mindspore 2.5.0__cp310-cp310-win_amd64.whl → 2.6.0rc1__cp310-cp310-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of mindspore might be problematic. Click here for more details.

Files changed (491) hide show
  1. mindspore/.commit_id +1 -1
  2. mindspore/Microsoft.VisualStudio.Telemetry.dll +0 -0
  3. mindspore/Newtonsoft.Json.dll +0 -0
  4. mindspore/__init__.py +6 -4
  5. mindspore/_c_dataengine.cp310-win_amd64.pyd +0 -0
  6. mindspore/_c_expression.cp310-win_amd64.pyd +0 -0
  7. mindspore/_c_mindrecord.cp310-win_amd64.pyd +0 -0
  8. mindspore/_check_jit_forbidden_api.py +3 -0
  9. mindspore/_checkparam.py +3 -33
  10. mindspore/_deprecated/__init__.py +17 -0
  11. mindspore/_deprecated/jit.py +198 -0
  12. mindspore/_extends/builtin_operations.py +1 -1
  13. mindspore/_extends/parse/__init__.py +6 -7
  14. mindspore/_extends/parse/compile_config.py +19 -0
  15. mindspore/_extends/parse/deprecated/deprecated_tensor_method.py +22 -3
  16. mindspore/_extends/parse/jit_fallback_modules/__init__.py +0 -0
  17. mindspore/_extends/parse/jit_fallback_modules/check_utils.py +123 -0
  18. mindspore/_extends/parse/jit_fallback_modules/third_party_modules.py +50 -0
  19. mindspore/_extends/parse/parser.py +24 -193
  20. mindspore/_extends/parse/resources.py +1 -5
  21. mindspore/_extends/parse/standard_method.py +97 -74
  22. mindspore/_extends/pijit/__init__.py +2 -2
  23. mindspore/_extends/pijit/pijit_func_white_list.py +16 -11
  24. mindspore/_extends/pijit/tensor_func_list.py +27 -0
  25. mindspore/_extends/utils.py +1 -1
  26. mindspore/amp.py +4 -4
  27. mindspore/atlprov.dll +0 -0
  28. mindspore/avcodec-59.dll +0 -0
  29. mindspore/avdevice-59.dll +0 -0
  30. mindspore/avfilter-8.dll +0 -0
  31. mindspore/avformat-59.dll +0 -0
  32. mindspore/avutil-57.dll +0 -0
  33. mindspore/boost/__init__.py +2 -2
  34. mindspore/boost/base.py +3 -7
  35. mindspore/boost/boost_cell_wrapper.py +2 -2
  36. mindspore/c1.dll +0 -0
  37. mindspore/c1xx.dll +0 -0
  38. mindspore/c2.dll +0 -0
  39. mindspore/common/__init__.py +4 -3
  40. mindspore/common/_grad_function.py +56 -0
  41. mindspore/common/_pijit_context.py +14 -5
  42. mindspore/common/_register_for_tensor.py +1 -1
  43. mindspore/common/_stub_tensor.py +5 -10
  44. mindspore/common/_tensor_cpp_method.py +1 -1
  45. mindspore/common/_tensor_docs.py +1915 -3287
  46. mindspore/common/api.py +341 -354
  47. mindspore/common/auto_dynamic_shape.py +41 -44
  48. mindspore/common/dtype.py +5 -2
  49. mindspore/common/dump.py +7 -5
  50. mindspore/common/file_system.py +3 -0
  51. mindspore/common/hook_handle.py +5 -3
  52. mindspore/common/initializer.py +10 -6
  53. mindspore/common/jit_begin_end.py +94 -0
  54. mindspore/common/jit_config.py +6 -1
  55. mindspore/common/jit_context.py +76 -0
  56. mindspore/common/jit_trace.py +378 -0
  57. mindspore/common/lazy_inline.py +2 -2
  58. mindspore/common/mutable.py +5 -4
  59. mindspore/common/parameter.py +106 -39
  60. mindspore/common/seed.py +2 -2
  61. mindspore/common/sparse_tensor.py +23 -17
  62. mindspore/common/tensor.py +297 -714
  63. mindspore/communication/__init__.py +7 -5
  64. mindspore/communication/_comm_helper.py +47 -2
  65. mindspore/communication/comm_func.py +70 -53
  66. mindspore/communication/management.py +83 -17
  67. mindspore/context.py +214 -560
  68. mindspore/dataset/__init__.py +44 -20
  69. mindspore/dataset/audio/__init__.py +2 -8
  70. mindspore/dataset/audio/transforms.py +3 -17
  71. mindspore/dataset/core/config.py +3 -3
  72. mindspore/dataset/engine/cache_client.py +1 -1
  73. mindspore/dataset/engine/datasets.py +102 -120
  74. mindspore/dataset/engine/datasets_audio.py +22 -22
  75. mindspore/dataset/engine/datasets_standard_format.py +43 -24
  76. mindspore/dataset/engine/datasets_text.py +78 -85
  77. mindspore/dataset/engine/datasets_user_defined.py +108 -76
  78. mindspore/dataset/engine/datasets_vision.py +111 -108
  79. mindspore/dataset/engine/iterators.py +5 -3
  80. mindspore/dataset/engine/obs/obs_mindrecord_dataset.py +1 -1
  81. mindspore/dataset/engine/samplers.py +279 -57
  82. mindspore/dataset/engine/serializer_deserializer.py +2 -1
  83. mindspore/dataset/engine/validators.py +10 -0
  84. mindspore/dataset/text/__init__.py +7 -6
  85. mindspore/dataset/text/transforms.py +6 -5
  86. mindspore/dataset/text/utils.py +3 -3
  87. mindspore/dataset/transforms/__init__.py +0 -9
  88. mindspore/dataset/transforms/transforms.py +3 -3
  89. mindspore/dataset/utils/browse_dataset.py +1 -1
  90. mindspore/dataset/vision/__init__.py +2 -9
  91. mindspore/dataset/vision/transforms.py +202 -158
  92. mindspore/dataset/vision/utils.py +7 -5
  93. mindspore/device_context/ascend/op_debug.py +60 -1
  94. mindspore/device_context/ascend/op_tuning.py +0 -4
  95. mindspore/device_manager.py +39 -3
  96. mindspore/dnnl.dll +0 -0
  97. mindspore/dpcmi.dll +0 -0
  98. mindspore/experimental/es/embedding_service.py +35 -27
  99. mindspore/experimental/map_parameter.py +4 -4
  100. mindspore/experimental/optim/adadelta.py +22 -26
  101. mindspore/experimental/optim/adagrad.py +4 -4
  102. mindspore/experimental/optim/adam.py +4 -0
  103. mindspore/experimental/optim/adamax.py +4 -4
  104. mindspore/experimental/optim/adamw.py +4 -0
  105. mindspore/experimental/optim/asgd.py +1 -1
  106. mindspore/experimental/optim/lr_scheduler.py +40 -22
  107. mindspore/experimental/optim/radam.py +5 -5
  108. mindspore/experimental/optim/rprop.py +1 -1
  109. mindspore/experimental/optim/sgd.py +1 -1
  110. mindspore/hal/contiguous_tensors_handle.py +6 -10
