mindspore 2.5.0__cp311-cp311-win_amd64.whl → 2.6.0__cp311-cp311-win_amd64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of mindspore might be problematic. Click here for more details.
- mindspore/.commit_id +1 -1
- mindspore/Microsoft.VisualStudio.Telemetry.dll +0 -0
- mindspore/Newtonsoft.Json.dll +0 -0
- mindspore/__init__.py +6 -4
- mindspore/_c_dataengine.cp311-win_amd64.pyd +0 -0
- mindspore/_c_expression.cp311-win_amd64.pyd +0 -0
- mindspore/_c_mindrecord.cp311-win_amd64.pyd +0 -0
- mindspore/_check_jit_forbidden_api.py +3 -0
- mindspore/_checkparam.py +3 -33
- mindspore/_deprecated/__init__.py +17 -0
- mindspore/_deprecated/jit.py +198 -0
- mindspore/_extends/builtin_operations.py +1 -1
- mindspore/_extends/parse/__init__.py +6 -7
- mindspore/_extends/parse/compile_config.py +19 -0
- mindspore/_extends/parse/deprecated/deprecated_tensor_method.py +22 -3
- mindspore/_extends/parse/jit_fallback_modules/__init__.py +0 -0
- mindspore/_extends/parse/jit_fallback_modules/check_utils.py +123 -0
- mindspore/_extends/parse/jit_fallback_modules/third_party_modules.py +50 -0
- mindspore/_extends/parse/parser.py +25 -194
- mindspore/_extends/parse/resources.py +1 -5
- mindspore/_extends/parse/standard_method.py +109 -75
- mindspore/_extends/pijit/__init__.py +2 -2
- mindspore/_extends/pijit/pijit_func_white_list.py +16 -11
- mindspore/_extends/pijit/tensor_func_list.py +27 -0
- mindspore/_extends/utils.py +1 -1
- mindspore/amp.py +4 -4
- mindspore/atlprov.dll +0 -0
- mindspore/avcodec-59.dll +0 -0
- mindspore/avdevice-59.dll +0 -0
- mindspore/avfilter-8.dll +0 -0
- mindspore/avformat-59.dll +0 -0
- mindspore/avutil-57.dll +0 -0
- mindspore/boost/__init__.py +2 -2
- mindspore/boost/base.py +3 -7
- mindspore/boost/boost_cell_wrapper.py +2 -2
- mindspore/c1.dll +0 -0
- mindspore/c1xx.dll +0 -0
- mindspore/c2.dll +0 -0
- mindspore/common/__init__.py +4 -3
- mindspore/common/_grad_function.py +56 -0
- mindspore/common/_pijit_context.py +14 -5
- mindspore/common/_register_for_tensor.py +1 -1
- mindspore/common/_stub_tensor.py +5 -10
- mindspore/common/_tensor_cpp_method.py +1 -1
- mindspore/common/_tensor_docs.py +2014 -3386
- mindspore/common/api.py +386 -355
- mindspore/common/auto_dynamic_shape.py +41 -44
- mindspore/common/dtype.py +5 -2
- mindspore/common/dump.py +7 -5
- mindspore/common/file_system.py +3 -0
- mindspore/common/generator.py +3 -0
- mindspore/common/hook_handle.py +5 -3
- mindspore/common/initializer.py +10 -6
- mindspore/common/jit_begin_end.py +94 -0
- mindspore/common/jit_config.py +6 -1
- mindspore/common/jit_context.py +76 -0
- mindspore/common/jit_trace.py +378 -0
- mindspore/common/lazy_inline.py +2 -2
- mindspore/common/mutable.py +5 -4
- mindspore/common/parameter.py +106 -39
- mindspore/common/seed.py +2 -2
- mindspore/common/sparse_tensor.py +23 -17
- mindspore/common/tensor.py +332 -714
- mindspore/communication/__init__.py +7 -5
- mindspore/communication/_comm_helper.py +47 -2
- mindspore/communication/comm_func.py +70 -53
- mindspore/communication/management.py +83 -17
- mindspore/context.py +228 -571
- mindspore/dataset/__init__.py +44 -20
- mindspore/dataset/audio/__init__.py +2 -8
- mindspore/dataset/audio/transforms.py +3 -17
- mindspore/dataset/core/config.py +3 -3
- mindspore/dataset/engine/cache_client.py +1 -1
- mindspore/dataset/engine/datasets.py +102 -120
- mindspore/dataset/engine/datasets_audio.py +22 -22
- mindspore/dataset/engine/datasets_standard_format.py +43 -24
- mindspore/dataset/engine/datasets_text.py +78 -85
- mindspore/dataset/engine/datasets_user_defined.py +109 -77
- mindspore/dataset/engine/datasets_vision.py +111 -108
- mindspore/dataset/engine/iterators.py +5 -3
- mindspore/dataset/engine/obs/obs_mindrecord_dataset.py +1 -1
- mindspore/dataset/engine/samplers.py +279 -57
- mindspore/dataset/engine/serializer_deserializer.py +2 -1
- mindspore/dataset/engine/validators.py +10 -0
- mindspore/dataset/text/__init__.py +7 -6
- mindspore/dataset/text/transforms.py +6 -5
- mindspore/dataset/text/utils.py +3 -3
- mindspore/dataset/transforms/__init__.py +0 -9
- mindspore/dataset/transforms/transforms.py +3 -3
- mindspore/dataset/utils/browse_dataset.py +1 -1
- mindspore/dataset/vision/__init__.py +2 -9
- mindspore/dataset/vision/transforms.py +202 -158
- mindspore/dataset/vision/utils.py +7 -5
- mindspore/device_context/ascend/op_debug.py +60 -1
- mindspore/device_context/ascend/op_tuning.py +0 -4
- mindspore/device_manager.py +39 -3
- mindspore/dnnl.dll +0 -0
- mindspore/dpcmi.dll +0 -0
- mindspore/experimental/es/embedding_service.py +35 -27
- mindspore/experimental/llm_boost/ascend_native/llama_boost_ascend_native.py +0 -2
- mindspore/experimental/map_parameter.py +4 -4
- mindspore/experimental/optim/adadelta.py +22 -26
- mindspore/experimental/optim/adagrad.py +4 -4
- mindspore/experimental/optim/adam.py +4 -0
- mindspore/experimental/optim/adamax.py +4 -4
- mindspore/experimental/optim/adamw.py +4 -0
- mindspore/experimental/optim/asgd.py +1 -1
- mindspore/experimental/optim/lr_scheduler.py +40 -22
- mindspore/experimental/optim/radam.py +5 -5
- mindspore/experimental/optim/rprop.py +1 -1
- mindspore/experimental/optim/sgd.py +1 -1
- mindspore/hal/contiguous_tensors_handle.py +6 -10
- mindspore/hal/device.py +55 -81
- mindspore/hal/event.py +38 -55
- mindspore/hal/memory.py +115 -147
- mindspore/hal/stream.py +81 -125
- mindspore/include/dataset/constants.h +7 -4
- mindspore/include/dataset/execute.h +2 -2
- mindspore/jpeg62.dll +0 -0
- mindspore/log.py +40 -2
- mindspore/mindrecord/__init__.py +20 -7
- mindspore/mindspore_backend_common.dll +0 -0
- mindspore/mindspore_backend_manager.dll +0 -0
- mindspore/mindspore_common.dll +0 -0
- mindspore/mindspore_core.dll +0 -0
- mindspore/mindspore_dump.dll +0 -0
- mindspore/mindspore_frontend.dll +0 -0
- mindspore/mindspore_glog.dll +0 -0
- mindspore/mindspore_memory_pool.dll +0 -0
- mindspore/mindspore_ms_backend.dll +0 -0
- mindspore/mindspore_ops.dll +0 -0
- mindspore/{mindspore_backend.dll → mindspore_ops_host.dll} +0 -0
- mindspore/mindspore_ops_kernel_common.dll +0 -0
- mindspore/mindspore_profiler.dll +0 -0
- mindspore/mindspore_pyboost.dll +0 -0
- mindspore/mindspore_pynative.dll +0 -0
- mindspore/mindspore_res_manager.dll +0 -0
- mindspore/mindspore_runtime_pipeline.dll +0 -0
- mindspore/mint/__init__.py +133 -702
- mindspore/mint/distributed/__init__.py +5 -1
- mindspore/mint/distributed/distributed.py +198 -113
- mindspore/mint/linalg/__init__.py +2 -0
- mindspore/mint/nn/__init__.py +280 -18
- mindspore/mint/nn/functional.py +282 -64
- mindspore/mint/nn/layer/__init__.py +4 -0
- mindspore/mint/nn/layer/_functions.py +7 -3
- mindspore/mint/nn/layer/activation.py +120 -13
- mindspore/mint/nn/layer/conv.py +234 -28
- mindspore/mint/nn/layer/normalization.py +15 -16
- mindspore/mint/nn/layer/padding.py +1 -1
- mindspore/mint/nn/layer/pooling.py +66 -1
- mindspore/mint/optim/__init__.py +2 -1
- mindspore/mint/optim/sgd.py +171 -0
- mindspore/msobj140.dll +0 -0
- mindspore/mspdb140.dll +0 -0
- mindspore/mspdbcore.dll +0 -0
- mindspore/mspdbst.dll +0 -0
- mindspore/mspft140.dll +0 -0
- mindspore/msvcdis140.dll +0 -0
- mindspore/msvcp140_1.dll +0 -0
- mindspore/msvcp140_2.dll +0 -0
- mindspore/msvcp140_atomic_wait.dll +0 -0
- mindspore/msvcp140_codecvt_ids.dll +0 -0
- mindspore/nn/__init__.py +4 -1
- mindspore/nn/cell.py +1253 -179
- mindspore/nn/layer/activation.py +23 -21
- mindspore/nn/layer/basic.py +22 -16
- mindspore/nn/layer/container.py +1 -1
- mindspore/nn/layer/conv.py +53 -42
- mindspore/nn/layer/embedding.py +9 -8
- mindspore/nn/layer/normalization.py +48 -42
- mindspore/nn/layer/pooling.py +75 -31
- mindspore/nn/layer/transformer.py +11 -10
- mindspore/nn/learning_rate_schedule.py +4 -2
- mindspore/nn/loss/loss.py +27 -19
- mindspore/nn/optim/ada_grad.py +6 -5
- mindspore/nn/optim/adadelta.py +9 -7
- mindspore/nn/optim/adafactor.py +1 -1
- mindspore/nn/optim/adam.py +18 -14
- mindspore/nn/optim/adamax.py +8 -7
- mindspore/nn/optim/adasum.py +5 -5
- mindspore/nn/optim/asgd.py +3 -1
- mindspore/nn/optim/ftrl.py +11 -9
- mindspore/nn/optim/lamb.py +1 -1
- mindspore/nn/optim/lazyadam.py +12 -10
- mindspore/nn/optim/momentum.py +7 -6
- mindspore/nn/optim/optimizer.py +2 -2
- mindspore/nn/optim/proximal_ada_grad.py +12 -10
- mindspore/nn/optim/rmsprop.py +13 -12
- mindspore/nn/optim/rprop.py +9 -7
- mindspore/nn/optim/sgd.py +9 -6
- mindspore/nn/optim/tft_wrapper.py +5 -2
- mindspore/nn/probability/bijector/bijector.py +17 -11
- mindspore/nn/probability/bijector/gumbel_cdf.py +5 -5
- mindspore/nn/probability/bijector/invert.py +2 -2
- mindspore/nn/probability/bijector/scalar_affine.py +3 -3
