mindspore 2.6.0rc1__cp311-cp311-win_amd64.whl → 2.7.0__cp311-cp311-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of mindspore might be problematic. Click here for more details.

Files changed (458) hide show
  1. mindspore/.commit_id +1 -1
  2. mindspore/Microsoft.VisualStudio.Telemetry.dll +0 -0
  3. mindspore/Newtonsoft.Json.dll +0 -0
  4. mindspore/__init__.py +2 -2
  5. mindspore/_c_dataengine.cp311-win_amd64.pyd +0 -0
  6. mindspore/_c_expression.cp311-win_amd64.pyd +0 -0
  7. mindspore/_c_mindrecord.cp311-win_amd64.pyd +0 -0
  8. mindspore/_checkparam.py +42 -11
  9. mindspore/_extends/builtin_operations.py +3 -3
  10. mindspore/{_deprecated → _extends/optimize}/__init__.py +9 -3
  11. mindspore/_extends/optimize/cell_utils.py +96 -0
  12. mindspore/_extends/parallel_compile/akg_compiler/custom.py +1109 -0
  13. mindspore/_extends/parallel_compile/akg_compiler/gen_custom_op_files.py +1 -1
  14. mindspore/_extends/parse/__init__.py +3 -3
  15. mindspore/_extends/parse/compile_config.py +44 -22
  16. mindspore/_extends/parse/deprecated/deprecated_tensor_method.py +1 -2
  17. mindspore/_extends/parse/parser.py +65 -84
  18. mindspore/_extends/parse/resources.py +39 -0
  19. mindspore/_extends/parse/standard_method.py +58 -14
  20. mindspore/_extends/parse/trope.py +8 -1
  21. mindspore/_extends/pijit/__init__.py +1 -2
  22. mindspore/_extends/pijit/pijit_func_white_list.py +2 -5
  23. mindspore/amp.py +4 -22
  24. mindspore/atlprov.dll +0 -0
  25. mindspore/avcodec-59.dll +0 -0
  26. mindspore/avdevice-59.dll +0 -0
  27. mindspore/avfilter-8.dll +0 -0
  28. mindspore/avformat-59.dll +0 -0
  29. mindspore/avutil-57.dll +0 -0
  30. mindspore/boost/adasum.py +1 -1
  31. mindspore/boost/boost_cell_wrapper.py +4 -4
  32. mindspore/c1.dll +0 -0
  33. mindspore/c1xx.dll +0 -0
  34. mindspore/c2.dll +0 -0
  35. mindspore/common/__init__.py +43 -12
  36. mindspore/common/_grad_function.py +2 -1
  37. mindspore/common/_pijit_context.py +28 -7
  38. mindspore/common/_stub_tensor.py +1 -209
  39. mindspore/common/_tensor_cpp_method.py +1 -1
  40. mindspore/common/_tensor_docs.py +178 -53
  41. mindspore/common/_utils.py +9 -1
  42. mindspore/common/api.py +377 -203
  43. mindspore/common/dtype.py +108 -57
  44. mindspore/common/dump.py +11 -16
  45. mindspore/common/dynamic_shape/__init__.py +0 -0
  46. mindspore/common/{auto_dynamic_shape.py → dynamic_shape/auto_dynamic_shape.py} +17 -23
  47. mindspore/common/dynamic_shape/enable_dynamic.py +197 -0
  48. mindspore/common/file_system.py +59 -9
  49. mindspore/common/generator.py +5 -3
  50. mindspore/common/hook_handle.py +33 -5
  51. mindspore/common/jit_config.py +1 -1
  52. mindspore/common/jit_trace.py +84 -105
  53. mindspore/common/np_dtype.py +3 -3
  54. mindspore/common/parameter.py +27 -29
  55. mindspore/common/recompute.py +5 -7
  56. mindspore/common/sparse_tensor.py +0 -3
  57. mindspore/common/symbol.py +0 -1
  58. mindspore/common/tensor.py +117 -131
  59. mindspore/communication/_comm_helper.py +46 -4
  60. mindspore/communication/management.py +79 -7
  61. mindspore/context.py +67 -55
  62. mindspore/dataset/__init__.py +1 -1
  63. mindspore/dataset/audio/transforms.py +1 -1
  64. mindspore/dataset/core/config.py +38 -4
  65. mindspore/dataset/engine/datasets.py +350 -322
  66. mindspore/dataset/engine/datasets_user_defined.py +70 -24
  67. mindspore/dataset/engine/iterators.py +2 -2
  68. mindspore/dataset/engine/obs/config_loader.py +2 -2
  69. mindspore/dataset/engine/obs/obs_mindrecord_dataset.py +8 -0
  70. mindspore/dataset/transforms/c_transforms.py +2 -2
  71. mindspore/dataset/transforms/py_transforms.py +7 -3
  72. mindspore/dataset/transforms/transforms.py +10 -6
  73. mindspore/dataset/vision/__init__.py +1 -1
  74. mindspore/dataset/vision/py_transforms.py +8 -8
  75. mindspore/dataset/vision/transforms.py +17 -5
  76. mindspore/dataset/vision/utils.py +632 -21
  77. mindspore/dataset/vision/validators.py +1 -0
  78. mindspore/device_context/ascend/device.py +1 -1
  79. mindspore/device_context/ascend/op_tuning.py +35 -1
  80. mindspore/device_context/gpu/__init__.py +2 -2
  81. mindspore/device_context/gpu/device.py +1 -1
  82. mindspore/device_context/gpu/op_precision.py +4 -2
  83. mindspore/device_context/gpu/op_tuning.py +6 -3
  84. mindspore/device_manager.py +16 -9
  85. mindspore/dnnl.dll +0 -0
  86. mindspore/dpcmi.dll +0 -0
  87. mindspore/experimental/llm_boost/ascend_native/llama_boost_ascend_native.py +3 -4
  88. mindspore/experimental/llm_boost/atb/boost_base.py +2 -3
  89. mindspore/experimental/optim/adadelta.py +13 -20
  90. mindspore/experimental/optim/adagrad.py +15 -22
  91. mindspore/experimental/optim/adam.py +17 -24
  92. mindspore/experimental/optim/adamax.py +14 -22
  93. mindspore/experimental/optim/adamw.py +28 -34
  94. mindspore/experimental/optim/asgd.py +15 -25
  95. mindspore/experimental/optim/lr_scheduler.py +27 -45
  96. mindspore/experimental/optim/nadam.py +14 -24
  97. mindspore/experimental/optim/optimizer.py +13 -23
  98. mindspore/experimental/optim/radam.py +18 -24
  99. mindspore/experimental/optim/rmsprop.py +14 -25
  100. mindspore/experimental/optim/rprop.py +15 -26
  101. mindspore/experimental/optim/sgd.py +9 -19
  102. mindspore/hal/__init__.py +4 -4
  103. mindspore/hal/contiguous_tensors_handle.py +2 -2
  104. mindspore/hal/memory.py +27 -7
  105. mindspore/include/api/cell.h +65 -5
  106. mindspore/include/api/cfg.h +24 -7
  107. mindspore/include/api/context.h +1 -0
  108. mindspore/include/api/delegate.h +10 -2
  109. mindspore/include/api/dual_abi_helper.h +100 -19
  110. mindspore/include/api/graph.h +14 -1
  111. mindspore/include/api/kernel.h +16 -3
  112. mindspore/include/api/kernel_api.h +9 -1
  113. mindspore/include/api/metrics/accuracy.h +9 -0
  114. mindspore/include/api/model.h +8 -1
  115. mindspore/include/api/model_group.h +4 -0
  116. mindspore/include/api/model_parallel_runner.h +2 -0
  117. mindspore/include/api/status.h +48 -10
  118. mindspore/include/api/types.h +8 -3
  119. mindspore/include/c_api/model_c.h +0 -58
  120. mindspore/include/c_api/tensor_c.h +0 -26
  121. mindspore/include/dataset/constants.h +9 -0
  122. mindspore/include/dataset/vision_ascend.h +1 -1
  123. mindspore/jpeg62.dll +0 -0
  124. mindspore/mindrecord/tools/cifar10.py +61 -11
  125. mindspore/mindrecord/tools/cifar10_to_mr.py +5 -0
  126. mindspore/mindspore_backend_common.dll +0 -0
  127. mindspore/mindspore_backend_manager.dll +0 -0
  128. mindspore/mindspore_common.dll +0 -0
  129. mindspore/mindspore_core.dll +0 -0
  130. mindspore/mindspore_cpu_res_manager.dll +0 -0
  131. mindspore/mindspore_dump.dll +0 -0
  132. mindspore/mindspore_frontend.dll +0 -0
  133. mindspore/mindspore_glog.dll +0 -0
  134. mindspore/mindspore_memory_pool.dll +0 -0
  135. mindspore/mindspore_ms_backend.dll +0 -0
  136. mindspore/mindspore_ops.dll +0 -0
  137. mindspore/mindspore_ops_host.dll +0 -0
  138. mindspore/mindspore_ops_kernel_common.dll +0 -0
  139. mindspore/mindspore_profiler.dll +0 -0
  140. mindspore/mindspore_pyboost.dll +0 -0
  141. mindspore/mindspore_pynative.dll +0 -0
  142. mindspore/mindspore_res_manager.dll +0 -0
  143. mindspore/mindspore_runtime_pipeline.dll +0 -0
  144. mindspore/mint/__init__.py +6 -46
  145. mindspore/mint/distributed/__init__.py +5 -0
  146. mindspore/mint/distributed/distributed.py +429 -23
  147. mindspore/mint/nn/__init__.py +1 -1
  148. mindspore/mint/nn/functional.py +53 -6
  149. mindspore/mint/nn/layer/_functions.py +163 -294
  150. mindspore/mint/nn/layer/activation.py +8 -6
  151. mindspore/mint/nn/layer/conv.py +140 -104
  152. mindspore/mint/nn/layer/normalization.py +11 -25
  153. mindspore/mint/optim/adam.py +19 -18
  154. mindspore/mint/optim/adamw.py +14 -8
  155. mindspore/mint/optim/sgd.py +5 -5
  156. mindspore/msobj140.dll +0 -0
  157. mindspore/mspdb140.dll +0 -0
  158. mindspore/mspdbcore.dll +0 -0
  159. mindspore/mspdbst.dll +0 -0
  160. mindspore/mspft140.dll +0 -0
  161. mindspore/msvcdis140.dll +0 -0
  162. mindspore/msvcp140_1.dll +0 -0
  163. mindspore/msvcp140_2.dll +0 -0
  164. mindspore/msvcp140_atomic_wait.dll +0 -0
  165. mindspore/msvcp140_codecvt_ids.dll +0 -0
  166. mindspore/nn/cell.py +491 -623
  167. mindspore/nn/grad/cell_grad.py +11 -12
  168. mindspore/nn/layer/activation.py +36 -36
  169. mindspore/nn/layer/basic.py +74 -77
  170. mindspore/nn/layer/channel_shuffle.py +4 -4
  171. mindspore/nn/layer/combined.py +4 -2
  172. mindspore/nn/layer/conv.py +117 -110
  173. mindspore/nn/layer/dense.py +9 -7
  174. mindspore/nn/layer/embedding.py +50 -52
  175. mindspore/nn/layer/image.py +38 -40
  176. mindspore/nn/layer/math.py +111 -112
  177. mindspore/nn/layer/normalization.py +56 -44
  178. mindspore/nn/layer/pooling.py +58 -63
  179. mindspore/nn/layer/rnn_cells.py +33 -33
  180. mindspore/nn/layer/rnns.py +56 -56
  181. mindspore/nn/layer/thor_layer.py +74 -73
  182. mindspore/nn/layer/transformer.py +11 -1
  183. mindspore/nn/learning_rate_schedule.py +20 -20
  184. mindspore/nn/loss/loss.py +79 -81
  185. mindspore/nn/optim/adam.py +4 -6
  186. mindspore/nn/optim/adasum.py +2 -2
  187. mindspore/nn/optim/asgd.py +2 -0
  188. mindspore/nn/optim/lamb.py +1 -3
  189. mindspore/nn/optim/optimizer.py +1 -1
  190. mindspore/nn/optim/tft_wrapper.py +2 -3
  191. mindspore/nn/optim/thor.py +2 -2
  192. mindspore/nn/probability/distribution/_utils/utils.py +2 -2
  193. mindspore/nn/probability/distribution/exponential.py +2 -1
  194. mindspore/nn/probability/distribution/poisson.py +2 -1