  111. mindspore/hal/device.py +55 -81
  112. mindspore/hal/event.py +38 -55
  113. mindspore/hal/memory.py +93 -144
  114. mindspore/hal/stream.py +81 -125
  115. mindspore/include/dataset/constants.h +7 -4
  116. mindspore/include/dataset/execute.h +2 -2
  117. mindspore/jpeg62.dll +0 -0
  118. mindspore/log.py +40 -2
  119. mindspore/mindrecord/__init__.py +20 -7
  120. mindspore/mindspore_backend_common.dll +0 -0
  121. mindspore/mindspore_backend_manager.dll +0 -0
  122. mindspore/mindspore_common.dll +0 -0
  123. mindspore/mindspore_core.dll +0 -0
  124. mindspore/mindspore_dump.dll +0 -0
  125. mindspore/mindspore_frontend.dll +0 -0
  126. mindspore/mindspore_glog.dll +0 -0
  127. mindspore/mindspore_memory_pool.dll +0 -0
  128. mindspore/mindspore_ms_backend.dll +0 -0
  129. mindspore/mindspore_ops.dll +0 -0
  130. mindspore/{mindspore_backend.dll → mindspore_ops_host.dll} +0 -0
  131. mindspore/mindspore_ops_kernel_common.dll +0 -0
  132. mindspore/mindspore_profiler.dll +0 -0
  133. mindspore/mindspore_pyboost.dll +0 -0
  134. mindspore/mindspore_pynative.dll +0 -0
  135. mindspore/mindspore_res_manager.dll +0 -0
  136. mindspore/mindspore_runtime_pipeline.dll +0 -0
  137. mindspore/mint/__init__.py +131 -700
  138. mindspore/mint/distributed/__init__.py +5 -1
  139. mindspore/mint/distributed/distributed.py +194 -109
  140. mindspore/mint/linalg/__init__.py +2 -0
  141. mindspore/mint/nn/__init__.py +280 -18
  142. mindspore/mint/nn/functional.py +282 -64
  143. mindspore/mint/nn/layer/__init__.py +4 -0
  144. mindspore/mint/nn/layer/_functions.py +7 -3
  145. mindspore/mint/nn/layer/activation.py +120 -13
  146. mindspore/mint/nn/layer/conv.py +218 -24
  147. mindspore/mint/nn/layer/normalization.py +15 -16
  148. mindspore/mint/nn/layer/padding.py +1 -1
  149. mindspore/mint/nn/layer/pooling.py +66 -1
  150. mindspore/mint/optim/__init__.py +2 -1
  151. mindspore/mint/optim/sgd.py +171 -0
  152. mindspore/msobj140.dll +0 -0
  153. mindspore/mspdb140.dll +0 -0
  154. mindspore/mspdbcore.dll +0 -0
  155. mindspore/mspdbst.dll +0 -0
  156. mindspore/mspft140.dll +0 -0
  157. mindspore/msvcdis140.dll +0 -0
  158. mindspore/msvcp140_1.dll +0 -0
  159. mindspore/msvcp140_2.dll +0 -0
  160. mindspore/msvcp140_atomic_wait.dll +0 -0
  161. mindspore/msvcp140_codecvt_ids.dll +0 -0
  162. mindspore/nn/__init__.py +4 -1
  163. mindspore/nn/cell.py +1250 -176
  164. mindspore/nn/layer/activation.py +23 -21
  165. mindspore/nn/layer/basic.py +22 -16
  166. mindspore/nn/layer/container.py +1 -1
  167. mindspore/nn/layer/conv.py +22 -17
  168. mindspore/nn/layer/embedding.py +9 -8
  169. mindspore/nn/layer/normalization.py +48 -42
  170. mindspore/nn/layer/pooling.py +75 -31
  171. mindspore/nn/layer/transformer.py +11 -10
  172. mindspore/nn/learning_rate_schedule.py +4 -2
  173. mindspore/nn/loss/loss.py +27 -19
  174. mindspore/nn/optim/ada_grad.py +6 -5
  175. mindspore/nn/optim/adadelta.py +9 -7
  176. mindspore/nn/optim/adafactor.py +1 -1
  177. mindspore/nn/optim/adam.py +16 -12
  178. mindspore/nn/optim/adamax.py +8 -7
  179. mindspore/nn/optim/adasum.py +5 -5
  180. mindspore/nn/optim/asgd.py +1 -1
  181. mindspore/nn/optim/ftrl.py +11 -9
  182. mindspore/nn/optim/lamb.py +1 -1
  183. mindspore/nn/optim/lazyadam.py +12 -10
  184. mindspore/nn/optim/momentum.py +7 -6
  185. mindspore/nn/optim/optimizer.py +2 -2
  186. mindspore/nn/optim/proximal_ada_grad.py +12 -10
  187. mindspore/nn/optim/rmsprop.py +13 -12
  188. mindspore/nn/optim/rprop.py +9 -7
  189. mindspore/nn/optim/sgd.py +9 -6
  190. mindspore/nn/optim/tft_wrapper.py +5 -2
  191. mindspore/nn/probability/bijector/bijector.py +17 -11
  192. mindspore/nn/probability/bijector/gumbel_cdf.py +5 -5
  193. mindspore/nn/probability/bijector/invert.py +2 -2
  194. mindspore/nn/probability/bijector/scalar_affine.py +3 -3
  195. mindspore/nn/probability/bijector/softplus.py +3 -2
  196. mindspore/nn/probability/distribution/beta.py +3 -3
  197. mindspore/nn/probability/distribution/categorical.py +1 -1
  198. mindspore/nn/probability/distribution/cauchy.py +4 -2
  199. mindspore/nn/probability/distribution/exponential.py +6 -7
  200. mindspore/nn/probability/distribution/gamma.py +2 -2
  201. mindspore/nn/probability/distribution/gumbel.py +2 -2
  202. mindspore/nn/probability/distribution/half_normal.py +5 -3
  203. mindspore/nn/probability/distribution/logistic.py +5 -3
  204. mindspore/nn/probability/distribution/poisson.py +1 -1
  205. mindspore/nn/probability/distribution/uniform.py +5 -3
  206. mindspore/nn/reinforcement/_tensors_queue.py +1 -1
  207. mindspore/nn/reinforcement/tensor_array.py +1 -1
  208. mindspore/nn/wrap/__init__.py +6 -6
  209. mindspore/nn/wrap/cell_wrapper.py +178 -117
  210. mindspore/nn/wrap/grad_reducer.py +45 -36
  211. mindspore/nn/wrap/loss_scale.py +3 -3
  212. mindspore/numpy/array_creations.py +3 -3
  213. mindspore/numpy/array_ops.py +1 -1
  214. mindspore/numpy/math_ops.py +4 -4
  215. mindspore/numpy/utils.py +1 -2
  216. mindspore/numpy/utils_const.py +1 -2
  217. mindspore/opencv_core452.dll +0 -0
  218. mindspore/opencv_imgcodecs452.dll +0 -0
  219. mindspore/opencv_imgproc452.dll +0 -0
  220. mindspore/ops/__init__.py +3 -2
  221. mindspore/ops/_grad_experimental/grad_comm_ops.py +18 -3
  222. mindspore/ops/_grad_experimental/grad_debug_ops.py +8 -1
  223. mindspore/ops/_grad_experimental/taylor_rule.py +29 -0
  224. mindspore/ops/_register_for_op.py +0 -11
  225. mindspore/{ops_generate → ops/_utils}/arg_dtype_cast.py +123 -4
  226. mindspore/{ops_generate → ops/_utils}/arg_handler.py +3 -4