- mindspore/nn/probability/bijector/softplus.py +3 -2
- mindspore/nn/probability/distribution/beta.py +3 -3
- mindspore/nn/probability/distribution/categorical.py +1 -1
- mindspore/nn/probability/distribution/cauchy.py +4 -2
- mindspore/nn/probability/distribution/exponential.py +6 -7
- mindspore/nn/probability/distribution/gamma.py +2 -2
- mindspore/nn/probability/distribution/gumbel.py +2 -2
- mindspore/nn/probability/distribution/half_normal.py +5 -3
- mindspore/nn/probability/distribution/logistic.py +5 -3
- mindspore/nn/probability/distribution/poisson.py +1 -1
- mindspore/nn/probability/distribution/uniform.py +5 -3
- mindspore/nn/reinforcement/_tensors_queue.py +1 -1
- mindspore/nn/reinforcement/tensor_array.py +1 -1
- mindspore/nn/wrap/__init__.py +6 -6
- mindspore/nn/wrap/cell_wrapper.py +178 -117
- mindspore/nn/wrap/grad_reducer.py +45 -36
- mindspore/nn/wrap/loss_scale.py +3 -3
- mindspore/numpy/array_creations.py +3 -3
- mindspore/numpy/array_ops.py +1 -1
- mindspore/numpy/utils.py +1 -2
- mindspore/numpy/utils_const.py +1 -2
- mindspore/opencv_core452.dll +0 -0
- mindspore/opencv_imgcodecs452.dll +0 -0
- mindspore/opencv_imgproc452.dll +0 -0
- mindspore/ops/__init__.py +3 -2
- mindspore/ops/_grad_experimental/grad_comm_ops.py +18 -3
- mindspore/ops/_grad_experimental/grad_debug_ops.py +8 -1
- mindspore/ops/_grad_experimental/taylor_rule.py +29 -0
- mindspore/ops/_register_for_op.py +0 -11
- mindspore/{ops_generate → ops/_utils}/arg_dtype_cast.py +123 -4
- mindspore/{ops_generate → ops/_utils}/arg_handler.py +3 -4
- mindspore/ops/_vmap/vmap_array_ops.py +32 -6
- mindspore/ops/_vmap/vmap_grad_nn_ops.py +2 -1
- mindspore/ops/_vmap/vmap_math_ops.py +4 -7
- mindspore/ops/_vmap/vmap_nn_ops.py +9 -8
- mindspore/ops/auto_generate/__init__.py +4 -3
- mindspore/ops/auto_generate/cpp_create_prim_instance_helper.py +127 -52
- mindspore/ops/auto_generate/gen_extend_func.py +286 -208
- mindspore/ops/auto_generate/gen_ops_def.py +2783 -2335
- mindspore/ops/auto_generate/gen_ops_prim.py +8992 -2686
- mindspore/ops/auto_generate/pyboost_inner_prim.py +106 -76
- mindspore/ops/composite/__init__.py +2 -1
- mindspore/ops/composite/base.py +19 -24
- mindspore/ops/composite/math_ops.py +6 -16
- mindspore/ops/composite/multitype_ops/__init__.py +5 -2
- mindspore/ops/composite/multitype_ops/_compile_utils.py +4 -5
- mindspore/ops/composite/multitype_ops/_constexpr_utils.py +1 -2
- mindspore/ops/composite/multitype_ops/add_impl.py +2 -1
- mindspore/ops/composite/multitype_ops/bitwise_and_impl.py +2 -1
- mindspore/ops/composite/multitype_ops/bitwise_or_impl.py +2 -1
- mindspore/ops/composite/multitype_ops/bitwise_xor_impl.py +2 -1
- mindspore/ops/composite/multitype_ops/div_impl.py +6 -4
- mindspore/ops/composite/multitype_ops/equal_impl.py +4 -3
- mindspore/ops/composite/multitype_ops/floordiv_impl.py +2 -1
- mindspore/ops/composite/multitype_ops/getitem_impl.py +3 -2
- mindspore/ops/composite/multitype_ops/greater_equal_impl.py +4 -3
- mindspore/ops/composite/multitype_ops/greater_impl.py +4 -3
- mindspore/ops/composite/multitype_ops/in_impl.py +2 -1
- mindspore/ops/composite/multitype_ops/invert_impl.py +50 -0
- mindspore/ops/composite/multitype_ops/left_shift_impl.py +2 -1
- mindspore/ops/composite/multitype_ops/less_equal_impl.py +4 -3
- mindspore/ops/composite/multitype_ops/less_impl.py +4 -3
- mindspore/ops/composite/multitype_ops/logic_not_impl.py +3 -2
- mindspore/ops/composite/multitype_ops/logical_and_impl.py +2 -1
- mindspore/ops/composite/multitype_ops/logical_or_impl.py +2 -1
- mindspore/ops/composite/multitype_ops/mod_impl.py +2 -1
- mindspore/ops/composite/multitype_ops/mul_impl.py +3 -2
- mindspore/ops/composite/multitype_ops/negative_impl.py +2 -1
- mindspore/ops/composite/multitype_ops/not_equal_impl.py +2 -1
- mindspore/ops/composite/multitype_ops/not_in_impl.py +2 -1
- mindspore/ops/composite/multitype_ops/ones_like_impl.py +18 -0
- mindspore/ops/composite/multitype_ops/pow_impl.py +2 -1
- mindspore/ops/composite/multitype_ops/right_shift_impl.py +2 -1
- mindspore/ops/composite/multitype_ops/setitem_impl.py +2 -1
- mindspore/ops/composite/multitype_ops/sub_impl.py +2 -1
- mindspore/ops/function/__init__.py +28 -2
- mindspore/ops/function/_add_attr_func.py +58 -0
- mindspore/ops/function/array_func.py +1631 -2347
- mindspore/ops/function/clip_func.py +38 -45
- mindspore/ops/function/debug_func.py +36 -44
- mindspore/ops/function/grad/__init__.py +1 -0
- mindspore/ops/function/grad/grad_func.py +104 -71
- mindspore/ops/function/image_func.py +1 -1
- mindspore/ops/function/linalg_func.py +46 -78
- mindspore/ops/function/math_func.py +3024 -3855
- mindspore/ops/function/nn_func.py +678 -274
- mindspore/ops/function/other_func.py +159 -1
- mindspore/ops/function/parameter_func.py +17 -30
- mindspore/ops/function/random_func.py +216 -361
- mindspore/ops/function/reshard_func.py +4 -70
- mindspore/ops/function/sparse_func.py +3 -3
- mindspore/ops/function/sparse_unary_func.py +5 -5
- mindspore/ops/function/spectral_func.py +25 -58
- mindspore/ops/function/vmap_func.py +26 -18
- mindspore/ops/functional.py +8 -5
- mindspore/ops/functional_overload.py +655 -4
- mindspore/ops/op_info_register.py +32 -244
- mindspore/ops/operations/__init__.py +21 -14
- mindspore/ops/operations/_custom_ops_utils.py +235 -0
- mindspore/ops/operations/_grad_ops.py +1 -10
- mindspore/ops/operations/_inner_ops.py +5 -76
- mindspore/ops/operations/_ms_kernel.py +4 -10
- mindspore/ops/operations/_rl_inner_ops.py +1 -1
- mindspore/ops/operations/_scalar_ops.py +3 -2
- mindspore/ops/operations/_sequence_ops.py +1 -1
- mindspore/ops/operations/_tensor_array.py +1 -1
- mindspore/ops/operations/array_ops.py +39 -24
- mindspore/ops/operations/comm_ops.py +150 -107
- mindspore/ops/operations/custom_ops.py +287 -32
- mindspore/ops/operations/debug_ops.py +119 -16
- mindspore/ops/operations/inner_ops.py +1 -1
- mindspore/ops/operations/linalg_ops.py +1 -58
- mindspore/ops/operations/manually_defined/_inner.py +1 -1
- mindspore/ops/operations/manually_defined/ops_def.py +746 -79
- mindspore/ops/operations/math_ops.py +21 -18
- mindspore/ops/operations/nn_ops.py +67 -224
- mindspore/ops/operations/other_ops.py +62 -9
- mindspore/ops/operations/random_ops.py +13 -7
- mindspore/ops/operations/reshard_ops.py +1 -1
- mindspore/ops/operations/sparse_ops.py +2 -2
- mindspore/ops/primitive.py +43 -32
- mindspore/ops/tensor_method.py +243 -17
- mindspore/ops_generate/__init__.py +0 -5
- mindspore/ops_generate/aclnn/__init__.py +0 -0
- mindspore/ops_generate/{aclnn_kernel_register_auto_cc_generator.py → aclnn/aclnn_kernel_register_auto_cc_generator.py} +43 -18
- mindspore/ops_generate/{gen_aclnn_implement.py → aclnn/gen_aclnn_implement.py} +49 -51
- mindspore/ops_generate/api/__init__.py +0 -0
- mindspore/ops_generate/{add_tensor_docs_generator.py → api/add_tensor_docs_generator.py} +9 -7
- mindspore/ops_generate/{cpp_create_prim_instance_helper_generator.py → api/cpp_create_prim_instance_helper_generator.py} +6 -9
- mindspore/ops_generate/{functional_map_cpp_generator.py → api/functional_map_cpp_generator.py} +25 -12
- mindspore/ops_generate/{functional_overload_py_generator.py → api/functional_overload_py_generator.py} +8 -6
- mindspore/ops_generate/{functions_cc_generator.py → api/functions_cc_generator.py} +14 -10
- mindspore/ops_generate/api/gen_api.py +103 -0
- mindspore/ops_generate/{op_api_proto.py → api/op_api_proto.py} +98 -69
- mindspore/ops_generate/{tensor_func_reg_cpp_generator.py → api/tensor_func_reg_cpp_generator.py} +82 -43
- mindspore/ops_generate/common/__init__.py +0 -0
- mindspore/ops_generate/common/gen_constants.py +91 -0
- mindspore/ops_generate/{gen_utils.py → common/gen_utils.py} +72 -19
- mindspore/ops_generate/{op_proto.py → common/op_proto.py} +64 -1
- mindspore/ops_generate/{template.py → common/template.py} +96 -84
- mindspore/ops_generate/gen_ops.py +23 -325
- mindspore/ops_generate/op_def/__init__.py +0 -0
- mindspore/ops_generate/op_def/gen_op_def.py +90 -0
- mindspore/ops_generate/{lite_ops_cpp_generator.py → op_def/lite_ops_cpp_generator.py} +47 -11
- mindspore/ops_generate/{ops_def_cc_generator.py → op_def/ops_def_cc_generator.py} +18 -10
- mindspore/ops_generate/{ops_def_h_generator.py → op_def/ops_def_h_generator.py} +5 -5
- mindspore/ops_generate/{ops_name_h_generator.py → op_def/ops_name_h_generator.py} +30 -15
- mindspore/ops_generate/op_def/ops_primitive_h_generator.py +125 -0
- mindspore/ops_generate/op_def_py/__init__.py +0 -0
- mindspore/ops_generate/op_def_py/gen_op_def_py.py +47 -0
- mindspore/ops_generate/{op_def_py_generator.py → op_def_py/op_def_py_generator.py} +6 -5
