"DynamicNTK": {"dtype": mstype.float16},
|
|
373
380
|
"DynamicQuantExt": {"smooth_scales": None},
|
|
374
381
|
"FusedInferAttentionScore": {"pse_shift": None, "attn_mask": None, "actual_seq_lengths": None, "actual_seq_lengths_kv": None, "dequant_scale1": None, "quant_scale1": None, "dequant_scale2": None, "quant_scale2": None, "quant_offset2": None, "antiquant_scale": None, "antiquant_offset": None, "block_table": None, "query_padding_size": None, "kv_padding_size": None, "key_antiquant_scale": None, "key_antiquant_offset": None, "value_antiquant_scale": None, "value_antiquant_offset": None, "key_shared_prefix": None, "value_shared_prefix": None, "actual_shared_prefix_len": None, "num_heads": 1, "scale_value": 1.0, "pre_tokens": 2147483647, "next_tokens": 2147483647, "input_layout": 'BSH', "num_key_value_heads": 0, "sparse_mode": 0, "inner_precise": 1, "block_size": 0, "antiquant_mode": 0, "softmax_lse_flag": False, "key_antiquant_mode": 0, "value_antiquant_mode": 0},
|
|
375
382
|
"GroupedMatmul": {"bias": None, "scale": None, "offset": None, "antiquant_scale": None, "antiquant_offset": None, "group_list": None, "split_item": 0, "group_type": -1, "transpose_a": False, "transpose_b": False},
|
|
@@ -379,18 +386,29 @@ op_args_default_value = {
|
|
|
379
386
|
"MatmulAllReduceAddRmsNorm": {"reduce_op": 'sum', "comm_turn": 0, "stream_mode": 1},
|
|
380
387
|
"MoeFinalizeRouting": {"x2": None, "bias": None, "scales": None, "expanded_row_idx": None, "expanded_expert_idx": None},
|
|
381
388
|
"MoeGatingTopKSoftmax": {"finished": None, "k": 1},
|
|
389
|
+
"MoeInitRoutingQuantV2": {"scale": None, "offset": None},
|
|
382
390
|
"QuantBatchMatmul": {"offset": None, "bias": None, "pertokenScaleOptional": None, "transpose_x1": False, "transpose_x2": False, "dtype": mstype.float16},
|
|
391
|
+
"QuantMatmul": {"offset": None, "pertoken_scale": None, "bias": None, "output_dtype": None, "x1_dtype": None, "x2_dtype": None, "pertoken_scale_dtype": None, "scale_dtype": None, "group_sizes": None},
|
|
383
392
|
"QuantV2": {"sqrt_mode": False, "rounding_mode": 'ROUND', "dst_type": mstype.int8},
|
|
384
393
|
"RmsNormQuant": {"beta": None, "epsilon": 1e-6},
|
|
394
|
+
"SwiGLUDynamicQuant": {"smooth_scale": None},
|
|
385
395
|
"TransposeBatchMatmulTranspose": {"transpose_a": False, "transpose_b": False},
|
|
386
396
|
"WeightQuantBatchMatmul": {"antiquant_offset": None, "quant_scale": None, "quant_offset": None, "bias": None, "transpose_x": False, "transpose_weight": False, "antiquant_group_size": 0},
|
|
397
|
+
"AnyExt": {"keepdim": False},
|
|
398
|
+
