mindspore 2.6.0__cp311-cp311-win_amd64.whl → 2.7.0rc1__cp311-cp311-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of mindspore might be problematic. Click here for more details.

Files changed (403) hide show
  1. mindspore/.commit_id +1 -1
  2. mindspore/Microsoft.VisualStudio.Telemetry.dll +0 -0
  3. mindspore/Newtonsoft.Json.dll +0 -0
  4. mindspore/__init__.py +1 -1
  5. mindspore/_c_dataengine.cp311-win_amd64.pyd +0 -0
  6. mindspore/_c_expression.cp311-win_amd64.pyd +0 -0
  7. mindspore/_c_mindrecord.cp311-win_amd64.pyd +0 -0
  8. mindspore/_checkparam.py +40 -9
  9. mindspore/{_deprecated → _extends/optimize}/__init__.py +9 -3
  10. mindspore/_extends/optimize/cell_utils.py +96 -0
  11. mindspore/_extends/parse/__init__.py +2 -2
  12. mindspore/_extends/parse/compile_config.py +44 -22
  13. mindspore/_extends/parse/deprecated/deprecated_tensor_method.py +1 -1
  14. mindspore/_extends/parse/parser.py +36 -61
  15. mindspore/_extends/parse/resources.py +39 -0
  16. mindspore/_extends/parse/standard_method.py +32 -13
  17. mindspore/_extends/parse/trope.py +8 -1
  18. mindspore/_extends/pijit/__init__.py +1 -2
  19. mindspore/amp.py +4 -4
  20. mindspore/atlprov.dll +0 -0
  21. mindspore/avcodec-59.dll +0 -0
  22. mindspore/avdevice-59.dll +0 -0
  23. mindspore/avfilter-8.dll +0 -0
  24. mindspore/avformat-59.dll +0 -0
  25. mindspore/avutil-57.dll +0 -0
  26. mindspore/boost/adasum.py +1 -1
  27. mindspore/boost/boost_cell_wrapper.py +4 -4
  28. mindspore/c1.dll +0 -0
  29. mindspore/c1xx.dll +0 -0
  30. mindspore/c2.dll +0 -0
  31. mindspore/common/__init__.py +27 -2
  32. mindspore/common/_grad_function.py +2 -1
  33. mindspore/common/_pijit_context.py +28 -7
  34. mindspore/common/_stub_tensor.py +1 -209
  35. mindspore/common/_tensor_cpp_method.py +1 -1
  36. mindspore/common/_tensor_docs.py +76 -15
  37. mindspore/common/api.py +193 -112
  38. mindspore/common/dtype.py +21 -11
  39. mindspore/common/dump.py +10 -15
  40. mindspore/common/generator.py +2 -3
  41. mindspore/common/hook_handle.py +11 -2
  42. mindspore/common/jit_config.py +1 -1
  43. mindspore/common/jit_trace.py +84 -105
  44. mindspore/common/parameter.py +26 -12
  45. mindspore/common/recompute.py +3 -3
  46. mindspore/common/sparse_tensor.py +0 -3
  47. mindspore/common/symbol.py +0 -1
  48. mindspore/common/tensor.py +48 -83
  49. mindspore/communication/_comm_helper.py +46 -4
  50. mindspore/communication/management.py +79 -7
  51. mindspore/context.py +38 -23
  52. mindspore/dataset/core/config.py +3 -3
  53. mindspore/dataset/engine/datasets.py +20 -7
  54. mindspore/dataset/engine/datasets_user_defined.py +32 -2
  55. mindspore/dataset/engine/iterators.py +2 -2
  56. mindspore/dataset/engine/obs/config_loader.py +2 -2
  57. mindspore/dataset/engine/obs/obs_mindrecord_dataset.py +8 -0
  58. mindspore/dataset/transforms/py_transforms.py +7 -3
  59. mindspore/dataset/transforms/transforms.py +7 -3
  60. mindspore/dataset/vision/validators.py +1 -0
  61. mindspore/device_context/ascend/device.py +1 -1
  62. mindspore/device_context/gpu/__init__.py +2 -2
  63. mindspore/device_context/gpu/device.py +1 -1
  64. mindspore/device_context/gpu/op_precision.py +4 -2
  65. mindspore/device_context/gpu/op_tuning.py +6 -3
  66. mindspore/device_manager.py +16 -9
  67. mindspore/dnnl.dll +0 -0
  68. mindspore/dpcmi.dll +0 -0
  69. mindspore/experimental/llm_boost/ascend_native/llama_boost_ascend_native.py +3 -5
  70. mindspore/experimental/llm_boost/atb/boost_base.py +2 -3
  71. mindspore/experimental/optim/adadelta.py +13 -20
  72. mindspore/experimental/optim/adagrad.py +15 -22
  73. mindspore/experimental/optim/adam.py +17 -24
  74. mindspore/experimental/optim/adamax.py +14 -22
  75. mindspore/experimental/optim/adamw.py +28 -34
  76. mindspore/experimental/optim/asgd.py +15 -25
  77. mindspore/experimental/optim/lr_scheduler.py +27 -45
  78. mindspore/experimental/optim/nadam.py +14 -24
  79. mindspore/experimental/optim/optimizer.py +13 -23
  80. mindspore/experimental/optim/radam.py +18 -24
  81. mindspore/experimental/optim/rmsprop.py +14 -25
  82. mindspore/experimental/optim/rprop.py +15 -26
  83. mindspore/experimental/optim/sgd.py +9 -19
  84. mindspore/hal/__init__.py +4 -4
  85. mindspore/hal/contiguous_tensors_handle.py +2 -2
  86. mindspore/hal/memory.py +1 -0
  87. mindspore/include/api/cell.h +37 -1
  88. mindspore/include/api/delegate.h +10 -0
  89. mindspore/include/api/model.h +3 -0
  90. mindspore/include/api/types.h +2 -2
  91. mindspore/include/c_api/model_c.h +0 -58
  92. mindspore/include/c_api/tensor_c.h +0 -26
  93. mindspore/include/dataset/vision_ascend.h +1 -1
  94. mindspore/jpeg62.dll +0 -0
  95. mindspore/mindrecord/tools/cifar10.py +60 -11
  96. mindspore/mindrecord/tools/cifar10_to_mr.py +5 -0
  97. mindspore/mindspore_backend_common.dll +0 -0
  98. mindspore/mindspore_backend_manager.dll +0 -0
  99. mindspore/mindspore_common.dll +0 -0
  100. mindspore/mindspore_core.dll +0 -0
  101. mindspore/mindspore_cpu_res_manager.dll +0 -0
  102. mindspore/mindspore_dump.dll +0 -0
  103. mindspore/mindspore_frontend.dll +0 -0
  104. mindspore/mindspore_glog.dll +0 -0
  105. mindspore/mindspore_memory_pool.dll +0 -0
  106. mindspore/mindspore_ms_backend.dll +0 -0
  107. mindspore/mindspore_ops.dll +0 -0
  108. mindspore/mindspore_ops_host.dll +0 -0
  109. mindspore/mindspore_ops_kernel_common.dll +0 -0
  110. mindspore/mindspore_profiler.dll +0 -0
  111. mindspore/mindspore_pyboost.dll +0 -0
  112. mindspore/mindspore_pynative.dll +0 -0
  113. mindspore/mindspore_res_manager.dll +0 -0
  114. mindspore/mindspore_runtime_pipeline.dll +0 -0
  115. mindspore/mint/__init__.py +4 -44
  116. mindspore/mint/distributed/__init__.py +1 -0
  117. mindspore/mint/distributed/distributed.py +208 -5
  118. mindspore/mint/nn/__init__.py +1 -1
  119. mindspore/mint/nn/functional.py +53 -6
  120. mindspore/mint/nn/layer/_functions.py +164 -294
  121. mindspore/mint/nn/layer/activation.py +8 -6
  122. mindspore/mint/nn/layer/conv.py +122 -98
  123. mindspore/mint/nn/layer/normalization.py +8 -22
  124. mindspore/mint/optim/adam.py +19 -18
  125. mindspore/mint/optim/adamw.py +14 -8
  126. mindspore/mint/optim/sgd.py +5 -5
  127. mindspore/msobj140.dll +0 -0
  128. mindspore/mspdb140.dll +0 -0
  129. mindspore/mspdbcore.dll +0 -0
  130. mindspore/mspdbst.dll +0 -0
  131. mindspore/mspft140.dll +0 -0
  132. mindspore/msvcdis140.dll +0 -0
  133. mindspore/msvcp140_1.dll +0 -0
  134. mindspore/msvcp140_2.dll +0 -0
  135. mindspore/msvcp140_atomic_wait.dll +0 -0
  136. mindspore/msvcp140_codecvt_ids.dll +0 -0
  137. mindspore/nn/cell.py +325 -499
  138. mindspore/nn/grad/cell_grad.py +11 -12
  139. mindspore/nn/layer/activation.py +32 -34
  140. mindspore/nn/layer/basic.py +67 -64
  141. mindspore/nn/layer/channel_shuffle.py +4 -4
  142. mindspore/nn/layer/combined.py +4 -2
  143. mindspore/nn/layer/conv.py +86 -85
  144. mindspore/nn/layer/dense.py +9 -7
  145. mindspore/nn/layer/embedding.py +50 -52
  146. mindspore/nn/layer/image.py +37 -39
  147. mindspore/nn/layer/math.py +111 -112
  148. mindspore/nn/layer/normalization.py +56 -44
  149. mindspore/nn/layer/pooling.py +58 -63
  150. mindspore/nn/layer/rnn_cells.py +33 -33
  151. mindspore/nn/layer/rnns.py +56 -56
  152. mindspore/nn/layer/thor_layer.py +74 -73
  153. mindspore/nn/layer/transformer.py +11 -1
  154. mindspore/nn/learning_rate_schedule.py +20 -20
  155. mindspore/nn/loss/loss.py +79 -81
  156. mindspore/nn/optim/adam.py +1 -1
  157. mindspore/nn/optim/adasum.py +2 -2
  158. mindspore/nn/optim/optimizer.py +1 -1
  159. mindspore/nn/optim/thor.py +2 -2