  227. mindspore/ops/_vmap/vmap_array_ops.py +7 -6
  228. mindspore/ops/_vmap/vmap_grad_nn_ops.py +2 -1
  229. mindspore/ops/_vmap/vmap_math_ops.py +4 -7
  230. mindspore/ops/_vmap/vmap_nn_ops.py +9 -8
  231. mindspore/ops/auto_generate/__init__.py +4 -3
  232. mindspore/ops/auto_generate/cpp_create_prim_instance_helper.py +102 -49
  233. mindspore/ops/auto_generate/gen_extend_func.py +281 -135
  234. mindspore/ops/auto_generate/gen_ops_def.py +2574 -2326
  235. mindspore/ops/auto_generate/gen_ops_prim.py +8566 -2755
  236. mindspore/ops/auto_generate/pyboost_inner_prim.py +106 -76
  237. mindspore/ops/composite/__init__.py +2 -1
  238. mindspore/ops/composite/base.py +19 -24
  239. mindspore/ops/composite/math_ops.py +6 -16
  240. mindspore/ops/composite/multitype_ops/__init__.py +5 -2
  241. mindspore/ops/composite/multitype_ops/_compile_utils.py +2 -3
  242. mindspore/ops/composite/multitype_ops/_constexpr_utils.py +1 -2
  243. mindspore/ops/composite/multitype_ops/add_impl.py +2 -1
  244. mindspore/ops/composite/multitype_ops/bitwise_and_impl.py +2 -1
  245. mindspore/ops/composite/multitype_ops/bitwise_or_impl.py +2 -1
  246. mindspore/ops/composite/multitype_ops/bitwise_xor_impl.py +2 -1
  247. mindspore/ops/composite/multitype_ops/div_impl.py +6 -4
  248. mindspore/ops/composite/multitype_ops/equal_impl.py +4 -3
  249. mindspore/ops/composite/multitype_ops/floordiv_impl.py +2 -1
  250. mindspore/ops/composite/multitype_ops/getitem_impl.py +3 -2
  251. mindspore/ops/composite/multitype_ops/greater_equal_impl.py +4 -3
  252. mindspore/ops/composite/multitype_ops/greater_impl.py +4 -3
  253. mindspore/ops/composite/multitype_ops/in_impl.py +2 -1
  254. mindspore/ops/composite/multitype_ops/invert_impl.py +50 -0
  255. mindspore/ops/composite/multitype_ops/left_shift_impl.py +2 -1
  256. mindspore/ops/composite/multitype_ops/less_equal_impl.py +4 -3
  257. mindspore/ops/composite/multitype_ops/less_impl.py +4 -3
  258. mindspore/ops/composite/multitype_ops/logic_not_impl.py +3 -2
  259. mindspore/ops/composite/multitype_ops/logical_and_impl.py +2 -1
  260. mindspore/ops/composite/multitype_ops/logical_or_impl.py +2 -1
  261. mindspore/ops/composite/multitype_ops/mod_impl.py +2 -1
  262. mindspore/ops/composite/multitype_ops/mul_impl.py +3 -2
  263. mindspore/ops/composite/multitype_ops/negative_impl.py +2 -1
  264. mindspore/ops/composite/multitype_ops/not_equal_impl.py +2 -1
  265. mindspore/ops/composite/multitype_ops/not_in_impl.py +2 -1
  266. mindspore/ops/composite/multitype_ops/ones_like_impl.py +18 -0
  267. mindspore/ops/composite/multitype_ops/pow_impl.py +2 -1
  268. mindspore/ops/composite/multitype_ops/right_shift_impl.py +2 -1
  269. mindspore/ops/composite/multitype_ops/setitem_impl.py +2 -1
  270. mindspore/ops/composite/multitype_ops/sub_impl.py +2 -1
  271. mindspore/ops/function/__init__.py +28 -2
  272. mindspore/ops/function/_add_attr_func.py +58 -0
  273. mindspore/ops/function/array_func.py +1629 -2345
  274. mindspore/ops/function/clip_func.py +38 -45
  275. mindspore/ops/function/debug_func.py +36 -44
  276. mindspore/ops/function/grad/__init__.py +1 -0
  277. mindspore/ops/function/grad/grad_func.py +104 -71
  278. mindspore/ops/function/image_func.py +1 -1
  279. mindspore/ops/function/linalg_func.py +46 -78
  280. mindspore/ops/function/math_func.py +3035 -3705
  281. mindspore/ops/function/nn_func.py +676 -241
  282. mindspore/ops/function/other_func.py +159 -1
  283. mindspore/ops/function/parameter_func.py +17 -30
  284. mindspore/ops/function/random_func.py +204 -361
  285. mindspore/ops/function/reshard_func.py +4 -70
  286. mindspore/ops/function/sparse_func.py +3 -3
  287. mindspore/ops/function/sparse_unary_func.py +5 -5
  288. mindspore/ops/function/spectral_func.py +25 -58
  289. mindspore/ops/function/vmap_func.py +24 -17
  290. mindspore/ops/functional.py +6 -4
  291. mindspore/ops/functional_overload.py +547 -4
  292. mindspore/ops/op_info_register.py +32 -244
  293. mindspore/ops/operations/__init__.py +10 -5
  294. mindspore/ops/operations/_custom_ops_utils.py +247 -0
  295. mindspore/ops/operations/_grad_ops.py +1 -10
  296. mindspore/ops/operations/_inner_ops.py +5 -76
  297. mindspore/ops/operations/_ms_kernel.py +4 -10
  298. mindspore/ops/operations/_rl_inner_ops.py +1 -1
  299. mindspore/ops/operations/_scalar_ops.py +3 -2
  300. mindspore/ops/operations/_sequence_ops.py +1 -1
  301. mindspore/ops/operations/_tensor_array.py +1 -1
  302. mindspore/ops/operations/array_ops.py +37 -22
  303. mindspore/ops/operations/comm_ops.py +150 -107
  304. mindspore/ops/operations/custom_ops.py +221 -23
  305. mindspore/ops/operations/debug_ops.py +115 -16
  306. mindspore/ops/operations/inner_ops.py +1 -1
  307. mindspore/ops/operations/linalg_ops.py +1 -58
  308. mindspore/ops/operations/manually_defined/_inner.py +1 -1
  309. mindspore/ops/operations/manually_defined/ops_def.py +746 -79
  310. mindspore/ops/operations/math_ops.py +21 -18
  311. mindspore/ops/operations/nn_ops.py +65 -191
  312. mindspore/ops/operations/other_ops.py +62 -9
  313. mindspore/ops/operations/random_ops.py +13 -7
  314. mindspore/ops/operations/reshard_ops.py +1 -1
  315. mindspore/ops/operations/sparse_ops.py +2 -2
  316. mindspore/ops/primitive.py +43 -32
  317. mindspore/ops/tensor_method.py +232 -13
  318. mindspore/ops_generate/__init__.py +0 -5
  319. mindspore/ops_generate/aclnn/__init__.py +0 -0
  320. mindspore/ops_generate/{aclnn_kernel_register_auto_cc_generator.py → aclnn/aclnn_kernel_register_auto_cc_generator.py} +43 -18