  195. mindspore/nn/sparse/sparse.py +3 -3
  196. mindspore/nn/wrap/cell_wrapper.py +73 -42
  197. mindspore/nn/wrap/grad_reducer.py +37 -52
  198. mindspore/nn/wrap/loss_scale.py +72 -74
  199. mindspore/numpy/array_creations.py +7 -7
  200. mindspore/numpy/fft.py +1 -1
  201. mindspore/numpy/math_ops.py +5 -5
  202. mindspore/numpy/utils_const.py +1 -1
  203. mindspore/opencv_core452.dll +0 -0
  204. mindspore/opencv_imgcodecs452.dll +0 -0
  205. mindspore/opencv_imgproc452.dll +0 -0
  206. mindspore/ops/_grad_experimental/grad_comm_ops.py +51 -13
  207. mindspore/ops/_grad_experimental/grad_debug_ops.py +14 -0
  208. mindspore/ops/_grad_experimental/grad_inner_ops.py +0 -9
  209. mindspore/ops/_op_impl/cpu/__init__.py +1 -0
  210. mindspore/{experimental/es/__init__.py → ops/_op_impl/cpu/joinedstr_op.py} +12 -6
  211. mindspore/ops/_vmap/vmap_array_ops.py +31 -13
  212. mindspore/ops/_vmap/vmap_nn_ops.py +8 -16
  213. mindspore/ops/auto_generate/cpp_create_prim_instance_helper.py +54 -13
  214. mindspore/ops/auto_generate/gen_extend_func.py +27 -145
  215. mindspore/ops/auto_generate/gen_ops_def.py +1027 -347
  216. mindspore/ops/auto_generate/gen_ops_prim.py +2341 -1117
  217. mindspore/ops/auto_generate/pyboost_inner_prim.py +31 -1
  218. mindspore/ops/composite/__init__.py +10 -0
  219. mindspore/ops/composite/base.py +9 -5
  220. mindspore/ops/composite/multitype_ops/__init__.py +12 -1
  221. mindspore/ops/composite/multitype_ops/_compile_utils.py +133 -109
  222. mindspore/ops/composite/multitype_ops/_constexpr_utils.py +1 -1
  223. mindspore/ops/composite/multitype_ops/add_impl.py +70 -2
  224. mindspore/ops/composite/multitype_ops/div_impl.py +49 -0
  225. mindspore/ops/composite/multitype_ops/floordiv_impl.py +29 -0
  226. mindspore/ops/composite/multitype_ops/getitem_impl.py +11 -0
  227. mindspore/ops/composite/multitype_ops/mod_impl.py +5 -3
  228. mindspore/ops/composite/multitype_ops/mul_impl.py +49 -0
  229. mindspore/ops/composite/multitype_ops/setitem_impl.py +57 -0
  230. mindspore/ops/composite/multitype_ops/sub_impl.py +34 -0
  231. mindspore/ops/composite/multitype_ops/zeros_like_impl.py +14 -0
  232. mindspore/ops/function/__init__.py +4 -1
  233. mindspore/ops/function/_add_attr_func.py +11 -6
  234. mindspore/ops/function/array_func.py +19 -102
  235. mindspore/ops/function/debug_func.py +8 -5
  236. mindspore/ops/function/grad/grad_func.py +5 -13
  237. mindspore/ops/function/math_func.py +77 -572
  238. mindspore/ops/function/nn_func.py +46 -94
  239. mindspore/ops/function/other_func.py +4 -1
  240. mindspore/ops/function/random_func.py +44 -5
  241. mindspore/ops/function/vmap_func.py +2 -1
  242. mindspore/ops/functional.py +4 -4
  243. mindspore/ops/functional_overload.py +594 -18
  244. mindspore/ops/op_info_register.py +21 -0
  245. mindspore/ops/operations/__init__.py +16 -11
  246. mindspore/ops/operations/_custom_ops_utils.py +689 -34
  247. mindspore/ops/operations/_inner_ops.py +14 -18
  248. mindspore/ops/operations/_sequence_ops.py +1 -1
  249. mindspore/ops/operations/array_ops.py +5 -51
  250. mindspore/ops/operations/comm_ops.py +186 -41
  251. mindspore/ops/operations/custom_ops.py +303 -177
  252. mindspore/ops/operations/debug_ops.py +59 -4
  253. mindspore/ops/operations/image_ops.py +13 -13
  254. mindspore/ops/operations/manually_defined/ops_def.py +27 -28
  255. mindspore/ops/operations/math_ops.py +8 -9
  256. mindspore/ops/operations/nn_ops.py +8 -40
  257. mindspore/ops/primitive.py +9 -20
  258. mindspore/ops/tensor_method.py +63 -15
  259. mindspore/ops_generate/api/cpp_create_prim_instance_helper_generator.py +1 -1
  260. mindspore/ops_generate/api/functional_map_cpp_generator.py +10 -9
  261. mindspore/ops_generate/api/functions_cc_generator.py +58 -10
  262. mindspore/ops_generate/api/tensor_func_reg_cpp_generator.py +1 -1
  263. mindspore/ops_generate/common/base_generator.py +14 -0
  264. mindspore/ops_generate/common/gen_constants.py +8 -3
  265. mindspore/ops_generate/common/gen_utils.py +0 -19
  266. mindspore/ops_generate/common/op_proto.py +11 -4
  267. mindspore/ops_generate/common/template.py +88 -11
  268. mindspore/ops_generate/gen_ops.py +1 -1
  269. mindspore/ops_generate/op_def/lite_ops_cpp_generator.py +4 -4
  270. mindspore/ops_generate/op_def/ops_def_cc_generator.py +0 -3
  271. mindspore/ops_generate/op_def/ops_name_h_generator.py +0 -3
  272. mindspore/ops_generate/op_def/ops_primitive_h_generator.py +0 -4
  273. mindspore/ops_generate/op_def_py/op_prim_py_generator.py +5 -2
  274. mindspore/ops_generate/pyboost/auto_grad_impl_cc_generator.py +49 -8
  275. mindspore/ops_generate/pyboost/auto_grad_reg_cc_generator.py +2 -2
  276. mindspore/ops_generate/pyboost/gen_pyboost_func.py +31 -16
  277. mindspore/ops_generate/pyboost/op_template_parser.py +98 -72
  278. mindspore/ops_generate/pyboost/pyboost_functions_cpp_generator.py +70 -273
  279. mindspore/ops_generate/pyboost/pyboost_functions_h_generator.py +14 -6
  280. mindspore/ops_generate/pyboost/pyboost_functions_impl_cpp_generator.py +316 -0
  281. mindspore/ops_generate/pyboost/pyboost_functions_py_generator.py +1 -1
  282. mindspore/ops_generate/pyboost/pyboost_grad_function_cpp_generator.py +5 -3
  283. mindspore/ops_generate/pyboost/pyboost_inner_prim_generator.py +1 -1
  284. mindspore/ops_generate/pyboost/pyboost_internal_functions_cpp_generator.py +76 -0
  285. mindspore/ops_generate/pyboost/pyboost_internal_functions_h_generator.py +76 -0
  286. mindspore/ops_generate/pyboost/pyboost_internal_kernel_info_adapter_generator.py +125 -0
  287. mindspore/ops_generate/pyboost/pyboost_native_grad_functions_generator.py +4 -3
  288. mindspore/ops_generate/pyboost/pyboost_op_cpp_code_generator.py +348 -61
  289. mindspore/ops_generate/pyboost/pyboost_overload_functions_cpp_generator.py +1 -1
  290. mindspore/ops_generate/pyboost/pyboost_utils.py +118 -9
  291. mindspore/ops_generate/tensor_py_cc_generator.py +1 -24
  292. mindspore/parallel/_auto_parallel_context.py +16 -23
  293. mindspore/parallel/_cell_wrapper.py +113 -45
  294. mindspore/parallel/_parallel_serialization.py +4 -3
  295. mindspore/parallel/_ps_context.py +4 -6
  296. mindspore/parallel/_tensor.py +167 -12
  297. mindspore/parallel/_transformer/moe.py +1 -1
  298. mindspore/parallel/_transformer/transformer.py +17 -12
  299. mindspore/parallel/_utils.py +5 -11
  300. mindspore/parallel/auto_parallel.py +35 -14
  301. mindspore/parallel/checkpoint_convert.py +3 -3
  302. mindspore/parallel/checkpoint_transform.py +13 -7
  303. mindspore/parallel/cluster/process_entity/_api.py +88 -49
  304. mindspore/parallel/cluster/process_entity/_utils.py +95 -7
  305. mindspore/parallel/cluster/run.py +48 -7
  306. mindspore/parallel/function/__init__.py +8 -1
  307. mindspore/parallel/function/reshard_func.py +12 -12
  308. mindspore/parallel/nn/__init__.py +15 -2
  309. mindspore/parallel/nn/parallel_cell_wrapper.py +50 -14
  310. mindspore/parallel/nn/parallel_grad_reducer.py +7 -14
  311. mindspore/parallel/shard.py +10 -25
  312. mindspore/parallel/transform_safetensors.py +469 -174
  313. mindspore/pgodb140.dll +0 -0
  314. mindspore/pgort140.dll +0 -0
  315. mindspore/profiler/__init__.py +2 -1
  316. mindspore/profiler/analysis/parser/timeline_assembly_factory/ascend_timeline_assembler.py +7 -7
  317. mindspore/profiler/analysis/parser/timeline_assembly_factory/base_timeline_assembler.py +3 -0
  318. mindspore/profiler/analysis/parser/timeline_assembly_factory/trace_view_container.py +12 -6
  319. mindspore/profiler/analysis/parser/timeline_creator/cpu_op_timeline_creator.py +3 -3
  320. mindspore/profiler/analysis/parser/timeline_creator/fwk_timeline_creator.py +3 -3
  321. mindspore/profiler/analysis/parser/timeline_creator/msprof_timeline_creator.py +4 -4
  322. mindspore/profiler/analysis/parser/timeline_creator/scope_layer_timeline_creator.py +3 -3
  323. mindspore/profiler/analysis/parser/timeline_event/fwk_event.py +4 -1
  324. mindspore/profiler/analysis/parser/timeline_event/timeline_event_pool.py +2 -1
  325. mindspore/profiler/analysis/task_manager.py +1 -1
  326. mindspore/profiler/analysis/viewer/ascend_communication_viewer.py +5 -1
  327. mindspore/profiler/analysis/viewer/ascend_integrate_viewer.py +2 -1
  328. mindspore/profiler/analysis/viewer/ascend_kernel_details_viewer.py +10 -9
  329. mindspore/profiler/analysis/viewer/ascend_op_memory_viewer.py +43 -23
  330. mindspore/profiler/analysis/viewer/ascend_step_trace_time_viewer.py +3 -2
  331. mindspore/profiler/analysis/viewer/ms_minddata_viewer.py +9 -5
  332. mindspore/profiler/analysis/viewer/ms_operator_details_viewer.py +132 -0
  333. mindspore/profiler/common/constant.py +16 -0
  334. mindspore/profiler/common/msprof_cmd_tool.py +2 -2
  335. mindspore/profiler/common/path_manager.py +9 -0
  336. mindspore/profiler/common/profiler_context.py +50 -29
  337. mindspore/profiler/common/profiler_info.py +0 -16
  338. mindspore/profiler/common/profiler_meta_data.py +1 -0
  339. mindspore/profiler/common/profiler_op_analyse.py +239 -0
  340. mindspore/profiler/common/profiler_output_path.py +23 -8
  341. mindspore/profiler/common/profiler_parameters.py +128 -35
  342. mindspore/profiler/dynamic_profile/__init__.py +0 -0
  343. mindspore/profiler/dynamic_profile/dynamic_monitor_proxy.py +39 -0
  344. mindspore/profiler/dynamic_profile/dynamic_profiler_config_context.py +666 -0
  345. mindspore/profiler/dynamic_profile/dynamic_profiler_utils.py +62 -0
  346. mindspore/profiler/dynamic_profiler.py +374 -338
  347. mindspore/profiler/envprofiler.py +42 -12
