mindspore 2.5.0__cp39-cp39-win_amd64.whl → 2.6.0rc1__cp39-cp39-win_amd64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of mindspore might be problematic. Click here for more details.
- mindspore/.commit_id +1 -1
- mindspore/Microsoft.VisualStudio.Telemetry.dll +0 -0
- mindspore/Newtonsoft.Json.dll +0 -0
- mindspore/__init__.py +6 -4
- mindspore/_c_dataengine.cp39-win_amd64.pyd +0 -0
- mindspore/_c_expression.cp39-win_amd64.pyd +0 -0
- mindspore/_c_mindrecord.cp39-win_amd64.pyd +0 -0
- mindspore/_check_jit_forbidden_api.py +3 -0
- mindspore/_checkparam.py +3 -33
- mindspore/_deprecated/__init__.py +17 -0
- mindspore/_deprecated/jit.py +198 -0
- mindspore/_extends/builtin_operations.py +1 -1
- mindspore/_extends/parse/__init__.py +6 -7
- mindspore/_extends/parse/compile_config.py +19 -0
- mindspore/_extends/parse/deprecated/deprecated_tensor_method.py +22 -3
- mindspore/_extends/parse/jit_fallback_modules/__init__.py +0 -0
- mindspore/_extends/parse/jit_fallback_modules/check_utils.py +123 -0
- mindspore/_extends/parse/jit_fallback_modules/third_party_modules.py +50 -0
- mindspore/_extends/parse/parser.py +24 -193
- mindspore/_extends/parse/resources.py +1 -5
- mindspore/_extends/parse/standard_method.py +97 -74
- mindspore/_extends/pijit/__init__.py +2 -2
- mindspore/_extends/pijit/pijit_func_white_list.py +16 -11
- mindspore/_extends/pijit/tensor_func_list.py +27 -0
- mindspore/_extends/utils.py +1 -1
- mindspore/amp.py +4 -4
- mindspore/atlprov.dll +0 -0
- mindspore/avcodec-59.dll +0 -0
- mindspore/avdevice-59.dll +0 -0
- mindspore/avfilter-8.dll +0 -0
- mindspore/avformat-59.dll +0 -0
- mindspore/avutil-57.dll +0 -0
- mindspore/boost/__init__.py +2 -2
- mindspore/boost/base.py +3 -7
- mindspore/boost/boost_cell_wrapper.py +2 -2
- mindspore/c1.dll +0 -0
- mindspore/c1xx.dll +0 -0
- mindspore/c2.dll +0 -0
- mindspore/common/__init__.py +4 -3
- mindspore/common/_grad_function.py +56 -0
- mindspore/common/_pijit_context.py +14 -5
- mindspore/common/_register_for_tensor.py +1 -1
- mindspore/common/_stub_tensor.py +5 -10
- mindspore/common/_tensor_cpp_method.py +1 -1
- mindspore/common/_tensor_docs.py +1915 -3287
- mindspore/common/api.py +341 -354
- mindspore/common/auto_dynamic_shape.py +41 -44
- mindspore/common/dtype.py +5 -2
- mindspore/common/dump.py +7 -5
- mindspore/common/file_system.py +3 -0
- mindspore/common/hook_handle.py +5 -3
- mindspore/common/initializer.py +10 -6
- mindspore/common/jit_begin_end.py +94 -0
- mindspore/common/jit_config.py +6 -1
- mindspore/common/jit_context.py +76 -0
- mindspore/common/jit_trace.py +378 -0
- mindspore/common/lazy_inline.py +2 -2
- mindspore/common/mutable.py +5 -4
- mindspore/common/parameter.py +106 -39
- mindspore/common/seed.py +2 -2
- mindspore/common/sparse_tensor.py +23 -17
- mindspore/common/tensor.py +297 -714
- mindspore/communication/__init__.py +7 -5
- mindspore/communication/_comm_helper.py +47 -2
- mindspore/communication/comm_func.py +70 -53
- mindspore/communication/management.py +83 -17
- mindspore/context.py +214 -560
- mindspore/dataset/__init__.py +44 -20
- mindspore/dataset/audio/__init__.py +2 -8
- mindspore/dataset/audio/transforms.py +3 -17
- mindspore/dataset/core/config.py +3 -3
- mindspore/dataset/engine/cache_client.py +1 -1
- mindspore/dataset/engine/datasets.py +102 -120
- mindspore/dataset/engine/datasets_audio.py +22 -22
- mindspore/dataset/engine/datasets_standard_format.py +43 -24
- mindspore/dataset/engine/datasets_text.py +78 -85
- mindspore/dataset/engine/datasets_user_defined.py +108 -76
- mindspore/dataset/engine/datasets_vision.py +111 -108
- mindspore/dataset/engine/iterators.py +5 -3
- mindspore/dataset/engine/obs/obs_mindrecord_dataset.py +1 -1
- mindspore/dataset/engine/samplers.py +279 -57
- mindspore/dataset/engine/serializer_deserializer.py +2 -1
- mindspore/dataset/engine/validators.py +10 -0
- mindspore/dataset/text/__init__.py +7 -6
- mindspore/dataset/text/transforms.py +6 -5
- mindspore/dataset/text/utils.py +3 -3
- mindspore/dataset/transforms/__init__.py +0 -9
- mindspore/dataset/transforms/transforms.py +3 -3
- mindspore/dataset/utils/browse_dataset.py +1 -1
- mindspore/dataset/vision/__init__.py +2 -9
- mindspore/dataset/vision/transforms.py +202 -158
- mindspore/dataset/vision/utils.py +7 -5
- mindspore/device_context/ascend/op_debug.py +60 -1
- mindspore/device_context/ascend/op_tuning.py +0 -4
- mindspore/device_manager.py +39 -3
- mindspore/dnnl.dll +0 -0
- mindspore/dpcmi.dll +0 -0
- mindspore/experimental/es/embedding_service.py +35 -27
- mindspore/experimental/map_parameter.py +4 -4
- mindspore/experimental/optim/adadelta.py +22 -26
- mindspore/experimental/optim/adagrad.py +4 -4
- mindspore/experimental/optim/adam.py +4 -0
- mindspore/experimental/optim/adamax.py +4 -4
- mindspore/experimental/optim/adamw.py +4 -0
- mindspore/experimental/optim/asgd.py +1 -1
- mindspore/experimental/optim/lr_scheduler.py +40 -22
- mindspore/experimental/optim/radam.py +5 -5
- mindspore/experimental/optim/rprop.py +1 -1
- mindspore/experimental/optim/sgd.py +1 -1
- mindspore/hal/contiguous_tensors_handle.py +6 -10
- mindspore/hal/device.py +55 -81
- mindspore/hal/event.py +38 -55
- mindspore/hal/memory.py +93 -144
- mindspore/hal/stream.py +81 -125
- mindspore/include/dataset/constants.h +7 -4
- mindspore/include/dataset/execute.h +2 -2
- mindspore/jpeg62.dll +0 -0
- mindspore/log.py +40 -2
- mindspore/mindrecord/__init__.py +20 -7
- mindspore/mindspore_backend_common.dll +0 -0
- mindspore/mindspore_backend_manager.dll +0 -0
- mindspore/mindspore_common.dll +0 -0
- mindspore/mindspore_core.dll +0 -0
- mindspore/mindspore_dump.dll +0 -0
- mindspore/mindspore_frontend.dll +0 -0
- mindspore/mindspore_glog.dll +0 -0
- mindspore/mindspore_memory_pool.dll +0 -0
- mindspore/mindspore_ms_backend.dll +0 -0
- mindspore/mindspore_ops.dll +0 -0
- mindspore/{mindspore_backend.dll → mindspore_ops_host.dll} +0 -0
- mindspore/mindspore_ops_kernel_common.dll +0 -0
- mindspore/mindspore_profiler.dll +0 -0
- mindspore/mindspore_pyboost.dll +0 -0
- mindspore/mindspore_pynative.dll +0 -0
- mindspore/mindspore_res_manager.dll +0 -0
- mindspore/mindspore_runtime_pipeline.dll +0 -0
- mindspore/mint/__init__.py +131 -700
- mindspore/mint/distributed/__init__.py +5 -1
- mindspore/mint/distributed/distributed.py +194 -109
- mindspore/mint/linalg/__init__.py +2 -0
- mindspore/mint/nn/__init__.py +280 -18
- mindspore/mint/nn/functional.py +282 -64
- mindspore/mint/nn/layer/__init__.py +4 -0
- mindspore/mint/nn/layer/_functions.py +7 -3
- mindspore/mint/nn/layer/activation.py +120 -13
- mindspore/mint/nn/layer/conv.py +218 -24
- mindspore/mint/nn/layer/normalization.py +15 -16
- mindspore/mint/nn/layer/padding.py +1 -1
- mindspore/mint/nn/layer/pooling.py +66 -1
- mindspore/mint/optim/__init__.py +2 -1
- mindspore/mint/optim/sgd.py +171 -0
- mindspore/msobj140.dll +0 -0
- mindspore/mspdb140.dll +0 -0
- mindspore/mspdbcore.dll +0 -0
- mindspore/mspdbst.dll +0 -0
- mindspore/mspft140.dll +0 -0
- mindspore/msvcdis140.dll +0 -0
- mindspore/msvcp140_1.dll +0 -0
- mindspore/msvcp140_2.dll +0 -0
- mindspore/msvcp140_atomic_wait.dll +0 -0
- mindspore/msvcp140_codecvt_ids.dll +0 -0
- mindspore/nn/__init__.py +4 -1
- mindspore/nn/cell.py +1250 -176
- mindspore/nn/layer/activation.py +23 -21
- mindspore/nn/layer/basic.py +22 -16
- mindspore/nn/layer/container.py +1 -1
- mindspore/nn/layer/conv.py +22 -17
- mindspore/nn/layer/embedding.py +9 -8
- mindspore/nn/layer/normalization.py +48 -42
- mindspore/nn/layer/pooling.py +75 -31
- mindspore/nn/layer/transformer.py +11 -10
- mindspore/nn/learning_rate_schedule.py +4 -2
- mindspore/nn/loss/loss.py +27 -19
- mindspore/nn/optim/ada_grad.py +6 -5
- mindspore/nn/optim/adadelta.py +9 -7
- mindspore/nn/optim/adafactor.py +1 -1
- mindspore/nn/optim/adam.py +16 -12
- mindspore/nn/optim/adamax.py +8 -7