  321. mindspore/ops_generate/{gen_aclnn_implement.py → aclnn/gen_aclnn_implement.py} +49 -51
  322. mindspore/ops_generate/api/__init__.py +0 -0
  323. mindspore/ops_generate/{add_tensor_docs_generator.py → api/add_tensor_docs_generator.py} +9 -7
  324. mindspore/ops_generate/{cpp_create_prim_instance_helper_generator.py → api/cpp_create_prim_instance_helper_generator.py} +6 -9
  325. mindspore/ops_generate/{functional_map_cpp_generator.py → api/functional_map_cpp_generator.py} +25 -12
  326. mindspore/ops_generate/{functional_overload_py_generator.py → api/functional_overload_py_generator.py} +8 -6
  327. mindspore/ops_generate/{functions_cc_generator.py → api/functions_cc_generator.py} +14 -10
  328. mindspore/ops_generate/api/gen_api.py +103 -0
  329. mindspore/ops_generate/{op_api_proto.py → api/op_api_proto.py} +98 -69
  330. mindspore/ops_generate/{tensor_func_reg_cpp_generator.py → api/tensor_func_reg_cpp_generator.py} +82 -43
  331. mindspore/ops_generate/common/__init__.py +0 -0
  332. mindspore/ops_generate/common/gen_constants.py +91 -0
  333. mindspore/ops_generate/{gen_utils.py → common/gen_utils.py} +72 -19
  334. mindspore/ops_generate/{op_proto.py → common/op_proto.py} +64 -1
  335. mindspore/ops_generate/{template.py → common/template.py} +96 -84
  336. mindspore/ops_generate/gen_ops.py +23 -325
  337. mindspore/ops_generate/op_def/__init__.py +0 -0
  338. mindspore/ops_generate/op_def/gen_op_def.py +90 -0
  339. mindspore/ops_generate/{lite_ops_cpp_generator.py → op_def/lite_ops_cpp_generator.py} +47 -11
  340. mindspore/ops_generate/{ops_def_cc_generator.py → op_def/ops_def_cc_generator.py} +18 -7
  341. mindspore/ops_generate/{ops_def_h_generator.py → op_def/ops_def_h_generator.py} +5 -5
  342. mindspore/ops_generate/{ops_name_h_generator.py → op_def/ops_name_h_generator.py} +30 -15
  343. mindspore/ops_generate/op_def/ops_primitive_h_generator.py +125 -0
  344. mindspore/ops_generate/op_def_py/__init__.py +0 -0
  345. mindspore/ops_generate/op_def_py/gen_op_def_py.py +47 -0
  346. mindspore/ops_generate/{op_def_py_generator.py → op_def_py/op_def_py_generator.py} +6 -5
  347. mindspore/ops_generate/{op_prim_py_generator.py → op_def_py/op_prim_py_generator.py} +24 -15
  348. mindspore/ops_generate/pyboost/__init__.py +0 -0
  349. mindspore/ops_generate/{auto_grad_impl_cc_generator.py → pyboost/auto_grad_impl_cc_generator.py} +11 -7
  350. mindspore/ops_generate/{auto_grad_reg_cc_generator.py → pyboost/auto_grad_reg_cc_generator.py} +7 -7
  351. mindspore/ops_generate/{gen_pyboost_func.py → pyboost/gen_pyboost_func.py} +40 -16
  352. mindspore/ops_generate/{op_template_parser.py → pyboost/op_template_parser.py} +105 -24
  353. mindspore/ops_generate/{pyboost_functions_cpp_generator.py → pyboost/pyboost_functions_cpp_generator.py} +55 -18
  354. mindspore/ops_generate/{pyboost_functions_h_generator.py → pyboost/pyboost_functions_h_generator.py} +42 -10
  355. mindspore/ops_generate/{pyboost_functions_py_generator.py → pyboost/pyboost_functions_py_generator.py} +6 -6
  356. mindspore/ops_generate/{pyboost_grad_function_cpp_generator.py → pyboost/pyboost_grad_function_cpp_generator.py} +11 -10
  357. mindspore/ops_generate/{pyboost_inner_prim_generator.py → pyboost/pyboost_inner_prim_generator.py} +8 -7
  358. mindspore/ops_generate/{pyboost_native_grad_functions_generator.py → pyboost/pyboost_native_grad_functions_generator.py} +14 -10
  359. mindspore/ops_generate/{pyboost_op_cpp_code_generator.py → pyboost/pyboost_op_cpp_code_generator.py} +140 -53
  360. mindspore/ops_generate/{pyboost_overload_functions_cpp_generator.py → pyboost/pyboost_overload_functions_cpp_generator.py} +28 -15
  361. mindspore/ops_generate/{pyboost_utils.py → pyboost/pyboost_utils.py} +88 -4
  362. mindspore/ops_generate/resources/__init__.py +0 -0
  363. mindspore/ops_generate/resources/resource_list.py +30 -0
  364. mindspore/ops_generate/resources/resource_loader.py +36 -0
  365. mindspore/ops_generate/resources/resource_manager.py +64 -0
  366. mindspore/ops_generate/resources/yaml_loader.py +88 -0
  367. mindspore/ops_generate/tensor_py_cc_generator.py +122 -0
  368. mindspore/parallel/__init__.py +6 -2
  369. mindspore/parallel/_auto_parallel_context.py +133 -6
  370. mindspore/parallel/_cell_wrapper.py +130 -15
  371. mindspore/parallel/_parallel_serialization.py +95 -4
  372. mindspore/parallel/_ps_context.py +1 -1
  373. mindspore/parallel/_recovery_context.py +7 -2
  374. mindspore/parallel/_tensor.py +142 -18
  375. mindspore/parallel/_utils.py +198 -25
  376. mindspore/parallel/algo_parameter_config.py +3 -3
  377. mindspore/parallel/auto_parallel.py +732 -0
  378. mindspore/parallel/checkpoint_convert.py +159 -0
  379. mindspore/parallel/checkpoint_transform.py +656 -37
  380. mindspore/parallel/cluster/process_entity/_api.py +151 -19
  381. mindspore/parallel/cluster/run.py +1 -1
  382. mindspore/parallel/function/__init__.py +24 -0
  383. mindspore/parallel/function/reshard_func.py +259 -0
  384. mindspore/parallel/nn/__init__.py +25 -0
  385. mindspore/parallel/nn/parallel_cell_wrapper.py +263 -0
  386. mindspore/parallel/nn/parallel_grad_reducer.py +169 -0
  387. mindspore/parallel/parameter_broadcast.py +24 -13
  388. mindspore/parallel/shard.py +137 -61
  389. mindspore/parallel/transform_safetensors.py +287 -95
  390. mindspore/pgodb140.dll +0 -0
  391. mindspore/pgort140.dll +0 -0
  392. mindspore/profiler/__init__.py +9 -5
  393. mindspore/profiler/analysis/parser/ascend_cann_parser.py +6 -2
  394. mindspore/profiler/analysis/parser/ms_framework_parser.py +4 -4