- mindspore/ops_generate/{op_prim_py_generator.py → op_def_py/op_prim_py_generator.py} +24 -15
- mindspore/ops_generate/pyboost/__init__.py +0 -0
- mindspore/ops_generate/{auto_grad_impl_cc_generator.py → pyboost/auto_grad_impl_cc_generator.py} +11 -7
- mindspore/ops_generate/{auto_grad_reg_cc_generator.py → pyboost/auto_grad_reg_cc_generator.py} +7 -7
- mindspore/ops_generate/{gen_pyboost_func.py → pyboost/gen_pyboost_func.py} +40 -16
- mindspore/ops_generate/{op_template_parser.py → pyboost/op_template_parser.py} +105 -24
- mindspore/ops_generate/{pyboost_functions_cpp_generator.py → pyboost/pyboost_functions_cpp_generator.py} +55 -18
- mindspore/ops_generate/{pyboost_functions_h_generator.py → pyboost/pyboost_functions_h_generator.py} +42 -10
- mindspore/ops_generate/{pyboost_functions_py_generator.py → pyboost/pyboost_functions_py_generator.py} +6 -6
- mindspore/ops_generate/{pyboost_grad_function_cpp_generator.py → pyboost/pyboost_grad_function_cpp_generator.py} +11 -10
- mindspore/ops_generate/{pyboost_inner_prim_generator.py → pyboost/pyboost_inner_prim_generator.py} +8 -7
- mindspore/ops_generate/{pyboost_native_grad_functions_generator.py → pyboost/pyboost_native_grad_functions_generator.py} +14 -10
- mindspore/ops_generate/{pyboost_op_cpp_code_generator.py → pyboost/pyboost_op_cpp_code_generator.py} +140 -53
- mindspore/ops_generate/{pyboost_overload_functions_cpp_generator.py → pyboost/pyboost_overload_functions_cpp_generator.py} +28 -15
- mindspore/ops_generate/{pyboost_utils.py → pyboost/pyboost_utils.py} +88 -4
- mindspore/ops_generate/resources/__init__.py +0 -0
- mindspore/ops_generate/resources/resource_list.py +30 -0
- mindspore/ops_generate/resources/resource_loader.py +36 -0
- mindspore/ops_generate/resources/resource_manager.py +64 -0
- mindspore/ops_generate/resources/yaml_loader.py +88 -0
- mindspore/ops_generate/tensor_py_cc_generator.py +122 -0
- mindspore/parallel/__init__.py +6 -2
- mindspore/parallel/_auto_parallel_context.py +140 -12
- mindspore/parallel/_cell_wrapper.py +132 -15
- mindspore/parallel/_parallel_serialization.py +95 -4
- mindspore/parallel/_ps_context.py +1 -1
- mindspore/parallel/_recovery_context.py +7 -2
- mindspore/parallel/_tensor.py +142 -18
- mindspore/parallel/_utils.py +198 -25
- mindspore/parallel/algo_parameter_config.py +3 -3
- mindspore/parallel/auto_parallel.py +732 -0
- mindspore/parallel/checkpoint_convert.py +159 -0
- mindspore/parallel/checkpoint_transform.py +658 -37
- mindspore/parallel/cluster/process_entity/_api.py +151 -19
- mindspore/parallel/cluster/run.py +1 -1
- mindspore/parallel/function/__init__.py +24 -0
- mindspore/parallel/function/reshard_func.py +258 -0
- mindspore/parallel/nn/__init__.py +25 -0
- mindspore/parallel/nn/parallel_cell_wrapper.py +263 -0
- mindspore/parallel/nn/parallel_grad_reducer.py +169 -0
- mindspore/parallel/parameter_broadcast.py +24 -13
- mindspore/parallel/shard.py +137 -62
- mindspore/parallel/transform_safetensors.py +288 -95
- mindspore/pgodb140.dll +0 -0
- mindspore/pgort140.dll +0 -0
- mindspore/profiler/__init__.py +9 -5
- mindspore/profiler/analysis/parser/ascend_cann_parser.py +6 -2
- mindspore/profiler/analysis/parser/ms_framework_parser.py +4 -4
- mindspore/profiler/analysis/parser/timeline_assembly_factory/ascend_timeline_assembler.py +7 -4
- mindspore/profiler/analysis/parser/timeline_assembly_factory/trace_view_container.py +25 -0
- mindspore/profiler/analysis/parser/timeline_creator/fwk_timeline_creator.py +3 -3
- mindspore/profiler/analysis/parser/timeline_event/fwk_event.py +241 -86
- mindspore/profiler/analysis/viewer/ascend_communication_viewer.py +41 -2
- mindspore/profiler/analysis/viewer/ascend_kernel_details_viewer.py +33 -35
- mindspore/profiler/analysis/viewer/ascend_memory_viewer.py +7 -0
- mindspore/profiler/analysis/viewer/ascend_op_memory_viewer.py +8 -3
- mindspore/profiler/analysis/viewer/ascend_step_trace_time_viewer.py +141 -30
- mindspore/profiler/analysis/viewer/ms_dataset_viewer.py +5 -6
- mindspore/profiler/common/ascend_msprof_exporter.py +5 -4
- mindspore/profiler/common/constant.py +12 -0
- mindspore/profiler/common/msprof_cmd_tool.py +42 -23
- mindspore/profiler/common/path_manager.py +24 -0
- mindspore/profiler/common/profiler_context.py +26 -2
- mindspore/profiler/common/profiler_meta_data.py +74 -0
- mindspore/profiler/common/profiler_parameters.py +59 -18
- mindspore/profiler/common/profiler_path_manager.py +66 -7
- mindspore/profiler/dynamic_profiler.py +112 -79
- mindspore/profiler/envprofiler.py +26 -1
- mindspore/profiler/experimental_config.py +197 -0
- mindspore/profiler/mstx.py +57 -14
- mindspore/profiler/platform/npu_profiler.py +33 -7
- mindspore/profiler/profiler.py +541 -45
- mindspore/profiler/profiler_action_controller.py +1 -1
- mindspore/profiler/profiler_interface.py +4 -0
- mindspore/profiler/schedule.py +57 -22
- mindspore/rewrite/api/node.py +15 -13
- mindspore/rewrite/api/symbol_tree.py +1 -1
- mindspore/run_check/_check_version.py +25 -14
- mindspore/run_check/run_check.py +1 -1
- mindspore/runtime/__init__.py +2 -2
- mindspore/runtime/executor.py +40 -11
- mindspore/runtime/memory.py +37 -13
- mindspore/safeguard/rewrite_obfuscation.py +12 -9
- mindspore/swresample-4.dll +0 -0
- mindspore/swscale-6.dll +0 -0
- mindspore/tbbmalloc.dll +0 -0
- mindspore/tinyxml2.dll +0 -0
- mindspore/train/__init__.py +8 -8
- mindspore/train/_utils.py +43 -9
- mindspore/train/amp.py +1 -1
- mindspore/train/callback/__init__.py +2 -2
- mindspore/train/callback/_callback.py +2 -16
- mindspore/train/callback/_checkpoint.py +24 -40
- mindspore/train/callback/_cluster_monitor.py +14 -18
- mindspore/train/callback/_flops_collector.py +2 -3
- mindspore/train/callback/_history.py +7 -4
- mindspore/train/callback/_lambda_callback.py +2 -2
- mindspore/train/callback/_landscape.py +0 -3
- mindspore/train/callback/_loss_monitor.py +2 -1
- mindspore/train/callback/_on_request_exit.py +6 -5
- mindspore/train/callback/_reduce_lr_on_plateau.py +11 -6
- mindspore/train/callback/_summary_collector.py +8 -13
- mindspore/train/callback/_time_monitor.py +2 -1
- mindspore/train/callback/{_tft_register.py → _train_fault_tolerance.py} +204 -105
- mindspore/train/data_sink.py +25 -2
- mindspore/train/dataset_helper.py +4 -5
- mindspore/train/loss_scale_manager.py +8 -7
- mindspore/train/metrics/accuracy.py +3 -3
- mindspore/train/metrics/confusion_matrix.py +9 -9
- mindspore/train/metrics/error.py +3 -3
- mindspore/train/metrics/hausdorff_distance.py +4 -4
- mindspore/train/metrics/mean_surface_distance.py +3 -3
- mindspore/train/metrics/metric.py +0 -12
- mindspore/train/metrics/occlusion_sensitivity.py +4 -2
- mindspore/train/metrics/precision.py +8 -6
- mindspore/train/metrics/recall.py +9 -9
- mindspore/train/metrics/root_mean_square_surface_distance.py +2 -2
- mindspore/train/mind_ir_pb2.py +19 -12
- mindspore/train/model.py +262 -127
- mindspore/train/serialization.py +246 -988
- mindspore/train/summary/_summary_adapter.py +2 -2
- mindspore/train/summary/summary_record.py +1 -1
- mindspore/turbojpeg.dll +0 -0
- mindspore/utils/__init__.py +3 -2
- mindspore/utils/dryrun.py +4 -2
- mindspore/utils/hooks.py +81 -0
- mindspore/utils/runtime_execution_order_check.py +2 -0
- mindspore/utils/utils.py +138 -4
- mindspore/vcmeta.dll +0 -0
- mindspore/vcruntime140.dll +0 -0
- mindspore/vcruntime140_1.dll +0 -0
- mindspore/version.py +1 -1
- {mindspore-2.5.0.dist-info → mindspore-2.6.0.dist-info}/METADATA +2 -1
- {mindspore-2.5.0.dist-info → mindspore-2.6.0.dist-info}/RECORD +485 -440
- mindspore/_install_custom.py +0 -43
- mindspore/common/_register_for_adapter.py +0 -74
- mindspore/ops/auto_generate/gen_arg_dtype_cast.py +0 -252
- mindspore/ops/auto_generate/gen_arg_handler.py +0 -136
- mindspore/ops/operations/_opaque_predicate_registry.py +0 -41
- mindspore/ops_generate/gen_constants.py +0 -190
- mindspore/ops_generate/gen_ops_inner_prim.py +0 -131
- mindspore/ops_generate/ops_primitive_h_generator.py +0 -81
- /mindspore/ops_generate/{base_generator.py → common/base_generator.py} +0 -0
- {mindspore-2.5.0.dist-info → mindspore-2.6.0.dist-info}/WHEEL +0 -0
- {mindspore-2.5.0.dist-info → mindspore-2.6.0.dist-info}/entry_points.txt +0 -0
- {mindspore-2.5.0.dist-info → mindspore-2.6.0.dist-info}/top_level.txt +0 -0
|
@@ -51,9 +51,10 @@ class FixedLossScaleManager(LossScaleManager):
|
|
|
51
51
|
inherits from :class:`mindspore.amp.LossScaleManager`.
|
|
52
52
|
|
|
53
53
|
Args:
|
|
54
|
-
loss_scale (float): Magnification factor of gradients.
|
|
54
|
+
loss_scale (float, optional): Magnification factor of gradients.