- mindspore/nn/optim/adasum.py +5 -5
- mindspore/nn/optim/asgd.py +1 -1
- mindspore/nn/optim/ftrl.py +11 -9
- mindspore/nn/optim/lamb.py +1 -1
- mindspore/nn/optim/lazyadam.py +12 -10
- mindspore/nn/optim/momentum.py +7 -6
- mindspore/nn/optim/optimizer.py +2 -2
- mindspore/nn/optim/proximal_ada_grad.py +12 -10
- mindspore/nn/optim/rmsprop.py +13 -12
- mindspore/nn/optim/rprop.py +9 -7
- mindspore/nn/optim/sgd.py +9 -6
- mindspore/nn/optim/tft_wrapper.py +5 -2
- mindspore/nn/probability/bijector/bijector.py +17 -11
- mindspore/nn/probability/bijector/gumbel_cdf.py +5 -5
- mindspore/nn/probability/bijector/invert.py +2 -2
- mindspore/nn/probability/bijector/scalar_affine.py +3 -3
- mindspore/nn/probability/bijector/softplus.py +3 -2
- mindspore/nn/probability/distribution/beta.py +3 -3
- mindspore/nn/probability/distribution/categorical.py +1 -1
- mindspore/nn/probability/distribution/cauchy.py +4 -2
- mindspore/nn/probability/distribution/exponential.py +6 -7
- mindspore/nn/probability/distribution/gamma.py +2 -2
- mindspore/nn/probability/distribution/gumbel.py +2 -2
- mindspore/nn/probability/distribution/half_normal.py +5 -3
- mindspore/nn/probability/distribution/logistic.py +5 -3
- mindspore/nn/probability/distribution/poisson.py +1 -1
- mindspore/nn/probability/distribution/uniform.py +5 -3
- mindspore/nn/reinforcement/_tensors_queue.py +1 -1
- mindspore/nn/reinforcement/tensor_array.py +1 -1
- mindspore/nn/wrap/__init__.py +6 -6
- mindspore/nn/wrap/cell_wrapper.py +178 -117
- mindspore/nn/wrap/grad_reducer.py +45 -36
- mindspore/nn/wrap/loss_scale.py +3 -3
- mindspore/numpy/array_creations.py +3 -3
- mindspore/numpy/array_ops.py +1 -1
- mindspore/numpy/math_ops.py +4 -4
- mindspore/numpy/utils.py +1 -2
- mindspore/numpy/utils_const.py +1 -2
- mindspore/opencv_core452.dll +0 -0
- mindspore/opencv_imgcodecs452.dll +0 -0
- mindspore/opencv_imgproc452.dll +0 -0
- mindspore/ops/__init__.py +3 -2
- mindspore/ops/_grad_experimental/grad_comm_ops.py +18 -3
- mindspore/ops/_grad_experimental/grad_debug_ops.py +8 -1
- mindspore/ops/_grad_experimental/taylor_rule.py +29 -0
- mindspore/ops/_register_for_op.py +0 -11
- mindspore/{ops_generate → ops/_utils}/arg_dtype_cast.py +123 -4
- mindspore/{ops_generate → ops/_utils}/arg_handler.py +3 -4
- mindspore/ops/_vmap/vmap_array_ops.py +7 -6
- mindspore/ops/_vmap/vmap_grad_nn_ops.py +2 -1
- mindspore/ops/_vmap/vmap_math_ops.py +4 -7
- mindspore/ops/_vmap/vmap_nn_ops.py +9 -8
- mindspore/ops/auto_generate/__init__.py +4 -3
- mindspore/ops/auto_generate/cpp_create_prim_instance_helper.py +102 -49
- mindspore/ops/auto_generate/gen_extend_func.py +281 -135
- mindspore/ops/auto_generate/gen_ops_def.py +2574 -2326
- mindspore/ops/auto_generate/gen_ops_prim.py +8566 -2755
- mindspore/ops/auto_generate/pyboost_inner_prim.py +106 -76
- mindspore/ops/composite/__init__.py +2 -1
- mindspore/ops/composite/base.py +19 -24
- mindspore/ops/composite/math_ops.py +6 -16
- mindspore/ops/composite/multitype_ops/__init__.py +5 -2
- mindspore/ops/composite/multitype_ops/_compile_utils.py +2 -3
- mindspore/ops/composite/multitype_ops/_constexpr_utils.py +1 -2
- mindspore/ops/composite/multitype_ops/add_impl.py +2 -1
- mindspore/ops/composite/multitype_ops/bitwise_and_impl.py +2 -1
- mindspore/ops/composite/multitype_ops/bitwise_or_impl.py +2 -1
- mindspore/ops/composite/multitype_ops/bitwise_xor_impl.py +2 -1
- mindspore/ops/composite/multitype_ops/div_impl.py +6 -4
- mindspore/ops/composite/multitype_ops/equal_impl.py +4 -3
- mindspore/ops/composite/multitype_ops/floordiv_impl.py +2 -1
- mindspore/ops/composite/multitype_ops/getitem_impl.py +3 -2
- mindspore/ops/composite/multitype_ops/greater_equal_impl.py +4 -3
- mindspore/ops/composite/multitype_ops/greater_impl.py +4 -3
- mindspore/ops/composite/multitype_ops/in_impl.py +2 -1
- mindspore/ops/composite/multitype_ops/invert_impl.py +50 -0
- mindspore/ops/composite/multitype_ops/left_shift_impl.py +2 -1
- mindspore/ops/composite/multitype_ops/less_equal_impl.py +4 -3
- mindspore/ops/composite/multitype_ops/less_impl.py +4 -3
- mindspore/ops/composite/multitype_ops/logic_not_impl.py +3 -2
- mindspore/ops/composite/multitype_ops/logical_and_impl.py +2 -1
- mindspore/ops/composite/multitype_ops/logical_or_impl.py +2 -1
- mindspore/ops/composite/multitype_ops/mod_impl.py +2 -1
- mindspore/ops/composite/multitype_ops/mul_impl.py +3 -2
- mindspore/ops/composite/multitype_ops/negative_impl.py +2 -1
- mindspore/ops/composite/multitype_ops/not_equal_impl.py +2 -1
- mindspore/ops/composite/multitype_ops/not_in_impl.py +2 -1
- mindspore/ops/composite/multitype_ops/ones_like_impl.py +18 -0
- mindspore/ops/composite/multitype_ops/pow_impl.py +2 -1
- mindspore/ops/composite/multitype_ops/right_shift_impl.py +2 -1
- mindspore/ops/composite/multitype_ops/setitem_impl.py +2 -1
- mindspore/ops/composite/multitype_ops/sub_impl.py +2 -1
- mindspore/ops/function/__init__.py +28 -2
- mindspore/ops/function/_add_attr_func.py +58 -0
- mindspore/ops/function/array_func.py +1629 -2345
- mindspore/ops/function/clip_func.py +38 -45
- mindspore/ops/function/debug_func.py +36 -44
- mindspore/ops/function/grad/__init__.py +1 -0
- mindspore/ops/function/grad/grad_func.py +104 -71
- mindspore/ops/function/image_func.py +1 -1
- mindspore/ops/function/linalg_func.py +46 -78
- mindspore/ops/function/math_func.py +3035 -3705
- mindspore/ops/function/nn_func.py +676 -241
- mindspore/ops/function/other_func.py +159 -1
- mindspore/ops/function/parameter_func.py +17 -30
- mindspore/ops/function/random_func.py +204 -361
- mindspore/ops/function/reshard_func.py +4 -70
- mindspore/ops/function/sparse_func.py +3 -3
- mindspore/ops/function/sparse_unary_func.py +5 -5
- mindspore/ops/function/spectral_func.py +25 -58
- mindspore/ops/function/vmap_func.py +24 -17
- mindspore/ops/functional.py +6 -4
- mindspore/ops/functional_overload.py +547 -4
- mindspore/ops/op_info_register.py +32 -244
- mindspore/ops/operations/__init__.py +10 -5
- mindspore/ops/operations/_custom_ops_utils.py +247 -0
- mindspore/ops/operations/_grad_ops.py +1 -10
- mindspore/ops/operations/_inner_ops.py +5 -76
- mindspore/ops/operations/_ms_kernel.py +4 -10
- mindspore/ops/operations/_rl_inner_ops.py +1 -1
- mindspore/ops/operations/_scalar_ops.py +3 -2
- mindspore/ops/operations/_sequence_ops.py +1 -1
- mindspore/ops/operations/_tensor_array.py +1 -1
- mindspore/ops/operations/array_ops.py +37 -22
- mindspore/ops/operations/comm_ops.py +150 -107
- mindspore/ops/operations/custom_ops.py +221 -23
- mindspore/ops/operations/debug_ops.py +115 -16
- mindspore/ops/operations/inner_ops.py +1 -1
- mindspore/ops/operations/linalg_ops.py +1 -58
- mindspore/ops/operations/manually_defined/_inner.py +1 -1
- mindspore/ops/operations/manually_defined/ops_def.py +746 -79
- mindspore/ops/operations/math_ops.py +21 -18
- mindspore/ops/operations/nn_ops.py +65 -191
- mindspore/ops/operations/other_ops.py +62 -9
- mindspore/ops/operations/random_ops.py +13 -7
- mindspore/ops/operations/reshard_ops.py +1 -1
- mindspore/ops/operations/sparse_ops.py +2 -2
- mindspore/ops/primitive.py +43 -32
- mindspore/ops/tensor_method.py +232 -13
- mindspore/ops_generate/__init__.py +0 -5
- mindspore/ops_generate/aclnn/__init__.py +0 -0
- mindspore/ops_generate/{aclnn_kernel_register_auto_cc_generator.py → aclnn/aclnn_kernel_register_auto_cc_generator.py} +43 -18
- mindspore/ops_generate/{gen_aclnn_implement.py → aclnn/gen_aclnn_implement.py} +49 -51
- mindspore/ops_generate/api/__init__.py +0 -0
- mindspore/ops_generate/{add_tensor_docs_generator.py → api/add_tensor_docs_generator.py} +9 -7
- mindspore/ops_generate/{cpp_create_prim_instance_helper_generator.py → api/cpp_create_prim_instance_helper_generator.py} +6 -9
- mindspore/ops_generate/{functional_map_cpp_generator.py → api/functional_map_cpp_generator.py} +25 -12