  160. mindspore/nn/probability/distribution/exponential.py +2 -1
  161. mindspore/nn/probability/distribution/poisson.py +2 -1
  162. mindspore/nn/sparse/sparse.py +3 -3
  163. mindspore/nn/wrap/cell_wrapper.py +34 -37
  164. mindspore/nn/wrap/grad_reducer.py +37 -37
  165. mindspore/nn/wrap/loss_scale.py +72 -74
  166. mindspore/numpy/array_creations.py +5 -5
  167. mindspore/numpy/fft.py +1 -1
  168. mindspore/numpy/math_ops.py +1 -1
  169. mindspore/opencv_core452.dll +0 -0
  170. mindspore/opencv_imgcodecs452.dll +0 -0
  171. mindspore/opencv_imgproc452.dll +0 -0
  172. mindspore/ops/_grad_experimental/grad_comm_ops.py +51 -13
  173. mindspore/ops/_grad_experimental/grad_debug_ops.py +14 -0
  174. mindspore/ops/_vmap/vmap_array_ops.py +6 -13
  175. mindspore/ops/_vmap/vmap_nn_ops.py +8 -16
  176. mindspore/ops/auto_generate/cpp_create_prim_instance_helper.py +17 -8
  177. mindspore/ops/auto_generate/gen_extend_func.py +1 -51
  178. mindspore/ops/auto_generate/gen_ops_def.py +463 -257
  179. mindspore/ops/auto_generate/gen_ops_prim.py +1127 -885
  180. mindspore/ops/auto_generate/pyboost_inner_prim.py +31 -1
  181. mindspore/ops/composite/__init__.py +10 -0
  182. mindspore/ops/composite/base.py +8 -4
  183. mindspore/ops/composite/multitype_ops/__init__.py +12 -1
  184. mindspore/ops/composite/multitype_ops/_compile_utils.py +132 -108
  185. mindspore/ops/composite/multitype_ops/add_impl.py +70 -2
  186. mindspore/ops/composite/multitype_ops/div_impl.py +49 -0
  187. mindspore/ops/composite/multitype_ops/floordiv_impl.py +29 -0
  188. mindspore/ops/composite/multitype_ops/getitem_impl.py +11 -0
  189. mindspore/ops/composite/multitype_ops/mod_impl.py +5 -3
  190. mindspore/ops/composite/multitype_ops/mul_impl.py +49 -0
  191. mindspore/ops/composite/multitype_ops/setitem_impl.py +57 -0
  192. mindspore/ops/composite/multitype_ops/sub_impl.py +34 -0
  193. mindspore/ops/composite/multitype_ops/zeros_like_impl.py +14 -0
  194. mindspore/ops/function/__init__.py +3 -1
  195. mindspore/ops/function/_add_attr_func.py +11 -6
  196. mindspore/ops/function/array_func.py +7 -94
  197. mindspore/ops/function/debug_func.py +4 -3
  198. mindspore/ops/function/grad/grad_func.py +1 -1
  199. mindspore/ops/function/math_func.py +21 -367
  200. mindspore/ops/function/nn_func.py +26 -41
  201. mindspore/ops/function/other_func.py +4 -1
  202. mindspore/ops/function/random_func.py +31 -4
  203. mindspore/ops/functional.py +0 -2
  204. mindspore/ops/functional_overload.py +463 -6
  205. mindspore/ops/op_info_register.py +21 -0
  206. mindspore/ops/operations/__init__.py +5 -2
  207. mindspore/ops/operations/_custom_ops_utils.py +675 -8
  208. mindspore/ops/operations/_inner_ops.py +3 -6
  209. mindspore/ops/operations/_sequence_ops.py +1 -1
  210. mindspore/ops/operations/comm_ops.py +185 -26
  211. mindspore/ops/operations/custom_ops.py +235 -172
  212. mindspore/ops/operations/debug_ops.py +55 -4
  213. mindspore/ops/operations/image_ops.py +13 -13
  214. mindspore/ops/operations/manually_defined/ops_def.py +15 -16
  215. mindspore/ops/operations/math_ops.py +3 -4
  216. mindspore/ops/operations/nn_ops.py +5 -6
  217. mindspore/ops/primitive.py +6 -10
  218. mindspore/ops/tensor_method.py +36 -4
  219. mindspore/ops_generate/api/cpp_create_prim_instance_helper_generator.py +1 -1
  220. mindspore/ops_generate/api/functional_map_cpp_generator.py +10 -9
  221. mindspore/ops_generate/api/functions_cc_generator.py +58 -10
  222. mindspore/ops_generate/api/tensor_func_reg_cpp_generator.py +1 -1
  223. mindspore/ops_generate/common/base_generator.py +14 -0
  224. mindspore/ops_generate/common/gen_constants.py +7 -2
  225. mindspore/ops_generate/common/gen_utils.py +0 -19
  226. mindspore/ops_generate/common/op_proto.py +11 -4
  227. mindspore/ops_generate/common/template.py +88 -11
  228. mindspore/ops_generate/gen_ops.py +1 -1
  229. mindspore/ops_generate/op_def/lite_ops_cpp_generator.py +4 -4
  230. mindspore/ops_generate/op_def/ops_name_h_generator.py +0 -3
  231. mindspore/ops_generate/op_def/ops_primitive_h_generator.py +0 -4
  232. mindspore/ops_generate/op_def_py/op_prim_py_generator.py +5 -2
  233. mindspore/ops_generate/pyboost/auto_grad_impl_cc_generator.py +49 -8
  234. mindspore/ops_generate/pyboost/auto_grad_reg_cc_generator.py +2 -2
  235. mindspore/ops_generate/pyboost/gen_pyboost_func.py +31 -0
  236. mindspore/ops_generate/pyboost/op_template_parser.py +98 -72
  237. mindspore/ops_generate/pyboost/pyboost_functions_cpp_generator.py +70 -273
  238. mindspore/ops_generate/pyboost/pyboost_functions_h_generator.py +14 -6
  239. mindspore/ops_generate/pyboost/pyboost_functions_impl_cpp_generator.py +316 -0
  240. mindspore/ops_generate/pyboost/pyboost_functions_py_generator.py +1 -1
  241. mindspore/ops_generate/pyboost/pyboost_grad_function_cpp_generator.py +5 -3
  242. mindspore/ops_generate/pyboost/pyboost_inner_prim_generator.py +1 -1
  243. mindspore/ops_generate/pyboost/pyboost_internal_functions_cpp_generator.py +76 -0
  244. mindspore/ops_generate/pyboost/pyboost_internal_functions_h_generator.py +76 -0
  245. mindspore/ops_generate/pyboost/pyboost_internal_kernel_info_adapter_generator.py +125 -0
  246. mindspore/ops_generate/pyboost/pyboost_native_grad_functions_generator.py +4 -3
  247. mindspore/ops_generate/pyboost/pyboost_op_cpp_code_generator.py +348 -61
  248. mindspore/ops_generate/pyboost/pyboost_overload_functions_cpp_generator.py +1 -1
  249. mindspore/ops_generate/pyboost/pyboost_utils.py +118 -9
  250. mindspore/ops_generate/tensor_py_cc_generator.py +1 -24
  251. mindspore/parallel/_auto_parallel_context.py +4 -2
  252. mindspore/parallel/_cell_wrapper.py +106 -40
  253. mindspore/parallel/_parallel_serialization.py +1 -1
  254. mindspore/parallel/_ps_context.py +4 -6
  255. mindspore/parallel/_tensor.py +167 -12
  256. mindspore/parallel/_transformer/moe.py +1 -1
  257. mindspore/parallel/_transformer/transformer.py +13 -8
  258. mindspore/parallel/auto_parallel.py +12 -5
  259. mindspore/parallel/checkpoint_convert.py +3 -3
  260. mindspore/parallel/checkpoint_transform.py +3 -1
  261. mindspore/parallel/cluster/process_entity/_api.py +84 -48
  262. mindspore/parallel/cluster/process_entity/_utils.py +95 -7
  263. mindspore/parallel/cluster/run.py +43 -4
  264. mindspore/parallel/function/__init__.py +8 -1
  265. mindspore/parallel/function/reshard_func.py +1 -1
  266. mindspore/parallel/nn/__init__.py +15 -2
  267. mindspore/parallel/nn/parallel_cell_wrapper.py +9 -10
  268. mindspore/parallel/nn/parallel_grad_reducer.py +7 -6
  269. mindspore/parallel/shard.py +2 -2
  270. mindspore/parallel/transform_safetensors.py +462 -174
  271. mindspore/pgodb140.dll +0 -0
  272. mindspore/pgort140.dll +0 -0
  273. mindspore/profiler/__init__.py +2 -1
  274. mindspore/profiler/analysis/parser/timeline_assembly_factory/ascend_timeline_assembler.py +7 -7
  275. mindspore/profiler/analysis/parser/timeline_assembly_factory/base_timeline_assembler.py +3 -0
  276. mindspore/profiler/analysis/parser/timeline_assembly_factory/trace_view_container.py +3 -0
  277. mindspore/profiler/analysis/parser/timeline_creator/cpu_op_timeline_creator.py +3 -3
  278. mindspore/profiler/analysis/parser/timeline_creator/fwk_timeline_creator.py +3 -3
  279. mindspore/profiler/analysis/parser/timeline_creator/msprof_timeline_creator.py +4 -4
  280. mindspore/profiler/analysis/parser/timeline_creator/scope_layer_timeline_creator.py +3 -3
  281. mindspore/profiler/analysis/parser/timeline_event/fwk_event.py +4 -1
  282. mindspore/profiler/analysis/parser/timeline_event/timeline_event_pool.py +2 -1