|
|
55
|
+
Note that if `drop_overflow_update` is set to ``False`` ,
|
|
55
56
|
the value of `loss_scale` in optimizer should be set to the same as here. Default: ``128.0`` .
|
|
56
|
-
drop_overflow_update (bool): Whether to execute optimizer if there is an overflow.
|
|
57
|
+
drop_overflow_update (bool, optional): Whether to execute optimizer if there is an overflow.
|
|
57
58
|
If ``True`` , the optimizer will
|
|
58
59
|
not executed when overflow occurs. Default: ``True`` .
|
|
59
60
|
|
|
@@ -110,8 +111,8 @@ class FixedLossScaleManager(LossScaleManager):
|
|
|
110
111
|
|
|
111
112
|
Returns:
|
|
112
113
|
None or :class:`mindspore.nn.FixedLossScaleUpdateCell`. Instance of
|
|
113
|
-
:class:`mindspore.nn.FixedLossScaleUpdateCell` when `drop_overflow_update` is True
|
|
114
|
-
`drop_overflow_update` is False
|
|
114
|
+
:class:`mindspore.nn.FixedLossScaleUpdateCell` when `drop_overflow_update` is ``True``. None when
|
|
115
|
+
`drop_overflow_update` is ``False``.
|
|
115
116
|
"""
|
|
116
117
|
if not self._drop_overflow_update:
|
|
117
118
|
return None
|
|
@@ -124,9 +125,9 @@ class DynamicLossScaleManager(LossScaleManager):
|
|
|
124
125
|
adjusted, inherits from :class:`mindspore.amp.LossScaleManager`.
|
|
125
126
|
|
|
126
127
|
Args:
|
|
127
|
-
init_loss_scale (float): Initialize loss scale. Default: ``2 ** 24`` .
|
|
128
|
-
scale_factor (int): Coefficient of increase and decrease. Default: ``2`` .
|
|
129
|
-
scale_window (int): Maximum continuous normal steps when there is no overflow. Default: ``2000`` .
|
|
128
|
+
init_loss_scale (float, optional): Initialize loss scale. Default: ``2 ** 24`` .
|
|
129
|
+
scale_factor (int, optional): Coefficient of increase and decrease. Default: ``2`` .
|
|
130
|
+
scale_window (int, optional): Maximum continuous normal steps when there is no overflow. Default: ``2000`` .
|
|
130
131
|
|
|
131
132
|
Supported Platforms:
|
|
132
133
|
``Ascend`` ``GPU``
|
|
@@ -45,11 +45,11 @@ class Accuracy(EvaluationBase):
|
|
|
45
45
|
>>> from mindspore import Tensor
|
|
46
46
|
>>> from mindspore.train import Accuracy
|
|
47
47
|
>>>
|
|
48
|
-
>>>
|
|
49
|
-
>>>
|
|
48
|
+
>>> y_pred = Tensor(np.array([[0.2, 0.5], [0.3, 0.1], [0.9, 0.6]]), mindspore.float32)
|
|
49
|
+
>>> y_true = Tensor(np.array([1, 0, 1]), mindspore.float32)
|
|
50
50
|
>>> metric = Accuracy('classification')
|
|
51
51
|
>>> metric.clear()
|
|
52
|
-
>>> metric.update(
|
|
52
|
+
>>> metric.update(y_pred, y_true)
|
|
53
53
|
>>> accuracy = metric.eval()
|
|
54
54
|
>>> print(accuracy)
|
|
55
55
|
0.6666666666666666
|
|
@@ -23,15 +23,15 @@ from mindspore.train.metrics.metric import Metric, rearrange_inputs
|
|
|
23
23
|
|
|
24
24
|
class ConfusionMatrix(Metric):
|
|
25
25
|
"""
|
|
26
|
-
Computes the
|
|
26
|
+
Computes the Confusion Matrix, which is commonly used to evaluate the performance of classification models,
|
|
27
27
|
including binary classification and multiple classification.
|
|
28
28
|
|
|
29
|
-
If you only need
|
|
29
|
+
If you only need Confusion Matrix, use this class. If you want to calculate other metrics, such as 'PPV',
|
|
30
30
|
'TPR', 'TNR', etc., use class :class:`mindspore.train.ConfusionMatrixMetric` .
|
|
31
31
|
|
|
32
32
|
Args:
|
|
33
33
|
num_classes (int): Number of classes in the dataset.
|
|
34
|
-
normalize (str): Normalization mode for
|
|
34
|
+
normalize (str): Normalization mode for Confusion Matrix. Default: ``"no_norm"`` . Choose from:
|
|
35
35
|
|
|
36
36
|
- ``"no_norm"`` : No Normalization is used. Default: ``None``.
|
|
37
37
|
- ``"target"`` : Normalization based on target value.
|
|
@@ -78,7 +78,7 @@ class ConfusionMatrix(Metric):
|
|
|
78
78
|
@rearrange_inputs
|
|
79
79
|
def update(self, *inputs):
|
|
80
80
|
"""
|
|
81
|
-
Update state with y_pred and y
|
|
81
|
+
Update state with `y_pred` and `y`.
|
|
82
82
|
|
|
83
83
|
Args:
|
|
84
84
|
inputs(tuple): Input `y_pred` and `y`. `y_pred` and `y` are a `Tensor`, list or numpy.ndarray.
|
|
@@ -88,7 +88,7 @@ class ConfusionMatrix(Metric):
|
|
|
88
88
|
|
|
89
89
|
Raises:
|
|
90
90
|
ValueError: If the number of inputs is not 2.
|
|
91
|
-
ValueError: If the
|
|
91
|
+
ValueError: If the dims of `y_pred` and `y` are not equal.
|
|
92
92
|
"""
|
|
93
93
|
if len(inputs) != 2:
|
|
94
94
|
raise ValueError("For 'ConfusionMatrix.update', it needs 2 inputs (predicted value, true value), "
|
|
@@ -151,8 +151,8 @@ class ConfusionMatrixMetric(Metric):
|
|
|
151
151
|
batch, class channel and iteration are collected. All metrics supported by the interface are listed in comments
|
|
152
152
|
of `metric_name`.
|
|
153
153
|
|
|
154
|
-
If you want to calculate metrics related to confusion matrix, such as 'PPV', 'TPR', 'TNR', use this class.
|
|
155
|
-
If you only want to calculate confusion matrix, please use :class:`mindspore.train.ConfusionMatrix` .
|
|
154
|
+
- If you want to calculate metrics related to confusion matrix, such as 'PPV', 'TPR', 'TNR', use this class.
|
|
155
|
+
- If you only want to calculate confusion matrix, please use :class:`mindspore.train.ConfusionMatrix` .
|
|
156
156
|
|
|
157
157
|
Args:
|
|
158
158
|
skip_channel (bool): Whether to skip the measurement calculation on the first channel of the predicted output.
|
|
@@ -163,9 +163,9 @@ class ConfusionMatrixMetric(Metric):
|
|
|
163
163
|
"threat score", "accuracy", "balanced accuracy", "f1 score",
|
|
164
164
|
"matthews correlation coefficient", "fowlkes mallows index", "informedness", "markedness"].
|
|
165
165
|
Default: ``"sensitivity"`` .
|
|
166
|
-
calculation_method (bool): If
|
|
166
|
+
calculation_method (bool): If ``True``, the measurement for each sample will be calculated first.
|
|
167
167
|
If not, the confusion matrix of all samples will be accumulated first.
|
|
168
|
-
As for classification task, 'calculation_method' should be False
|
|
168
|
+
As for classification task, 'calculation_method' should be ``False``. Default: ``False`` .
|
|
169
169
|
decrease (str): The reduction method on data batch. `decrease` takes effect only when calculation_method
|
|
170
170
|
is True. Default: ``"mean"`` . Choose from:
|
|
171
171
|
["none", "mean", "sum", "mean_batch", "sum_batch", "mean_channel", "sum_channel"].
|
mindspore/train/metrics/error.py
CHANGED
|
@@ -25,7 +25,7 @@ class MAE(Metric):
|
|
|
25
25
|
Calculates the mean absolute error(MAE).
|
|
26
26
|
|
|
27
27
|
Creates a criterion that measures the MAE between each element
|
|
28
|
-
in the input: :math:`
|
|
28
|
+
in the input: :math:`y\_pred` and the target: :math:`y`.
|
|
29
29
|
|
|
30
30
|
.. math::
|
|
31
31
|
\text{MAE} = \frac{\sum_{i=1}^n \|{y\_pred}_i - y_i\|}{n}
|
|
@@ -142,8 +142,8 @@ class MSE(Metric):
|
|
|
142
142
|
Updates the internal evaluation result :math:`y_{pred}` and :math:`y`.
|
|
143
143
|
|
|
144
144
|
Args:
|
|
145
|
-
inputs: Input
|
|
146
|
-
|
|
145
|
+
inputs: Input :math:`y_pred` and :math:`y` for calculating the MSE where the shape of
|
|
146
|
+
:math:`y_pred` and :math:`y` are both N-D and the shape should be the same.
|
|
147
147
|
|
|
148
148
|
Raises:
|
|
149
149
|
ValueError: If the number of inputs is not 2.
|
|
@@ -84,7 +84,7 @@ class HausdorffDistance(Metric):
|
|
|
84
84
|
:math:`h(A, B)` is not equal to :math:`h(B, A)`. :math:`H(A, B)` is the two-way Hausdorff distance.
|
|
85
85
|
|
|
86
86
|
Args:
|
|
87
|
-
distance_metric (
|
|
87
|
+
distance_metric (str): Three distance measurement methods are supported:
|
|
88
88
|
``"euclidean"`` (Euclidean Distance) , ``"chessboard"`` (Chessboard Distance, Chebyshev Distance)
|
|
89
89
|
or ``"taxicab"`` (Taxicab Distance, Manhattan Distance). Default: ``"euclidean"`` .
|
|
90
90
|
percentile (float): Floating point numbers between 0 and 100. Specify the percentile parameter to get the
|
|
@@ -270,9 +270,9 @@ class HausdorffDistance(Metric):
|
|
|
270
270
|
|
|
271
271
|
Raises:
|
|
272
272
|
ValueError: If the number of the inputs is not 3.
|
|
273
|
-
TypeError: If the data type of label_idx is not int or float.
|
|
274
|
-
ValueError: If the value of label_idx is not in y_pred or y
|
|
275
|
-
ValueError: If y_pred and y have different shapes.
|
|
273
|
+
TypeError: If the data type of `label_idx` is not int or float.
|
|
274
|
+
ValueError: If the value of `label_idx` is not in `y_pred` or `y`.
|
|
275
|
+
ValueError: If `y_pred` and `y` have different shapes.
|
|
276
276
|
"""
|
|
277
277
|
self._is_update = True
|
|
278
278
|
|
|
@@ -49,7 +49,7 @@ class MeanSurfaceDistance(Metric):
|
|
|
49
49
|
\left | S(B) \right |}
|
|
50
50
|
|
|
51
51
|
Args:
|
|
52
|
-
distance_metric (
|
|
52
|
+
distance_metric (str): Three measurement methods are supported: ``"euclidean"`` (Euclidean Distance) ,
|
|
53
53
|
``"chessboard"`` (Chessboard Distance, Chebyshev Distance) or
|
|
54
54
|
``"taxicab"`` (Taxicab Distance, Manhattan Distance) Default: ``"euclidean"`` .