- mindspore/ops_generate/{functional_overload_py_generator.py → api/functional_overload_py_generator.py} +8 -6
- mindspore/ops_generate/{functions_cc_generator.py → api/functions_cc_generator.py} +14 -10
- mindspore/ops_generate/api/gen_api.py +103 -0
- mindspore/ops_generate/{op_api_proto.py → api/op_api_proto.py} +98 -69
- mindspore/ops_generate/{tensor_func_reg_cpp_generator.py → api/tensor_func_reg_cpp_generator.py} +82 -43
- mindspore/ops_generate/common/__init__.py +0 -0
- mindspore/ops_generate/common/gen_constants.py +91 -0
- mindspore/ops_generate/{gen_utils.py → common/gen_utils.py} +72 -19
- mindspore/ops_generate/{op_proto.py → common/op_proto.py} +64 -1
- mindspore/ops_generate/{template.py → common/template.py} +96 -84
- mindspore/ops_generate/gen_ops.py +23 -325
- mindspore/ops_generate/op_def/__init__.py +0 -0
- mindspore/ops_generate/op_def/gen_op_def.py +90 -0
- mindspore/ops_generate/{lite_ops_cpp_generator.py → op_def/lite_ops_cpp_generator.py} +47 -11
- mindspore/ops_generate/{ops_def_cc_generator.py → op_def/ops_def_cc_generator.py} +18 -7
- mindspore/ops_generate/{ops_def_h_generator.py → op_def/ops_def_h_generator.py} +5 -5
- mindspore/ops_generate/{ops_name_h_generator.py → op_def/ops_name_h_generator.py} +30 -15
- mindspore/ops_generate/op_def/ops_primitive_h_generator.py +125 -0
- mindspore/ops_generate/op_def_py/__init__.py +0 -0
- mindspore/ops_generate/op_def_py/gen_op_def_py.py +47 -0
- mindspore/ops_generate/{op_def_py_generator.py → op_def_py/op_def_py_generator.py} +6 -5
- mindspore/ops_generate/{op_prim_py_generator.py → op_def_py/op_prim_py_generator.py} +24 -15
- mindspore/ops_generate/pyboost/__init__.py +0 -0
- mindspore/ops_generate/{auto_grad_impl_cc_generator.py → pyboost/auto_grad_impl_cc_generator.py} +11 -7
- mindspore/ops_generate/{auto_grad_reg_cc_generator.py → pyboost/auto_grad_reg_cc_generator.py} +7 -7
- mindspore/ops_generate/{gen_pyboost_func.py → pyboost/gen_pyboost_func.py} +40 -16
- mindspore/ops_generate/{op_template_parser.py → pyboost/op_template_parser.py} +105 -24
- mindspore/ops_generate/{pyboost_functions_cpp_generator.py → pyboost/pyboost_functions_cpp_generator.py} +55 -18
- mindspore/ops_generate/{pyboost_functions_h_generator.py → pyboost/pyboost_functions_h_generator.py} +42 -10
- mindspore/ops_generate/{pyboost_functions_py_generator.py → pyboost/pyboost_functions_py_generator.py} +6 -6
- mindspore/ops_generate/{pyboost_grad_function_cpp_generator.py → pyboost/pyboost_grad_function_cpp_generator.py} +11 -10
- mindspore/ops_generate/{pyboost_inner_prim_generator.py → pyboost/pyboost_inner_prim_generator.py} +8 -7
- mindspore/ops_generate/{pyboost_native_grad_functions_generator.py → pyboost/pyboost_native_grad_functions_generator.py} +14 -10
- mindspore/ops_generate/{pyboost_op_cpp_code_generator.py → pyboost/pyboost_op_cpp_code_generator.py} +140 -53
- mindspore/ops_generate/{pyboost_overload_functions_cpp_generator.py → pyboost/pyboost_overload_functions_cpp_generator.py} +28 -15
- mindspore/ops_generate/{pyboost_utils.py → pyboost/pyboost_utils.py} +88 -4
- mindspore/ops_generate/resources/__init__.py +0 -0
- mindspore/ops_generate/resources/resource_list.py +30 -0
- mindspore/ops_generate/resources/resource_loader.py +36 -0
- mindspore/ops_generate/resources/resource_manager.py +64 -0
- mindspore/ops_generate/resources/yaml_loader.py +88 -0
- mindspore/ops_generate/tensor_py_cc_generator.py +122 -0
- mindspore/parallel/__init__.py +6 -2
- mindspore/parallel/_auto_parallel_context.py +133 -6
- mindspore/parallel/_cell_wrapper.py +130 -15
- mindspore/parallel/_parallel_serialization.py +95 -4
- mindspore/parallel/_ps_context.py +1 -1
- mindspore/parallel/_recovery_context.py +7 -2
- mindspore/parallel/_tensor.py +142 -18
- mindspore/parallel/_utils.py +198 -25
- mindspore/parallel/algo_parameter_config.py +3 -3
- mindspore/parallel/auto_parallel.py +732 -0
- mindspore/parallel/checkpoint_convert.py +159 -0
- mindspore/parallel/checkpoint_transform.py +656 -37
- mindspore/parallel/cluster/process_entity/_api.py +151 -19
- mindspore/parallel/cluster/run.py +1 -1
- mindspore/parallel/function/__init__.py +24 -0
- mindspore/parallel/function/reshard_func.py +259 -0
- mindspore/parallel/nn/__init__.py +25 -0
- mindspore/parallel/nn/parallel_cell_wrapper.py +263 -0
- mindspore/parallel/nn/parallel_grad_reducer.py +169 -0
- mindspore/parallel/parameter_broadcast.py +24 -13
- mindspore/parallel/shard.py +137 -61
- mindspore/parallel/transform_safetensors.py +287 -95
- mindspore/pgodb140.dll +0 -0
- mindspore/pgort140.dll +0 -0
- mindspore/profiler/__init__.py +9 -5
- mindspore/profiler/analysis/parser/ascend_cann_parser.py +6 -2
- mindspore/profiler/analysis/parser/ms_framework_parser.py +4 -4
- mindspore/profiler/analysis/parser/timeline_assembly_factory/ascend_timeline_assembler.py +7 -4
- mindspore/profiler/analysis/parser/timeline_assembly_factory/trace_view_container.py +22 -0
- mindspore/profiler/analysis/parser/timeline_creator/fwk_timeline_creator.py +3 -3
- mindspore/profiler/analysis/parser/timeline_event/fwk_event.py +241 -86
- mindspore/profiler/analysis/viewer/ascend_communication_viewer.py +41 -2
- mindspore/profiler/analysis/viewer/ascend_kernel_details_viewer.py +33 -35
- mindspore/profiler/analysis/viewer/ascend_memory_viewer.py +7 -0
- mindspore/profiler/analysis/viewer/ascend_op_memory_viewer.py +8 -3
- mindspore/profiler/analysis/viewer/ascend_step_trace_time_viewer.py +141 -30
- mindspore/profiler/analysis/viewer/ms_dataset_viewer.py +5 -6
- mindspore/profiler/common/ascend_msprof_exporter.py +5 -4
- mindspore/profiler/common/constant.py +12 -0
- mindspore/profiler/common/msprof_cmd_tool.py +42 -23
- mindspore/profiler/common/path_manager.py +24 -0
- mindspore/profiler/common/profiler_context.py +26 -2
- mindspore/profiler/common/profiler_meta_data.py +74 -0
- mindspore/profiler/common/profiler_parameters.py +59 -18
- mindspore/profiler/common/profiler_path_manager.py +66 -7
- mindspore/profiler/dynamic_profiler.py +112 -79
- mindspore/profiler/envprofiler.py +26 -1
- mindspore/profiler/experimental_config.py +197 -0
- mindspore/profiler/mstx.py +57 -14
- mindspore/profiler/platform/npu_profiler.py +33 -7
- mindspore/profiler/profiler.py +541 -45
- mindspore/profiler/profiler_action_controller.py +1 -1
- mindspore/profiler/profiler_interface.py +4 -0
- mindspore/profiler/schedule.py +57 -22
- mindspore/rewrite/api/node.py +15 -13
- mindspore/rewrite/api/symbol_tree.py +1 -1
- mindspore/run_check/_check_version.py +25 -14
- mindspore/run_check/run_check.py +1 -1
- mindspore/runtime/__init__.py +2 -2
- mindspore/runtime/executor.py +40 -11
- mindspore/runtime/memory.py +25 -8
- mindspore/safeguard/rewrite_obfuscation.py +12 -9
- mindspore/swresample-4.dll +0 -0
- mindspore/swscale-6.dll +0 -0
- mindspore/tbbmalloc.dll +0 -0
- mindspore/tinyxml2.dll +0 -0
- mindspore/train/__init__.py +8 -8
- mindspore/train/_utils.py +35 -7
- mindspore/train/amp.py +1 -1
- mindspore/train/callback/__init__.py +2 -2
- mindspore/train/callback/_callback.py +2 -16
- mindspore/train/callback/_checkpoint.py +24 -40
- mindspore/train/callback/_cluster_monitor.py +14 -18
- mindspore/train/callback/_flops_collector.py +2 -3
- mindspore/train/callback/_history.py +7 -4
- mindspore/train/callback/_lambda_callback.py +2 -2
- mindspore/train/callback/_landscape.py +0 -3
- mindspore/train/callback/_loss_monitor.py +2 -1
- mindspore/train/callback/_on_request_exit.py +6 -5
- mindspore/train/callback/_reduce_lr_on_plateau.py +11 -6
- mindspore/train/callback/_summary_collector.py +8 -13
- mindspore/train/callback/_time_monitor.py +2 -1
- mindspore/train/callback/{_tft_register.py → _train_fault_tolerance.py} +179 -103
- mindspore/train/data_sink.py +25 -2
- mindspore/train/dataset_helper.py +4 -5
- mindspore/train/loss_scale_manager.py +8 -7