  348. mindspore/profiler/experimental_config.py +112 -7
  349. mindspore/profiler/mstx.py +33 -12
  350. mindspore/profiler/platform/__init__.py +2 -3
  351. mindspore/profiler/platform/cpu_profiler.py +10 -4
  352. mindspore/profiler/platform/npu_profiler.py +30 -20
  353. mindspore/profiler/profiler.py +218 -154
  354. mindspore/profiler/profiler_action_controller.py +65 -77
  355. mindspore/profiler/profiler_interface.py +2 -2
  356. mindspore/profiler/schedule.py +10 -4
  357. mindspore/rewrite/common/config.py +1 -0
  358. mindspore/rewrite/common/namer.py +1 -0
  359. mindspore/rewrite/common/namespace.py +1 -0
  360. mindspore/rewrite/node/node.py +31 -11
  361. mindspore/rewrite/parsers/assign_parser.py +1 -1
  362. mindspore/rewrite/symbol_tree/symbol_tree.py +2 -2
  363. mindspore/run_check/_check_version.py +7 -10
  364. mindspore/runtime/__init__.py +8 -6
  365. mindspore/runtime/event.py +10 -4
  366. mindspore/runtime/executor.py +87 -45
  367. mindspore/runtime/memory.py +31 -32
  368. mindspore/runtime/thread_bind_core.py +299 -165
  369. mindspore/safeguard/rewrite_obfuscation.py +12 -13
  370. mindspore/swresample-4.dll +0 -0
  371. mindspore/swscale-6.dll +0 -0
  372. mindspore/tbbmalloc.dll +0 -0
  373. mindspore/tinyxml2.dll +0 -0
  374. mindspore/train/_utils.py +17 -7
  375. mindspore/train/amp.py +43 -23
  376. mindspore/train/callback/__init__.py +5 -5
  377. mindspore/train/callback/_callback.py +2 -1
  378. mindspore/train/callback/_checkpoint.py +4 -14
  379. mindspore/train/callback/_flops_collector.py +11 -7
  380. mindspore/train/callback/_landscape.py +0 -1
  381. mindspore/train/callback/_train_fault_tolerance.py +98 -21
  382. mindspore/train/data_sink.py +15 -6
  383. mindspore/train/dataset_helper.py +14 -5
  384. mindspore/train/model.py +133 -69
  385. mindspore/train/serialization.py +168 -126
  386. mindspore/train/summary/summary_record.py +13 -2
  387. mindspore/train/train_thor/model_thor.py +2 -2
  388. mindspore/turbojpeg.dll +0 -0
  389. mindspore/utils/__init__.py +3 -2
  390. mindspore/utils/dryrun.py +0 -6
  391. mindspore/utils/runtime_execution_order_check.py +163 -77
  392. mindspore/utils/sdc_detect.py +68 -0
  393. mindspore/utils/utils.py +14 -17
  394. mindspore/vcmeta.dll +0 -0
  395. mindspore/vcruntime140.dll +0 -0
  396. mindspore/vcruntime140_1.dll +0 -0
  397. mindspore/version.py +1 -1
  398. {mindspore-2.6.0rc1.dist-info → mindspore-2.7.0.dist-info}/METADATA +5 -4
  399. {mindspore-2.6.0rc1.dist-info → mindspore-2.7.0.dist-info}/RECORD +403 -442
  400. mindspore/_deprecated/jit.py +0 -198
  401. mindspore/_extends/remote/kernel_build_server_ascend.py +0 -75
  402. mindspore/communication/_hccl_management.py +0 -297
  403. mindspore/experimental/es/embedding_service.py +0 -891
  404. mindspore/experimental/es/embedding_service_layer.py +0 -581
  405. mindspore/profiler/common/validator/__init__.py +0 -14
  406. mindspore/profiler/common/validator/validate_path.py +0 -84
  407. mindspore/profiler/parser/__init__.py +0 -14
  408. mindspore/profiler/parser/aicpu_data_parser.py +0 -272
  409. mindspore/profiler/parser/ascend_analysis/__init__.py +0 -14
  410. mindspore/profiler/parser/ascend_analysis/constant.py +0 -71
  411. mindspore/profiler/parser/ascend_analysis/file_manager.py +0 -180
  412. mindspore/profiler/parser/ascend_analysis/function_event.py +0 -185
  413. mindspore/profiler/parser/ascend_analysis/fwk_cann_parser.py +0 -136
  414. mindspore/profiler/parser/ascend_analysis/fwk_file_parser.py +0 -131
  415. mindspore/profiler/parser/ascend_analysis/msprof_timeline_parser.py +0 -104
  416. mindspore/profiler/parser/ascend_analysis/path_manager.py +0 -313
  417. mindspore/profiler/parser/ascend_analysis/profiler_info_parser.py +0 -123
  418. mindspore/profiler/parser/ascend_analysis/tlv_decoder.py +0 -86
  419. mindspore/profiler/parser/ascend_analysis/trace_event_manager.py +0 -75
  420. mindspore/profiler/parser/ascend_cluster_generator.py +0 -116
  421. mindspore/profiler/parser/ascend_communicate_generator.py +0 -314
  422. mindspore/profiler/parser/ascend_flops_generator.py +0 -116
  423. mindspore/profiler/parser/ascend_fpbp_generator.py +0 -82
  424. mindspore/profiler/parser/ascend_hccl_generator.py +0 -271
  425. mindspore/profiler/parser/ascend_integrate_generator.py +0 -42
  426. mindspore/profiler/parser/ascend_memory_generator.py +0 -185
  427. mindspore/profiler/parser/ascend_msprof_exporter.py +0 -282
  428. mindspore/profiler/parser/ascend_msprof_generator.py +0 -187
  429. mindspore/profiler/parser/ascend_op_generator.py +0 -334
  430. mindspore/profiler/parser/ascend_steptrace_generator.py +0 -94
  431. mindspore/profiler/parser/ascend_timeline_generator.py +0 -545
  432. mindspore/profiler/parser/base_timeline_generator.py +0 -483
  433. mindspore/profiler/parser/container.py +0 -229
  434. mindspore/profiler/parser/cpu_gpu_timeline_generator.py +0 -697
  435. mindspore/profiler/parser/flops_parser.py +0 -531
  436. mindspore/profiler/parser/framework_enum.py +0 -111
  437. mindspore/profiler/parser/framework_parser.py +0 -464
  438. mindspore/profiler/parser/framework_struct.py +0 -61
  439. mindspore/profiler/parser/gpu_analysis/__init__.py +0 -14
  440. mindspore/profiler/parser/gpu_analysis/function_event.py +0 -44
  441. mindspore/profiler/parser/gpu_analysis/fwk_file_parser.py +0 -89
  442. mindspore/profiler/parser/gpu_analysis/profiler_info_parser.py +0 -72
  443. mindspore/profiler/parser/hccl_parser.py +0 -573
  444. mindspore/profiler/parser/hwts_log_parser.py +0 -122
  445. mindspore/profiler/parser/integrator.py +0 -526
  446. mindspore/profiler/parser/memory_usage_parser.py +0 -277
  447. mindspore/profiler/parser/minddata_analyzer.py +0 -800
  448. mindspore/profiler/parser/minddata_parser.py +0 -186
  449. mindspore/profiler/parser/minddata_pipeline_parser.py +0 -299
  450. mindspore/profiler/parser/op_intermediate_parser.py +0 -149
  451. mindspore/profiler/parser/optime_parser.py +0 -250
  452. mindspore/profiler/parser/profiler_info.py +0 -213
  453. mindspore/profiler/parser/step_trace_parser.py +0 -666
  454. mindspore/utils/hooks.py +0 -81
  455. /mindspore/common/{_auto_dynamic.py → dynamic_shape/_auto_dynamic.py} +0 -0
  456. {mindspore-2.6.0rc1.dist-info → mindspore-2.7.0.dist-info}/WHEEL +0 -0
  457. {mindspore-2.6.0rc1.dist-info → mindspore-2.7.0.dist-info}/entry_points.txt +0 -0
  458. {mindspore-2.6.0rc1.dist-info → mindspore-2.7.0.dist-info}/top_level.txt +0 -0
@@ -16,14 +16,23 @@
16
16
  from mindspore._c_expression import _add_instance
17
17
  from mindspore._c_expression import _addcdiv_instance
18
18
  from mindspore._c_expression import _all_gather_matmul_instance
19
+ from mindspore._c_expression import _any_instance
20
+ from mindspore._c_expression import _bernoulli__instance
19
21
  from mindspore._c_expression import _bitwise_not_instance
20
22
  from mindspore._c_expression import _clamp_instance
23
+ from mindspore._c_expression import _conv3d_instance
21
24
  from mindspore._c_expression import _div_instance
25
+ from mindspore._c_expression import _einsum_instance
22
26
  from mindspore._c_expression import _empty_instance
27
+ from mindspore._c_expression import _empty_like_instance
23
28
  from mindspore._c_expression import _floor_divide_instance
24
29
  from mindspore._c_expression import _fmod_instance
25
30
  from mindspore._c_expression import _gelu_instance
31
+ from mindspore._c_expression import _gmm_instance
32
+ from mindspore._c_expression import _gmm_backward_instance
33
+ from mindspore._c_expression import _gmm_backward_fusion_instance
26
34
  from mindspore._c_expression import _greater_equal_instance
35
+ from mindspore._c_expression import _index_add_instance
27
36
  from mindspore._c_expression import _kthvalue_instance
28
37
  from mindspore._c_expression import _lerp_instance
29
38
  from mindspore._c_expression import _matmul_reduce_scatter_instance
@@ -31,8 +40,10 @@ from mindspore._c_expression import _max_instance
31
40
  from mindspore._c_expression import _min_instance
32
41
  from mindspore._c_expression import _nansum_instance
33
42
  from mindspore._c_expression import _pixel_shuffle_instance
43
+ from mindspore._c_expression import _quant_matmul_instance
34
44
  from mindspore._c_expression import _remainder_instance
35
45
  from mindspore._c_expression import _repeat_interleave_instance
46
+ from mindspore._c_expression import _rmod_instance
36
47
  from mindspore._c_expression import _sub_instance
37
48
  from mindspore._c_expression import _where_instance
38
49
  from mindspore._c_expression import _xlogy_instance
@@ -56,10 +67,10 @@ def add(*args, **kwargs):
56
67
  Args:
57
68
  input (Union[Tensor, number.Number, bool]): `input` is a number.Number or a bool or a tensor whose data type is
58
69
  `number <https://www.mindspore.cn/docs/en/master/api_python/mindspore/mindspore.dtype.html>`_ or
59
- `bool_ <https://www.mindspore.cn/docs/en/master/api_python/mindspore/mindspore.dtype.html>`_.
70
+ `bool <https://www.mindspore.cn/docs/en/master/api_python/mindspore/mindspore.dtype.html>`_.
60
71
  other (Union[Tensor, number.Number, bool]): `other` is a number.Number or a bool or a tensor whose data type is
61
72
  `number <https://www.mindspore.cn/docs/en/master/api_python/mindspore/mindspore.dtype.html>`_ or
62
- `bool_ <https://www.mindspore.cn/docs/en/master/api_python/mindspore/mindspore.dtype.html>`_.
73
+ `bool <https://www.mindspore.cn/docs/en/master/api_python/mindspore/mindspore.dtype.html>`_.
63
74
 