|
|
55
55
|
symmetric (bool): Whether to calculate the Mean Surface Distance between y_pred and y.
|
|
@@ -125,8 +125,8 @@ class MeanSurfaceDistance(Metric):
|
|
|
125
125
|
Raises:
|
|
126
126
|
ValueError: If the number of the inputs is not 3.
|
|
127
127
|
TypeError: If the data type of label_idx is not int or float.
|
|
128
|
-
ValueError: If the value of label_idx is not in y_pred or y
|
|
129
|
-
ValueError: If y_pred and y have different shapes.
|
|
128
|
+
ValueError: If the value of label_idx is not in `y_pred` or `y`.
|
|
129
|
+
ValueError: If `y_pred` and `y` have different shapes.
|
|
130
130
|
"""
|
|
131
131
|
if len(inputs) != 3:
|
|
132
132
|
raise ValueError("For 'MeanSurfaceDistance.update', it needs 3 inputs (predicted value, true value, "
|
|
@@ -197,10 +197,6 @@ class Metric(metaclass=ABCMeta):
|
|
|
197
197
|
|
|
198
198
|
Note:
|
|
199
199
|
All subclasses must override this interface.
|
|
200
|
-
|
|
201
|
-
Tutorial Examples:
|
|
202
|
-
- `Evaluation Metrics - Customized Metrics
|
|
203
|
-
<https://mindspore.cn/docs/en/master/model_train/train_process/model/metric.html#customized-metrics>`_
|
|
204
200
|
"""
|
|
205
201
|
raise NotImplementedError('Must define clear function to use this base class')
|
|
206
202
|
|
|
@@ -211,10 +207,6 @@ class Metric(metaclass=ABCMeta):
|
|
|
211
207
|
|
|
212
208
|
Note:
|
|
213
209
|
All subclasses must override this interface.
|
|
214
|
-
|
|
215
|
-
Tutorial Examples:
|
|
216
|
-
- `Evaluation Metrics - Customized Metrics
|
|
217
|
-
<https://mindspore.cn/docs/en/master/model_train/train_process/model/metric.html#customized-metrics>`_
|
|
218
210
|
"""
|
|
219
211
|
raise NotImplementedError('Must define eval function to use this base class')
|
|
220
212
|
|
|
@@ -228,10 +220,6 @@ class Metric(metaclass=ABCMeta):
|
|
|
228
220
|
|
|
229
221
|
Args:
|
|
230
222
|
inputs: A variable-length input argument list, usually are the logits and the corresponding labels.
|
|
231
|
-
|
|
232
|
-
Tutorial Examples:
|
|
233
|
-
- `Evaluation Metrics - Customized Metrics
|
|
234
|
-
<https://mindspore.cn/docs/en/master/model_train/train_process/model/metric.html#customized-metrics>`_
|
|
235
223
|
"""
|
|
236
224
|
raise NotImplementedError('Must define update function to use this base class')
|
|
237
225
|
|
|
@@ -36,12 +36,14 @@ class OcclusionSensitivity(Metric):
|
|
|
36
36
|
most important for a network's classification.
|
|
37
37
|
|
|
38
38
|
Occlusion sensitivity refers to how the predicted probability changes with the change of the occluded
|
|
39
|
-
part of an image. The higher the value in the output image is, the greater the
|
|
39
|
+
part of an image. The higher the value in the output image is, the greater the certainty decline
|
|
40
|
+
of the category after masking, indicating
|
|
40
41
|
that the occluded area is more important in the decision-making process.
|
|
41
42
|
|
|
42
43
|
Args:
|
|
43
44
|
pad_val (float): The padding value of the occluded part in an image. Default: ``0.0`` .
|
|
44
|
-
margin (Union[int, Sequence]): Create a cuboid / cube
|
|
45
|
+
margin (Union[int, Sequence]): Create a cuboid / cube size of pixel points
|
|
46
|
+
around the voxel you want to occlude. Default: ``2`` .
|
|
45
47
|
n_batch (int): number of images in a batch. Default: ``128`` .
|
|
46
48
|
b_box (Sequence): Bounding box on which to perform the analysis. The output image will also match in size.
|
|
47
49
|
There should be a minimum and maximum for all dimensions except batch:
|
|
@@ -74,18 +74,20 @@ class Precision(EvaluationBase):
|
|
|
74
74
|
@rearrange_inputs
|
|
75
75
|
def update(self, *inputs):
|
|
76
76
|
"""
|
|
77
|
-
Updates the internal evaluation result with
|
|
77
|
+
Updates the internal evaluation result with :math:`y_pred` and :math:`y`.
|
|
78
|
+
In the multi-label cases, the elements of
|
|
78
79
|
:math:`y` and :math:`y_pred` must be 0 or 1.
|
|
79
80
|
|
|
80
81
|
Args:
|
|
81
|
-
inputs: Input
|
|
82
|
-
|
|
82
|
+
inputs: Input :math:`y_pred` and :math:`y`. :math:`y_pred` and :math:`y`
|
|
83
|
+
are Tensor, list or numpy.ndarray.
|
|
84
|
+
For 'classification' evaluation type, :math:`y_pred` is in most cases (not strictly) a list
|
|
83
85
|
of floating numbers in range :math:`[0, 1]`
|
|
84
86
|
and the shape is :math:`(N, C)`, where :math:`N` is the number of cases and :math:`C`
|
|
85
|
-
is the number of categories. Shape of
|
|
87
|
+
is the number of categories. Shape of :math:`y` can be :math:`(N, C)` with values 0 and 1 if one-hot
|
|
86
88
|
encoding is used or the shape is :math:`(N,)` with integer values if index of category is used.
|
|
87
|
-
For 'multilabel' evaluation type,
|
|
88
|
-
values 0 or 1. Indices with 1 indicate positive category. The shape of
|
|
89
|
+
For 'multilabel' evaluation type, :math:`y_pred` and :math:`y` can only be one-hot encoding with
|
|
90
|
+
values 0 or 1. Indices with 1 indicate positive category. The shape of :math:`y_pred` and :math:`y`
|
|
89
91
|
are both :math:`(N, C)`.
|
|
90
92
|
|
|
91
93
|
Raises:
|
|
@@ -36,7 +36,7 @@ class Recall(EvaluationBase):
|
|
|
36
36
|
In the multi-label cases, the elements of :math:`y` and :math:`y_{pred}` must be 0 or 1.
|
|
37
37
|
|
|
38
38
|
Args:
|
|
39
|
-
eval_type (str): ``'classification'`` or ``'multilabel'``
|
|
39
|
+
eval_type (str): ``'classification'`` or ``'multilabel'`` is supported. Default: ``'classification'`` .
|
|
40
40
|
|
|
41
41
|
Supported Platforms:
|
|
42
42
|
``Ascend`` ``GPU`` ``CPU``
|
|
@@ -79,15 +79,15 @@ class Recall(EvaluationBase):
|
|
|
79
79
|
|
|
80
80
|
Args:
|
|
81
81
|
inputs: Input `y_pred` and `y`. `y_pred` and `y` are a `Tensor`, a list or an array.
|
|
82
|
-
For 'classification' evaluation type, `y_pred` is in most cases (not strictly) a list
|
|
83
|
-
of floating numbers in range :math:`[0, 1]`
|
|
84
|
-
and the shape is :math:`(N, C)`, where :math:`N` is the number of cases and :math:`C`
|
|
85
|
-
is the number of categories. Shape of `y` can be :math:`(N, C)` with values 0 and 1 if one-hot
|
|
86
|
-
encoding is used or the shape is :math:`(N,)` with integer values if index of category is used.
|
|
87
|
-
For 'multilabel' evaluation type, `y_pred` and `y` can only be one-hot encoding with
|
|
88
|
-
values 0 or 1. Indices with 1 indicate positive category. The shape of `y_pred` and `y`
|
|
89
|
-
are both :math:`(N, C)`.
|
|
90
82
|
|
|
83
|
+
- For 'classification' scenario, `y_pred` is in most cases (not strictly) a list
|
|
84
|
+
of floating numbers in range :math:`[0, 1]`
|
|
85
|
+
and the shape is :math:`(N, C)`, where :math:`N` is the number of cases and :math:`C`
|
|
86
|
+
is the number of categories. Shape of `y` can be :math:`(N, C)` with values 0 and 1 if one-hot
|
|
87
|
+
encoding is used or the shape is :math:`(N,)` with integer values if index of category is used.
|
|
88
|
+
- For 'multilabel' scenario, `y_pred` and `y` can only be one-hot encoding with
|
|
89
|
+
values 0 or 1. Indices with 1 indicate positive category. The shape of `y_pred` and `y`
|
|
90
|
+
are both :math:`(N, C)`.
|
|
91
91
|
|
|
92
92
|
Raises:
|
|
93
93
|
ValueError: If the number of inputs is not 2.
|
|
@@ -48,11 +48,11 @@ class RootMeanSquareDistance(Metric):
|
|
|
48
48
|
\right | + \left | S(B) \right |}}
|
|
49
49
|
|
|
50
50
|
Args:
|
|
51
|
-
distance_metric (
|
|
51
|
+
distance_metric (str): Three measurement methods are supported:
|
|
52
52
|
``"euclidean"`` (Euclidean Distance) , ``"chessboard"`` (Chessboard Distance, Chebyshev Distance)
|
|
53
53
|
or ``"taxicab"`` (Taxicab Distance, Manhattan Distance). Default: ``"euclidean"`` .
|
|
54
54
|
symmetric (bool): Whether to calculate the symmetric average root mean square distance between
|
|
55
|
-
y_pred and y
|
|
55
|
+
`y_pred` and `y`. If False, only calculates :math:`RmsSurDis(y\_pred, y)` surface distance,
|
|
56
56
|
otherwise, the mean of distance from `y_pred` to `y` and from `y` to `y_pred`, i.e.
|
|
57
57
|
:math:`RmsSurDis(y\_pred \leftrightarrow y)` will be returned. Default: ``False`` .