  283. mindspore/profiler/analysis/task_manager.py +1 -1
  284. mindspore/profiler/analysis/viewer/ascend_communication_viewer.py +5 -1
  285. mindspore/profiler/analysis/viewer/ascend_integrate_viewer.py +2 -1
  286. mindspore/profiler/analysis/viewer/ascend_op_memory_viewer.py +42 -22
  287. mindspore/profiler/analysis/viewer/ascend_step_trace_time_viewer.py +3 -2
  288. mindspore/profiler/analysis/viewer/ms_minddata_viewer.py +9 -5
  289. mindspore/profiler/analysis/viewer/ms_operator_details_viewer.py +132 -0
  290. mindspore/profiler/common/constant.py +16 -0
  291. mindspore/profiler/common/profiler_context.py +25 -27
  292. mindspore/profiler/common/profiler_info.py +0 -16
  293. mindspore/profiler/common/profiler_op_analyse.py +235 -0
  294. mindspore/profiler/common/profiler_output_path.py +23 -8
  295. mindspore/profiler/common/profiler_parameters.py +128 -35
  296. mindspore/profiler/dynamic_profile/__init__.py +0 -0
  297. mindspore/profiler/dynamic_profile/dynamic_monitor_proxy.py +39 -0
  298. mindspore/profiler/dynamic_profile/dynamic_profiler_config_context.py +666 -0
  299. mindspore/profiler/dynamic_profile/dynamic_profiler_utils.py +62 -0
  300. mindspore/profiler/dynamic_profiler.py +305 -314
  301. mindspore/profiler/envprofiler.py +12 -7
  302. mindspore/profiler/experimental_config.py +96 -6
  303. mindspore/profiler/mstx.py +33 -12
  304. mindspore/profiler/platform/__init__.py +2 -3
  305. mindspore/profiler/platform/npu_profiler.py +29 -19
  306. mindspore/profiler/profiler.py +35 -19
  307. mindspore/profiler/profiler_action_controller.py +64 -76
  308. mindspore/profiler/schedule.py +10 -4
  309. mindspore/rewrite/common/config.py +1 -0
  310. mindspore/rewrite/common/namer.py +1 -0
  311. mindspore/rewrite/common/namespace.py +1 -0
  312. mindspore/rewrite/node/node.py +31 -11
  313. mindspore/rewrite/parsers/assign_parser.py +1 -1
  314. mindspore/rewrite/symbol_tree/symbol_tree.py +1 -1
  315. mindspore/run_check/_check_version.py +7 -10
  316. mindspore/runtime/__init__.py +5 -5
  317. mindspore/runtime/event.py +10 -4
  318. mindspore/runtime/executor.py +60 -45
  319. mindspore/runtime/memory.py +21 -30
  320. mindspore/runtime/thread_bind_core.py +298 -164
  321. mindspore/safeguard/rewrite_obfuscation.py +12 -13
  322. mindspore/swresample-4.dll +0 -0
  323. mindspore/swscale-6.dll +0 -0
  324. mindspore/tbbmalloc.dll +0 -0
  325. mindspore/tinyxml2.dll +0 -0
  326. mindspore/train/_utils.py +6 -2
  327. mindspore/train/amp.py +43 -20
  328. mindspore/train/callback/__init__.py +5 -5
  329. mindspore/train/callback/_checkpoint.py +3 -6
  330. mindspore/train/callback/_flops_collector.py +1 -1
  331. mindspore/train/callback/_landscape.py +0 -1
  332. mindspore/train/callback/_train_fault_tolerance.py +71 -13
  333. mindspore/train/data_sink.py +11 -2
  334. mindspore/train/dataset_helper.py +9 -0
  335. mindspore/train/model.py +51 -33
  336. mindspore/train/serialization.py +133 -111
  337. mindspore/train/summary/summary_record.py +13 -2
  338. mindspore/turbojpeg.dll +0 -0
  339. mindspore/utils/__init__.py +3 -2
  340. mindspore/utils/dryrun.py +0 -6
  341. mindspore/utils/runtime_execution_order_check.py +162 -78
  342. mindspore/utils/sdc_detect.py +68 -0
  343. mindspore/utils/utils.py +6 -9
  344. mindspore/vcmeta.dll +0 -0
  345. mindspore/vcruntime140.dll +0 -0
  346. mindspore/vcruntime140_1.dll +0 -0
  347. mindspore/version.py +1 -1
  348. {mindspore-2.6.0.dist-info → mindspore-2.7.0rc1.dist-info}/METADATA +5 -4
  349. {mindspore-2.6.0.dist-info → mindspore-2.7.0rc1.dist-info}/RECORD +352 -390
  350. mindspore/_deprecated/jit.py +0 -198
  351. mindspore/experimental/es/__init__.py +0 -22
  352. mindspore/experimental/es/embedding_service.py +0 -891
  353. mindspore/experimental/es/embedding_service_layer.py +0 -581
  354. mindspore/profiler/parser/__init__.py +0 -14
  355. mindspore/profiler/parser/aicpu_data_parser.py +0 -272
  356. mindspore/profiler/parser/ascend_analysis/__init__.py +0 -14
  357. mindspore/profiler/parser/ascend_analysis/constant.py +0 -71
  358. mindspore/profiler/parser/ascend_analysis/file_manager.py +0 -180
  359. mindspore/profiler/parser/ascend_analysis/function_event.py +0 -185
  360. mindspore/profiler/parser/ascend_analysis/fwk_cann_parser.py +0 -136
  361. mindspore/profiler/parser/ascend_analysis/fwk_file_parser.py +0 -131
  362. mindspore/profiler/parser/ascend_analysis/msprof_timeline_parser.py +0 -104
  363. mindspore/profiler/parser/ascend_analysis/path_manager.py +0 -313
  364. mindspore/profiler/parser/ascend_analysis/profiler_info_parser.py +0 -123
  365. mindspore/profiler/parser/ascend_analysis/tlv_decoder.py +0 -86
  366. mindspore/profiler/parser/ascend_analysis/trace_event_manager.py +0 -75
  367. mindspore/profiler/parser/ascend_cluster_generator.py +0 -116
  368. mindspore/profiler/parser/ascend_communicate_generator.py +0 -314
  369. mindspore/profiler/parser/ascend_flops_generator.py +0 -116
  370. mindspore/profiler/parser/ascend_fpbp_generator.py +0 -82
  371. mindspore/profiler/parser/ascend_hccl_generator.py +0 -271
  372. mindspore/profiler/parser/ascend_integrate_generator.py +0 -42
  373. mindspore/profiler/parser/ascend_memory_generator.py +0 -185
  374. mindspore/profiler/parser/ascend_msprof_exporter.py +0 -282
  375. mindspore/profiler/parser/ascend_msprof_generator.py +0 -187
  376. mindspore/profiler/parser/ascend_op_generator.py +0 -334
  377. mindspore/profiler/parser/ascend_steptrace_generator.py +0 -94
  378. mindspore/profiler/parser/ascend_timeline_generator.py +0 -545
  379. mindspore/profiler/parser/base_timeline_generator.py +0 -483
  380. mindspore/profiler/parser/container.py +0 -229
  381. mindspore/profiler/parser/cpu_gpu_timeline_generator.py +0 -697
  382. mindspore/profiler/parser/flops_parser.py +0 -531
  383. mindspore/profiler/parser/framework_enum.py +0 -111
  384. mindspore/profiler/parser/framework_parser.py +0 -464
  385. mindspore/profiler/parser/framework_struct.py +0 -61
  386. mindspore/profiler/parser/gpu_analysis/__init__.py +0 -14
  387. mindspore/profiler/parser/gpu_analysis/function_event.py +0 -44
  388. mindspore/profiler/parser/gpu_analysis/fwk_file_parser.py +0 -89
  389. mindspore/profiler/parser/gpu_analysis/profiler_info_parser.py +0 -72
  390. mindspore/profiler/parser/hccl_parser.py +0 -573
  391. mindspore/profiler/parser/hwts_log_parser.py +0 -122
  392. mindspore/profiler/parser/integrator.py +0 -526
  393. mindspore/profiler/parser/memory_usage_parser.py +0 -277
  394. mindspore/profiler/parser/minddata_analyzer.py +0 -800
  395. mindspore/profiler/parser/minddata_parser.py +0 -186
  396. mindspore/profiler/parser/minddata_pipeline_parser.py +0 -299
  397. mindspore/profiler/parser/op_intermediate_parser.py +0 -149
  398. mindspore/profiler/parser/optime_parser.py +0 -250
  399. mindspore/profiler/parser/profiler_info.py +0 -213
  400. mindspore/profiler/parser/step_trace_parser.py +0 -666
  401. {mindspore-2.6.0.dist-info → mindspore-2.7.0rc1.dist-info}/WHEEL +0 -0
  402. {mindspore-2.6.0.dist-info → mindspore-2.7.0rc1.dist-info}/entry_points.txt +0 -0
  403. {mindspore-2.6.0.dist-info → mindspore-2.7.0rc1.dist-info}/top_level.txt +0 -0
@@ -21,7 +21,6 @@ import numbers
21
21
  import hashlib
22
22
  import numpy as np
23
23
  import mindspore.ops as ops
24
- from mindspore.ops import operations as P
25
24
  from mindspore.ops.operations import _inner_ops as inner
26
25
  from mindspore.common.parameter import Parameter
27
26
  from mindspore.common.initializer import initializer, Initializer
@@ -98,35 +97,34 @@ class _BatchNorm(Cell):
98
97
 