64
75
  Keyword Args:
65
76
  alpha (number.Number, optional): A scaling factor applied to `other`, default ``1``.
@@ -261,6 +272,61 @@ def all_gather_matmul(*args, **kwargs):
261
272
  return _all_gather_matmul_instance(*args, **kwargs)
262
273
 
263
274
 
275
+ def any(*args, **kwargs):
276
+ r"""
277
+ any(input) -> Tensor
278
+
279
+ Check if ``True`` is present in `input` .
280
+
281
+ Args:
282
+ input (Tensor): The input tensor.
283
+
284
+ Returns:
285
+ Tensor
286
+
287
+ Supported Platforms:
288
+ ``Ascend`` ``GPU`` ``CPU``
289
+
290
+ Examples:
291
+ >>> import mindspore
292
+ >>> input = mindspore.tensor([[True, False], [True, True]])
293
+ >>> mindspore.ops.functional_overload.any(input)
294
+ Tensor(shape=[], dtype=Bool, value= True)
295
+
296
+ .. function:: any(input, dim, keepdim=False) -> Tensor
297
+ :noindex:
298
+
299
+ Check if ``True`` is present in the specified dimension of `input` .
300
+
301
+ Args:
302
+ input (Tensor): The input tensor.
303
+ dim (int): The dimensions to reduce.
304
+ keepdim (bool, optional): Whether the output tensor has dim retained or not. Default ``False`` .
305
+
306
+ Returns:
307
+ Tensor
308
+
309
+ Supported Platforms:
310
+ ``Ascend`` ``GPU`` ``CPU``
311
+
312
+ Examples:
313
+ >>> import mindspore
314
+ >>> input = mindspore.tensor([[True, False], [True, True]])
315
+ >>> mindspore.ops.functional_overload.any(input, dim=1)
316
+ Tensor(shape=[2], dtype=Bool, value= [ True, True])
317
+ """
318
+ return _any_instance(*args, **kwargs)
319
+
320
+
321
+ def bernoulli_(*args, **kwargs):
322
+ r"""
323
+ bernoulli_(input, p, seed, offset) -> Tensor
324
+
325
+ Inner function, used for Tensor.bernoulli_.
326
+ """
327
+ return _bernoulli__instance(*args, **kwargs)
328
+
329
+
264
330
  def bitwise_not(*args, **kwargs):
265
331
  r"""
266
332
  bitwise_not(input) -> Tensor
@@ -373,6 +439,143 @@ def clip(*args, **kwargs):
373
439
  return _clamp_instance(*args, **kwargs)
374
440
 