"FuncMaxPool2D": {"stride": None, "padding": 0, "dilation": (1, 1), "ceil_mode": False, "return_indices": False},
|
|
399
|
+
"GmmBackwardFusion": {"group_list": None, "group_list_type": 0},
|
|
400
|
+
"GmmBackward": {"group_list": None, "group_list_type": 0},
|
|
401
|
+
"Gmm": {"bias": None, "group_list": None, "group_type": 0, "group_list_type": 0},
|
|
402
|
+
"GmmV2BackwardFusion": {"group_list": None, "group_list_type": 0},
|
|
403
|
+
"GmmV2Backward": {"group_list": None, "group_list_type": 0},
|
|
404
|
+
"GmmV2": {"bias": None, "group_list": None, "group_type": 0, "group_list_type": 0},
|
|
405
|
+
"MoeTokenUnpermute": {"probs": None, "padded_mode": False, "restore_shape": None},
|
|
387
406
|
"DeprecatedAddbmm": {"beta": 1, "alpha": 1},
|
|
388
407
|
"DeprecatedAddmm": {"beta": 1, "alpha": 1},
|
|
389
408
|
"DeprecatedAddmv": {"beta": 1, "alpha": 1},
|
|
390
409
|
"DeprecatedReduceAll": {"dim": None, "keepdim": False},
|
|
391
410
|
"DeprecatedAllclose": {"rtol": 1e-05, "atol": 1e-08, "equal_nan": False},
|
|
392
411
|
"DeprecatedReduceAny": {"axis": None, "keep_dims": False},
|
|
393
|
-
"DeprecatedAny": {"dim": None, "keepdim": False},
|
|
394
412
|
"DeprecatedArgmax": {"axis": -1, "keepdims": False},
|
|
395
413
|
"DeprecatedArgmin": {"axis": None, "keepdims": False},
|
|
396
414
|
"DeprecatedArgsort": {"axis": -1, "descending": False},
|
|
@@ -437,7 +455,9 @@ op_labels = {
|
|
|
437
455
|
"AssignSub": {"side_effect_mem": True},
|
|
438
456
|
"BatchNormElemt": {"side_effect_mem": True},
|
|
439
457
|
"BatchNormGatherStatsWithCounts": {"side_effect_mem": True},
|
|
440
|
-
"
|
|
458
|
+
"BroadcastToView": {"side_effect_mem": True},
|
|
459
|
+
"ChunkView": {"side_effect_mem": True},
|
|
460
|
+
"DiagonalView": {"side_effect_mem": True},
|
|
441
461
|
"DistCommAllReduce": {"side_effect_mem": True},
|
|
442
462
|
"DistCommReduce": {"side_effect_mem": True},
|
|
443
463
|
"DropoutExt": {"side_effect_hidden": True},
|
|
@@ -451,6 +471,7 @@ op_labels = {
|
|
|
451
471
|
"EmbeddingApplySgd": {"_process_node_engine_id": 'PS'},
|
|
452
472
|
"Embedding": {"side_effect_mem": True},
|
|
453
473
|
"EmbeddingTableEvict": {"_process_node_engine_id": 'PS'},
|
|
474
|
+
"ExpandDimsView": {"side_effect_mem": True},
|
|
454
475
|
"Generator": {"side_effect_mem": True},
|
|
455
476
|
"GroupTopk": {"side_effect_mem": True},
|
|
456
477
|
"InnerInplaceIndexPut": {"side_effect_mem": True},
|
|
@@ -478,6 +499,7 @@ op_labels = {
|
|
|
478
499
|
"InplaceLog": {"side_effect_mem": True},
|
|
479
500
|
"InplaceMaskedFillScalar": {"side_effect_mem": True},
|
|
480
501
|
"InplaceMaskedFillTensor": {"side_effect_mem": True},