- mindspore/train/metrics/accuracy.py +3 -3
- mindspore/train/metrics/confusion_matrix.py +9 -9
- mindspore/train/metrics/error.py +3 -3
- mindspore/train/metrics/hausdorff_distance.py +4 -4
- mindspore/train/metrics/mean_surface_distance.py +3 -3
- mindspore/train/metrics/metric.py +0 -12
- mindspore/train/metrics/occlusion_sensitivity.py +4 -2
- mindspore/train/metrics/precision.py +8 -6
- mindspore/train/metrics/recall.py +9 -9
- mindspore/train/metrics/root_mean_square_surface_distance.py +2 -2
- mindspore/train/mind_ir_pb2.py +19 -12
- mindspore/train/model.py +176 -103
- mindspore/train/serialization.py +246 -988
- mindspore/train/summary/_summary_adapter.py +2 -2
- mindspore/train/summary/summary_record.py +1 -1
- mindspore/turbojpeg.dll +0 -0
- mindspore/utils/__init__.py +3 -2
- mindspore/utils/dryrun.py +4 -2
- mindspore/utils/hooks.py +81 -0
- mindspore/utils/utils.py +138 -4
- mindspore/vcmeta.dll +0 -0
- mindspore/vcruntime140.dll +0 -0
- mindspore/vcruntime140_1.dll +0 -0
- mindspore/version.py +1 -1
- {mindspore-2.5.0.dist-info → mindspore-2.6.0rc1.dist-info}/METADATA +2 -1
- {mindspore-2.5.0.dist-info → mindspore-2.6.0rc1.dist-info}/RECORD +483 -438
- mindspore/_install_custom.py +0 -43
- mindspore/common/_register_for_adapter.py +0 -74
- mindspore/ops/auto_generate/gen_arg_dtype_cast.py +0 -252
- mindspore/ops/auto_generate/gen_arg_handler.py +0 -136
- mindspore/ops/operations/_opaque_predicate_registry.py +0 -41
- mindspore/ops_generate/gen_constants.py +0 -190
- mindspore/ops_generate/gen_ops_inner_prim.py +0 -131
- mindspore/ops_generate/ops_primitive_h_generator.py +0 -81
- /mindspore/ops_generate/{base_generator.py → common/base_generator.py} +0 -0
- {mindspore-2.5.0.dist-info → mindspore-2.6.0rc1.dist-info}/WHEEL +0 -0
- {mindspore-2.5.0.dist-info → mindspore-2.6.0rc1.dist-info}/entry_points.txt +0 -0
- {mindspore-2.5.0.dist-info → mindspore-2.6.0rc1.dist-info}/top_level.txt +0 -0
mindspore/nn/optim/ftrl.py
CHANGED
|
@@ -228,21 +228,23 @@ class FTRL(Optimizer):
|
|
|
228
228
|
If `order_params` in the keys, other keys will be ignored and the element of 'order_params' must be in
|
|
229
229
|
one group of `params`.
|
|
230
230
|
|
|
231
|
-
initial_accum (float): The starting value for accumulators `m`, must be zero or positive values.
|
|
231
|
+
initial_accum (float, optional): The starting value for accumulators `m`, must be zero or positive values.
|
|
232
232
|
Default: ``0.1`` .
|
|
233
|
-
learning_rate (float): The learning rate value, must be zero or positive, dynamic learning rate
|
|
234
|
-
not supported. Default: ``0.001`` .
|
|
235
|
-
lr_power (float): Learning rate power controls how the learning rate decreases during training,
|
|
233
|
+
learning_rate (float, optional): The learning rate value, must be zero or positive, dynamic learning rate
|
|
234
|
+
is currently not supported. Default: ``0.001`` .
|
|
235
|
+
lr_power (float, optional): Learning rate power controls how the learning rate decreases during training,
|
|
236
|
+
must be less
|
|
236
237
|
than or equal to zero. Use fixed learning rate if lr_power is zero. Default: ``-0.5`` .
|
|
237
|
-
l1 (float): l1 regularization strength, must be greater than or equal to zero. Default: ``0.0`` .
|
|
238
|
-
l2 (float): l2 regularization strength, must be greater than or equal to zero. Default: ``0.0`` .
|
|
239
|
-
use_locking (bool): If true, use locks for updating operation. Default: ``False`` .
|
|
240
|
-
loss_scale (float): Value for the loss scale. It must be greater than 0.0. In general,
|
|
238
|
+
l1 (float, optional): l1 regularization strength, must be greater than or equal to zero. Default: ``0.0`` .
|
|
239
|
+
l2 (float, optional): l2 regularization strength, must be greater than or equal to zero. Default: ``0.0`` .
|
|
240
|
+
use_locking (bool, optional): If true, use locks for updating operation. Default: ``False`` .
|
|
241
|
+
loss_scale (float, optional): Value for the loss scale. It must be greater than 0.0. In general,
|
|
242
|
+
use the default value.
|
|
241
243
|
Only when `FixedLossScaleManager` is used for training and the `drop_overflow_update` in
|
|
242
244
|
`FixedLossScaleManager` is set to ``False`` , then this value needs to be the same as the `loss_scale` in
|
|
243
245
|
`FixedLossScaleManager`. Refer to class :class:`mindspore.amp.FixedLossScaleManager` for more details.
|
|
244
246
|
Default: ``1.0`` .
|
|
245
|
-
weight_decay (Union[float, int, Cell]): Weight decay (L2 penalty). Default: ``0.0`` .
|
|
247
|
+
weight_decay (Union[float, int, Cell], optional): Weight decay (L2 penalty). Default: ``0.0`` .
|
|
246
248
|
|
|
247
249
|
- float: The fixed weight decay value. Must be equal to or greater than 0.
|
|
248
250
|
|
mindspore/nn/optim/lamb.py
CHANGED
|
@@ -265,7 +265,7 @@ class Lamb(Optimizer):
|
|
|
265
265
|
self.moments2 = self.params.clone(prefix="lamb_v", init='zeros')
|
|
266
266
|
self.device_ascend = context.get_context("device_target") == "Ascend"
|
|
267
267
|
|
|
268
|
-
@jit
|
|
268
|
+
@jit(backend="ms_backend")
|
|
269
269
|
def construct(self, gradients):
|
|
270
270
|
weight_decay = self.get_weight_decay()
|
|
271
271
|
lr = self.get_lr()
|
mindspore/nn/optim/lazyadam.py
CHANGED
|
@@ -321,7 +321,7 @@ class LazyAdam(Optimizer):
|
|
|
321
321
|
If `order_params` in the keys, other keys will be ignored and the element of 'order_params' must be in
|
|
322
322
|
one group of `params`.
|
|
323
323
|
|
|
324
|
-
learning_rate (Union[float, int, Tensor, Iterable, LearningRateSchedule]): Default: ``1e-3`` .
|
|
324
|
+
learning_rate (Union[float, int, Tensor, Iterable, LearningRateSchedule], optional): Default: ``1e-3`` .
|
|
325
325
|
|
|
326
326
|
- float: The fixed learning rate value. Must be equal to or greater than 0.
|
|
327
327
|
|
|
@@ -337,20 +337,21 @@ class LazyAdam(Optimizer):
|
|
|
337
337
|
<https://www.mindspore.cn/docs/en/master/api_python/mindspore.nn.html#learningrateschedule-class>`_
|
|
338
338
|
with step as the input to get the learning rate of current step.
|
|
339
339
|
|
|
340
|
-
beta1 (float): The exponential decay rate for the 1st moment estimations.
|
|
341
|
-
|
|
342
|
-
beta2 (float): The exponential decay rate for the 2nd moment estimations.
|
|
343
|
-
|
|
344
|
-
eps (float): Term added to the denominator to improve numerical stability. Should be greater than 0.
|
|
340
|
+
beta1 (float, optional): The exponential decay rate for the 1st moment estimations.
|
|
341
|
+
Should be in range (0.0, 1.0). Default: ``0.9`` .
|
|
342
|
+
beta2 (float, optional): The exponential decay rate for the 2nd moment estimations.
|
|
343
|
+
Should be in range (0.0, 1.0). Default: ``0.999`` .
|
|
344
|
+
eps (float, optional): Term added to the denominator to improve numerical stability. Should be greater than 0.
|
|
345
345
|
Default: ``1e-8`` .
|
|
346
|
-
use_locking (bool): Whether to enable a lock to protect the updating process of variable tensors.
|
|
346
|
+
use_locking (bool, optional): Whether to enable a lock to protect the updating process of variable tensors.
|
|
347
347
|
If ``true`` , updates of the `w`, `m`, and `v` tensors will be protected by a lock.
|
|
348
348
|
If ``false`` , the result is unpredictable. Default: ``False`` .
|
|
349
|
-
use_nesterov (bool): Whether to use Nesterov Accelerated Gradient (NAG) algorithm to
|
|
349
|
+
use_nesterov (bool, optional): Whether to use Nesterov Accelerated Gradient (NAG) algorithm to
|
|
350
|
+
update the gradients.
|
|
350
351
|
If ``true`` , update the gradients using NAG.
|
|
351
352
|
If ``false`` , update the gradients without using NAG. Default: ``False`` .
|
|
352
353
|
|
|
353
|
-
weight_decay (Union[float, int, Cell]): Weight decay (L2 penalty). Default: ``0.0`` .
|
|
354
|
+
weight_decay (Union[float, int, Cell], optional): Weight decay (L2 penalty). Default: ``0.0`` .