375
441
 
442
+ def conv3d(*args, **kwargs):
443
+ r"""
444
+ conv3d(input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1) -> Tensor
445
+
446
+ Applies a 3D convolution over an input tensor. The input tensor is typically of
447
+ shape :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})` or :math:`(C_{in}, D_{in}, H_{in}, W_{in})`,
448
+ where :math:`N` is batch size, :math:`C` is channel number, :math:`D, H, W` are the depth,
449
+ height and width of the feature graph, respectively.
450
+
451
+ The output is calculated based on formula:
452
+
453
+ .. math::
454
+
455
+ \text{out}(N_i, C_{\text{out}_j}) = \text{bias}(C_{\text{out}_j}) +
456
+ \sum_{k = 0}^{C_{in} - 1} \text{ccor}({\text{weight}(C_{\text{out}_j}, k), \text{X}(N_i, k)})
457
+
458
+ where :math:`bias` is the output channel bias, :math:`ccor` is
459
+ the `cross-correlation <https://en.wikipedia.org/wiki/Cross-correlation>`_
460
+ , :math:`weight` is the convolution kernel value and :math:`X` represents the input feature map.
461
+
462
+ Here are the indices' meanings:
463
+
464
+ - :math:`i` corresponds to the batch number, the range is :math:`[0, N-1]`,
465
+ where :math:`N` is the batch size of the input.
466
+
467
+ - :math:`j` corresponds to the output channel, the range is :math:`[0, C_{out}-1]`,
468
+ where :math:`C_{out}` is the number of
469
+ output channels, which is also equal to the number of kernels.
470
+
471
+ - :math:`k` corresponds to the input channel, the range is :math:`[0, C_{in}-1]`,
472
+ where :math:`C_{in}` is the number of
473
+ input channels, which is also equal to the number of channels in the convolutional kernels.
474
+
475
+ Therefore, in the above formula, :math:`{bias}(C_{\text{out}_j})` represents the bias of the :math:`j`-th
476
+ output channel, :math:`{weight}(C_{\text{out}_j}, k)` represents the slice of the :math:`j`-th convolutional
477
+ kernel in the :math:`k`-th channel, and :math:`{X}(N_i, k)` represents the slice of the :math:`k`-th input
478
+ channel in the :math:`i`-th batch of the input feature map.
479
+
480
+ The shape of the convolutional kernel is given by :math:`(kd, kh, kw)` where :math:`kd` , :math:`kd` and\
481
+ :math:`kw` are the depth, height and width of the kernel, respectively.
482
+ If we consider the input and output channels as well as the `group` parameter, the complete kernel shape
483
+ will be :math:`(C_{out}, C_{in} / \text{group}, kd, kh, kw)`,
484
+ where `group` is the number of groups dividing `x`'s input channel when applying group convolution.
485
+
486
+ For more details about convolution layer, please refer to `Gradient Based Learning Applied to Document Recognition
487
+ <http://vision.stanford.edu/cs598_spring07/papers/Lecun98.pdf>`_.
488
+
489
+ The following lists some of the limitations of the parameters.
490
+
491
+ - input -- The input to the conv3d. The input must have each dimension size within the range [1, int32_max].
492
+ - weight -- Filters of shape :math:`(C_{out}, C_{in} / groups, kd, kh, kw)`. The value of :math:`kh`
493
+ and :math:`kw` is in the range [1, 511]. The remaining values are in the range [1, int32_max].
494
+ And :math:`kh*kw*k0` is less 65536 (k0 is 16. If data type is float32, k0 is 8).
495
+ - bias -- Bias Tensor with shape :math:`(C_{out})`. The shape must equal to the first dimension of the weight.
496
+ - stride -- The distance of kernel moving. It can be an int number or
497
+ tuple (noted by :math:`(stride_d, stride_h, stride_w)`). stride_h and stride_w are in the range [1, 63].
498
+ stride_d is in the range [1, 255].
499
+ - padding -- If padding is an int number, it is in the range [0, 255].
500
+ - dilation -- The value is in the range [1, 255].
501
+ - groups -- The value is in the range [1, 65535].
502
+ - :math:`C_{in} \% \text{groups} == 0 \quad \text{and} \quad C_{out} \% \text{groups} == 0` .
503
+ - :math:`weight[1] == C_{in} / groups` .
504
+ - :math:`H_{in} + PadUp + PadDown >= (kh - 1) * DilationH + 1` .
505
+ - :math:`W_{in} + PadLeft + PadRight >= (kw - 1) * DilationW + 1` .
506
+ - :math:`D_{in} + PadFront + PadBack >= (kd - 1) * DilationD + 1` .
507
+ - :math:`H_{out} = (H_{in} + PadUp + PadDown - ((kh - 1) * DilationH + 1)) / StrideH + 1` .
508
+ - :math:`W_{out} = (W_{in} + PadLeft + PadRight - ((kw - 1) * DilationW + 1)) / StrideW + 1` .
509
+ - :math:`D_{out} = (D_{in} + PadFront + PadBack - ((kd - 1) * DilationD + 1)) / StrideD + 1` .
510
+ - :math:`(D_{in}+PadFront+PadBack - ((kd-1)*DilationD+1)) \% StrideD <= PadBack` .
511
+ - :math:`(H_{in}+PadUp+PadDown - ((kh-1)*Dilationh+1)) \% StrideH <= PadDown` .
512
+ - :math:`stride_d <= kernel_d` .
513
+ - :math:`PadUp < kh` and :math:`PadDown < kh` . When `padding` = ``'valid'``, both PadUp and PadDown are zeros.
514
+ When `padding` = ``'same'``, pad can be calculated by
515
+ :math:`floor(((H_{out}-1) * strideH + (kh - 1) * DilationH + 1 - H_{in}) / 2)` for high dimension.
516
+ It is similar way to calculate the padding for depth and width dimension. And the depth and width
517
+ dimensions also have the same constraints.
518
+ - :math:`((kh - 1) * DilationH - PadUp)` should be in [0, 255]. It is the same constraint for depth
519
+ and width dimension.
520
+ - If `padding` is ``'same'``, `stride` must be 1.
521
+
522
+ .. warning::
523
+ It is only supported on Atlas A2 Training Series Products.
524
+
525
+ Args:
526
+ input (Tensor): Tensor of shape :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`.
527
+ weight (Tensor): Set size of kernel is :math:`(kd, kh,
528
+ kw)`, then the shape is :math:`(C_{out}, C_{in} / groups, kd, kh, kw)`.
529
+ bias (Tensor, optional): Bias Tensor with shape :math:`(C_{out})`.
530
+ When bias is ``None`` , zeros will be used. Default: ``None`` .
531
+ stride (Union(int, tuple[int], list[int]), optional): The distance of kernel moving, an int
532
+ number that represents the depth, the height and width of movement are both strides, or a
533
+ tuple of triple int numbers that
534
+ represent the depth, height and width of movement respectively. Default: ``1`` .
535
+ padding (Union(int, tuple[int], list[int], str), optional): Implicit paddings on both sides of the input `x`.
536
+ Can be a string, one integer or a tuple/list with 3 integers.
537
+ If `padding` is a string, the optional values are ``"same"`` , ``"valid"``.
538
+
539
+ - same: Adopts the way of completion. The height and width of the output will be equal to
540
+ the input `x` divided by stride. The padding will be evenly calculated in top and bottom,
541
+ left and right possiblily. Otherwise, the last extra padding will be calculated from the bottom
542
+ and the right side. If this mode is set, `stride` must be 1.
543
+
544
+ - valid: Adopts the way of discarding. The possible largest height and width of output will be returned
545
+ without padding. Extra pixels will be discarded.
546
+
547
+ If `padding` is one integer, the paddings of top, bottom, left and right are the same, equal to padding.
548
+ If `padding` is a tuple/list with 3 integers, the padding of head, tail, top, bottom,
549
+ left and right equal to pad[0], pad[0], pad[1], pad[1], pad[2] and pad[2] correspondingly. Default: ``0`` .
550
+ dilation (Union[int, tuple[int], list[int]], optional): Controlling the space between the kernel points.
551
+ Default: ``1`` .
552
+ groups (int, optional): Splits `input` into groups. Default: ``1`` .
553
+
554
+ Returns:
555
+ Tensor, the same dtype as the `input`, with the shape :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
556
+ or :math:`(C_{out}, D_{out}, H_{out}, W_{out})`.
557
+
558
+ Raises:
559
+ TypeError: If `stride`, `padding` or `dilation` is neither an int nor a tuple.
560
+ TypeError: `groups` is not an int.
561
+ TypeError: If `bias` is not a Tensor.
562
+
563
+ Supported Platforms:
564
+ ``Ascend``
565
+
566
+ Examples:
567
+ >>> import mindspore
568
+ >>> import numpy as np
569
+ >>> from mindspore import mint
570
+ >>> x = mindspore.Tensor(np.random.randn(12, 1, 60, 50, 8), mindspore.float16)
571
+ >>> w = mindspore.Tensor(np.random.randn(26, 1, 2, 4, 4), mindspore.float16)
572
+ >>> out = mint.nn.functional.conv3d(x, w)
573
+ >>> print(out.shape)
574
+ (12, 26, 59, 47, 5)
575
+ """
576
+ return _conv3d_instance(*args, **kwargs)
577
+
578
+
376
579
  def div(*args, **kwargs):
377
580
  r"""
378
581
  div(input, other, *, rounding_mode=None) -> Tensor
@@ -386,7 +589,7 @@ def div(*args, **kwargs):
386
589
  .. note::
387
590
  - When the two inputs have different shapes, they must be able to broadcast to a common shape.
388
591
  - The two inputs can not be bool type at the same time,
389
- [True, Tensor(True, bool\_), Tensor(np.array([True]), bool\_)] are all considered bool type.
592
+ [True, Tensor(True), Tensor(np.array([True]))] are all considered bool type.
390
593
  - The two inputs comply with the implicit type conversion rules to make the data types
391
594
  consistent.
392
595
 
@@ -438,9 +641,106 @@ def divide(*args, **kwargs):
438
641
  return _div_instance(*args, **kwargs)
439
642
 