|
|
502
|
+
"InplaceMatmulAdd": {"side_effect_mem": True},
|
|
481
503
|
"InplaceMuls": {"side_effect_mem": True},
|
|
482
504
|
"InplaceMul": {"side_effect_mem": True},
|
|
483
505
|
"InplaceNormal": {"side_effect_mem": True},
|
|
@@ -489,17 +511,26 @@ op_labels = {
|
|
|
489
511
|
"InplaceScatterSrcReduce": {"side_effect_mem": True},
|
|
490
512
|
"InplaceScatterValue": {"side_effect_mem": True},
|
|
491
513
|
"InplaceScatterValueReduce": {"side_effect_mem": True},
|
|
514
|
+
"InplaceSiLU": {"side_effect_mem": True},
|
|
492
515
|
"InplaceSubExt": {"side_effect_mem": True},
|
|
493
516
|
"InplaceSubScalar": {"side_effect_mem": True},
|
|
494
517
|
"InplaceTanh": {"side_effect_mem": True},
|
|
495
518
|
"InplaceThreshold": {"side_effect_mem": True},
|
|
496
519
|
"InplaceUniform": {"side_effect_mem": True},
|
|
497
520
|
"Log": {"cust_aicpu": 'Log', "base": -1.0, "scale": 1.0, "shift": 0.0},
|
|
498
|
-
"
|
|
521
|
+
"NarrowView": {"side_effect_mem": True},
|
|
499
522
|
"ReshapeAndCache": {"side_effect_mem": True},
|
|
500
523
|
"ResizeD": {"mode": 'linear'},
|
|
524
|
+
"SelectExtView": {"side_effect_mem": True},
|
|
501
525
|
"SilentCheckV2": {"side_effect_mem": True},
|
|
502
526
|
"SilentCheckV3": {"side_effect_mem": True},
|
|
527
|
+
"SliceExtView": {"side_effect_mem": True},
|
|
528
|
+
"SplitTensorView": {"side_effect_mem": True},
|
|
529
|
+
"SplitWithSizeView": {"side_effect_mem": True},
|
|
530
|
+
"TransposeExtView": {"side_effect_mem": True},
|
|
531
|
+
"TransposeView": {"side_effect_mem": True},
|
|
532
|
+
"UnstackExtView": {"side_effect_mem": True},
|
|
503
533
|
"KVCacheScatterUpdate": {"side_effect_mem": True},
|
|
534
|
+
"InplaceExponential": {"side_effect_mem": True},
|
|
504
535
|
"DeprecatedInplaceCopy": {"side_effect_mem": True},
|
|
505
536
|
}
|
|
@@ -237,9 +237,9 @@ def argmin(input, dim=None, keepdim=False):
|
|
|
237
237
|
Examples:
|
|
238
238
|
>>> import numpy as np
|
|
239
239
|
>>> from mindspore import Tensor
|
|
240
|
-
>>> from mindspore import
|
|
240
|
+
>>> from mindspore import ops
|
|
241
241
|
>>> x = Tensor(np.array([[1, 20, 5], [67, 8, 9], [130, 24, 15]]).astype(np.float32))
|
|
242
|
-
>>> output =
|
|
242
|
+
>>> output = ops.auto_generate.argmin_ext(x, dim=-1)
|
|
243
243
|
>>> print(output)
|
|
244
244
|
[0 1 2]
|
|
245
245
|
"""
|
|
@@ -276,14 +276,13 @@ def argsort(input, dim=-1, descending=False, stable=False):
|
|
|
276
276
|
Examples:
|
|
277
277
|
>>> import mindspore
|
|
278
278
|
>>> import numpy as np
|
|
279
|
-
>>> from mindspore import Tensor
|
|
280
|
-
>>> import mindspore.mint as mint