|
|
354
355
|
|
|
355
356
|
- float: The fixed weight decay value. Must be equal to or greater than 0.
|
|
356
357
|
|
|
@@ -359,7 +360,8 @@ class LazyAdam(Optimizer):
|
|
|
359
360
|
- Cell: Weight decay is dynamic. During training, the optimizer calls the instance of
|
|
360
361
|
the Cell with step as the input to get the weight decay value of current step.
|
|
361
362
|
|
|
362
|
-
loss_scale (float): A floating point value for the loss scale. Should be equal to or greater than 1.
|
|
363
|
+
loss_scale (float, optional): A floating point value for the loss scale. Should be equal to or greater than 1.
|
|
364
|
+
In general,
|
|
363
365
|
use the default value. Only when `FixedLossScaleManager` is used for training and the `drop_overflow_update`
|
|
364
366
|
in `FixedLossScaleManager` is set to ``False`` , then this value needs to be the same as the `loss_scale` in
|
|
365
367
|
`FixedLossScaleManager`. Refer to class :class:`mindspore.amp.FixedLossScaleManager` for more details.
|
mindspore/nn/optim/momentum.py
CHANGED
|
@@ -103,7 +103,7 @@ class Momentum(Optimizer):
|
|
|
103
103
|
If `order_params` in the keys, other keys will be ignored and the element of 'order_params' must be in
|
|
104
104
|
one group of `params`.
|
|
105
105
|
|
|
106
|
-
learning_rate (Union[float, int, Tensor, Iterable, LearningRateSchedule]):
|
|
106
|
+
learning_rate (Union[float, int, Tensor, Iterable, LearningRateSchedule], optional):
|
|
107
107
|
|
|
108
108
|
- float: The fixed learning rate value. Must be equal to or greater than 0.
|
|
109
109
|
|
|
@@ -119,10 +119,10 @@ class Momentum(Optimizer):
|
|
|
119
119
|
<https://www.mindspore.cn/docs/en/master/api_python/mindspore.nn.html#learningrateschedule-class>`_
|
|
120
120
|
with step as the input to get the learning rate of current step.
|
|
121
121
|
|
|
122
|
-
momentum (float): Hyperparameter of type float, means momentum for the moving average.
|
|
122
|
+
momentum (float, optional): Hyperparameter of type float, means momentum for the moving average.
|
|
123
123
|
It must be at least 0.0.
|
|
124
124
|
|
|
125
|
-
weight_decay (Union[float, int, Cell]): Weight decay (L2 penalty). Default: ``0.0`` .
|
|
125
|
+
weight_decay (Union[float, int, Cell], optional): Weight decay (L2 penalty). Default: ``0.0`` .
|
|
126
126
|
|
|
127
127
|
- float: The fixed weight decay value. Must be equal to or greater than 0.
|
|
128
128
|
|
|
@@ -131,12 +131,13 @@ class Momentum(Optimizer):
|
|
|
131
131
|
- Cell: Weight decay is dynamic. During training, the optimizer calls the instance of
|
|
132
132
|
the Cell with step as the input to get the weight decay value of current step.
|
|
133
133
|
|
|
134
|
-
loss_scale (float): A floating point value for the loss scale. It must be greater than 0.0.
|
|
134
|
+
loss_scale (float, optional): A floating point value for the loss scale. It must be greater than 0.0.
|
|
135
|
+
In general, use the
|
|
135
136
|
default value. Only when `FixedLossScaleManager` is used for training and the `drop_overflow_update` in
|
|
136
137
|
`FixedLossScaleManager` is set to ``False`` , then this value needs to be the same as the `loss_scale` in
|
|
137
138
|
`FixedLossScaleManager`. Refer to class :class:`mindspore.amp.FixedLossScaleManager` for more details.
|
|
138
139
|
Default: ``1.0`` .
|
|
139
|
-
use_nesterov (bool): Enable Nesterov momentum. Default: ``False`` .
|
|
140
|
+
use_nesterov (bool, optional): Enable Nesterov momentum. Default: ``False`` .
|
|
140
141
|
|
|
141
142
|
Inputs:
|
|
142
143
|
- **gradients** (tuple[Tensor]) - The gradients of `params`, the shape is the same as `params`.
|
|
@@ -199,7 +200,7 @@ class Momentum(Optimizer):
|
|
|
199
200
|
self._get_distributed_optimizer_list("momentum", use_nesterov=self.use_nesterov)
|
|
200
201
|
self.use_dist_optimizer = self._use_distibuted_optimizer()
|
|
201
202
|
|
|
202
|
-
@jit
|
|
203
|
+
@jit(backend="ms_backend")
|
|
203
204
|
def construct(self, gradients):
|
|
204
205
|
params = self.params
|
|
205
206
|
moments = self.moments
|
mindspore/nn/optim/optimizer.py
CHANGED
|
@@ -122,10 +122,10 @@ class Optimizer(Cell):
|
|
|
122
122
|
If `order_params` in the keys, other keys will be ignored and the element of 'order_params' must be in
|
|
123
123
|
one group of `params`.
|
|
124
124
|
|
|
125
|
-
weight_decay (Union[float, int]): An int or a floating point value for the weight decay.
|
|
125
|
+
weight_decay (Union[float, int], optional): An int or a floating point value for the weight decay.
|
|
126
126
|
It must be equal to or greater than 0.
|
|
127
127
|
If the type of `weight_decay` input is int, it will be converted to float. Default: ``0.0`` .
|
|
128
|
-
loss_scale (float): A floating point value for the loss scale. It must be greater than 0. If the
|
|
128
|
+
loss_scale (float, optional): A floating point value for the loss scale. It must be greater than 0. If the
|
|
129
129
|
type of `loss_scale` input is int, it will be converted to float. In general, use the default value. Only
|
|
130
130
|
when `FixedLossScaleManager` is used for training and the `drop_overflow_update` in
|
|
131
131
|
`FixedLossScaleManager` is set to ``False`` , this value needs to be the same as the `loss_scale` in
|
|
@@ -83,8 +83,8 @@ class ProximalAdagrad(Optimizer):
|
|
|
83
83
|
|
|
84
84
|
Args:
|
|
85
85
|
params (Union[list[Parameter], list[dict]]): Must be list of `Parameter` or list of `dict`. When the
|
|
86
|
-
`params` is a list of `dict`, the string "params"
|
|
87
|
-
"order_params" are the keys can be parsed.
|
|
86
|
+
`params` is a list of `dict`, the string `"params"`, `"lr"`, `"weight_decay"`, `"grad_centralization"` and
|
|
87
|
+
`"order_params"` are the keys can be parsed.
|
|
88
88
|
|
|
89
89
|
- params: Required. Parameters in current group. The value must be a list of `Parameter`.
|
|
90
90
|
|
|
@@ -108,8 +108,9 @@ class ProximalAdagrad(Optimizer):
|
|
|
108
108
|
If `order_params` in the keys, other keys will be ignored and the element of 'order_params' must be in
|
|
109
109
|
one group of `params`.
|
|
110
110
|
|
|
111
|
-
accum (float): The starting value for accumulators `accum`, must be zero or positive values.
|
|
112
|
-
|
|
111
|
+
accum (float, optional): The starting value for accumulators `accum`, must be zero or positive values.
|
|
112
|
+
Default: ``0.1`` .
|
|
113
|
+
learning_rate (Union[float, int, Tensor, Iterable, LearningRateSchedule], optional): Default: ``0.001`` .
|
|
113
114
|
|
|
114
115
|
- float: The fixed learning rate value. Must be equal to or greater than 0.
|
|
115
116
|
|
|
@@ -125,15 +126,16 @@ class ProximalAdagrad(Optimizer):
|
|
|
125
126
|
<https://www.mindspore.cn/docs/en/master/api_python/mindspore.nn.html#learningrateschedule-class>`_
|
|
126
127
|
with step as the input to get the learning rate of the current step.
|
|
127
128
|
|
|
128
|
-
l1 (float): l1 regularization strength, must be greater than or equal to zero. Default: ``0.0`` .
|
|
129
|
-
l2 (float): l2 regularization strength, must be greater than or equal to zero. Default: ``0.0`` .
|
|
130
|
-
use_locking (bool): If
|
|
131
|
-
loss_scale (float): Value for the loss scale. It must be greater than 0.0. In general,
|
|
129
|
+
l1 (float, optional): l1 regularization strength, must be greater than or equal to zero. Default: ``0.0`` .
|
|
130
|
+
l2 (float, optional): l2 regularization strength, must be greater than or equal to zero. Default: ``0.0`` .
|
|
131
|
+
use_locking (bool, optional): If ``True``, use locks for updating operation. Default: ``False`` .
|
|
132
|
+
loss_scale (float, optional): Value for the loss scale. It must be greater than 0.0. In general,
|
|
133
|
+
use the default value.
|
|
132
134
|
Only when `FixedLossScaleManager` is used for training and the `drop_overflow_update` in
|
|
133
135
|
`FixedLossScaleManager` is set to ``False`` , then this value needs to be the same as the `loss_scale` in
|
|
134
136
|
`FixedLossScaleManager`. Refer to class :class:`mindspore.amp.FixedLossScaleManager` for more details.
|
|
135
137
|
Default: ``1.0`` .
|
|
136
|
-
weight_decay (Union[float, int, Cell]): Weight decay (L2 penalty). Default: ``0.0`` .
|
|
138
|
+
weight_decay (Union[float, int, Cell], optional): Weight decay (L2 penalty). Default: ``0.0`` .
|
|
137
139
|
|
|
138
140
|
- float: The fixed weight decay value. Must be equal to or greater than 0.
|
|
139
141
|
|
|
@@ -199,7 +201,7 @@ class ProximalAdagrad(Optimizer):
|
|
|
199
201
|
self.opt = P.ApplyProximalAdagrad(use_locking=use_locking)
|
|
200
202
|
self.sparse_opt = P.SparseApplyProximalAdagrad(use_locking=use_locking)
|
|
201
203
|
|
|
202
|
-
@jit
|
|
204
|
+
@jit(backend="ms_backend")
|
|
203
205
|
def construct(self, grads):
|
|
204
206
|
params = self._parameters
|
|
205
207
|
accum = self.accum
|
mindspore/nn/optim/rmsprop.py
CHANGED
|
@@ -92,9 +92,9 @@ class RMSProp(Optimizer):
|
|
|
92
92
|
:math:`t` represents the current step.