440
643
 
644
+ def einsum(*args, **kwargs):
645
+ r"""
646
+ According to the Einstein summation Convention (Einsum),
647
+ the product of the input tensor elements is summed along the specified dimension.
648
+ You can use this operator to perform diagonal, reducesum, transpose, matmul, mul, inner product operations, etc.
649
+
650
+ Note:
651
+ The sublist format is also supported. For example, einsum_ext(op1, sublist1, op2, sublist2, ..., sublist_out).
652
+ In this format, equation can be derived by the sublists which are made up of Python's Ellipsis and list of
653
+ integers in [0, 52). Each operand is followed by a sublist and an output sublist is at the end.
654
+ Dynamic shape, dynamic rank input is not supported in `graph mode (mode=mindspore.GRAPH_MODE)
655
+ <https://www.mindspore.cn/tutorials/en/master/compile/static_graph.html>`_.
656
+
657
+ .. warning::
658
+ This is an experimental API that is subject to change or deletion.
659
+
660
+ Args:
661
+ equation (str): Notation based on the Einstein summation convention, represent the operation you want to do.
662
+ the value can contain only letters, commas, ellipsis and arrow. The letters(must be in [a-zA-Z]) represent
663
+ input tensor dimension, commas(,) represent separate tensors, ellipsis indicates the tensor dimension that
664
+ you do not care about, the left of the arrow indicates the input tensors, and the right of it indicates the
665
+ desired output dimension. If there are no arrows in the equation, the letters that appear exactly once in
666
+ the equation will be part of the output, sorted in increasing alphabetical order. The output is computed by
667
+ multiplying the input operands element-wise, with their dimensions aligned based on the letters, and then
668
+ summing out the dimensions whose letters are not part of the output. If there is one arrow in the equation,
669
+ the output letters must appear at least once for some input operand and at most once for the output.
670
+ operands (Tensor): Input tensor used for calculation. The dtype of the tensor must be the same.
671
+
672
+ Returns:
673
+ Tensor, the shape of it can be obtained from the `equation` , and the dtype is the same as input tensors.
674
+
675
+ Raises:
676
+ TypeError: If `equation` is invalid, or the `equation` does not match the input tensor.
677
+ ValueError: If the number in sublist is not in [0, 52) in sublist format.
678
+
679
+ Supported Platforms:
680
+ ``Ascend``
681
+
682
+ Examples:
683
+ >>> import mindspore
684
+ >>> import numpy as np
685
+ >>> from mindspore import Tensor, ops
686
+ >>> x = Tensor(np.array([1.0, 2.0, 4.0]), mindspore.float32)
687
+ >>> equation = "i->"
688
+ >>> output = ops.einsum_ext(equation, x)
689
+ >>> print(output)
690
+ 7.0
691
+ >>> x = Tensor(np.array([1.0, 2.0, 4.0]), mindspore.float32)
692
+ >>> y = Tensor(np.array([2.0, 4.0, 3.0]), mindspore.float32)
693
+ >>> equation = "i,i->i"
694
+ >>> output = ops.einsum_ext(equation, x, y)
695
+ >>> print(output)
696
+ [ 2. 8. 12.]
697
+ >>> x = Tensor(np.array([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]]), mindspore.float32)
698
+ >>> y = Tensor(np.array([[2.0, 3.0], [1.0, 2.0], [4.0, 5.0]]), mindspore.float32)
699
+ >>> equation = "ij,jk->ik"
700
+ >>> output = ops.einsum_ext(equation, x, y)
701
+ >>> print(output)
702
+ [[16. 22.]
703
+ [37. 52.]]
704
+ >>> x = Tensor(np.array([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]]), mindspore.float32)
705
+ >>> equation = "ij->ji"
706
+ >>> output = ops.einsum_ext(equation, x)
707
+ >>> print(output)
708
+ [[1. 4.]
709
+ [2. 5.]
710
+ [3. 6.]]
711
+ >>> x = Tensor(np.array([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]]), mindspore.float32)
712
+ >>> equation = "ij->j"
713
+ >>> output = ops.einsum_ext(equation, x)
714
+ >>> print(output)
715
+ [5. 7. 9.]
716
+ >>> x = Tensor(np.array([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]]), mindspore.float32)
717
+ >>> equation = "...->"
718
+ >>> output = ops.einsum_ext(equation, x)
719
+ >>> print(output)
720
+ 21.0
721
+ >>> x = Tensor(np.array([1.0, 2.0, 3.0]), mindspore.float32)
722
+ >>> y = Tensor(np.array([2.0, 4.0, 1.0]), mindspore.float32)
723
+ >>> equation = "j,i->ji"
724
+ >>> output = ops.einsum_ext(equation, x, y)
725
+ >>> print(output)
726
+ [[ 2. 4. 1.]
727
+ [ 4. 8. 2.]
728
+ [ 6. 12. 3.]]
729
+ >>> x = mindspore.Tensor([1, 2, 3, 4], mindspore.float32)
730
+ >>> y = mindspore.Tensor([1, 2], mindspore.float32)
731
+ >>> output = ops.einsum_ext(x, [..., 1], y, [..., 2], [..., 1, 2])
732
+ >>> print(output)
733
+ [[1. 2.]
734
+ [2. 4.]
735
+ [3. 6.]
736
+ [4. 8.]]
737
+ """
738
+ return _einsum_instance(*args, **kwargs)
739
+
740
+
441
741
  def empty(*args, **kwargs):
442
742
  r"""
443
- empty(*size, dtype=None, device=None) -> Tensor
743
+ empty(*size, *, dtype=None, device=None) -> Tensor
444
744
 
445
745
  Creates a tensor with uninitialized data, whose shape, dtype and device are described by the argument `size`,
446
746
  `dtype` and `device` respectively.
@@ -450,22 +750,23 @@ def empty(*args, **kwargs):
450
750
 
451
751
  Args:
452
752
  size (Union[tuple[int], list[int], int]): The specified shape of output tensor. Can be variable numbers of
453
- positive integers or tupled or list containing positive integers.
753
+ positive integers or tuple or list containing positive integers.
454
754
 
455
755
  Keyword Args:
456
756
  dtype (:class:`mindspore.dtype`, optional): The specified type of output tensor. If `dtype` is ``None`` ,
457
757
  `mindspore.float32` will be used. Default: ``None`` .
458
- device (string, optional): The specified device of the output tensor. Support ``CPU`` and ``Ascend``. If
459
- `device = None`, `mindspore.context.device_target` will be used. Default ``None``.
758
+ device (string, optional): The specified device of the output tensor. In PyNative mode, ``"Ascend"``, ``"npu"``,
759
+ ``"cpu"`` and ``"CPU"`` are supported. In graph mode O0, ``"Ascend"`` and ``"npu"`` are supported. If `device = None`,
760
+ `mindspore.context.device_target` will be used. Default ``None``.
460
761
 
461
762
  Returns:
462
- Tensor, whose dtype and size are defined by input.
763
+ Tensor, whose shape, dtype and device are defined by input.
463
764
 
464
765
  Raises:
465
766
  TypeError: If `size` is neither an int nor a tuple or list of int.
466
767
 
467
768
  Supported Platforms:
468
- ``Ascend``
769
+ ``Ascend`` ``CPU``
469
770
 
470
771
  Examples:
471
772
  >>> import mindspore
@@ -478,8 +779,55 @@ def empty(*args, **kwargs):
478
779
  return _empty_instance(*args, **kwargs)
479
780
 
480
781
 
782
+ def empty_like(*args, **kwargs):
783
+ r"""
784
+ empty_like(input, *, dtype=None, device=None) -> Tensor
785
+
786
+ Returns an uninitialized Tensor with the same shape as the `input`. Its dtype is specified by `dtype` and its
787
+ device is specified by `device`.
788
+
789
+ .. warning::
790
+ This is an experimental API that is subject to change or deletion.
791
+
792
+ Args:
793
+ input (Tensor): Tensor of any dimension.
794
+
795
+ Keyword Args:
796
+ dtype (:class:`mindspore.dtype`, optional): The specified dtype of the output tensor. If `dtype = None`, the
797
+ tensor will have the same dtype as input `input`. Default ``None``.
798
+ device (string, optional): The specified device of the output tensor. In PyNative mode, ``"Ascend"``, ``"npu"``,
799
+ ``"cpu"`` and ``"CPU"`` are supported. In graph mode O0, ``"Ascend"`` and ``"npu"`` are supported. If `device = None`,
800
+ the value set by :func:`mindspore.set_device` will be used. Default ``None``.
801
+
802
+ Returns:
803
+ Tensor, has the same shape, type and device as `input` but with uninitialized data (May be a random value).
804
+
805
+ Raises:
806
+ TypeError: If `input` is not a Tensor.
807
+
808
+ Supported Platforms:
809
+ ``Ascend`` ``CPU``
810
+
811
+ Examples:
812
+ >>> import mindspore
813
+ >>> from mindspore import ops, Tensor
814
+ >>> x = Tensor([[1, 2, 3], [4, 5, 6]])
815
+ >>> output1 = ops.empty_like(x)
816
+ >>> print(output1)
817
+ [[0 0 0]
818
+ [0 0 0]]
819
+ >>> output2 = ops.empty_like(x, dtype=mindspore.float64)
820
+ >>> print(output2)
821
+ [[0. 0. 0.]
822
+ [0. 0. 0.]]
823
+ """
824
+ return _empty_like_instance(*args, **kwargs)
825
+
826
+
481
827
  def floor_divide(*args, **kwargs):
482
828
  r"""
829
+ floor_divide(input, other) -> Tensor
830
+
483
831
  Divides the first input tensor by the second input tensor element-wise and round down to the closest integer.
484
832
 
485
833
  Inputs of `input` and `other` comply with the implicit type conversion rules to make the data types consistent.
@@ -641,6 +989,108 @@ def gelu(*args, **kwargs):
641
989
  return _gelu_instance(*args, **kwargs)
642
990
 