|
|
279
|
+
>>> from mindspore import Tensor, ops
|
|
281
280
|
>>> x = Tensor(np.array([[8, 2, 1], [5, 9, 3], [4, 6, 7]]), mindspore.float16)
|
|
282
|
-
>>> sort =
|
|
281
|
+
>>> sort = ops.auto_generate.argsort_ext(x)
|
|
283
282
|
>>> print(sort)
|
|
284
283
|
[[2 1 0]
|
|
285
|
-
|
|
286
|
-
|
|
284
|
+
[2 0 1]
|
|
285
|
+
[0 1 2]]
|
|
287
286
|
"""
|
|
288
287
|
return argsort_impl(input, dim, descending, stable)
|
|
289
288
|
|
|
@@ -389,7 +388,7 @@ def atan2(input, other):
|
|
|
389
388
|
>>> from mindspore import Tensor, ops
|
|
390
389
|
>>> input = Tensor(np.array([0, 1]), mindspore.float32)
|
|
391
390
|
>>> other = Tensor(np.array([1, 1]), mindspore.float32)
|
|
392
|
-
>>> output =
|
|
391
|
+
>>> output = ops.auto_generate.atan2_ext(input, other)
|
|
393
392
|
>>> print(output)
|
|
394
393
|
[0. 0.7853982]
|
|
395
394
|
"""
|
|
@@ -470,9 +469,9 @@ def avg_pool1d(input, kernel_size, stride=None, padding=0, ceil_mode=False, coun
|
|
|
470
469
|
Examples:
|
|
471
470
|
>>> import mindspore
|
|
472
471
|
>>> import numpy as np
|
|
473
|
-
>>> from mindspore import Tensor,
|
|
472
|
+
>>> from mindspore import Tensor, ops
|
|
474
473
|
>>> input_x = Tensor(np.random.randint(0, 10, [1, 3, 6]), mindspore.float32)
|
|
475
|
-
>>> output =
|
|
474
|
+
>>> output = ops.auto_generate.avg_pool1d_ext(input_x, kernel_size=6, stride=1)
|
|
476
475
|
>>> print(output.shape)
|
|
477
476
|
(1, 3, 1)
|
|
478
477
|
"""
|
|
@@ -512,14 +511,14 @@ def bincount(input, weights=None, minlength=0):
|
|
|
512
511
|
``Ascend``
|
|
513
512
|
|
|
514
513
|
Examples:
|
|
515
|
-
>>> from mindspore import
|
|
516
|
-
>>> print(
|
|
514
|
+
>>> from mindspore import ops, Tensor
|
|
515
|
+
>>> print(ops.auto_generate.bincount_ext(Tensor(np.arange(5))))
|
|
517
516
|
[1 1 1 1 1]
|
|
518
|
-
>>> print(
|
|
517
|
+
>>> print(ops.auto_generate.bincount_ext(Tensor(np.array([0, 1, 1, 3, 2, 1, 7]))))
|
|
519
518
|
[1 3 1 1 0 0 0 1]
|
|
520
519
|
>>> w = Tensor(np.array([0.3, 0.5, 0.2, 0.7, 1., -0.6])) # weights
|
|
521
520
|
>>> x = Tensor(np.array([0, 1, 1, 2, 2, 2]))
|
|
522
|
-
>>> print(
|
|
521
|
+
>>> print(ops.auto_generate.bincount_ext(x, weights=w, minlength=5))
|
|
523
522
|
[0.3 0.7 1.1 0. 0. ]
|
|
524
523
|
"""
|
|
525
524
|
return bincount_impl(input, weights, minlength)
|
|
@@ -643,7 +642,7 @@ def cummin(input, dim):
|
|
|
643
642
|
\end{array}
|
|
644
643
|
|
|
645
644
|
.. note::
|
|
646
|
-
|
|
645
|
+
GE backend is not supported in Ascend.
|
|
647
646
|
|
|
648
647
|
Args:
|
|
649
648
|
input (Tensor): The input Tensor, The dimension must be greater than 0.