|
|
58
58
|
|
mindspore/train/mind_ir_pb2.py
CHANGED
|
@@ -20,7 +20,7 @@ DESCRIPTOR = _descriptor.FileDescriptor(
|
|
|
20
20
|
syntax='proto2',
|
|
21
21
|
serialized_options=None,
|
|
22
22
|
create_key=_descriptor._internal_create_key,
|
|
23
|
-
serialized_pb=b'\n\rmind_ir.proto\x12\x07mind_ir\"\xd8\t\n\x0e\x41ttributeProto\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\t\n\x01\x66\x18\x02 \x01(\x02\x12\t\n\x01i\x18\x03 \x01(\x03\x12\t\n\x01\x64\x18\x04 \x01(\x01\x12\t\n\x01s\x18\x05 \x01(\x0c\x12\x1f\n\x01t\x18\x06 \x01(\x0b\x32\x14.mind_ir.TensorProto\x12\x1e\n\x01g\x18\x07 \x01(\x0b\x32\x13.mind_ir.GraphProto\x12\x0e\n\x06\x66loats\x18\x08 \x03(\x02\x12\x0f\n\x07\x64oubles\x18\t \x03(\x01\x12\x0c\n\x04ints\x18\n \x03(\x03\x12\x0f\n\x07strings\x18\x0b \x03(\x0c\x12%\n\x07tensors\x18\x0c \x03(\x0b\x32\x14.mind_ir.TensorProto\x12#\n\x06graphs\x18\r \x03(\x0b\x32\x13.mind_ir.GraphProto\x12\x12\n\ndoc_string\x18\x0e \x01(\t\x12\x15\n\rref_attr_name\x18\x0f \x01(\t\x12\x33\n\x04type\x18\x10 \x01(\x0e\x32%.mind_ir.AttributeProto.AttributeType\x12\'\n\x06values\x18\x11 \x03(\x0b\x32\x17.mind_ir.AttributeProto\x12\x36\n\x08seq_info\x18\x12 \x01(\x0b\x32$.mind_ir.AttributeProto.SeqInfoProto\x12&\n\x07\x66unctor\x18\x13 \x01(\x0b\x32\x15.mind_ir.FunctorProto\x12\x35\n\x0cgraph_holder\x18\x14 \x01(\x0b\x32\x1f.mind_ir.ScalarGraphHolderProto\x1aT\n\x0cSeqInfoProto\x12\x12\n\nis_dyn_len\x18\x01 \x01(\x08\x12\x30\n\x0ftuple_elem_item\x18\x02 \x01(\x0b\x32\x17.mind_ir.AttributeProto\"\xc8\x04\n\rAttributeType\x12\r\n\tUNDEFINED\x10\x00\x12\t\n\x05\x46LOAT\x10\x01\x12\t\n\x05UINT8\x10\x02\x12\x08\n\x04INT8\x10\x03\x12\n\n\x06UINT16\x10\x04\x12\t\n\x05INT16\x10\x05\x12\t\n\x05INT32\x10\x06\x12\t\n\x05INT64\x10\x07\x12\n\n\x06STRING\x10\x08\x12\x08\n\x04\x42OOL\x10\t\x12\x0b\n\x07\x46LOAT16\x10\n\x12\n\n\x06\x44OUBLE\x10\x0b\x12\n\n\x06UINT32\x10\x0c\x12\n\n\x06UINT64\x10\r\x12\r\n\tCOMPLEX64\x10\x0e\x12\x0e\n\nCOMPLEX128\x10\x0f\x12\x0c\n\x08\x42\x46LOAT16\x10\x10\x12\n\n\x06TENSOR\x10\x11\x12\t\n\x05GRAPH\x10\x12\x12\x0b\n\x07TENSORS\x10\x13\x12\t\n\x05TUPLE\x10\x14\x12\x08\n\x04LIST\x10\x15\x12\x08\n\x04\x44ICT\x10\x16\x12\n\n\x06UMONAD\x10\x17\x12\x0b\n\x07IOMONAD\x10\x18\x12\x08\n\x04NONE\x10\x19\x12\x14\n\x10PRIMITIVECLOSURE\x10\x1a\x12\x14\n\x10\x46UNCGRAPHCLOSURE\x10\x1b\x12\x12\n\x0ePARTIALCLOSURE\x10\x1c\x12\x14\n\x10UNIONFUNCCLOSURE\x10\x1d\x12\x0e\n\nCSR_TENSOR\x10\x1e\x12\x0e\n\nCOO_TENSOR\x10\x1f\x12\x0e\n\nROW_TENSOR\x10 \x12\x0e\n\nCLASS_TYPE\x10!\x12\x0e\n\nNAME_SPACE\x10\"\x12\n\n\x06SYMBOL\x10#\x12\r\n\tTYPE_NULL\x10$\x12\x0e\n\nMAP_TENSOR\x10%\x12\x0b\n\x07\x46UNCTOR\x10&\x12\n\n\x06SCALAR\x10\'\x12\x17\n\x13SCALAR_GRAPH_HOLDER\x10(\"\xae\x01\n\x0c\x46unctorProto\x12/\n\x04type\x18\x01 \x01(\x0e\x32!.mind_ir.FunctorProto.FunctorType\x12\x0c\n\x04name\x18\x02 \x01(\t\x12\'\n\x06values\x18\x03 \x03(\x0b\x32\x17.mind_ir.AttributeProto\"6\n\x0b\x46unctorType\x12\x16\n\x12SHAPE_CALC_FUNCTOR\x10\x01\x12\x0f\n\x0b\x41NY_FUNCTOR\x10\x02\"\x98\x01\n\x0eValueInfoProto\x12\x0c\n\x04name\x18\x01 \x01(\t\x12$\n\x06tensor\x18\x02 \x03(\x0b\x32\x14.mind_ir.TensorProto\x12\x12\n\ndoc_string\x18\x03 \x01(\t\x12\x12\n\ndenotation\x18\x04 \x01(\t\x12*\n\tattr_info\x18\x05 \x01(\x0b\x32\x17.mind_ir.AttributeProto\"\xf3\x01\n\tNodeProto\x12\r\n\x05input\x18\x01 \x03(\t\x12\x0e\n\x06output\x18\x02 \x03(\t\x12\x0c\n\x04name\x18\x03 \x01(\t\x12\x0f\n\x07op_type\x18\x04 \x01(\t\x12*\n\tattribute\x18\x05 \x03(\x0b\x32\x17.mind_ir.AttributeProto\x12\x12\n\ndoc_string\x18\x06 \x01(\t\x12\x0e\n\x06\x64omain\x18\x07 \x01(\t\x12*\n\tnode_attr\x18\x08 \x03(\x0b\x32\x17.mind_ir.AttributeProto\x12,\n\x0bprimal_attr\x18\t \x03(\x0b\x32\x17.mind_ir.AttributeProto\"\xf8\x03\n\nModelProto\x12\x12\n\nir_version\x18\x01 \x01(\t\x12\x15\n\rproducer_name\x18\x02 \x01(\t\x12\x18\n\x10producer_version\x18\x03 \x01(\t\x12\x0e\n\x06\x64omain\x18\x04 \x01(\t\x12\x15\n\rmodel_version\x18\x05 \x01(\t\x12\x12\n\ndoc_string\x18\x06 \x01(\t\x12\"\n\x05graph\x18\x07 \x01(\x0b\x32\x13.mind_ir.GraphProto\x12&\n\tfunctions\x18\x08 \x03(\x0b\x32\x13.mind_ir.GraphProto\x12\x30\n\x0cpreprocessor\x18\t \x01(\x0b\x32\x1a.mind_ir.PreprocessorProto\x12\x15\n\rlittle_endian\x18\n \x01(\x08\x12(\n\x08parallel\x18\x0b \x01(\x0b\x32\x16.mind_ir.ParallelProto\x12+\n\nprimitives\x18\x0c \x03(\x0b\x32\x17.mind_ir.PrimitiveProto\x12\x17\n\x0fmind_ir_version\x18\r \x01(\x03\x12\x34\n\tuser_info\x18\x0e \x03(\x0b\x32!.mind_ir.ModelProto.UserInfoEntry\x1a/\n\rUserInfoEntry\x12\x0b\n\x03key\x18\x01 \x01(\t\x12\r\n\x05value\x18\x02 \x01(\t:\x02\x38\x01\";\n\x11PreprocessorProto\x12&\n\x02op\x18\x01 \x03(\x0b\x32\x1a.mind_ir.PreprocessOpProto\"\x91\x01\n\x11PreprocessOpProto\x12\x15\n\rinput_columns\x18\x01 \x01(\t\x12\x16\n\x0eoutput_columns\x18\x02 \x01(\t\x12\x17\n\x0fproject_columns\x18\x03 \x01(\t\x12\x0f\n\x07op_type\x18\x04 \x01(\t\x12\x12\n\noperations\x18\x05 \x01(\t\x12\x0f\n\x07offload\x18\x06 \x01(\x08\"\xd2\x02\n\nGraphProto\x12 \n\x04node\x18\x01 \x03(\x0b\x32\x12.mind_ir.NodeProto\x12\x0c\n\x04name\x18\x02 \x01(\t\x12\'\n\tparameter\x18\x03 \x03(\x0b\x32\x14.mind_ir.TensorProto\x12\x12\n\ndoc_string\x18\x04 \x01(\t\x12&\n\x05input\x18\x05 \x03(\x0b\x32\x17.mind_ir.ValueInfoProto\x12\'\n\x06output\x18\x06 \x03(\x0b\x32\x17.mind_ir.ValueInfoProto\x12\x12\n\nbprop_hash\x18\x07 \x01(\t\x12*\n\tattribute\x18\x08 \x03(\x0b\x32\x17.mind_ir.AttributeProto\x12\x16\n\x0e\x62prop_filepath\x18\t \x01(\t\x12.\n\rmap_parameter\x18\n \x03(\x0b\x32\x17.mind_ir.MapTensorProto\"\xda\x07\n\x0bTensorProto\x12\x0c\n\x04\x64ims\x18\x01 \x03(\x03\x12\x11\n\tdata_type\x18\x02 \x01(\x05\x12\x12\n\nfloat_data\x18\x03 \x03(\x02\x12\x12\n\nint32_data\x18\x04 \x03(\x05\x12\x13\n\x0bstring_data\x18\x05 \x03(\x0c\x12\x12\n\nint64_data\x18\x06 \x03(\x03\x12\x0c\n\x04name\x18\x07 \x01(\t\x12\x12\n\ndoc_string\x18\x08 \x01(\t\x12\x10\n\x08raw_data\x18\t \x01(\x0c\x12\x13\n\x0b\x64ouble_data\x18\n \x03(\x01\x12\x13\n\x0buint64_data\x18\x0b \x03(\x04\x12=\n\rexternal_data\x18\x0c \x01(\x0b\x32&.mind_ir.TensorProto.ExternalDataProto\x12\x0f\n\x07ref_key\x18\r \x01(\t\x12\x10\n\x08min_dims\x18\x0e \x03(\x03\x12\x10\n\x08max_dims\x18\x0f \x03(\x03\x12>\n\x10\x63ompression_type\x18\x10 \x01(\x0e\x32$.mind_ir.TensorProto.CompressionType\x12:\n\x0cquant_params\x18\x11 \x03(\x0b\x32$.mind_ir.TensorProto.QuantParamProto\x1a\x45\n\x11\x45xternalDataProto\x12\x10\n\x08location\x18\x01 \x01(\t\x12\x0e\n\x06offset\x18\x02 \x01(\x03\x12\x0e\n\x06length\x18\x03 \x01(\x03\x1aV\n\x0fQuantParamProto\x12\x17\n\x0fquant_algo_name\x18\x01 \x02(\t\x12*\n\tattribute\x18\x02 \x03(\x0b\x32\x17.mind_ir.AttributeProto\"\xf4\x01\n\x08\x44\x61taType\x12\r\n\tUNDEFINED\x10\x00\x12\t\n\x05\x46LOAT\x10\x01\x12\t\n\x05UINT8\x10\x02\x12\x08\n\x04INT8\x10\x03\x12\n\n\x06UINT16\x10\x04\x12\t\n\x05INT16\x10\x05\x12\t\n\x05INT32\x10\x06\x12\t\n\x05INT64\x10\x07\x12\n\n\x06STRING\x10\x08\x12\x08\n\x04\x42OOL\x10\t\x12\x0b\n\x07\x46LOAT16\x10\n\x12\n\n\x06\x44OUBLE\x10\x0b\x12\n\n\x06UINT32\x10\x0c\x12\n\n\x06UINT64\x10\r\x12\r\n\tCOMPLEX64\x10\x0e\x12\x0e\n\nCOMPLEX128\x10\x0f\x12\x0c\n\x08\x42\x46LOAT16\x10\x10\x12\x0b\n\x07\x46LOAT64\x10\x11\x12\x0b\n\x07QINT4X2\x10\x12\"u\n\x0f\x43ompressionType\x12\x12\n\x0eNO_COMPRESSION\x10\x00\x12\x0c\n\x08INDEXING\x10\x01\x12\n\n\x06SPARSE\x10\x02\x12\x07\n\x03\x46SE\x10\x03\x12\x0f\n\x0b\x42IT_PACKING\x10\x04\x12\x0b\n\x07\x46SE_INT\x10\x05\x12\r\n\tFSE_INFER\x10\x06\"\xd1\x01\n\x0eMapTensorProto\x12\x0c\n\x04name\x18\x01 \x02(\t\x12.