643
991
 
992
+ def gmm(*args, **kwargs):
993
+ r"""
994
+ gmm(x, weight, bias=None, group_list=None, group_type=0, group_list_type=0) -> tuple[Tensor]
995
+
996
+ Grouping matrix multiplication.
997
+
998
+ .. warning::
999
+ - This is an experimental API that is subject to change or deletion.
1000
+ - `group_type` must be a constant.
1001
+ - Only support on Atlas A2 training series.
1002
+ - When the type of `group_list` is tuple[int] or list[int], it should a non-negative non-decreasing sequence,
1003
+ indicating indexes of each group along the split axis. In this scenario, the arg `group_list_type` is useless.
1004
+
1005
+ .. note::
1006
+ - When `group_type` is 2, the tensors in `x` must be non-continuous tensors which has
1007
+ been transposed.
1008
+ - Only when `group_type` is 0 and `bias` is None, the reverse derivative is supported,
1009
+ which is implemented by ops.function.math_func.gmm_backward or through automatic differentiation.
1010
+
1011
+ Args:
1012
+ x (tuple[Tensor]): The first tensors to be multiplied, whose num should be 1.
1013
+ weight (tuple[Tensor]): The second tensors to be multiplied, whose num should be 1.
1014
+ bias (tuple[Tensor], optional): Biases added to outputs, whose num should be 1.
1015
+ The shape of each tensor in `bias` should be :math: `(group_list.shape[0], n)`
1016
+ or :math: `(len(group_list), n)`. In the training scenario, the bias only supports None.
1017
+ Default: ``None`` .
1018
+ group_list (Union[Tensor, list[int], tuple[int]], optional): 1-D Tensor, list[int]
1019
+ or tuple[int], indicating indexes or sizes of each group along the split axis.
1020
+ When `group_list` is list[int] or tuple[int], it's length should be less than or equal to 128.
1021
+ When `group_list` is a Tensor, it's size should be less than or equal to 1024.
1022
+ Supported dtypes: int64.
1023
+ Default: ``None`` .
1024
+
1025
+ - If `group_list_type` is 0, it must be a non-negative non-decreasing sequence.
1026
+ And when `group_type` is 0, the last element in `group_list` should be equal to
1027
+ the first dimension of the tensor in `x` . When `group_type` is 2, the last element
1028
+ in `group_list` should be equal to the second dimension of the tensor in `x` .
1029
+
1030
+ - If `group_list_type` is 1, the value in `group_list` are the sizes of each group.
1031
+ group_type (int, optional): Represents the axes that need to be grouped. For example,
1032
+ :math: `C[m,n] = A[m,k] \times B[k,n]`. Default: ``0`` .
1033
+
1034
+ - If `group_type` is 0, it means that the m-axis is grouped, meaning that the shape
1035
+ of each tensor in `x` should be :math: `(m, k)` , the shape of each tensor in `weight`
1036
+ should be :math: `(group_list.shape[0], k, n)` or :math: `(len(group_list), k, n)`,
1037
+ and the shape of each tensor in result would be :math: `(m, n)` .
1038
+
1039
+ - If `group_type` is 2, it means that the k-axis is grouped, meaning that
1040
+ the shape of each tensor in `x` should be :math: `(m, k)`, the shape of each
1041
+ tensor in `weight` should be :math: `(k, n)`, and the shape of each tensor
1042
+ in result would be :math: `(group_list.shape[0], m, n)` or :math: `(len(group_list), m, n)`.
1043
+ group_list_type (int, optional): If it's 0, the value in `group_list` are the cumsum
1044
+ result of the size of each group. If it's 1, the value in `group_list` are the size
1045
+ of each group. Default: ``0`` .
1046
+
1047
+ `x` , `weight` and `bias` only support the following 3 type combinations:
1048
+
1049
+ - x: float16, weight: float16, bias: float16
1050
+ - x: bfloat16, weight: bfloat16, bias: float32
1051
+ - x: float32, weight: float32, bias: float32
1052
+
1053
+ Returns:
1054
+ tuple[Tensor], the results of grouping matrix multiplication.
1055
+
1056
+ Supported Platforms:
1057
+ ``Ascend``
1058
+
1059
+ Examples:
1060
+ >>> import numpy as np
1061
+ >>> from mindspore import Tensor, ops
1062
+ >>> x = Tensor(np.random.uniform(0,1, (10, 20)).astype(np.float32))
1063
+ >>> weight = Tensor(np.random.uniform(0,1, (4, 20, 8)).astype(np.float32))
1064
+ >>> group_list = Tensor([2, 4, 2, 2])
1065
+ >>> y = ops.function.math_func.gmm([x,], [weight,], group_list=group_list, group_list_type=1)
1066
+ >>> print(y[0].shape)
1067
+ >>> (10, 8)
1068
+ >>> group_list = [2, 6, 8, 10]
1069
+ >>> y = ops.function.math_func.gmm([x,], [weight,], group_list=group_list, group_list_type=0)
1070
+ >>> print(y[0].shape)
1071
+ >>> (10, 8)
1072
+ """
1073
+ return _gmm_instance(*args, **kwargs)
1074
+
1075
+
1076
+ def gmm_backward(*args, **kwargs):
1077
+ r"""
1078
+ gmm_backward(grad, x, weight, *, group_list=None, group_list_type=0) -> tuple[tuple[Tensor]]
1079
+
1080
+ the grad of ops.function.math_func.gmm
1081
+ """
1082
+ return _gmm_backward_instance(*args, **kwargs)
1083
+
1084
+
1085
+ def gmm_backward_fusion(*args, **kwargs):
1086
+ r"""
1087
+ gmm_backward_fusion(grad, weight, *, group_list=None, group_list_type=0) -> tuple[tuple[Tensor]]
1088
+
1089
+ the grad of ops.function.math_func.gmm, only dx
1090
+ """
1091
+ return _gmm_backward_fusion_instance(*args, **kwargs)
1092
+
1093
+
644
1094
  def greater_equal(*args, **kwargs):
645
1095
  r"""
646
1096
  greater_equal(input, other) -> Tensor
@@ -667,10 +1117,10 @@ def greater_equal(*args, **kwargs):
667
1117
 
668
1118
  Args:
669
1119
  input (Union[Tensor, Number]): The first input is a number
670
- or a tensor whose data type is `number <https://www.mindspore.cn/docs/en/master/api_python/mindspore/mindspore.dtype.html#mindspore.dtype>`_ or `bool_ <https://www.mindspore.cn/docs/en/master/api_python/mindspore/mindspore.dtype.html#mindspore.dtype>`_.
1120
+ or a tensor whose data type is `number <https://www.mindspore.cn/docs/en/master/api_python/mindspore/mindspore.dtype.html#mindspore.dtype>`_ or `bool <https://www.mindspore.cn/docs/en/master/api_python/mindspore/mindspore.dtype.html#mindspore.dtype>`_.
671
1121
  other (Union[Tensor, Number]): Second input. When the first input is a Tensor, the second input should be a Number,
672
- or a Tensor of the number or bool_ data type. When the first input is a Scalar,
673
- the second input must be a Tensor of number or bool_ data type.
1122
+ or a Tensor of the number or bool data type. When the first input is a Scalar,
1123
+ the second input must be a Tensor of number or bool data type.
674
1124
 
675
1125
  Returns:
676
1126
  Tensor, the shape is the same as the one after broadcasting, and the data type is bool.
@@ -707,6 +1157,60 @@ def ge(*args, **kwargs):
707
1157
  return _greater_equal_instance(*args, **kwargs)
708
1158
 
709
1159
 
1160
+ def index_add(*args, **kwargs):
1161
+ r"""
1162
+ index_add(input, dim, index, source, *, alpha=1) -> Tensor
1163
+
1164
+ Accumulate the elements of `alpha` times `source` into the `input` by adding to the index in the order given in `index`. For example, if ``dim == 0`` , ``index[i] == j`` , and ``alpha = -1`` , then the `i` th row of `source` is subtracted from the `j` th row of `input` . The `dim` th dimension of `source` must have the same size as the length of `index` , and all other dimensions must match `input`, or an error will be raised. For a 3-D tensor, the output is defined as follows:
1165
+
1166
+ .. math::
1167
+ \begin{array}{ll}
1168
+ input[index[i],\ :,\ :]\ +=\ alpha * source[i,\ :,\ :] \qquad \#if\ dim == 0 \\
1169
+ input[:,\ \ index[i],\ :]\ +=\ alpha * source[:,\ \ i,\ :] \qquad \#if\ dim == 1 \\
1170
+ input[:,\ :,\ \ index[i]]\ +=\ alpha * source[:,\ :,\ \ i] \qquad\#if\ dim == 2 \\
1171
+ \end{array}
1172
+
1173
+ .. warning::
1174
+ This is an experimental API that is subject to change or deletion.
1175
+
1176
+ Args:
1177
+ input (Tensor): The input Tensor.
1178
+ dim (int): The dimension along which to index.
1179
+ index (Tensor): Add the value of "input Tensor" and `source` along the dimension of the `dim` according to the specified index value, with data type int32. The `index` must be 1D with the same size as the size of `source` in the `dim` dimension. The values of `index` should be in [0, b), where the b is the size of "input Tensor" in the `dim` dimension.
1180
+ source (Tensor): The input tensor with the value to add. Must have same data type as "input Tensor". The shape must be the same as "input Tensor" except the `dim` th dimension.
1181
+
1182
+ Keyword Args:
1183
+ alpha (number, optional): The scalar multiplier for source. Default: ``1``.
1184
+
1185
+ Returns:
1186
+ Tensor, has the same shape and dtype as `input`.
1187
+
1188
+ Raises:
1189
+ TypeError: If neither `index` nor `source` is a Tensor.
1190
+ ValueError: If the value of `dim` is out of the dimension range of `source` shape.
1191
+ ValueError: If `index` rank is not the same as `source` rank.
1192
+ ValueError: If shape of `index` is not 1D or size of `index` is not equal to dimension of source[dim].
1193
+ ValueError: If the shape of `source` is not the same as that of `input` except the `dim` axis.
1194
+
1195
+ Supported Platforms:
1196
+ ``Ascend``
1197
+
1198
+ Examples:
1199
+ >>> import numpy as np
1200
+ >>> import mindspore
1201
+ >>> from mindspore import Tensor, mint
1202
+ >>> x = Tensor(np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]), mindspore.float32)
1203
+ >>> index = Tensor(np.array([0, 2]), mindspore.int32)
1204
+ >>> y = Tensor(np.array([[0.5, 1.0], [1.0, 1.5], [2.0, 2.5]]), mindspore.float32)
1205
+ >>> output = mint.index_add(x, 1, index, y, alpha=1)
1206
+ >>> print(output)
1207
+ [[ 1.5 2. 4. ]
1208
+ [ 5. 5. 7.5]
1209
+ [ 9. 8. 11.5]]
1210
+ """
1211
+ return _index_add_instance(*args, **kwargs)
1212
+
1213
+
710
1214
  def kthvalue(*args, **kwargs):
711
1215
  r"""
712
1216
  Calculates the kth smallest value along given dim specified by `dim` of the input
@@ -1151,6 +1655,60 @@ def pixel_shuffle(*args, **kwargs):
1151
1655
  return _pixel_shuffle_instance(*args, **kwargs)
1152
1656
 