|
|
@@ -759,9 +758,9 @@ def diag(input, diagonal=0):
|
|
|
759
758
|
``Ascend``
|
|
760
759
|
|
|
761
760
|
Examples:
|
|
762
|
-
>>> from mindspore import Tensor,
|
|
761
|
+
>>> from mindspore import Tensor, ops
|
|
763
762
|
>>> input = Tensor([1, 2, 3, 4]).astype('int32')
|
|
764
|
-
>>> output =
|
|
763
|
+
>>> output = ops.auto_generate.diag_ext(input)
|
|
765
764
|
>>> print(output)
|
|
766
765
|
[[1 0 0 0]
|
|
767
766
|
[0 2 0 0]
|
|
@@ -1011,56 +1010,6 @@ def unfold(input, kernel_size, dilation=1, padding=0, stride=1):
|
|
|
1011
1010
|
return unfold_impl(input, converted_kernel_size, converted_dilation, converted_padding, converted_stride)
|
|
1012
1011
|
|
|
1013
1012
|
|
|
1014
|
-
def index_add(input, dim, index, source, alpha=1):
|
|
1015
|
-
r"""
|
|
1016
|
-
Accumulate the elements of `alpha` times `source` into the `input` by adding to the index in the order given in `index`. For example, if ``dim == 0`` , ``index[i] == j`` , and ``alpha = -1`` , then the `i` th row of `source` is subtracted from the `j` th row of `input` . The `dim` th dimension of `source` must have the same size as the length of `index` , and all other dimensions must match `input`, or an error will be raised. For a 3-D tensor, the output is defined as follows:
|
|
1017
|
-
|
|
1018
|
-
.. math::
|
|
1019
|
-
\begin{array}{ll}
|
|
1020
|
-
input[index[i],\ :,\ :]\ +=\ alpha * source[i,\ :,\ :] \qquad \#if\ dim == 0 \\
|
|
1021
|
-
input[:,\ \ index[i],\ :]\ +=\ alpha * source[:,\ \ i,\ :] \qquad \#if\ dim == 1 \\
|
|
1022
|
-
input[:,\ :,\ \ index[i]]\ +=\ alpha * source[:,\ :,\ \ i] \qquad\#if\ dim == 2 \\
|
|
1023
|
-
\end{array}
|
|
1024
|
-
|
|
1025
|
-
.. warning::
|
|
1026
|
-
This is an experimental API that is subject to change or deletion.
|
|
1027
|
-
|
|
1028
|
-
Args:
|
|
1029
|
-
input (Tensor): The input Tensor.
|
|
1030
|
-
dim (int): The dimension along which to index.
|
|
1031
|
-
index (Tensor): Add the value of "input Tensor" and `source` along the dimension of the `dim` according to the specified index value, with data type int32. The `index` must be 1D with the same size as the size of `source` in the `dim` dimension. The values of `index` should be in [0, b), where the b is the size of "input Tensor" in the `dim` dimension.
|
|
1032
|
-
source (Tensor): The input tensor with the value to add. Must have same data type as "input Tensor". The shape must be the same as "input Tensor" except the `dim` th dimension.
|
|
1033
|
-
alpha (number, optional): The scalar multiplier for source. Default: ``1``.
|
|
1034
|
-
|
|
1035
|
-
Returns:
|
|
1036
|
-
Tensor, has the same shape and dtype as `input`.
|
|
1037
|
-
|
|
1038
|
-
Raises:
|
|
1039
|
-
TypeError: If neither `index` nor `source` is a Tensor.
|
|
1040
|
-
ValueError: If the value of `dim` is out of the dimension range of `source` shape.
|
|
1041
|
-
ValueError: If `index` rank is not the same as `source` rank.
|
|
1042
|
-
ValueError: If shape of `index` is not 1D or size of `index` is not equal to dimension of source[dim].
|
|
1043
|
-
ValueError: If the shape of `source` is not the same as that of `input` except the `dim` axis.