\n\rdefault_value\x18\x02 \x02(\x0b\x32\x17.mind_ir.AttributeProto\x12(\n\nkey_tensor\x18\x03 \x02(\x0b\x32\x14.mind_ir.TensorProto\x12*\n\x0cvalue_tensor\x18\x04 \x02(\x0b\x32\x14.mind_ir.TensorProto\x12+\n\rstatus_tensor\x18\x05 \x02(\x0b\x32\x14.mind_ir.TensorProto\"5\n\rParallelProto\x12$\n\x06layout\x18\x01 \x03(\x0b\x32\x14.mind_ir.LayoutProto\"\
|
|
23
|
+
serialized_pb=b'\n\rmind_ir.proto\x12\x07mind_ir\"\xd8\t\n\x0e\x41ttributeProto\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\t\n\x01\x66\x18\x02 \x01(\x02\x12\t\n\x01i\x18\x03 \x01(\x03\x12\t\n\x01\x64\x18\x04 \x01(\x01\x12\t\n\x01s\x18\x05 \x01(\x0c\x12\x1f\n\x01t\x18\x06 \x01(\x0b\x32\x14.mind_ir.TensorProto\x12\x1e\n\x01g\x18\x07 \x01(\x0b\x32\x13.mind_ir.GraphProto\x12\x0e\n\x06\x66loats\x18\x08 \x03(\x02\x12\x0f\n\x07\x64oubles\x18\t \x03(\x01\x12\x0c\n\x04ints\x18\n \x03(\x03\x12\x0f\n\x07strings\x18\x0b \x03(\x0c\x12%\n\x07tensors\x18\x0c \x03(\x0b\x32\x14.mind_ir.TensorProto\x12#\n\x06graphs\x18\r \x03(\x0b\x32\x13.mind_ir.GraphProto\x12\x12\n\ndoc_string\x18\x0e \x01(\t\x12\x15\n\rref_attr_name\x18\x0f \x01(\t\x12\x33\n\x04type\x18\x10 \x01(\x0e\x32%.mind_ir.AttributeProto.AttributeType\x12\'\n\x06values\x18\x11 \x03(\x0b\x32\x17.mind_ir.AttributeProto\x12\x36\n\x08seq_info\x18\x12 \x01(\x0b\x32$.mind_ir.AttributeProto.SeqInfoProto\x12&\n\x07\x66unctor\x18\x13 \x01(\x0b\x32\x15.mind_ir.FunctorProto\x12\x35\n\x0cgraph_holder\x18\x14 \x01(\x0b\x32\x1f.mind_ir.ScalarGraphHolderProto\x1aT\n\x0cSeqInfoProto\x12\x12\n\nis_dyn_len\x18\x01 \x01(\x08\x12\x30\n\x0ftuple_elem_item\x18\x02 \x01(\x0b\x32\x17.mind_ir.AttributeProto\"\xc8\x04\n\rAttributeType\x12\r\n\tUNDEFINED\x10\x00\x12\t\n\x05\x46LOAT\x10\x01\x12\t\n\x05UINT8\x10\x02\x12\x08\n\x04INT8\x10\x03\x12\n\n\x06UINT16\x10\x04\x12\t\n\x05INT16\x10\x05\x12\t\n\x05INT32\x10\x06\x12\t\n\x05INT64\x10\x07\x12\n\n\x06STRING\x10\x08\x12\x08\n\x04\x42OOL\x10\t\x12\x0b\n\x07\x46LOAT16\x10\n\x12\n\n\x06\x44OUBLE\x10\x0b\x12\n\n\x06UINT32\x10\x0c\x12\n\n\x06UINT64\x10\r\x12\r\n\tCOMPLEX64\x10\x0e\x12\x0e\n\nCOMPLEX128\x10\x0f\x12\x0c\n\x08\x42\x46LOAT16\x10\x10\x12\n\n\x06TENSOR\x10\x11\x12\t\n\x05GRAPH\x10\x12\x12\x0b\n\x07TENSORS\x10\x13\x12\t\n\x05TUPLE\x10\x14\x12\x08\n\x04LIST\x10\x15\x12\x08\n\x04\x44ICT\x10\x16\x12\n\n\x06UMONAD\x10\x17\x12\x0b\n\x07IOMONAD\x10\x18\x12\x08\n\x04NONE\x10\x19\x12\x14\n\x10PRIMITIVECLOSURE\x10\x1a\x12\x14\n\x10\x46UNCGRAPHCLOSURE\x10\x1b\x12\x12\n\x0ePARTIALCLOSURE\x10\x1c\x12\x14\n\x10UNIONFUNCCLOSURE\x10\x1d\x12\x0e\n\nCSR_TENSOR\x10\x1e\x12\x0e\n\nCOO_TENSOR\x10\x1f\x12\x0e\n\nROW_TENSOR\x10 \x12\x0e\n\nCLASS_TYPE\x10!\x12\x0e\n\nNAME_SPACE\x10\"\x12\n\n\x06SYMBOL\x10#\x12\r\n\tTYPE_NULL\x10$\x12\x0e\n\nMAP_TENSOR\x10%\x12\x0b\n\x07\x46UNCTOR\x10&\x12\n\n\x06SCALAR\x10\'\x12\x17\n\x13SCALAR_GRAPH_HOLDER\x10(\"\xae\x01\n\x0c\x46unctorProto\x12/\n\x04type\x18\x01 \x01(\x0e\x32!.mind_ir.FunctorProto.FunctorType\x12\x0c\n\x04name\x18\x02 \x01(\t\x12\'\n\x06values\x18\x03 \x03(\x0b\x32\x17.mind_ir.AttributeProto\"6\n\x0b\x46unctorType\x12\x16\n\x12SHAPE_CALC_FUNCTOR\x10\x01\x12\x0f\n\x0b\x41NY_FUNCTOR\x10\x02\"\x98\x01\n\x0eValueInfoProto\x12\x0c\n\x04name\x18\x01 \x01(\t\x12$\n\x06tensor\x18\x02 \x03(\x0b\x32\x14.mind_ir.TensorProto\x12\x12\n\ndoc_string\x18\x03 \x01(\t\x12\x12\n\ndenotation\x18\x04 \x01(\t\x12*\n\tattr_info\x18\x05 \x01(\x0b\x32\x17.mind_ir.AttributeProto\"\xf3\x01\n\tNodeProto\x12\r\n\x05input\x18\x01 \x03(\t\x12\x0e\n\x06output\x18\x02 \x03(\t\x12\x0c\n\x04name\x18\x03 \x01(\t\x12\x0f\n\x07op_type\x18\x04 \x01(\t\x12*\n\tattribute\x18\x05 \x03(\x0b\x32\x17.mind_ir.AttributeProto\x12\x12\n\ndoc_string\x18\x06 \x01(\t\x12\x0e\n\x06\x64omain\x18\x07 \x01(\t\x12*\n\tnode_attr\x18\x08 \x03(\x0b\x32\x17.mind_ir.AttributeProto\x12,\n\x0bprimal_attr\x18\t \x03(\x0b\x32\x17.mind_ir.AttributeProto\"\xf8\x03\n\nModelProto\x12\x12\n\nir_version\x18\x01 \x01(\t\x12\x15\n\rproducer_name\x18\x02 \x01(\t\x12\x18\n\x10producer_version\x18\x03 \x01(\t\x12\x0e\n\x06\x64omain\x18\x04 \x01(\t\x12\x15\n\rmodel_version\x18\x05 \x01(\t\x12\x12\n\ndoc_string\x18\x06 \x01(\t\x12\"\n\x05graph\x18\x07 \x01(\x0b\x32\x13.mind_ir.GraphProto\x12&\n\tfunctions\x18\x08 \x03(\x0b\x32\x13.mind_ir.GraphProto\x12\x30\n\x0cpreprocessor\x18\t \x01(\x0b\x32\x1a.mind_ir.PreprocessorProto\x12\x15\n\rlittle_endian\x18\n \x01(\x08\x12(\n\x08parallel\x18\x0b \x01(\x0b\x32\x16.mind_ir.ParallelProto\x12+\n\nprimitives\x18\x0c \x03(\x0b\x32\x17.mind_ir.PrimitiveProto\x12\x17\n\x0fmind_ir_version\x18\r \x01(\x03\x12\x34\n\tuser_info\x18\x0e \x03(\x0b\x32!.mind_ir.ModelProto.UserInfoEntry\x1a/\n\rUserInfoEntry\x12\x0b\n\x03key\x18\x01 \x01(\t\x12\r\n\x05value\x18\x02 \x01(\t:\x02\x38\x01\";\n\x11PreprocessorProto\x12&\n\x02op\x18\x01 \x03(\x0b\x32\x1a.mind_ir.PreprocessOpProto\"\x91\x01\n\x11PreprocessOpProto\x12\x15\n\rinput_columns\x18\x01 \x01(\t\x12\x16\n\x0eoutput_columns\x18\x02 \x01(\t\x12\x17\n\x0fproject_columns\x18\x03 \x01(\t\x12\x0f\n\x07op_type\x18\x04 \x01(\t\x12\x12\n\noperations\x18\x05 \x01(\t\x12\x0f\n\x07offload\x18\x06 \x01(\x08\"\xd2\x02\n\nGraphProto\x12 \n\x04node\x18\x01 \x03(\x0b\x32\x12.mind_ir.NodeProto\x12\x0c\n\x04name\x18\x02 \x01(\t\x12\'\n\tparameter\x18\x03 \x03(\x0b\x32\x14.mind_ir.TensorProto\x12\x12\n\ndoc_string\x18\x04 \x01(\t\x12&\n\x05input\x18\x05 \x03(\x0b\x32\x17.mind_ir.ValueInfoProto\x12\'\n\x06output\x18\x06 \x03(\x0b\x32\x17.mind_ir.ValueInfoProto\x12\x12\n\nbprop_hash\x18\x07 \x01(\t\x12*\n\tattribute\x18\x08 \x03(\x0b\x32\x17.mind_ir.AttributeProto\x12\x16\n\x0e\x62prop_filepath\x18\t \x01(\t\x12.