|
|
93
93
|
|
|
94
94
|
Note:
|
|
95
|
-
If parameters are not grouped, the `weight_decay` in optimizer will be applied on the network parameters
|
|
96
|
-
'beta' or 'gamma' in their names. Users can group parameters to change the strategy of decaying weight.
|
|
97
|
-
parameters are grouped, each group can set `weight_decay`. If not, the `weight_decay` in optimizer will be
|
|
95
|
+
If parameters are not grouped, the `weight_decay` in optimizer will be applied on the network parameters
|
|
96
|
+
without 'beta' or 'gamma' in their names. Users can group parameters to change the strategy of decaying weight.
|
|
97
|
+
When parameters are grouped, each group can set `weight_decay`. If not, the `weight_decay` in optimizer will be
|
|
98
98
|
applied.
|
|
99
99
|
|
|
100
100
|
Args:
|
|
@@ -124,7 +124,7 @@ class RMSProp(Optimizer):
|
|
|
124
124
|
If `order_params` in the keys, other keys will be ignored and the element of 'order_params' must be in
|
|
125
125
|
one group of `params`.
|
|
126
126
|
|
|
127
|
-
learning_rate (Union[float, int, Tensor, Iterable, LearningRateSchedule]): Default: ``0.1`` .
|
|
127
|
+
learning_rate (Union[float, int, Tensor, Iterable, LearningRateSchedule], optional): Default: ``0.1`` .
|
|
128
128
|
|
|
129
129
|
- float: The fixed learning rate value. Must be equal to or greater than 0.
|
|
130
130
|
|
|
@@ -140,21 +140,22 @@ class RMSProp(Optimizer):
|
|
|
140
140
|
<https://www.mindspore.cn/docs/en/master/api_python/mindspore.nn.html#learningrateschedule-class>`_
|
|
141
141
|
with step as the input to get the learning rate of the current step.
|
|
142
142
|
|
|
143
|
-
decay (float): Decay rate. Should be equal to or greater than 0. Default: ``0.9`` .
|
|
144
|
-
momentum (float): Hyperparameter of type float, means momentum for the moving average.
|
|
145
|
-
|
|
146
|
-
epsilon (float): Term added to the denominator to improve numerical stability. Should be greater than
|
|
143
|
+
decay (float, optional): Decay rate. Should be equal to or greater than 0. Default: ``0.9`` .
|
|
144
|
+
momentum (float, optional): Hyperparameter of type float, means momentum for the moving average.
|
|
145
|
+
Should be equal to or greater than 0. Default: ``0.0`` .
|
|
146
|
+
epsilon (float, optional): Term added to the denominator to improve numerical stability. Should be greater than
|
|
147
147
|
0. Default: ``1e-10`` .
|
|
148
|
-
use_locking (bool): Whether to enable a lock to protect the updating process of variable tensors.
|
|
148
|
+
use_locking (bool, optional): Whether to enable a lock to protect the updating process of variable tensors.
|
|
149
149
|
Default: ``False`` .
|
|
150
|
-
centered (bool): If True, gradients are normalized by the estimated variance of the gradient.
|
|
150
|
+
centered (bool, optional): If True, gradients are normalized by the estimated variance of the gradient.
|
|
151
151
|
Default: ``False`` .
|
|
152
|
-
loss_scale (float): A floating point value for the loss scale. Should be greater than 0. In general,
|
|
152
|
+
loss_scale (float, optional): A floating point value for the loss scale. Should be greater than 0. In general,
|
|
153
|
+
use the
|
|
153
154
|
default value. Only when `FixedLossScaleManager` is used for training and the `drop_overflow_update` in
|
|
154
155
|
`FixedLossScaleManager` is set to ``False`` , then this value needs to be the same as the `loss_scale` in
|
|
155
156
|
`FixedLossScaleManager`. Refer to class :class:`mindspore.amp.FixedLossScaleManager` for more details.
|
|
156
157
|
Default: ``1.0`` .
|
|
157
|
-
weight_decay (Union[float, int, Cell]): Weight decay (L2 penalty). Default: ``0.0`` .
|
|
158
|
+
weight_decay (Union[float, int, Cell], optional): Weight decay (L2 penalty). Default: ``0.0`` .
|
|
158
159
|
|
|
159
160
|
- float: The fixed weight decay value. Must be equal to or greater than 0.
|
|
160
161
|
|
mindspore/nn/optim/rprop.py
CHANGED
|
@@ -58,8 +58,8 @@ class Rprop(Optimizer):
|
|
|
58
58
|
|
|
59
59
|
Args:
|
|
60
60
|
params (Union[list[Parameter], list[dict]]): Must be list of `Parameter` or list of `dict`. When the
|
|
61
|
-
`parameters` is a list of `dict`, the "params"
|
|
62
|
-
"order_params" are the keys can be parsed.
|
|
61
|
+
`parameters` is a list of `dict`, the `"params"`, `"lr"`, `"weight_decay"`, `"grad_centralization"` and
|
|
62
|
+
`"order_params"` are the keys can be parsed.
|
|
63
63
|
|
|
64
64
|
- params: Required. Parameters in current group. The value must be a list of `Parameter`.
|
|
65
65
|
|
|
@@ -83,7 +83,8 @@ class Rprop(Optimizer):
|
|
|
83
83
|
If `order_params` in the keys, other keys will be ignored and the element of 'order_params' must be in
|
|
84
84
|
one group of `params`.
|
|
85
85
|
|
|
86
|
-
learning_rate (Union[float, int, Tensor, Iterable, LearningRateSchedule]): Learning_rate.
|
|
86
|
+
learning_rate (Union[float, int, Tensor, Iterable, LearningRateSchedule], optional): Learning_rate.
|
|
87
|
+
Default: ``0.1`` .
|
|
87
88
|
|
|
88
89
|
- float: The fixed learning rate value. Must be equal to or greater than 0.
|
|
89
90
|
|
|
@@ -99,11 +100,12 @@ class Rprop(Optimizer):
|
|
|
99
100
|
<https://www.mindspore.cn/docs/en/master/api_python/mindspore.nn.html#learningrateschedule-class>`_
|
|
100
101
|
with step as the input to get the learning rate of current step.
|
|
101
102
|
|
|
102
|
-
etas (tuple[float, float]): The factor of multiplicative increasing or
|
|
103
|
+
etas (tuple[float, float], optional): The factor of multiplicative increasing or
|
|
103
104
|
descreasing(etaminus, etaplus). Default: ``(0.5, 1.2)`` .
|
|
104
|
-
step_sizes(tuple[float, float]): The allowed minimal and maximal
|
|
105
|
+
step_sizes(tuple[float, float], optional): The allowed minimal and maximal
|
|
106
|
+
step size(min_step_sizes, max_step_size).
|
|
105
107
|
Default: ``(1e-6, 50.)`` .
|
|
106
|
-
weight_decay (Union[float, int, Cell]): Weight decay (L2 penalty). Default: ``0.0`` .
|
|
108
|
+
weight_decay (Union[float, int, Cell], optional): Weight decay (L2 penalty). Default: ``0.0`` .
|
|
107
109
|
|
|
108
110
|
- float: The fixed weight decay value. Must be equal to or greater than 0.
|
|
109
111
|
|
|
@@ -199,7 +201,7 @@ class Rprop(Optimizer):
|
|
|
199
201
|
self.select = P.Select()
|
|
200
202
|
self.ones_like = P.OnesLike()
|
|
201
203
|
|
|
202
|
-
@jit
|
|
204
|
+
@jit(backend="ms_backend")
|
|
203
205
|
def construct(self, gradients):
|
|
204
206
|
gradients = self.flatten_gradients(gradients)
|
|
205
207
|
gradients = self.decay_weight(gradients)
|
mindspore/nn/optim/sgd.py
CHANGED
|
@@ -90,7 +90,7 @@ class SGD(Optimizer):
|
|
|
90
90
|
If `order_params` in the keys, other keys will be ignored and the element of 'order_params' must be in
|
|
91
91
|
one group of `params`.
|
|
92
92
|
|
|
93
|
-
learning_rate (Union[float, int, Tensor, Iterable, LearningRateSchedule]): Default: ``0.1`` .
|
|
93
|
+
learning_rate (Union[float, int, Tensor, Iterable, LearningRateSchedule], optional): Default: ``0.1`` .
|
|
94
94
|
|
|
95
95
|
- float: The fixed learning rate value. Must be equal to or greater than 0.
|
|
96
96
|
|
|
@@ -106,12 +106,15 @@ class SGD(Optimizer):
|
|
|
106
106
|
<https://www.mindspore.cn/docs/en/master/api_python/mindspore.nn.html#learningrateschedule-class>`_
|
|
107
107
|
with step as the input to get the learning rate of current step.
|
|
108
108
|
|
|
109
|
-
momentum (float): A floating point value the momentum. must be at least 0.0. Default: ``0.0`` .
|
|
110
|
-
dampening (float): A floating point value of dampening for momentum. must be at least 0.0.
|
|
111
|
-
|
|
112
|
-
|
|
109
|
+
momentum (float, optional): A floating point value the momentum. must be at least 0.0. Default: ``0.0`` .
|
|
110
|
+
dampening (float, optional): A floating point value of dampening for momentum. must be at least 0.0.
|
|
111
|
+
Default: ``0.0`` .
|
|
112
|
+
weight_decay (float, optional): Weight decay (L2 penalty). It must be equal to or greater than 0.
|
|
113
|
+
Default: ``0.0`` .
|
|
114
|
+
nesterov (bool, optional): Enables the Nesterov momentum. If use nesterov, momentum must be positive,
|
|
113
115
|
and dampening must be equal to 0.0. Default: ``False`` .