  395. mindspore/profiler/analysis/parser/timeline_assembly_factory/ascend_timeline_assembler.py +7 -4
  396. mindspore/profiler/analysis/parser/timeline_assembly_factory/trace_view_container.py +22 -0
  397. mindspore/profiler/analysis/parser/timeline_creator/fwk_timeline_creator.py +3 -3
  398. mindspore/profiler/analysis/parser/timeline_event/fwk_event.py +241 -86
  399. mindspore/profiler/analysis/viewer/ascend_communication_viewer.py +41 -2
  400. mindspore/profiler/analysis/viewer/ascend_kernel_details_viewer.py +33 -35
  401. mindspore/profiler/analysis/viewer/ascend_memory_viewer.py +7 -0
  402. mindspore/profiler/analysis/viewer/ascend_op_memory_viewer.py +8 -3
  403. mindspore/profiler/analysis/viewer/ascend_step_trace_time_viewer.py +141 -30
  404. mindspore/profiler/analysis/viewer/ms_dataset_viewer.py +5 -6
  405. mindspore/profiler/common/ascend_msprof_exporter.py +5 -4
  406. mindspore/profiler/common/constant.py +12 -0
  407. mindspore/profiler/common/msprof_cmd_tool.py +42 -23
  408. mindspore/profiler/common/path_manager.py +24 -0
  409. mindspore/profiler/common/profiler_context.py +26 -2
  410. mindspore/profiler/common/profiler_meta_data.py +74 -0
  411. mindspore/profiler/common/profiler_parameters.py +59 -18
  412. mindspore/profiler/common/profiler_path_manager.py +66 -7
  413. mindspore/profiler/dynamic_profiler.py +112 -79
  414. mindspore/profiler/envprofiler.py +26 -1
  415. mindspore/profiler/experimental_config.py +197 -0
  416. mindspore/profiler/mstx.py +57 -14
  417. mindspore/profiler/platform/npu_profiler.py +33 -7
  418. mindspore/profiler/profiler.py +541 -45
  419. mindspore/profiler/profiler_action_controller.py +1 -1
  420. mindspore/profiler/profiler_interface.py +4 -0
  421. mindspore/profiler/schedule.py +57 -22
  422. mindspore/rewrite/api/node.py +15 -13
  423. mindspore/rewrite/api/symbol_tree.py +1 -1
  424. mindspore/run_check/_check_version.py +25 -14
  425. mindspore/run_check/run_check.py +1 -1
  426. mindspore/runtime/__init__.py +2 -2
  427. mindspore/runtime/executor.py +40 -11
  428. mindspore/runtime/memory.py +25 -8
  429. mindspore/safeguard/rewrite_obfuscation.py +12 -9
  430. mindspore/swresample-4.dll +0 -0
  431. mindspore/swscale-6.dll +0 -0
  432. mindspore/tbbmalloc.dll +0 -0
  433. mindspore/tinyxml2.dll +0 -0
  434. mindspore/train/__init__.py +8 -8
  435. mindspore/train/_utils.py +35 -7
  436. mindspore/train/amp.py +1 -1
  437. mindspore/train/callback/__init__.py +2 -2
  438. mindspore/train/callback/_callback.py +2 -16
  439. mindspore/train/callback/_checkpoint.py +24 -40
  440. mindspore/train/callback/_cluster_monitor.py +14 -18
  441. mindspore/train/callback/_flops_collector.py +2 -3
  442. mindspore/train/callback/_history.py +7 -4
  443. mindspore/train/callback/_lambda_callback.py +2 -2
  444. mindspore/train/callback/_landscape.py +0 -3
  445. mindspore/train/callback/_loss_monitor.py +2 -1
  446. mindspore/train/callback/_on_request_exit.py +6 -5
  447. mindspore/train/callback/_reduce_lr_on_plateau.py +11 -6
  448. mindspore/train/callback/_summary_collector.py +8 -13
  449. mindspore/train/callback/_time_monitor.py +2 -1
  450. mindspore/train/callback/{_tft_register.py → _train_fault_tolerance.py} +179 -103
  451. mindspore/train/data_sink.py +25 -2
  452. mindspore/train/dataset_helper.py +4 -5
  453. mindspore/train/loss_scale_manager.py +8 -7
  454. mindspore/train/metrics/accuracy.py +3 -3
  455. mindspore/train/metrics/confusion_matrix.py +9 -9
  456. mindspore/train/metrics/error.py +3 -3
  457. mindspore/train/metrics/hausdorff_distance.py +4 -4
  458. mindspore/train/metrics/mean_surface_distance.py +3 -3
  459. mindspore/train/metrics/metric.py +0 -12
  460. mindspore/train/metrics/occlusion_sensitivity.py +4 -2
  461. mindspore/train/metrics/precision.py +8 -6
  462. mindspore/train/metrics/recall.py +9 -9
  463. mindspore/train/metrics/root_mean_square_surface_distance.py +2 -2
  464. mindspore/train/mind_ir_pb2.py +19 -12
  465. mindspore/train/model.py +176 -103
  466. mindspore/train/serialization.py +246 -988
  467. mindspore/train/summary/_summary_adapter.py +2 -2
  468. mindspore/train/summary/summary_record.py +1 -1
  469. mindspore/turbojpeg.dll +0 -0
  470. mindspore/utils/__init__.py +3 -2
  471. mindspore/utils/dryrun.py +4 -2
  472. mindspore/utils/hooks.py +81 -0
  473. mindspore/utils/utils.py +138 -4
  474. mindspore/vcmeta.dll +0 -0
  475. mindspore/vcruntime140.dll +0 -0
  476. mindspore/vcruntime140_1.dll +0 -0
  477. mindspore/version.py +1 -1
  478. {mindspore-2.5.0.dist-info → mindspore-2.6.0rc1.dist-info}/METADATA +2 -1
  479. {mindspore-2.5.0.dist-info → mindspore-2.6.0rc1.dist-info}/RECORD +483 -438
  480. mindspore/_install_custom.py +0 -43
  481. mindspore/common/_register_for_adapter.py +0 -74
  482. mindspore/ops/auto_generate/gen_arg_dtype_cast.py +0 -252
  483. mindspore/ops/auto_generate/gen_arg_handler.py +0 -136
  484. mindspore/ops/operations/_opaque_predicate_registry.py +0 -41
  485. mindspore/ops_generate/gen_constants.py +0 -190
  486. mindspore/ops_generate/gen_ops_inner_prim.py +0 -131
  487. mindspore/ops_generate/ops_primitive_h_generator.py +0 -81
  488. /mindspore/ops_generate/{base_generator.py → common/base_generator.py} +0 -0
  489. {mindspore-2.5.0.dist-info → mindspore-2.6.0rc1.dist-info}/WHEEL +0 -0
  490. {mindspore-2.5.0.dist-info → mindspore-2.6.0rc1.dist-info}/entry_points.txt +0 -0
  491. {mindspore-2.5.0.dist-info → mindspore-2.6.0rc1.dist-info}/top_level.txt +0 -0
@@ -82,7 +82,7 @@ class CELU(Cell):
82
82
  :align: center
83
83
 