\n\rmap_parameter\x18\n \x03(\x0b\x32\x17.mind_ir.MapTensorProto\"\xda\x07\n\x0bTensorProto\x12\x0c\n\x04\x64ims\x18\x01 \x03(\x03\x12\x11\n\tdata_type\x18\x02 \x01(\x05\x12\x12\n\nfloat_data\x18\x03 \x03(\x02\x12\x12\n\nint32_data\x18\x04 \x03(\x05\x12\x13\n\x0bstring_data\x18\x05 \x03(\x0c\x12\x12\n\nint64_data\x18\x06 \x03(\x03\x12\x0c\n\x04name\x18\x07 \x01(\t\x12\x12\n\ndoc_string\x18\x08 \x01(\t\x12\x10\n\x08raw_data\x18\t \x01(\x0c\x12\x13\n\x0b\x64ouble_data\x18\n \x03(\x01\x12\x13\n\x0buint64_data\x18\x0b \x03(\x04\x12=\n\rexternal_data\x18\x0c \x01(\x0b\x32&.mind_ir.TensorProto.ExternalDataProto\x12\x0f\n\x07ref_key\x18\r \x01(\t\x12\x10\n\x08min_dims\x18\x0e \x03(\x03\x12\x10\n\x08max_dims\x18\x0f \x03(\x03\x12>\n\x10\x63ompression_type\x18\x10 \x01(\x0e\x32$.mind_ir.TensorProto.CompressionType\x12:\n\x0cquant_params\x18\x11 \x03(\x0b\x32$.mind_ir.TensorProto.QuantParamProto\x1a\x45\n\x11\x45xternalDataProto\x12\x10\n\x08location\x18\x01 \x01(\t\x12\x0e\n\x06offset\x18\x02 \x01(\x03\x12\x0e\n\x06length\x18\x03 \x01(\x03\x1aV\n\x0fQuantParamProto\x12\x17\n\x0fquant_algo_name\x18\x01 \x02(\t\x12*\n\tattribute\x18\x02 \x03(\x0b\x32\x17.mind_ir.AttributeProto\"\xf4\x01\n\x08\x44\x61taType\x12\r\n\tUNDEFINED\x10\x00\x12\t\n\x05\x46LOAT\x10\x01\x12\t\n\x05UINT8\x10\x02\x12\x08\n\x04INT8\x10\x03\x12\n\n\x06UINT16\x10\x04\x12\t\n\x05INT16\x10\x05\x12\t\n\x05INT32\x10\x06\x12\t\n\x05INT64\x10\x07\x12\n\n\x06STRING\x10\x08\x12\x08\n\x04\x42OOL\x10\t\x12\x0b\n\x07\x46LOAT16\x10\n\x12\n\n\x06\x44OUBLE\x10\x0b\x12\n\n\x06UINT32\x10\x0c\x12\n\n\x06UINT64\x10\r\x12\r\n\tCOMPLEX64\x10\x0e\x12\x0e\n\nCOMPLEX128\x10\x0f\x12\x0c\n\x08\x42\x46LOAT16\x10\x10\x12\x0b\n\x07\x46LOAT64\x10\x11\x12\x0b\n\x07QINT4X2\x10\x12\"u\n\x0f\x43ompressionType\x12\x12\n\x0eNO_COMPRESSION\x10\x00\x12\x0c\n\x08INDEXING\x10\x01\x12\n\n\x06SPARSE\x10\x02\x12\x07\n\x03\x46SE\x10\x03\x12\x0f\n\x0b\x42IT_PACKING\x10\x04\x12\x0b\n\x07\x46SE_INT\x10\x05\x12\r\n\tFSE_INFER\x10\x06\"\xd1\x01\n\x0eMapTensorProto\x12\x0c\n\x04name\x18\x01 \x02(\t\x12.\n\rdefault_value\x18\x02 \x02(\x0b\x32\x17.mind_ir.AttributeProto\x12(\n\nkey_tensor\x18\x03 \x02(\x0b\x32\x14.mind_ir.TensorProto\x12*\n\x0cvalue_tensor\x18\x04 \x02(\x0b\x32\x14.mind_ir.TensorProto\x12+\n\rstatus_tensor\x18\x05 \x02(\x0b\x32\x14.mind_ir.TensorProto\"5\n\rParallelProto\x12$\n\x06layout\x18\x01 \x03(\x0b\x32\x14.mind_ir.LayoutProto\"\xa0\x02\n\x0bLayoutProto\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1e\n\x16\x64\x65vice_arrangement_int\x18\x02 \x03(\x03\x12\x16\n\x0etensor_map_int\x18\x03 \x03(\x03\x12\x17\n\x0fslice_shape_int\x18\x04 \x03(\x03\x12\x12\n\nfield_size\x18\x05 \x01(\x03\x12\x15\n\runiform_split\x18\x06 \x01(\x08\x12\x17\n\x0fopt_shard_group\x18\x07 \x01(\t\x12\x17\n\x0fpipeline_shared\x18\x08 \x01(\x08\x12\x0f\n\x07is_send\x18\t \x01(\x08\x12\x11\n\tpeer_rank\x18\n \x01(\x03\x12\x0e\n\x06sr_tag\x18\x0b \x01(\x03\x12!\n\x19opt_shard_slice_shape_int\x18\x0c \x03(\x03\"\xda\x01\n\x0ePrimitiveProto\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x0f\n\x07op_type\x18\x02 \x01(\t\x12*\n\tattribute\x18\x03 \x03(\x0b\x32\x17.mind_ir.AttributeProto\x12\x15\n\rinstance_name\x18\x04 \x01(\t\x12\x33\n\tprim_type\x18\x05 \x01(\x0e\x32 .mind_ir.PrimitiveProto.PrimType\"1\n\x08PrimType\x12\r\n\tPRIMITIVE\x10\x01\x12\x16\n\x12PRIMITIVE_FUNCTION\x10\x02\"J\n\x0fScalarNodeProto\x12\x16\n\x0escalar_op_type\x18\x01 \x01(\x03\x12\x10\n\x08in_index\x18\x02 \x03(\x03\x12\r\n\x05value\x18\x03 \x03(\x03\"b\n\x16ScalarGraphHolderProto\x12-\n\x0bscalar_node\x18\x01 \x03(\x0b\x32\x18.mind_ir.ScalarNodeProto\x12\x19\n\x11input_shape_index\x18\x02 \x03(\x04*{\n\x07Version\x12\x14\n\x10IR_VERSION_START\x10\x00\x12\x0e\n\nIR_VERSION\x10\x01\x12!\n\x1dIR_VERSION_WITH_PRIM_FUNCTION\x10\x02\x12\'\n#IR_VERSION_WITH_SCALAR_GRAPH_HOLDER\x10\x03'
|
|
24
24
|
)
|
|
25
25
|
|
|
26
26
|
_VERSION = _descriptor.EnumDescriptor(
|
|
@@ -53,8 +53,8 @@ _VERSION = _descriptor.EnumDescriptor(
|
|
|
53
53
|
],
|
|
54
54
|
containing_type=None,
|
|
55
55
|
serialized_options=None,
|
|
56
|
-
serialized_start=
|
|
57
|
-
serialized_end=
|
|
56
|
+
serialized_start=4848,
|
|
57
|
+
serialized_end=4971,
|
|
58
58
|
)
|
|
59
59
|
_sym_db.RegisterEnumDescriptor(_VERSION)
|
|
60
60
|
|
|
@@ -490,8 +490,8 @@ _PRIMITIVEPROTO_PRIMTYPE = _descriptor.EnumDescriptor(
|
|
|
490
490
|
],
|
|
491
491
|
containing_type=None,
|
|
492
492
|
serialized_options=None,
|
|
493
|
-
serialized_start=
|
|
494
|
-
serialized_end=
|
|
493
|
+
serialized_start=4621,
|
|
494
|
+
serialized_end=4670,
|
|
495
495
|
)
|
|
496
496
|
_sym_db.RegisterEnumDescriptor(_PRIMITIVEPROTO_PRIMTYPE)
|
|
497
497
|
|
|
@@ -1656,6 +1656,13 @@ _LAYOUTPROTO = _descriptor.Descriptor(
|
|
|
1656
1656
|
message_type=None, enum_type=None, containing_type=None,
|
|
1657
1657
|
is_extension=False, extension_scope=None,
|
|
1658
1658
|
serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key),
|
|
1659
|
+
_descriptor.FieldDescriptor(
|
|
1660
|
+
name='opt_shard_slice_shape_int', full_name='mind_ir.LayoutProto.opt_shard_slice_shape_int', index=11,
|
|
1661
|
+
number=12, type=3, cpp_type=2, label=3,
|
|
1662
|
+
has_default_value=False, default_value=[],
|
|
1663
|
+
message_type=None, enum_type=None, containing_type=None,
|
|
1664
|
+
is_extension=False, extension_scope=None,
|
|
1665
|
+
serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key),
|
|
1659
1666
|
],
|
|
1660
1667
|
extensions=[
|
|
1661
1668
|
],
|
|
@@ -1669,7 +1676,7 @@ _LAYOUTPROTO = _descriptor.Descriptor(
|
|
|
1669
1676
|
oneofs=[
|
|
1670
1677
|
],
|
|
1671
1678
|
serialized_start=4161,
|
|
1672
|
-
serialized_end=
|
|
1679
|
+
serialized_end=4449,
|
|
1673
1680
|
)
|
|
1674
1681
|
|
|
1675
1682
|
|
|
@@ -1729,8 +1736,8 @@ _PRIMITIVEPROTO = _descriptor.Descriptor(
|
|
|
1729
1736
|
extension_ranges=[],
|
|
1730
1737
|
oneofs=[
|
|
1731
1738
|
],
|
|
1732
|
-
serialized_start=
|
|
1733
|
-
serialized_end=
|
|
1739
|
+
serialized_start=4452,
|
|
1740
|
+
serialized_end=4670,
|
|
1734
1741
|
)
|
|
1735
1742
|
|
|
1736
1743
|
|
|
@@ -1775,8 +1782,8 @@ _SCALARNODEPROTO = _descriptor.Descriptor(
|
|
|
1775
1782
|
extension_ranges=[],
|
|
1776
1783
|
oneofs=[
|
|
1777
1784
|
],
|
|
1778
|
-
serialized_start=
|
|
1779
|
-
serialized_end=
|
|
1785
|
+
serialized_start=4672,
|
|
1786
|
+
serialized_end=4746,
|
|
1780
1787
|
)
|
|
1781
1788
|
|
|
1782
1789
|
|
|
@@ -1814,8 +1821,8 @@ _SCALARGRAPHHOLDERPROTO = _descriptor.Descriptor(
|
|
|
1814
1821
|
extension_ranges=[],
|
|
1815
1822
|
oneofs=[
|
|
1816
1823
|
],
|
|
1817
|
-
serialized_start=
|
|
1818
|
-
serialized_end=
|
|
1824
|
+
serialized_start=4748,
|
|
1825
|
+
serialized_end=4846,
|
|
1819
1826
|
)
|
|
1820
1827
|
|
|
1821
1828
|
_ATTRIBUTEPROTO_SEQINFOPROTO.fields_by_name['tuple_elem_item'].message_type = _ATTRIBUTEPROTO
|