99
98
  self.parallel_mode = context.get_auto_parallel_context("parallel_mode")
100
99
 
101
- self.shape = P.Shape()
102
- self.reduce_mean = P.ReduceMean(keep_dims=True)
103
- self.square = P.Square()
104
- self.sqrt = P.Sqrt()
105
- self.cast = P.Cast()
106
- self.dtype = P.DType()
107
- self.reshape = P.Reshape()
100
+ self.shape = ops.Shape()
101
+ self.reduce_mean = ops.ReduceMean(keep_dims=True)
102
+ self.square = ops.Square()
103
+ self.sqrt = ops.Sqrt()
104
+ self.cast = ops.Cast()
105
+ self.dtype = ops.DType()
106
+ self.reshape = ops.Reshape()
108
107
  self._target = context.get_context("device_target")
109
- self.is_graph_mode = context.get_context("mode") == context.GRAPH_MODE
110
108
  self.momentum = 1.0 - momentum
111
109
 
112
- self.bn_train = P.BatchNorm(is_training=True,
113
- epsilon=self.eps,
114
- momentum=self.momentum,
115
- data_format=self.format)
110
+ self.bn_train = ops.BatchNorm(is_training=True,
111
+ epsilon=self.eps,
112
+ momentum=self.momentum,
113
+ data_format=self.format)
116
114
 
117
- self.bn_infer = P.BatchNorm(is_training=False, epsilon=self.eps, data_format=self.format)
115
+ self.bn_infer = ops.BatchNorm(is_training=False, epsilon=self.eps, data_format=self.format)
118
116
  if _is_in_auto_parallel_mode():
119
117
  data_parallel_strategy = ((1,), (1,))
120
118
  data_parallel_strategy_one = ((1,), ())
121
119
  else:
122
120
  data_parallel_strategy = None
123
121
  data_parallel_strategy_one = None
124
- self.sub_mean = P.Sub().shard(data_parallel_strategy)
125
- self.sub_var = P.Sub().shard(data_parallel_strategy)
126
- self.mul_mean = P.Mul().shard(data_parallel_strategy_one)
127
- self.mul_var = P.Mul().shard(data_parallel_strategy_one)
128
- self.assign_sub_mean = P.AssignSub().shard(data_parallel_strategy)
129
- self.assign_sub_var = P.AssignSub().shard(data_parallel_strategy)
122
+ self.sub_mean = ops.Sub().shard(data_parallel_strategy)
123
+ self.sub_var = ops.Sub().shard(data_parallel_strategy)
124
+ self.mul_mean = ops.Mul().shard(data_parallel_strategy_one)
125
+ self.mul_var = ops.Mul().shard(data_parallel_strategy_one)
126
+ self.assign_sub_mean = ops.AssignSub().shard(data_parallel_strategy)
127
+ self.assign_sub_var = ops.AssignSub().shard(data_parallel_strategy)
130
128
 
131
129
  @staticmethod
132
130
  @_primexpr
@@ -464,8 +462,8 @@ class BatchNorm3d(Cell):
464
462
  use_batch_statistics=use_batch_statistics,
465
463
  data_format="NCHW",
466
464
  dtype=dtype)
467
- self.shape = P.Shape()
468
- self.reshape = P.Reshape()
465
+ self.shape = ops.Shape()
466
+ self.reshape = ops.Reshape()
469
467
 