|
|
114
|
-
loss_scale (float): A floating point value for the loss scale, which must be larger than 0.0.
|
|
116
|
+
loss_scale (float, optional): A floating point value for the loss scale, which must be larger than 0.0.
|
|
117
|
+
In general, use
|
|
115
118
|
the default value. Only when `FixedLossScaleManager` is used for training and the `drop_overflow_update` in
|
|
116
119
|
`FixedLossScaleManager` is set to ``False`` , then this value needs to be the same as the `loss_scale` in
|
|
117
120
|
`FixedLossScaleManager`. Refer to class :class:`mindspore.amp.FixedLossScaleManager` for more details.
|
|
@@ -67,14 +67,16 @@ class OptTFTWrapper(Optimizer):
|
|
|
67
67
|
raise TypeError(f"For 'OptTFTWrapper', the argument 'opt' must be Optimizer type, " f"but got {type(opt)}.")
|
|
68
68
|
super(OptTFTWrapper, self).__init__(opt.learning_rate, opt._parameters) # pylint: disable=W0212
|
|
69
69
|
tft_env = os.getenv("MS_ENABLE_TFT", "")
|
|
70
|
-
if ("TTP:1" not in tft_env) and ("UCE:1" not in tft_env):
|
|
71
|
-
raise ValueError("MindIO TFT regitster need custom switch on[MS_ENABLE_TFT='{TTP:1,UCE:1}']!")
|
|
70
|
+
if ("TTP:1" not in tft_env) and ("UCE:1" not in tft_env) and ("ARF:1" not in tft_env):
|
|
71
|
+
raise ValueError("MindIO TFT regitster need custom switch on[MS_ENABLE_TFT='{TTP:1,UCE:1,ARF:1}']!")
|
|
72
72
|
mode = context.get_context("mode")
|
|
73
73
|
device_target = context.get_context("device_target")
|
|
74
74
|
if device_target != "Ascend" or mode != context.GRAPH_MODE:
|
|
75
75
|
raise ValueError("MindIO adataper only support on Ascend device with GRAPH Mode!")
|
|
76
76
|
self.opt = opt
|
|
77
77
|
self.report = TensorReport()
|
|
78
|
+
self.report_end = TensorReport()
|
|
79
|
+
self.report_end.add_prim_attr("side_effect_mem", True).add_prim_attr("optimizer_end", True)
|
|
78
80
|
self.depend = ops.Depend()
|
|
79
81
|
self.allreduce_sum = ops.AllReduce()
|
|
80
82
|
self.allreduce_sum.add_prim_attr("tft_report_before", True)
|
|
@@ -121,4 +123,5 @@ class OptTFTWrapper(Optimizer):
|
|
|
121
123
|
|
|
122
124
|
grads = self.depend(gradients, self.report("tft_report", self.tft_g_one_flag))
|
|
123
125
|
opt_ret = self.opt(grads)
|
|
126
|
+
self.report_end("tft_report", self.tft_g_one_flag)
|
|
124
127
|
return opt_ret
|
|
@@ -41,15 +41,20 @@ class Bijector(Cell):
|
|
|
41
41
|
param (dict): The parameters used to initialize the Bijector. Default: ``None`` .
|
|
42
42
|
|
|
43
43
|
Note:
|
|
44
|
-
`dtype` of bijector represents the type of the distributions that the bijector could operate on.
|
|
45
|
-
When `dtype` is None, there is no enforcement on the type of input value except that the input value
|
|
46
|
-
|
|
47
|
-
|
|
48
|
-
|
|
49
|
-
|
|
50
|
-
|
|
51
|
-
|
|
52
|
-
|
|
44
|
+
- `dtype` of bijector represents the type of the distributions that the bijector could operate on.
|
|
45
|
+
- When `dtype` is None, there is no enforcement on the type of input value except that the input value
|
|
46
|
+
has to be float type. During initialization, when `dtype` is None, there is no enforcement on the dtype
|
|
47
|
+
of the parameters. All parameters should have the same float type, otherwise a TypeError will be raised.
|
|
48
|
+
|
|
49
|
+
Specifically, the parameter type will follow the dtype of the input value.
|
|
50
|
+
|
|
51
|
+
- Parameters of the bijector will be casted into the same type as input value when `dtype` is None.
|
|
52
|
+
|
|
53
|
+
- When `dtype` is specified, it is forcing the parameters and input value to be the same dtype as `dtype`.
|
|
54
|
+
When the type of parameters or the type of the input value is not the same as `dtype`, a TypeError will be
|
|
55
|
+
raised.
|
|
56
|
+
|
|
57
|
+
- Only subtype of mindspore.float_type can be used to specify bijector's `dtype`.
|
|
53
58
|
|
|
54
59
|
Supported Platforms:
|
|
55
60
|
``Ascend`` ``GPU``
|
|
@@ -226,7 +231,8 @@ class Bijector(Cell):
|
|
|
226
231
|
|
|
227
232
|
def cast_param_by_value(self, value, para):
|
|
228
233
|
"""
|
|
229
|
-
|
|
234
|
+
Converts the data type of `para` in the input to the same type as `value`.
|
|
235
|
+
Typically used by subclasses of Bijector to convert data types of their own parameters.
|
|
230
236
|
|
|
231
237
|
Args:
|
|
232
238
|
value (Tensor): input value.
|
|
@@ -276,7 +282,7 @@ class Bijector(Cell):
|
|
|
276
282
|
**kwargs (dict): the dictionary of keyword arguments forwarded to subclasses.
|
|
277
283
|
|
|
278
284
|
Returns:
|
|
279
|
-
Tensor, the value of
|
|
285
|
+
Tensor, outputs the value of a random variable after mapping.
|
|
280
286
|
"""
|
|
281
287
|
return self._forward_log_jacobian(value, *args, **kwargs)
|
|
282
288
|
|
|
@@ -33,11 +33,11 @@ class GumbelCDF(Bijector):
|
|
|
33
33
|
name (str): The name of the Bijector. Default: ``'GumbelCDF'`` .
|
|
34
34
|
|
|
35
35
|
Note:
|
|
36
|
-
`scale` must be greater than zero.
|
|
37
|
-
For `inverse` and `inverse_log_jacobian`, input should be in range of (0, 1).
|
|
38
|
-
The dtype of `loc` and `scale` must be float.
|
|
39
|
-
If `loc`, `scale` are passed in as numpy.ndarray or tensor, they have to have
|
|
40
|
-
|
|
36
|
+
- `scale` must be greater than zero.
|
|
37
|
+
- For `inverse` and `inverse_log_jacobian`, input should be in range of (0, 1).
|
|
38
|
+
- The dtype of `loc` and `scale` must be float.
|
|
39
|
+
- If `loc`, `scale` are passed in as numpy.ndarray or tensor, they have to have
|
|
40
|
+
the same dtype otherwise an error will be raised.
|
|
41
41
|
|
|
42
42
|
Raises:
|
|
43
43
|
TypeError: When the dtype of `loc` or `scale` is not float,
|
|
@@ -25,8 +25,8 @@ class Invert(Bijector):
|
|
|
25
25
|
|
|
26
26
|
Args:
|
|
27
27
|
bijector (Bijector): Base Bijector.
|
|
28
|
-
name (str): The name of the Bijector. Default: ``""`` . When name is set to ""
|
|
29
|
-
'Invert' +
|
|
28
|
+
name (str): The name of the Bijector. Default: ``""`` . When name is set to ``""``, it is actually
|
|
29
|
+
``'Invert' + Bijector.name``.
|
|
30
30
|
|
|
31
31
|
Supported Platforms:
|
|
32
32
|
``Ascend`` ``GPU`` ``CPU``
|
|
@@ -26,11 +26,11 @@ class ScalarAffine(Bijector):
|
|
|
26
26
|
.. math::
|
|
27
27
|
Y = a * X + b
|
|
28
28
|
|
|
29
|
-
where a is the scale factor and b is the shift factor.
|
|
29
|
+
where :math:`a` is the scale factor and :math:`b` is the shift factor.
|
|
30
30
|
|
|
31
31
|
Args:
|
|
32
|
-
scale (float, list, numpy.ndarray, Tensor): The scale factor. Default: ``1.0`` .
|
|
33
|
-
shift (float, list, numpy.ndarray, Tensor): The shift factor. Default: ``0.0`` .
|
|
32
|
+
scale (float, list, numpy.ndarray, Tensor): The scale factor. :math:`a` in the formula. Default: ``1.0`` .
|
|
33
|
+
shift (float, list, numpy.ndarray, Tensor): The shift factor. :math:`b` in the formula. Default: ``0.0`` .
|
|
34
34
|
name (str): The name of the bijector. Default: ``'ScalarAffine'`` .
|
|
35
35
|
|
|
36
36
|
Note:
|
|
@@ -29,10 +29,11 @@ class Softplus(Bijector):
|
|
|
29
29
|
.. math::
|
|
30
30
|
Y = \frac{\log(1 + e ^ {kX})}{k}
|
|
31
31
|
|
|
32
|
-
where k is the sharpness factor.
|
|
32
|
+
where :math:`k` is the sharpness factor.
|
|
33
33
|
|
|
34
34
|
Args:
|
|
35
|
-
sharpness (float, list, numpy.ndarray, Tensor): The scale factor.
|
|
35
|
+
sharpness (float, list, numpy.ndarray, Tensor): The scale factor. :math:`k` in the above formula.
|
|
36
|
+
Default: ``1.0`` .
|
|
36
37
|
name (str): The name of the Bijector. Default: ``'Softplus'`` .
|
|
37
38
|
|
|
38
39
|
Note:
|
|
@@ -37,9 +37,9 @@ class Beta(Distribution):
|
|
|
37
37
|
|
|
38
38
|
Args:
|
|
39
39
|
concentration1 (int, float, list, numpy.ndarray, Tensor): The concentration1,
|
|
40
|
-
also know as alpha of the Beta distribution. Default: ``None`` .
|
|
40
|
+
also know as :math:`alpha` of the Beta distribution. Default: ``None`` .