84
84
  Args:
85
- alpha (float): The :math:`\alpha` value for the Celu formulation. Default: ``1.0`` .
85
+ alpha (float, optional): The :math:`\alpha` value for the Celu formulation. Default: ``1.0`` .
86
86
 
87
87
  Inputs:
88
88
  - **x** (Tensor) - The input of CELU. The required dtype is float16 or float32.
@@ -136,20 +136,22 @@ class Softmin(Cell):
136
136
  where :math:`x_{i}` is the :math:`i`-th slice in the given dimension of the input Tensor.
137
137
 
138
138
  Args:
139
- axis (Union[int, tuple[int]]): The axis to apply Softmin operation, if the dimension of input `x` is x.ndim,
140
- the range of axis is `[-x.ndim, x.ndim)`. -1 means the last dimension. Default: ``-1`` .
139
+ axis (Union[int, tuple[int]], optional): The axis to apply Softmin operation,
140
+ if the dimension of input `x` is x.ndim,
141
+ the range of axis is :math:`[-x.ndim, x.ndim)`. -1 means the last dimension.
142
+ Default: ``-1`` . In CPU environment, `axis` only supports int type.
141
143
 
142
144
  Inputs:
143
145
  - **x** (Tensor) - Tensor for computing Softmin functions with data type of float16 or float32.
144
146
 
145
147
  Outputs:
146
- Tensor, which has the same type and shape as `x` with values in the range [0,1].
148
+ Tensor, which has the same type and shape as `x` with values in the range :math:`[0, 1]`.
147
149
 
148
150
  Raises:
149
151
  TypeError: If `axis` is neither an int nor a tuple.
150
152
  TypeError: If dtype of `x` is neither float16 nor float32.
151
153
  ValueError: If `axis` is a tuple whose length is less than 1.
152
- ValueError: If `axis` is a tuple whose elements are not all in the range [-x.ndim, x.ndim).
154
+ ValueError: If `axis` is a tuple whose elements are not all in the range :math:`[-x.ndim, x.ndim)`.
153
155
 