470
468
  @staticmethod
471
469
  @_primexpr
@@ -519,16 +517,20 @@ class SyncBatchNorm(_BatchNorm):
519
517
  parameters. When set to ``False`` , :math:`\gamma` and :math:`\beta` are unlearnable parameters.
520
518
  Default: ``True`` .
521
519
  gamma_init (Union[Tensor, str, Initializer, numbers.Number], optional): Initializer for the :math:`\gamma`
522
- weight. The values of str refer to the function `initializer` including ``'zeros'`` , ``'ones'`` ,
520
+ weight. The values of str refer to the function :func:`mindspore.common.initializer.initializer`
521
+ including ``'zeros'`` , ``'ones'`` ,
523
522
  ``'xavier_uniform'`` , ``'he_uniform'`` , etc. Default: ``'ones'`` .
524
523
  beta_init (Union[Tensor, str, Initializer, numbers.Number], optional): Initializer for the :math:`\beta` weight.
525
- The values of str refer to the function `initializer` including ``'zeros'`` , ``'ones'`` ,
524
+ The values of str refer to the function :func:`mindspore.common.initializer.initializer`
525
+ including ``'zeros'`` , ``'ones'`` ,
526
526
  ``'xavier_uniform'`` , ``'he_uniform'`` , etc. Default: ``'zeros'`` .
527
527
  moving_mean_init (Union[Tensor, str, Initializer, numbers.Number], optional): Initializer for the moving mean.
528
- The values of str refer to the function `initializer` including ``'zeros'`` , ``'ones'`` ,
528
+ The values of str refer to the function :func:`mindspore.common.initializer.initializer`
529
+ including ``'zeros'`` , ``'ones'`` ,
529
530
  ``'xavier_uniform'`` , ``'he_uniform'`` , etc. Default: ``'zeros'`` .
530
531
  moving_var_init (Union[Tensor, str, Initializer, numbers.Number], optional): Initializer for the moving
531
- variance. The values of str refer to the function `initializer` including ``'zeros'`` , ``'ones'`` ,
532
+ variance. The values of str refer to the function :func:`mindspore.common.initializer.initializer`
533
+ including ``'zeros'`` , ``'ones'`` ,
532
534
  ``'xavier_uniform'`` , ``'he_uniform'`` , etc. Default: ``'ones'`` .
533
535
  use_batch_statistics (bool, optional): If ``true`` , use the mean value and variance value of current batch
534
536
  data. If ``false`` , use the mean value and variance value of specified value. If ``None`` , training
@@ -651,9 +653,9 @@ class SyncBatchNorm(_BatchNorm):
651
653
  rank_list_name = '_'.join('%s' % id for id in sub_group)
652
654
  group_dict = _syncbatchnorm_group_dict()
653
655
  if rank_list_name not in group_dict:
654
- md5 = hashlib.md5()
655
- md5.update(rank_list_name.encode('utf-8'))
656
- hash_name = md5.hexdigest()
656
+ sha256 = hashlib.sha256()
657
+ sha256.update(rank_list_name.encode('utf-8'))
658
+ hash_name = sha256.hexdigest()
657
659
  self.group_name = str(self.group_device_num) + '_' + hash_name
658
660
  group_dict[rank_list_name] = self.group_name
659
661
  management.create_group(self.group_name, sub_group)
@@ -705,10 +707,12 @@ class LayerNorm(Cell):
705
707
  begin_params_axis (int): The begin axis of the parameter input :math:`(\gamma, \beta)` to
706
708
  apply LayerNorm, the value should be in [-1, R). Default: ``-1`` .
707
709
  gamma_init (Union[Tensor, str, Initializer, numbers.Number]): Initializer for the :math:`\gamma` weight.
708
- The values of str refer to the function `initializer` including ``'zeros'`` , ``'ones'`` ,
710
+ The values of str refer to the function :func:`mindspore.common.initializer.initializer`
711
+ including ``'zeros'`` , ``'ones'`` ,
709
712
  ``'xavier_uniform'`` , ``'he_uniform'`` , etc. Default: ``'ones'`` .
710
713
  beta_init (Union[Tensor, str, Initializer, numbers.Number]): Initializer for the :math:`\beta` weight.
711
- The values of str refer to the function `initializer` including ``'zeros'`` , ``'ones'`` ,
714
+ The values of str refer to the function :func:`mindspore.common.initializer.initializer`
715
+ including ``'zeros'`` , ``'ones'`` ,
712
716
  ``'xavier_uniform'`` , ``'he_uniform'`` , etc. Default: ``'zeros'`` .
713
717
  epsilon (float): A value added to the denominator for numerical stability(:math:`\epsilon`). Default: ``1e-7`` .
714
718
  dtype (:class:`mindspore.dtype`): Dtype of Parameters. Default: ``mstype.float32`` .
@@ -766,9 +770,9 @@ class LayerNorm(Cell):
766
770
  gamma_init, normalized_shape, dtype=dtype), name="gamma")
767
771
  self.beta = Parameter(initializer(
768
772
  beta_init, normalized_shape, dtype=dtype), name="beta")
769
- self.layer_norm = P.LayerNorm(begin_norm_axis=self.begin_norm_axis,
770
- begin_params_axis=self.begin_params_axis,
771
- epsilon=self.epsilon)
773
+ self.layer_norm = ops.LayerNorm(begin_norm_axis=self.begin_norm_axis,
774
+ begin_params_axis=self.begin_params_axis,
775
+ epsilon=self.epsilon)
772
776
 
773
777
  def construct(self, input_x):
774
778
  y, _, _ = self.layer_norm(input_x, self.gamma.astype(input_x.dtype), self.beta.astype(input_x.dtype))
@@ -911,9 +915,9 @@ class _InstanceNorm(Cell):
911
915
  self.beta = Parameter(initializer(
912
916
  beta_init, num_features, dtype=dtype), name="beta", requires_grad=affine)
913
917
 
914
- self.shape = P.Shape()
918
+ self.shape = ops.Shape()
915
919
  self.momentum = momentum
916
- self.instance_bn = P.InstanceNorm(epsilon=self.eps, momentum=self.momentum)
920
+ self.instance_bn = ops.InstanceNorm(epsilon=self.eps, momentum=self.momentum)
917
921
 
918
922
  def construct(self, x):
919
923
  self._check_input_dim(self.shape(x), self.cls_name)
@@ -968,10 +972,12 @@ class InstanceNorm1d(_InstanceNorm):
968
972
  running_mean and running_var computation. Default: ``0.1`` .
969
973
  affine (bool): A bool value. When set to True, gamma and beta can be learned. Default: ``True`` .
970
974
  gamma_init (Union[Tensor, str, Initializer, numbers.Number]): Initializer for the gamma weight.
971
- The values of str refer to the function `initializer` including ``'zeros'`` , ``'ones'`` , etc.
975
+ The values of str refer to the function :func:`mindspore.common.initializer.initializer`
976
+ including ``'zeros'`` , ``'ones'`` , etc.
972
977
  When initialized with Tensor, the shape should be :math:`(C)`. Default: ``'ones'`` .
973
978
  beta_init (Union[Tensor, str, Initializer, numbers.Number]): Initializer for the beta weight.
974
- The values of str refer to the function `initializer` including ``'zeros'`` , ``'ones'`` , etc.
979
+ The values of str refer to the function :func:`mindspore.common.initializer.initializer`
980
+ including ``'zeros'`` , ``'ones'`` , etc.
975
981
  When initialized with Tensor, the shape should be :math:`(C)`. Default: ``'zeros'`` .
976
982
  dtype (:class:`mindspore.dtype`): Dtype of Parameters. Default: ``mstype.float32`` .
977
983
 
@@ -1046,10 +1052,12 @@ class InstanceNorm2d(_InstanceNorm):
1046
1052
  running_mean and running_var computation. Default: ``0.1`` .
1047
1053
  affine (bool): A bool value. When set to ``True`` , gamma and beta can be learned. Default: ``True`` .
1048
1054
  gamma_init (Union[Tensor, str, Initializer, numbers.Number]): Initializer for the gamma weight.
1049
- The values of str refer to the function `initializer` including ``'zeros'`` , ``'ones'`` , etc.
1055
+ The values of str refer to the function :func:`mindspore.common.initializer.initializer`
1056
+ including ``'zeros'`` , ``'ones'`` , etc.
1050
1057
  When initialized with Tensor, the shape should be :math:`(C)`. Default: ``'ones'`` .
1051
1058
  beta_init (Union[Tensor, str, Initializer, numbers.Number]): Initializer for the beta weight.
1052
- The values of str refer to the function `initializer` including ``'zeros'`` , ``'ones'`` , etc.
1059
+ The values of str refer to the function :func:`mindspore.common.initializer.initializer`
1060
+ including ``'zeros'`` , ``'ones'`` , etc.
1053
1061
  When initialized with Tensor, the shape should be :math:`(C)`. Default: ``'zeros'`` .
1054
1062
  dtype (:class:`mindspore.dtype`): Dtype of Parameters. Default: ``mstype.float32`` .
1055
1063
 