|
|
41
41
|
concentration0 (int, float, list, numpy.ndarray, Tensor): The concentration0, also know as
|
|
42
|
-
beta of the Beta distribution. Default: ``None`` .
|
|
42
|
+
:math:`beta` of the Beta distribution. Default: ``None`` .
|
|
43
43
|
seed (int): The seed used in sampling. The global seed is used if it is None. Default: ``None`` .
|
|
44
44
|
dtype (mindspore.dtype): The type of the event samples. Default: ``mstype.float32`` .
|
|
45
45
|
name (str): The name of the distribution. Default: ``'Beta'`` .
|
|
@@ -51,7 +51,7 @@ class Beta(Distribution):
|
|
|
51
51
|
|
|
52
52
|
Raises:
|
|
53
53
|
ValueError: When concentration1 <= 0 or concentration0 >=1.
|
|
54
|
-
TypeError: When the input `dtype` is not a subclass of float.
|
|
54
|
+
TypeError: When the input `dtype` is not a float or a subclass of float.
|
|
55
55
|
|
|
56
56
|
Supported Platforms:
|
|
57
57
|
``Ascend``
|
|
@@ -40,7 +40,7 @@ class Categorical(Distribution):
|
|
|
40
40
|
probs (Tensor, list, numpy.ndarray): Event probabilities. Default: ``None`` .
|
|
41
41
|
seed (int): The global seed is used in sampling. Global seed is used if it is None. Default: ``None`` .
|
|
42
42
|
dtype (mindspore.dtype): The type of the event samples. Default: ``mstype.int32`` .
|
|
43
|
-
name (str): The name of the distribution. Default: ``Categorical`` .
|
|
43
|
+
name (str): The name of the distribution. Default: ``'Categorical'`` .
|
|
44
44
|
|
|
45
45
|
Note:
|
|
46
46
|
`probs` must have rank at least 1, values are proper probabilities and sum to 1.
|
|
@@ -35,8 +35,10 @@ class Cauchy(Distribution):
|
|
|
35
35
|
Where :math:`a, b` are loc and scale parameter respectively.
|
|
36
36
|
|
|
37
37
|
Args:
|
|
38
|
-
loc (int, float, list, numpy.ndarray, Tensor): The location of the Cauchy distribution.
|
|
39
|
-
|
|
38
|
+
loc (int, float, list, numpy.ndarray, Tensor): The location of the Cauchy distribution.
|
|
39
|
+
:math:`a` in the formula. Default: ``None`` .
|
|
40
|
+
scale (int, float, list, numpy.ndarray, Tensor): The scale of the Cauchy distribution.
|
|
41
|
+
:math:`b` in the formula. Default: ``None`` .
|
|
40
42
|
seed (int): The seed used in sampling. The global seed is used if it is None. Default: ``None`` .
|
|
41
43
|
dtype (mindspore.dtype): The type of the event samples. Default: ``mstype.float32`` .
|
|
42
44
|
name (str): The name of the distribution. Default: ``'Cauchy'`` .
|
|
@@ -35,15 +35,14 @@ class Exponential(Distribution):
|
|
|
35
35
|
where :math:`\lambda` is the rate of the distribution.
|
|
36
36
|
|
|
37
37
|
Args:
|
|
38
|
-
rate (int, float, list, numpy.ndarray, Tensor): The inverse scale. Default: ``None`` .
|
|
39
|
-
seed (int): The seed used in sampling. The global seed is used if it is None. Default: ``None`` .
|
|
40
|
-
dtype (mindspore.dtype): The type of the event samples. Default: ``mstype.float32`` .
|
|
41
|
-
name (str): The name of the distribution. Default: ``'Exponential'`` .
|
|
38
|
+
rate (int, float, list, numpy.ndarray, Tensor, optional): The inverse scale. :math:`\lambda` in the formula. Default: ``None`` .
|
|
39
|
+
seed (int, optional): The seed used in sampling. The global seed is used if it is None. Default: ``None`` .
|
|
40
|
+
dtype (mindspore.dtype, optional): The type of the event samples. Default: ``mstype.float32`` .
|
|
41
|
+
name (str, optional): The name of the distribution. Default: ``'Exponential'`` .
|
|
42
42
|
|
|
43
43
|
Note:
|
|
44
|
-
`rate` must be strictly greater than 0.
|
|
45
|
-
`
|
|
46
|
-
`dtype` must be a float type because Exponential distributions are continuous.
|
|
44
|
+
- `rate` must be strictly greater than 0.
|
|
45
|
+
- `dtype` must be a float type because Exponential distributions are continuous.
|
|
47
46
|
|
|
48
47
|
Raises:
|
|
49
48
|
ValueError: When rate <= 0.
|
|
@@ -39,9 +39,9 @@ class Gamma(Distribution):
|
|
|
39
39
|
|
|
40
40
|
Args:
|
|
41
41
|
concentration (int, float, list, numpy.ndarray, Tensor): The concentration,
|
|
42
|
-
also know as alpha of the Gamma distribution. Default: ``None`` .
|
|
42
|
+
also know as :math:`\alpha` of the Gamma distribution. Default: ``None`` .
|
|
43
43
|
rate (int, float, list, numpy.ndarray, Tensor): The rate, also know as
|
|
44
|
-
beta of the Gamma distribution. Default: ``None`` .
|
|
44
|
+
:math:`\beta` of the Gamma distribution. Default: ``None`` .
|
|
45
45
|
seed (int): The seed used in sampling. The global seed is used if it is None. Default: ``None`` .
|
|
46
46
|
dtype (mindspore.dtype): The type of the event samples. Default: ``mstype.float32`` .
|
|
47
47
|
name (str): The name of the distribution. Default: ``'Gamma'`` .
|
|
@@ -37,8 +37,8 @@ class Gumbel(TransformedDistribution):
|
|
|
37
37
|
Where :math:`a, b` are loc and scale parameter respectively.
|
|
38
38
|
|
|
39
39
|
Args:
|
|
40
|
-
loc (int, float, list, numpy.ndarray, Tensor): The location of Gumbel distribution.
|
|
41
|
-
scale (int, float, list, numpy.ndarray, Tensor): The scale of Gumbel distribution.
|
|
40
|
+
loc (int, float, list, numpy.ndarray, Tensor): The location of Gumbel distribution. :math:`a` in the formula.
|
|
41
|
+
scale (int, float, list, numpy.ndarray, Tensor): The scale of Gumbel distribution. :math:`b` in the formula.
|
|
42
42
|
seed (int): the seed used in sampling. The global seed is used if it is None. Default: ``0`` .
|
|
43
43
|
dtype (mindspore.dtype): type of the distribution. Default: ``mstype.float32`` .
|
|
44
44
|
name (str): the name of the distribution. Default: ``'Gumbel'`` .
|
|
@@ -36,9 +36,11 @@ class HalfNormal(Distribution):
|
|
|
36
36
|
where :math:`\mu, \sigma` are the mean and the standard deviation of the half normal distribution respectively.
|
|
37
37
|
|
|
38
38
|
Args:
|
|
39
|
-
mean (Union[int, float, list, numpy.ndarray, Tensor], optional):
|
|
39
|
+
mean (Union[int, float, list, numpy.ndarray, Tensor], optional):
|
|
40
|
+
The mean of the distribution. :math:`\mu` in the formula.
|
|
40
41
|
If this arg is ``None`` , then the mean of the distribution will be passed in runtime. Default: ``None`` .
|
|
41
|
-
sd (Union[int, float, list, numpy.ndarray, Tensor], optional):
|
|
42
|
+
sd (Union[int, float, list, numpy.ndarray, Tensor], optional):
|
|
43
|
+
The standard deviation of the distribution. :math:`\sigma` in the formula.
|
|
42
44
|
If this arg is ``None`` , then the sd of the distribution will be passed in runtime. Default: ``None`` .
|
|
43
45
|
seed (int, optional): The seed used in sampling. The global seed is used if it is None. Default: ``None`` .
|
|
44
46
|
dtype (mindspore.dtype, optional): The type of the event samples. Default: ``mstype.float32`` .
|
|
@@ -52,7 +54,7 @@ class HalfNormal(Distribution):
|
|
|
52
54
|
|
|
53
55
|
Raises:
|
|
54
56
|
ValueError: When sd <= 0.
|
|
55
|
-
TypeError: When the input `dtype` is not a subclass of float.
|
|
57
|
+
TypeError: When the input `dtype` is not a float or a subclass of float.
|
|
56
58
|
|
|
57
59
|
Supported Platforms:
|
|
58
60
|
``CPU``
|
|
@@ -36,8 +36,10 @@ class Logistic(Distribution):
|
|
|
36
36
|
where :math:`a, b` are loc and scale parameter respectively.
|
|
37
37
|
|
|
38
38
|
Args:
|
|
39
|
-
loc (float, list, numpy.ndarray, Tensor): The location of the Logistic distribution.
|
|
40
|
-
|
|
39
|
+
loc (float, list, numpy.ndarray, Tensor): The location of the Logistic distribution.
|
|
40
|
+
:math:`a` in the formula. Default: ``None`` .
|
|
41
|
+
scale (float, list, numpy.ndarray, Tensor): The scale of the Logistic distribution.
|
|
42
|
+
:math:`b` in the formula. Default: ``None`` .
|
|
41
43
|
seed (int): The seed used in sampling. The global seed is used if it is None. Default: ``None`` .
|
|
42
44
|
dtype (mindspore.dtype): The type of the event samples. Default: ``mstype.float32`` .
|
|
43
45
|
name (str): The name of the distribution. Default: ``'Logistic'`` .
|
|
@@ -49,7 +51,7 @@ class Logistic(Distribution):
|
|
|
49
51
|
|
|
50
52
|
Raises:
|
|
51
53
|
ValueError: When scale <= 0.
|
|
52
|
-
TypeError: When the input `dtype` is not a subclass of float.
|
|
54
|
+
TypeError: When the input `dtype` is not a float or a subclass of float.
|
|
53
55
|
|
|
54
56
|
Supported Platforms:
|
|
55
57
|
``Ascend`` ``GPU``
|