154
156
  Supported Platforms:
155
157
  ``Ascend`` ``GPU`` ``CPU``
@@ -957,7 +959,7 @@ class GELU(Cell):
957
959
  :align: center
958
960
 
959
961
  Args:
960
- approximate (bool): Whether to enable approximation. Default: ``True`` .
962
+ approximate (bool, optional): Whether to enable approximation. Default: ``True`` .
961
963
 
962
964
  If `approximate` is ``True``, The gaussian error linear activation is:
963
965
 
@@ -965,7 +967,14 @@ class GELU(Cell):
965
967
 
966
968
  else, it is:
967
969
 
968
- :math:`x * P(X <= x) = 0.5 * x * (1 + erf(x / \sqrt(2)))`, where P(X) ~ N(0, 1).
970
+ :math:`x * P(X <= x) = 0.5 * x * (1 + erf(x / \sqrt(2)))`, where :math:`P(X) ~ N(0, 1)`.
971
+
972
+ Note:
973
+ - when calculating the input gradient of GELU with an input value of infinity, there are differences
974
+ in the output of the backward between ``Ascend`` and ``GPU``.
975
+ - when x is -inf, the computation result of ``Ascend`` is 0, and the computation result of ``GPU`` is Nan.
976
+ - when x is inf, the computation result of ``Ascend`` is dy, and the computation result of ``GPU`` is Nan.
977
+ - In mathematical terms, the result of Ascend has higher precision.
969
978
 
970
979
  Inputs:
971
980
  - **x** (Tensor) - The input of GELU with data type of float16, float32, or float64.
@@ -974,13 +983,6 @@ class GELU(Cell):
974
983
  Outputs:
975
984
  Tensor, with the same type and shape as the `x`.
976
985
 
977
- Note:
978
- when calculating the input gradient of GELU with an input value of infinity, there are differences
979
- in the output of the backward between ``Ascend`` and ``GPU``.
980
- when x is -inf, the computation result of ``Ascend`` is 0, and the computation result of ``GPU`` is Nan.
981
- when x is inf, the computation result of ``Ascend`` is dy, and the computation result of ``GPU`` is Nan.
982
- In mathematical terms, the result of Ascend has higher precision.
983
-
984
986
  Raises:
985
987
  TypeError: If dtype of `x` is not one of float16, float32, or float64.
986
988
 
@@ -1165,7 +1167,7 @@ class PReLU(Cell):
1165
1167
 
1166
1168
  where :math:`x_i` is an element of an channel of the input.
1167
1169
 
1168
- Here :math:`w` is a learnable parameter with a default initial value 0.25.
1170
+ Here :math:`w` is a learnable parameter with a default initial value ``0.25``.
1169
1171
  Parameter :math:`w` has dimensionality of the argument channel. If called without argument
1170
1172
  channel, a single parameter :math:`w` will be shared across all channels.
1171
1173
 
@@ -1175,9 +1177,9 @@ class PReLU(Cell):
1175
1177
  :align: center
1176
1178
 
1177
1179
  Args:
1178
- channel (int): The elements number of parameter :math:`w`.
1179
- It could be an int, and the value is 1 or the channels number of input tensor `x`. Default: ``1`` .
1180
- w (Union[float, list, Tensor]): The initial value of parameter. It could be a float, a float list or
1180
+ channel (int, optional): The elements number of parameter :math:`w`.
1181
+ It could be an int, and the value is ``1`` or the channels number of input tensor `x`. Default: ``1`` .
1182
+ w (Union[float, list, Tensor], optional): The initial value of parameter. It could be a float, a float list or
1181
1183
  a tensor has the same dtype as the input tensor `x`. Default: ``0.25`` .
1182
1184
 
1183
1185
  Inputs:
@@ -1189,7 +1191,7 @@ class PReLU(Cell):
1189
1191
 
1190
1192
  Raises:
1191
1193
  TypeError: If `channel` is not an int.
1192
- TypeError: If `w` is not one of a float, a float list, a float Tensor.
1194
+ TypeError: If `w` is not one of a float, a list[float], a Tensor[float].
1193
1195
  TypeError: If dtype of `x` is neither float16 nor float32.
1194
1196
  ValueError: If the `x` is a 0-D or 1-D Tensor on Ascend.
1195
1197
  ValueError: If `channel` is less than 1.
@@ -1728,7 +1730,7 @@ class GLU(Cell):
1728
1730
  Here :math:`\sigma` is the sigmoid function, and :math:`\otimes` is the Hadamard product.
1729
1731
 
1730
1732
  Args:
1731
- axis (int): the axis to split the input. Default: ``-1`` , the last axis in `x`.
1733
+ axis (int, optional): the axis to split the input. Default: ``-1`` , the last axis in `x`.
1732
1734
 
1733
1735
  Inputs:
1734
1736
  - **x** (Tensor) - :math:`(\ast_1, N, \ast_2)` where `*` means, any number of additional dimensions.
@@ -1811,7 +1813,7 @@ def get_activation(name, prim_name=None):
1811
1813
  >>> import mindspore.nn as nn
1812
1814
  >>> sigmoid = nn.get_activation('sigmoid')
1813
1815
  >>> print(sigmoid)
1814
- Sigmoid<>
1816
+ Sigmoid()
1815
1817
  """
1816
1818
  msg_prefix = f"For '{prim_name}', the" if prim_name else "The"
1817
1819
  if name is None:
@@ -226,7 +226,8 @@ class DropoutExt(Cell):
226
226
  Args:
227
227
  p (float, optional): The dropout rate of input neurons, E.g. `p` =0.9, dropping out 90% of input neurons.
228
228
  Default: ``0.5`` .
229
- inplace (bool, optional): If set to ``True`` , will do this operation in-place. Default: ``False`` .
229
+ inplace (bool, optional): Whether to enable the operation in-place.
230
+ If set to ``True`` , will do this operation in-place. Default: ``False`` .
230
231
 
231
232
  Inputs:
232
233
  - **x** (Tensor) - The input of Dropout.
@@ -347,8 +348,8 @@ class Dropout2d(Cell):
347
348
 