@@ -1123,10 +1131,12 @@ class InstanceNorm3d(_InstanceNorm):
1123
1131
  running_mean and running_var computation. Default: ``0.1`` .
1124
1132
  affine (bool): A bool value. When set to ``True`` , gamma and beta can be learned. Default: ``True`` .
1125
1133
  gamma_init (Union[Tensor, str, Initializer, numbers.Number]): Initializer for the gamma weight.
1126
- The values of str refer to the function `initializer` including ``'zeros'`` , ``'ones'`` , etc.
1134
+ The values of str refer to the function :func:`mindspore.common.initializer.initializer`
1135
+ including ``'zeros'`` , ``'ones'`` , etc.
1127
1136
  When initialized with Tensor, the shape should be :math:`(C)`. Default: ``'ones'`` .
1128
1137
  beta_init (Union[Tensor, str, Initializer, numbers.Number]): Initializer for the beta weight.
1129
- The values of str refer to the function `initializer` including ``'zeros'`` , ``'ones'`` , etc.
1138
+ The values of str refer to the function :func:`mindspore.common.initializer.initializer`
1139
+ including ``'zeros'`` , ``'ones'`` , etc.
1130
1140
  When initialized with Tensor, the shape should be :math:`(C)`. Default: ``'zeros'`` .
1131
1141
  dtype (:class:`mindspore.dtype`): Dtype of Parameters. Default: ``mstype.float32`` .
1132
1142
 
@@ -1193,11 +1203,13 @@ class GroupNorm(Cell):
1193
1203
  affine (bool): A bool value, this layer will have learnable affine parameters when set to ``true`` .
1194
1204
  Default: ``True`` .
1195
1205
  gamma_init (Union[Tensor, str, Initializer, numbers.Number]): Initializer for the gamma weight.
1196
- The values of str refer to the function `initializer` including ``'zeros'`` , ``'ones'`` ,
1206
+ The values of str refer to the function :func:`mindspore.common.initializer.initializer`
1207
+ including ``'zeros'`` , ``'ones'`` ,
1197
1208
  ``'xavier_uniform'`` , ``'he_uniform'`` , etc. Default: ``'ones'`` . If gamma_init is a Tensor, the shape
1198
1209
  must be :math:`(num\_channels)`.
1199
1210
  beta_init (Union[Tensor, str, Initializer, numbers.Number]): Initializer for the beta weight.
1200
- The values of str refer to the function `initializer` including ``'zeros'`` , ``'ones'`` ,
1211
+ The values of str refer to the function :func:`mindspore.common.initializer.initializer`
1212
+ including ``'zeros'`` , ``'ones'`` ,
1201
1213
  ``'xavier_uniform'`` , ``'he_uniform'`` , etc. Default: ``'zeros'`` . If beta_init is a Tensor, the shape
1202
1214
  must be :math:`(num\_channels)`.
1203
1215
  dtype (:class:`mindspore.dtype`): Dtype of Parameters. Default: ``mstype.float32`` .
@@ -15,8 +15,6 @@
15
15
  """pooling"""
16
16
  from __future__ import absolute_import
17
17
 
18
- from mindspore.ops import operations as P
19
- from mindspore.ops import functional as F
20
18
  import mindspore.ops as ops
21
19
  from mindspore._checkparam import _check_3d_int_or_tuple
22
20
  from mindspore import _checkparam as validator
@@ -27,6 +25,7 @@ from mindspore.common import dtype as mstype
27
25
  from mindspore.nn.cell import Cell
28
26
  from mindspore._c_expression import MSContext
29
27
  from mindspore.ops.auto_generate import avg_pool1d_ext
28
+ from mindspore.ops.function.nn_func import max_pool2d_ext
30
29
 
31
30
 
32
31
  __all__ = ['AvgPool3d', 'MaxPool3d', 'AvgPool2d', 'MaxPool2d', 'AvgPool1d', 'MaxPool1d', 'FractionalMaxPool2d',
@@ -413,13 +412,13 @@ class MaxPool3d(_PoolNd):
413
412
  if pad_mode.upper() != "PAD":
414
413
  raise ValueError(f"For {self.cls_name}, the pad_mode must be 'pad' when dilation is not 1 "
415
414
  f"or return_indices is True, but got pad_mode:{pad_mode}.")
416
- self.max_pool = P.MaxPool3DWithArgmax(ksize=kernel_size, strides=stride, pads=padding,
417
- dilation=dilation, ceil_mode=ceil_mode)
415
+ self.max_pool = ops.MaxPool3DWithArgmax(ksize=kernel_size, strides=stride, pads=padding,
416
+ dilation=dilation, ceil_mode=ceil_mode)
418
417
  else:
419
418
  self.only_pad = False
420
419
  ceil_mode = None if not ceil_mode else True
421
- self.max_pool = P.MaxPool3D(kernel_size=kernel_size, strides=stride, pad_mode=pad_mode, pad_list=padding,
422
- ceil_mode=ceil_mode)
420
+ self.max_pool = ops.MaxPool3D(kernel_size=kernel_size, strides=stride, pad_mode=pad_mode, pad_list=padding,
421
+ ceil_mode=ceil_mode)
423
422
 
424
423
  def construct(self, x):
425
424
  expand_batch = False
@@ -567,18 +566,18 @@ class MaxPool2d(_PoolNd):
567
566
  stride = (1, self.stride, self.stride)
568
567
  self.padding = _check_maxpool_padding(padding, 2, self.cls_name)
569
568
  dilation = _cal_dilation(dilation, 2, self.cls_name)
570
- self.max_pool = P.MaxPool3DWithArgmax(ksize=kernel_size, strides=stride, pads=self.padding,
571
- dilation=dilation, ceil_mode=ceil_mode)
569
+ self.max_pool = ops.MaxPool3DWithArgmax(ksize=kernel_size, strides=stride, pads=self.padding,
570
+ dilation=dilation, ceil_mode=ceil_mode)
572
571
  else:
573
572
  self.use_pad = False
574
573
  if padding != 0 or dilation != 1 or return_indices or ceil_mode:
575
574
  raise ValueError(f"For MaxPool2d, the parameter 'padding', 'dilation', 'return_indices', 'ceil_mode' "
576
575
  f"can not be set to non-default value when pad_mode is not 'pad', "
577
576
  f"but got pad_mode:{pad_mode}.")
578
- self.max_pool = P.MaxPool(kernel_size=self.kernel_size,
579
- strides=self.stride,
580
- pad_mode=self.pad_mode,
581
- data_format=self.format)
577
+ self.max_pool = ops.MaxPool(kernel_size=self.kernel_size,
578
+ strides=self.stride,
579
+ pad_mode=self.pad_mode,
580
+ data_format=self.format)
582
581
 
583
582
  def construct(self, x):
584
583
  expand_batch = False
@@ -686,20 +685,16 @@ class MaxPool2dExt(Cell):
686
685
  ceil_mode=False):
687
686
  """Initialize MaxPool2d."""
688
687
  super(MaxPool2dExt, self).__init__()
688
+ self.kernel_size = kernel_size
689
+ self.stride = stride if (stride is not None) else kernel_size
690
+ self.padding = padding
691
+ self.dilation = dilation
689
692
  self.return_indices = return_indices
690
- strides = stride if (stride is not None) else kernel_size
691
- if return_indices:
692
- self.max_pool_func_ = ops.auto_generate.gen_ops_prim.MaxPoolWithIndices(kernel_size, strides, padding,
693
- dilation, ceil_mode)
694
- else:
695
- self.max_pool_func_ = ops.auto_generate.gen_ops_prim.MaxPoolWithMask(kernel_size, strides, padding,
696
- dilation, ceil_mode)
693
+ self.ceil_mode = ceil_mode
697
694
 
698
695
  def construct(self, input):
699
- out, indices = self.max_pool_func_(input)
700
- if self.return_indices:
701
- return out, indices
702
- return out
696
+ return max_pool2d_ext(input, self.kernel_size, self.stride, self.padding,
697
+ self.dilation, self.ceil_mode, self.return_indices)
703
698
 