|
|
1044
|
-
|
|
1045
|
-
Supported Platforms:
|
|
1046
|
-
``Ascend``
|
|
1047
|
-
|
|
1048
|
-
Examples:
|
|
1049
|
-
>>> import numpy as np
|
|
1050
|
-
>>> import mindspore
|
|
1051
|
-
>>> from mindspore import Tensor, ops
|
|
1052
|
-
>>> x = Tensor(np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]), mindspore.float32)
|
|
1053
|
-
>>> index = Tensor(np.array([0, 2]), mindspore.int32)
|
|
1054
|
-
>>> y = Tensor(np.array([[0.5, 1.0], [1.0, 1.5], [2.0, 2.5]]), mindspore.float32)
|
|
1055
|
-
>>> output = ops.auto_generate.index_add_ext(x, 1, index, y, alpha=1)
|
|
1056
|
-
>>> print(output)
|
|
1057
|
-
[[ 1.5 2. 4. ]
|
|
1058
|
-
[ 5. 5. 7.5]
|
|
1059
|
-
[ 9. 8. 11.5]]
|
|
1060
|
-
"""
|
|
1061
|
-
return index_add_impl(input, dim, index, source, alpha)
|
|
1062
|
-
|
|
1063
|
-
|
|
1064
1013
|
def index_select(input, dim, index):
|
|
1065
1014
|
r"""
|
|
1066
1015
|
Generates a new Tensor that accesses the values of `input` along the specified `dim` dimension
|
|
@@ -1294,9 +1243,9 @@ def log10(input):
|
|
|
1294
1243
|
Examples:
|
|
1295
1244
|
>>> import mindspore
|
|
1296
1245
|
>>> import numpy as np
|
|
1297
|
-
>>> from mindspore import Tensor,
|
|
1246
|
+
>>> from mindspore import Tensor, ops
|
|
1298
1247
|
>>> x = Tensor(np.array([3.0, 5.0, 7.0]), mindspore.float32)
|
|
1299
|
-
>>> output =
|
|
1248
|
+
>>> output = ops.auto_generate.log10_ext(x)
|
|
1300
1249
|
>>> print(output)
|
|
1301
1250
|
[0.47712136 0.69897 0.845098 ]
|
|
1302
1251
|
"""
|
|
@@ -1330,9 +1279,9 @@ def log2(input):
|
|
|
1330
1279
|
Examples:
|
|
1331
1280
|
>>> import mindspore
|
|
1332
1281
|
>>> import numpy as np
|
|
1333
|
-
>>> from mindspore import Tensor,
|
|
1282
|
+
>>> from mindspore import Tensor, ops
|
|
1334
1283
|
>>> x = Tensor(np.array([3.0, 5.0, 7.0]), mindspore.float32)
|
|
1335
|
-
>>> output =
|
|
1284
|
+
>>> output = ops.auto_generate.log2_ext(x)
|
|
1336
1285
|
>>> print(output)
|
|
1337
1286
|
[1.5849625 2.321928 2.807355 ]
|
|
1338
1287
|
"""
|
|
@@ -1898,38 +1847,6 @@ def prod(input, dim=None, keepdim=False, dtype=None):
|
|
|
1898
1847
|
return prod_impl(input, dim, keepdim, dtype)
|
|
1899
1848
|
|
|
1900
1849
|
|
|
1901
|
-
def select(input, dim, index):
|
|
1902
|
-
r"""
|
|
1903
|
-
Slices the input tensor along the selected dimension at the given index.
|
|
1904
|
-
|
|
1905
|
-
.. warning::
|
|
1906
|
-
This is an experimental API that is subject to change or deletion.
|
|
1907
|
-
|
|
1908
|
-
Args:
|
|
1909
|
-
input (Tensor): the input tensor.
|
|
1910
|
-
dim (int): the dimension to slice.
|
|
1911
|
-
index (int): the index to select with.
|
|
1912
|
-
|
|
1913
|
-
Returns:
|
|
1914
|
-
Tensor.
|
|
1915
|
-
|
|
1916
|
-
Raises:
|
|
1917
|
-
TypeError: If input is not a Tensor.