1153
1657
 
1658
+ def quant_matmul(*args, **kwargs):
1659
+ r"""
1660
+ quant_matmul(x1, x2, scale, *, offset=None, pertoken_scale=None, bias=None, output_dtype=None, x1_dtype=None, x2_dtype=None, pertoken_scale_dtype=None, scale_dtype=None, group_sizes=None) -> Tensor
1661
+
1662
+ Used for quantized matrix multiplication.
1663
+
1664
+ .. warning::
1665
+ This is an experimental API that is subject to change or deletion.
1666
+ Only support on David training series.
1667
+
1668
+ Args:
1669
+ x1 (Tensor): Tensor of shape :math:`(*, M, K)` . The dimension of `input` should be in [2, 6].
1670
+ x2 (Tensor): Tensor of shape :math:`(*, K, N)` . The dimension of `input` should be in [2, 6].
1671
+ scale (Tensor): Tensor of shape :math:`(T,)` . T should be equal to 1 or N, N is the last dimension of `x2`.
1672
+
1673
+ Keyword Args:
1674
+ offset (Tensor, optional): Tensor of shape :math:`(T,)` . T should be equal to 1 or N, N is the last dimension of `x2`. Default: ``None`` .
1675
+ pertoken_scale (Tensor, optional): Tensor of shape :math:`(M,)` . M is second-to-last dimension of `x1`. Default: ``None`` .
1676
+ A valid Tensor must deliver to `pertoken_scale` , ``None`` will cause unexpected error.
1677
+ bias (Tensor, optional): Tensor of shape :math:`(N,)` or :math:`(B, 1, N)` , N is the last dimension of `x2`.
1678
+ If dimension of `output` is 2, 4, 5 or 6, `bias` must has shape :math:`(N,)` . Default: ``None`` .
1679
+ output_dtype (:class:`mindspore.dtype`, optional): the dtype of `output`. Default: ``None`` .
1680
+ x1_dtype (:class:`mindspore.dtype`, optional): Cast `x1` to `x1_dtype` before calculation. Default: ``None`` .
1681
+ x2_dtype (:class:`mindspore.dtype`, optional): Cast `x2` to `x2_dtype` before calculation. Default: ``None`` .
1682
+ pertoken_scale_dtype (:class:`mindspore.dtype`, optional): Cast `pertoken_scale` to `pertoken_scale_dtype` before calculation. Default: ``None`` .
1683
+ scale_dtype (:class:`mindspore.dtype`, optional): Cast `scale` to `scale_dtype` before calculation. Default: ``None`` .
1684
+ group_sizes (Union[tuple(int), list(int)], optional): A sequence of int elements. Must have 3 elements. Default: ``None`` .
1685
+
1686
+ Returns:
1687
+ Tensor of shape :math:`(*, M, N)` .
1688
+
1689
+ Raises:
1690
+ ValueError: If dtype of `x1` is int8 or int32.
1691
+
1692
+ Supported Platforms:
1693
+ ``Ascend``
1694
+
1695
+ Examples:
1696
+ >>> import numpy as np
1697
+ >>> import mindspore as ms
1698
+ >>> from mindspore import ops, Tensor
1699
+ >>> x1 = Tensor(np.random.randn(2, 3, 4), ms.float8_e4m3)
1700
+ >>> x2 = Tensor(np.random.randn(2, 4, 5), ms.float8_e4m3)
1701
+ >>> scale = Tensor(np.random.randn(1,), ms.float32)
1702
+ >>> pertoken_scale = Tensor(np.random.randn(3,), ms.float32)
1703
+ >>> output = ops.auto_generate.quant_matmul(x1, x2, scale, pertoken_scale=pertoken_scale, output_dtype=ms.bfloat16)
1704
+ >>> print(output.shape)
1705
+ (2, 3, 5)
1706
+ >>> print(output.dtype)
1707
+ BFloat16
1708
+ """
1709
+ return _quant_matmul_instance(*args, **kwargs)
1710
+
1711
+
1154
1712
  def remainder(*args, **kwargs):
1155
1713
  r"""
1156
1714
  remainder(input, other) -> Tensor
@@ -1171,10 +1729,10 @@ def remainder(*args, **kwargs):
1171
1729
  input (Union[Tensor, numbers.Number, bool]): The dividend is a numbers.Number or
1172
1730
  a bool or a tensor whose data type is
1173
1731
  `number <https://www.mindspore.cn/docs/en/master/api_python/mindspore/mindspore.dtype.html>`_ or
1174
- `bool_ <https://www.mindspore.cn/docs/en/master/api_python/mindspore/mindspore.dtype.html>`_.
1732
+ `bool <https://www.mindspore.cn/docs/en/master/api_python/mindspore/mindspore.dtype.html>`_.
1175
1733
  other (Union[Tensor, numbers.Number, bool]): The divisor is a numbers.Number or
1176
- a bool or a tensor whose data type is number or bool\_ when the dividend is a tensor.
1177
- When the dividend is Scalar, the divisor must be a Tensor whose data type is number or bool\_.
1734
+ a bool or a tensor whose data type is number or bool when the dividend is a tensor.
1735
+ When the dividend is Scalar, the divisor must be a Tensor whose data type is number or bool.
1178
1736
 
1179
1737
  Returns:
1180
1738
  Tensor, with dtype promoted and shape broadcasted.
@@ -1242,6 +1800,13 @@ def repeat_interleave(*args, **kwargs):
1242
1800
  return _repeat_interleave_instance(*args, **kwargs)
1243
1801
 
1244
1802
 
1803
+ def rmod(*args, **kwargs):
1804
+ r"""
1805
+ rmod(input, other) -> Tensor
1806
+ """
1807
+ return _rmod_instance(*args, **kwargs)
1808
+
1809
+
1245
1810
  def sub(*args, **kwargs):
1246
1811
  r"""
1247
1812
  sub(input, other, *, alpha=1) -> Tensor
@@ -1261,10 +1826,10 @@ def sub(*args, **kwargs):
1261
1826
  Args:
1262
1827
  input (Union[Tensor, number.Number, bool]): `input` is a number.Number or a bool or a tensor whose data type is
1263
1828
  `number <https://www.mindspore.cn/docs/en/master/api_python/mindspore/mindspore.dtype.html>`_ or
1264
- `bool_ <https://www.mindspore.cn/docs/en/master/api_python/mindspore/mindspore.dtype.html>`_.
1829
+ `bool <https://www.mindspore.cn/docs/en/master/api_python/mindspore/mindspore.dtype.html>`_.
1265
1830
  other (Union[Tensor, number.Number, bool]): `other` is a number.Number or a bool or a tensor whose data type is
1266
1831
  `number <https://www.mindspore.cn/docs/en/master/api_python/mindspore/mindspore.dtype.html>`_ or
1267
- `bool_ <https://www.mindspore.cn/docs/en/master/api_python/mindspore/mindspore.dtype.html>`_.
1832
+ `bool <https://www.mindspore.cn/docs/en/master/api_python/mindspore/mindspore.dtype.html>`_.
1268
1833
 
1269
1834
  Keyword Args:
1270
1835
  alpha (number.Number, optional): A scaling factor applied to `other`, default ``1``.
@@ -1380,7 +1945,7 @@ def xlogy(*args, **kwargs):
1380
1945
  input (Union[Tensor, numbers.Number, bool]): The first input is a numbers.Number or
1381
1946
  a bool or a tensor whose data type is
1382
1947
  `number <https://www.mindspore.cn/docs/en/master/api_python/mindspore/mindspore.dtype.html>`_ or
1383
- `bool_ <https://www.mindspore.cn/docs/en/master/api_python/mindspore/mindspore.dtype.html>`_.
1948
+ `bool <https://www.mindspore.cn/docs/en/master/api_python/mindspore/mindspore.dtype.html>`_.
1384
1949
  other (Union[Tensor, numbers.Number, bool]): The second input is a numbers.Number or
1385
1950
  a bool or a tensor whose data type is number or bool when the first input is a tensor.
1386
1951
  When the first input is Scalar, the second input must be a Tensor whose data type is number or bool.
@@ -1413,17 +1978,26 @@ __all__ = [
1413
1978
  "__add__",
1414
1979
  "addcdiv",
1415
1980
  "all_gather_matmul",
1981
+ "any",
1982
+ "bernoulli_",
1416
1983
  "bitwise_not",
1417
1984
  "clamp",
1418
1985
  "clip",
1986
+ "conv3d",
1419
1987
  "div",
1420
1988
  "divide",
1989
+ "einsum",
1421
1990
  "empty",
1991
+ "empty_like",
1422
1992
  "floor_divide",
1423
1993
  "fmod",
1424
1994
  "gelu",
1995
+ "gmm",
1996
+ "gmm_backward",
1997
+ "gmm_backward_fusion",
1425
1998
  "greater_equal",
1426
1999
  "ge",
2000
+ "index_add",
1427
2001
  "kthvalue",
1428
2002
  "lerp",
1429
2003
  "matmul_reduce_scatter",
@@ -1431,8 +2005,10 @@ __all__ = [
1431
2005
  "min",
1432
2006
  "nansum",
1433
2007
  "pixel_shuffle",
2008
+ "quant_matmul",
1434
2009
  "remainder",
1435
2010
  "repeat_interleave",
2011
+ "rmod",
1436
2012
  "sub",
1437
2013
  "__sub__",
1438
2014
  "where",