704
699
 
705
700
  class MaxPool1d(_PoolNd):
@@ -815,8 +810,8 @@ class MaxPool1d(_PoolNd):
815
810
  self.stride = (1, 1, stride)
816
811
  self.padding = _check_maxpool_padding(padding, 1, self.cls_name)
817
812
  dilation = _cal_dilation(dilation, 1, self.cls_name)
818
- self.max_pool = P.MaxPool3DWithArgmax(ksize=self.kernel_size, strides=self.stride, pads=self.padding,
819
- dilation=dilation, ceil_mode=ceil_mode)
813
+ self.max_pool = ops.MaxPool3DWithArgmax(ksize=self.kernel_size, strides=self.stride, pads=self.padding,
814
+ dilation=dilation, ceil_mode=ceil_mode)
820
815
 
821
816
  else:
822
817
  self.use_pad = False
@@ -824,13 +819,13 @@ class MaxPool1d(_PoolNd):
824
819
  raise ValueError(f"For MaxPool1d, the parameter 'padding', 'dilation', 'return_indices', 'ceil_mode' "
825
820
  f"can not be set to non-default value when pad_mode is not 'pad', "
826
821
  f"but got pad_mode:{pad_mode}.")
827
- self.max_pool = P.MaxPool(kernel_size=self.kernel_size,
828
- strides=self.stride,
829
- pad_mode=self.pad_mode)
830
- self.shape = F.shape
831
- self.reduce_mean = P.ReduceMean(keep_dims=True)
832
- self.expand = P.ExpandDims()
833
- self.squeeze = P.Squeeze(2)
822
+ self.max_pool = ops.MaxPool(kernel_size=self.kernel_size,
823
+ strides=self.stride,
824
+ pad_mode=self.pad_mode)
825
+ self.shape = ops.shape
826
+ self.reduce_mean = ops.ReduceMean(keep_dims=True)
827
+ self.expand = ops.ExpandDims()
828
+ self.squeeze = ops.Squeeze(2)
834
829
 
835
830
  def construct(self, x):
836
831
  expand_batch = False
@@ -1010,8 +1005,8 @@ class AvgPool3d(_PoolNd):
1010
1005
  if divisor_override is not None and divisor_override <= 0:
1011
1006
  raise ValueError(f"For '{self.cls_name}', the 'divisor_override' must be > 0, but got {divisor_override}.")
1012
1007
  divisor_override = 0 if divisor_override is None else divisor_override
1013
- self.avg_pool = P.AvgPool3D(self.kernel_size, self.stride, pad_mode, padding, ceil_mode, count_include_pad,
1014
- divisor_override)
1008
+ self.avg_pool = ops.AvgPool3D(self.kernel_size, self.stride, pad_mode, padding, ceil_mode, count_include_pad,
1009
+ divisor_override)
1015
1010
 
1016
1011
  def construct(self, x):
1017
1012
  expand_batch = False
@@ -1272,15 +1267,15 @@ class AvgPool2d(_PoolNd):
1272
1267
  stride = (1,) + self.stride
1273
1268
  elif isinstance(self.stride, int):
1274
1269
  stride = (1, self.stride, self.stride)
1275
- self.avg_pool = P.AvgPool3D(kernel_size=kernel_size, strides=stride, pad_mode=pad_mode, pad=padding,
1276
- ceil_mode=ceil_mode,
1277
- count_include_pad=count_include_pad, divisor_override=divisor_override)
1270
+ self.avg_pool = ops.AvgPool3D(kernel_size=kernel_size, strides=stride, pad_mode=pad_mode, pad=padding,
1271
+ ceil_mode=ceil_mode,
1272
+ count_include_pad=count_include_pad, divisor_override=divisor_override)
1278
1273
  else:
1279
1274
  self.is_expand = False
1280
- self.avg_pool = P.AvgPool(kernel_size=self.kernel_size,
1281
- strides=self.stride,
1282
- pad_mode=self.pad_mode,
1283
- data_format=self.format)
1275
+ self.avg_pool = ops.AvgPool(kernel_size=self.kernel_size,
1276
+ strides=self.stride,
1277
+ pad_mode=self.pad_mode,
1278
+ data_format=self.format)
1284
1279
 
1285
1280
  def construct(self, x):
1286
1281
  expand_batch = False
@@ -1396,21 +1391,21 @@ class AvgPool1d(_PoolNd):
1396
1391
  self.is_expand_3d = True
1397
1392
  kernel_size = (1, 1, self.kernel_size)
1398
1393
  stride = (1, 1, self.stride)
1399
- self.avg_pool = P.AvgPool3D(kernel_size=kernel_size, strides=stride, pad_mode=pad_mode, pad=padding,
1400
- ceil_mode=ceil_mode,
1401
- count_include_pad=count_include_pad)
1394
+ self.avg_pool = ops.AvgPool3D(kernel_size=kernel_size, strides=stride, pad_mode=pad_mode, pad=padding,
1395
+ ceil_mode=ceil_mode,
1396
+ count_include_pad=count_include_pad)
1402
1397
  else:
1403
1398
  self.is_expand_3d = False
1404
1399
  self.kernel_size = (1, self.kernel_size)
1405
1400
  self.stride = (1, self.stride)
1406
- self.avg_pool = P.AvgPool(kernel_size=self.kernel_size,
1407
- strides=self.stride,
1408
- pad_mode=self.pad_mode)
1409
- self.shape = F.shape
1410
- self.reduce_mean = P.ReduceMean(keep_dims=True)
1411
- self.slice = P.Slice()
1412
- self.expand = P.ExpandDims()
1413
- self.squeeze = P.Squeeze(2)
1401
+ self.avg_pool = ops.AvgPool(kernel_size=self.kernel_size,
1402
+ strides=self.stride,
1403
+ pad_mode=self.pad_mode)
1404
+ self.shape = ops.shape
1405
+ self.reduce_mean = ops.ReduceMean(keep_dims=True)
1406
+ self.slice = ops.Slice()
1407
+ self.expand = ops.ExpandDims()
1408
+ self.squeeze = ops.Squeeze(2)
1414
1409
 
1415
1410
  def construct(self, x):
1416
1411
  expand_batch = False
@@ -1510,11 +1505,11 @@ class AdaptiveAvgPool1d(Cell):
1510
1505
  super(AdaptiveAvgPool1d, self).__init__()
1511
1506
  validator.check_value_type('output_size', output_size, [int], self.cls_name)
1512
1507
  validator.check_int(output_size, 1, validator.GE, "output_size", self.cls_name)
1513
- self.shape = F.shape
1514
- self.expand = P.ExpandDims()
1515
- self.squeeze = P.Squeeze(2)
1508
+ self.shape = ops.shape
1509
+ self.expand = ops.ExpandDims()
1510
+ self.squeeze = ops.Squeeze(2)
1516
1511
  self.output_size = output_size
1517
- self.dtype = P.DType()
1512
+ self.dtype = ops.DType()
1518
1513
 
1519
1514
  def construct(self, input):
1520
1515
  _adaptive_shape_check(self.shape(input), self.output_size, self.cls_name)
@@ -1528,7 +1523,7 @@ class AdaptiveAvgPool1d(Cell):
1528
1523
  kernel_size = (1, kernel_size)
1529
1524
 
1530
1525
  input = self.expand(input, 2)
1531
- avg_pool = P.AvgPool(kernel_size=kernel_size, strides=stride)
1526
+ avg_pool = ops.AvgPool(kernel_size=kernel_size, strides=stride)
1532
1527
  input = avg_pool(input)
1533
1528
  input = self.squeeze(input)
1534
1529
 
@@ -1591,7 +1586,7 @@ class AdaptiveAvgPool2d(Cell):
1591
1586
  def __init__(self, output_size):
1592
1587
  """Initialize AdaptiveAvgPool2d."""
1593
1588
  super(AdaptiveAvgPool2d, self).__init__()
1594
- self.adaptive_avgpool2d = P.AdaptiveAvgPool2D(output_size)
1589
+ self.adaptive_avgpool2d = ops.AdaptiveAvgPool2D(output_size)
1595
1590
 
1596
1591
  def construct(self, input):
1597
1592
  return self.adaptive_avgpool2d(input)
@@ -1728,11 +1723,11 @@ class AdaptiveMaxPool1d(Cell):
1728
1723
  super(AdaptiveMaxPool1d, self).__init__()
1729
1724
  validator.check_int(output_size, 1, validator.GE, "output_size", self.cls_name)
1730
1725
  validator.check_value_type('output_size', output_size, [int], self.cls_name)
1731
- self.expand = P.ExpandDims()
1732
- self.squeeze = P.Squeeze(2)
1726
+ self.expand = ops.ExpandDims()
1727
+ self.squeeze = ops.Squeeze(2)
1733
1728
  self.output_size = output_size
1734
- self.shape = F.shape
1735
- self.dtype = P.DType()
1729
+ self.shape = ops.shape
1730
+ self.dtype = ops.DType()
1736
1731
 