|
|
1918
|
-
|
|
1919
|
-
Supported Platforms:
|
|
1920
|
-
``Ascend``
|
|
1921
|
-
|
|
1922
|
-
Examples:
|
|
1923
|
-
>>> import mindspore
|
|
1924
|
-
>>> from mindspore import Tensor, mint
|
|
1925
|
-
>>> input = Tensor([[2, 3, 4, 5],[3, 2, 4, 5]])
|
|
1926
|
-
>>> y = mint.select(input, 0, 0)
|
|
1927
|
-
>>> print(y)
|
|
1928
|
-
[2 3 4 5]
|
|
1929
|
-
"""
|
|
1930
|
-
return select_impl(input, dim, index)
|
|
1931
|
-
|
|
1932
|
-
|
|
1933
1850
|
def selu(input):
|
|
1934
1851
|
r"""
|
|
1935
1852
|
Activation function SELU (Scaled exponential Linear Unit).
|
|
@@ -1969,13 +1886,13 @@ def selu(input):
|
|
|
1969
1886
|
|
|
1970
1887
|
Examples:
|
|
1971
1888
|
>>> import mindspore
|
|
1972
|
-
>>> from mindspore import Tensor,
|
|
1889
|
+
>>> from mindspore import Tensor, ops
|
|
1973
1890
|
>>> import numpy as np
|
|
1974
1891
|
>>> input = Tensor(np.array([[-1.0, 4.0, -8.0], [2.0, -5.0, 9.0]]), mindspore.float32)
|
|
1975
|
-
>>> output =
|
|
1892
|
+
>>> output = ops.auto_generate.selu_ext(input)
|
|
1976
1893
|
>>> print(output)
|
|
1977
1894
|
[[-1.1113307 4.202804 -1.7575096]
|
|
1978
|
-
|
|
1895
|
+
[ 2.101402 -1.7462534 9.456309 ]]
|
|
1979
1896
|
"""
|
|
1980
1897
|
return selu_impl(input)
|
|
1981
1898
|
|
|
@@ -2296,41 +2213,6 @@ def trace(input):
|
|
|
2296
2213
|
return trace_impl(input)
|
|
2297
2214
|
|
|
2298
2215
|
|
|
2299
|
-
def transpose(input, dim0, dim1):
|
|
2300
|
-
r"""
|
|
2301
|
-
Interchange two axes of a tensor.
|
|
2302
|
-
|
|
2303
|
-
.. warning::
|
|
2304
|
-
This is an experimental API that is subject to change or deletion.
|
|
2305
|
-
|
|
2306
|
-
Args:
|
|
2307
|
-
input(Tensor): Input tensor.
|
|
2308
|
-
dim0 (int): First axis.
|
|
2309
|
-
dim1 (int): Second axis.
|
|
2310
|
-
|
|
2311
|
-
Returns:
|
|
2312
|
-
Transposed tensor, has the same data type as `input`.
|
|
2313
|
-
|
|
2314
|
-
Raises:
|
|
2315
|
-
TypeError: If argument `input` is not Tensor.
|
|
2316
|
-
TypeError: If `dim0` or `dim1` is not integer.
|
|
2317
|
-
ValueError: If `dim0` or `dim1` is not in the range of :math:`[-ndim, ndim-1]`.
|
|
2318
|
-
|
|
2319
|
-
Supported Platforms:
|
|
2320
|
-
``Ascend``
|
|
2321
|
-
|
|
2322
|
-
Examples:
|
|
2323
|
-
>>> import numpy as np
|
|
2324
|
-
>>> from mindspore import mint
|
|
2325
|
-
>>> from mindspore import Tensor
|
|
2326
|
-
>>> input = Tensor(np.ones((2,3,4), dtype=np.float32))
|
|
2327
|
-
>>> output = mint.transpose(input, 0, 2)
|
|
2328
|
-
>>> print(output.shape)
|
|
2329
|
-
(4, 3, 2)
|
|
2330
|
-
"""
|
|
2331
|
-
return transpose_impl(input, dim0, dim1)
|
|
2332
|
-
|
|
2333
|
-
|
|
2334
2216
|
def tril(input, diagonal=0):
|
|
2335
2217
|
r"""
|
|
2336
2218
|
None
|