1737
1732
  def construct(self, x):
1738
1733
  _adaptive_shape_check(self.shape(x), self.output_size, self.cls_name)
@@ -1745,7 +1740,7 @@ class AdaptiveMaxPool1d(Cell):
1745
1740
  stride = (1, width // self.output_size)
1746
1741
  kernel_size = (1, kernel_size)
1747
1742
 
1748
- max_pool = P.MaxPool(kernel_size=kernel_size, strides=stride)
1743
+ max_pool = ops.MaxPool(kernel_size=kernel_size, strides=stride)
1749
1744
  x = self.expand(x, 2)
1750
1745
  x = max_pool(x)
1751
1746
  x = self.squeeze(x)
@@ -19,7 +19,7 @@ from functools import wraps
19
19
  import math
20
20
  import numpy as np
21
21
 
22
- import mindspore.ops as P
22
+ import mindspore.ops as ops
23
23
  import mindspore.common.dtype as mstype
24
24
  from mindspore import log as logger
25
25
  from mindspore.common.tensor import Tensor
@@ -40,17 +40,17 @@ def _check_input_dtype(input_dtype, param_name, allow_dtypes, cls_name):
40
40
  @constexpr(check=False)
41
41
  def _check_is_tensor(param_name, input_data, cls_name):
42
42
  """Internal function, used to check whether the input data is Tensor."""
43
- if input_data is not None and not isinstance(P.typeof(input_data), mstype.TensorType):
43
+ if input_data is not None and not isinstance(ops.typeof(input_data), mstype.TensorType):
44
44
  raise TypeError(f"For '{cls_name}', the '{param_name}' must be '{mstype.TensorType}', "
45
- f"but got '{P.typeof(input_data)}'")
45
+ f"but got '{ops.typeof(input_data)}'")
46
46
 
47
47
 
48
48
  @constexpr
49
49
  def _check_is_tuple(param_name, input_data, cls_name):
50
50
  """Internal function, used to check whether the input data is Tensor."""
51
- if input_data is not None and not isinstance(P.typeof(input_data), mstype.Tuple):
51
+ if input_data is not None and not isinstance(ops.typeof(input_data), mstype.Tuple):
52
52
  raise TypeError(f"For '{cls_name}', the '{param_name}' must be '{mstype.Tuple}', "
53
- f"but got '{P.typeof(input_data)}'")
53
+ f"but got '{ops.typeof(input_data)}'")
54
54
 
55
55
 
56
56
  @constexpr
@@ -78,41 +78,41 @@ def _check_lstmcell_init(func):
78
78
  def _rnn_tanh_cell(inputs, hidden, w_ih, w_hh, b_ih, b_hh):
79
79
  """RNN cell function with tanh activation"""
80
80
  if b_ih is None:
81
- igates = P.MatMul(False, True)(inputs, w_ih)
82
- hgates = P.MatMul(False, True)(hidden, w_hh)
81
+ igates = ops.MatMul(False, True)(inputs, w_ih)
82
+ hgates = ops.MatMul(False, True)(hidden, w_hh)
83
83
  else:
84
- igates = P.MatMul(False, True)(inputs, w_ih) + b_ih
85
- hgates = P.MatMul(False, True)(hidden, w_hh) + b_hh
86
- return P.Tanh()(igates + hgates)
84
+ igates = ops.MatMul(False, True)(inputs, w_ih) + b_ih
85
+ hgates = ops.MatMul(False, True)(hidden, w_hh) + b_hh
86
+ return ops.Tanh()(igates + hgates)
87
87
 
88
88
 
89
89
  def _rnn_relu_cell(inputs, hidden, w_ih, w_hh, b_ih, b_hh):
90
90
  """RNN cell function with relu activation"""
91
91
  if b_ih is None:
92
- igates = P.MatMul(False, True)(inputs, w_ih)
93
- hgates = P.MatMul(False, True)(hidden, w_hh)
92
+ igates = ops.MatMul(False, True)(inputs, w_ih)
93
+ hgates = ops.MatMul(False, True)(hidden, w_hh)
94
94
  else:
95
- igates = P.MatMul(False, True)(inputs, w_ih) + b_ih
96
- hgates = P.MatMul(False, True)(hidden, w_hh) + b_hh
97
- return P.ReLU()(igates + hgates)
95
+ igates = ops.MatMul(False, True)(inputs, w_ih) + b_ih
96
+ hgates = ops.MatMul(False, True)(hidden, w_hh) + b_hh
97
+ return ops.ReLU()(igates + hgates)
98
98
 
99
99
 
100
100
  def _lstm_cell(inputs, hidden, w_ih, w_hh, b_ih, b_hh):
101
101
  """LSTM cell function"""
102
102
  hx, cx = hidden
103
103
  if b_ih is None:
104
- gates = P.MatMul(False, True)(inputs, w_ih) + P.MatMul(False, True)(hx, w_hh)
104
+ gates = ops.MatMul(False, True)(inputs, w_ih) + ops.MatMul(False, True)(hx, w_hh)
105
105
  else:
106
- gates = P.MatMul(False, True)(inputs, w_ih) + P.MatMul(False, True)(hx, w_hh) + b_ih + b_hh
107
- ingate, forgetgate, cellgate, outgate = P.Split(1, 4)(gates)
106
+ gates = ops.MatMul(False, True)(inputs, w_ih) + ops.MatMul(False, True)(hx, w_hh) + b_ih + b_hh
107
+ ingate, forgetgate, cellgate, outgate = ops.Split(1, 4)(gates)
108
108
 
109
- ingate = P.Sigmoid()(ingate)
110
- forgetgate = P.Sigmoid()(forgetgate)
111
- cellgate = P.Tanh()(cellgate)
112
- outgate = P.Sigmoid()(outgate)
109
+ ingate = ops.Sigmoid()(ingate)
110
+ forgetgate = ops.Sigmoid()(forgetgate)
111
+ cellgate = ops.Tanh()(cellgate)
112
+ outgate = ops.Sigmoid()(outgate)
113
113
 
114
114
  cy = (forgetgate * cx) + (ingate * cellgate)
115
- hy = outgate * P.Tanh()(cy)
115
+ hy = outgate * ops.Tanh()(cy)
116
116
 
117
117
  return hy, cy
118
118
 
@@ -120,17 +120,17 @@ def _lstm_cell(inputs, hidden, w_ih, w_hh, b_ih, b_hh):
120
120
  def _gru_cell(inputs, hidden, w_ih, w_hh, b_ih, b_hh):
121
121
  """GRU cell function"""
122
122
  if b_ih is None:
123
- gi = P.MatMul(False, True)(inputs, w_ih)
124
- gh = P.MatMul(False, True)(hidden, w_hh)
123
+ gi = ops.MatMul(False, True)(inputs, w_ih)
124
+ gh = ops.MatMul(False, True)(hidden, w_hh)
125
125
  else:
126
- gi = P.MatMul(False, True)(inputs, w_ih) + b_ih
127
- gh = P.MatMul(False, True)(hidden, w_hh) + b_hh
128
- i_r, i_i, i_n = P.Split(1, 3)(gi)
129
- h_r, h_i, h_n = P.Split(1, 3)(gh)
130
-
131
- resetgate = P.Sigmoid()(i_r + h_r)
132
- inputgate = P.Sigmoid()(i_i + h_i)
133
- newgate = P.Tanh()(i_n + resetgate * h_n)
126
+ gi = ops.MatMul(False, True)(inputs, w_ih) + b_ih
127
+ gh = ops.MatMul(False, True)(hidden, w_hh) + b_hh
128
+ i_r, i_i, i_n = ops.Split(1, 3)(gi)
129
+ h_r, h_i, h_n = ops.Split(1, 3)(gh)
130
+
131
+ resetgate = ops.Sigmoid()(i_r + h_r)
132
+ inputgate = ops.Sigmoid()(i_i + h_i)
133
+ newgate = ops.Tanh()(i_n + resetgate * h_n)
134
134
  hy = newgate + inputgate * (hidden - newgate)
135
135
 
136
136
  return hy