348
349
  For example, the :math:`j\_th` channel of the :math:`i\_th` sample in the batched input is a to-be-processed
349
350
  `2D` tensor input[i,j].
350
- Each channel will be zeroed out independently on every forward call with probability `p` using samples
351
- from a Bernoulli distribution.
351
+ At each forward propagation,
352
+ each channel will be independently determined to be set to zero with probability `p`.
352
353
 
353
354
  `Dropout2d` can improve the independence between channel feature maps.
354
355
 
@@ -631,25 +632,27 @@ class Dense(Cell):
631
632
  where :math:`X` is the input tensors, :math:`\text{activation}` is the activation function passed as the activation
632
633
  argument (if passed in), :math:`\text{kernel}` is a weight matrix with the same
633
634
  data type as the :math:`X` created by the layer, and :math:`\text{bias}` is a bias vector
634
- with the same data type as the :math:`X` created by the layer (only if has_bias is True).
635
+ with the same data type as the :math:`X` created by the layer (only if `has_bias` is ``True``).
635
636
 
636
637
  .. warning::
637
- In PyNative mode, if `bias` is ``False`` , the `x` cannot be greater than 6D.
638
+ On the Ascend platform, if `bias` is ``False`` , the `x` cannot be greater than 6D in PYNATIVE or KBK mode.
638
639
 
639
640
  Args:
640
641
  in_channels (int): The number of channels in the input space.
641
642
  out_channels (int): The number of channels in the output space.
642
- weight_init (Union[Tensor, str, Initializer, numbers.Number]): The trainable weight_init parameter. The dtype
643
- is same as `x`. The values of str refer to the function `initializer`. Default: ``None`` ,
643
+ weight_init (Union[Tensor, str, Initializer, numbers.Number], optional): The trainable weight_init parameter.
644
+ The dtype is same as `x`. The values of str refer to the function `initializer`. Default: ``None`` ,
644
645
  weight will be initialized using HeUniform.
645
- bias_init (Union[Tensor, str, Initializer, numbers.Number]): The trainable bias_init parameter. The dtype is
646
- same as `x`. The values of str refer to the function `initializer`. Default: ``None`` ,
646
+ bias_init (Union[Tensor, str, Initializer, numbers.Number], optional): The trainable bias_init parameter.
647
+ The dtype is same as `x`. The values of str refer to the function `initializer`. Default: ``None`` ,
647
648
  bias will be initialized using Uniform.
648
- has_bias (bool): Specifies whether the layer uses a bias vector :math:`\text{bias}`. Default: ``True``.
649
- activation (Union[str, Cell, Primitive, None]): activate function applied to the output of the fully connected
649
+ has_bias (bool, optional): Specifies whether the layer uses a bias vector :math:`\text{bias}`.
650
+ Default: ``True``.
651
+ activation (Union[str, Cell, Primitive, None], optional): activate function applied to
652
+ the output of the fully connected
650
653
  layer. Both activation name, e.g. 'relu', and mindspore activation function, e.g. mindspore.ops.ReLU(),
651
654
  are supported. Default: ``None`` .
652
- dtype (:class:`mindspore.dtype`): Data type of Parameter. Default: ``mstype.float32`` .
655
+ dtype (:class:`mindspore.dtype`, optional): Data type of Parameter. Default: ``mstype.float32`` .
653
656
  When `weight_init` is Tensor, Parameter has the same data type as `weight_init` ,
654
657
  in other cases, Parameter has the same data type as `dtype`, the same goes for `bias_init`.
655
658
 
@@ -668,7 +671,7 @@ class Dense(Cell):
668
671
  is not equal to `out_channels` or shape[1] of `weight_init` is not equal to `in_channels`.
669
672
  ValueError: If length of shape of `bias_init` is not equal to 1
670
673
  or shape[0] of `bias_init` is not equal to `out_channels`.
671
- RuntimeError: If `bias` is ``False`` and `x` is greater than 6D in PyNative mode.
674
+ RuntimeError: On the Ascend platform, if `bias` is ``False`` and `x` is greater than 6D in PYNATIVE or KBK mode.
672
675
 
673
676
  Supported Platforms:
674
677
  ``Ascend`` ``GPU`` ``CPU``
@@ -770,6 +773,9 @@ class Linear(Cell):
770
773
  .. math::
771
774
  \text{outputs} = X * kernel + bias
772
775
 
776
+ .. warning::
777
+ On the Ascend platform, if `bias` is ``False`` , the `x` cannot be greater than 6D in PYNATIVE or KBK mode.
778
+
773
779
  where :math:`X` is the input tensors, :math:`\text{kernel}` is a weight matrix with the same
774
780
  data type as the :math:`X` created by the layer, and :math:`\text{bias}` is a bias vector
775
781
  with the same data type as the :math:`X` created by the layer (only if the parameter `bias` is True).
@@ -808,7 +814,7 @@ class Linear(Cell):
808
814
  is not equal to `out_features` or shape[1] of `weight_init` is not equal to `in_features`.
809
815
  ValueError: If length of shape of `bias_init` is not equal to 1
810
816
  or shape[0] of `bias_init` is not equal to `out_features`.
811
- RuntimeError: If `bias` is ``False`` and `x` is greater than 6D in PyNative mode.
817
+ RuntimeError: On the Ascend platform, if `bias` is ``False`` and `x` is greater than 6D in PYNATIVE or KBK mode.
812
818
 
813
819
  Supported Platforms:
814
820
  ``Ascend`` ``GPU`` ``CPU``
@@ -1565,7 +1571,7 @@ class Roll(Cell):
1565
1571
  else:
1566
1572
  if not isinstance(self.axis, (list, tuple)):
1567
1573
  self.op_list.append(
1568
- (P.Roll(shift=self.shift, axis=0), self.axis))
1574
+ (P.Roll(shifts=self.shift, dims=0), self.axis))
1569
1575
  else:
1570
1576
  if len(self.shift) != len(self.axis):
1571
1577
  raise ValueError(f"For '{self.cls_name}', the shape of 'shift' and the shape of 'axis' must be "
@@ -1573,7 +1579,7 @@ class Roll(Cell):
1573
1579
  f"and the length of 'axis' {len(self.axis)}.")
1574
1580
  for idx, _ in enumerate(self.axis):
1575
1581
  self.op_list.append(
1576
- (P.Roll(shift=self.shift[idx], axis=0), self.axis[idx]))
1582
+ (P.Roll(shifts=self.shift[idx], dims=0), self.axis[idx]))
1577
1583
 
1578
1584
  def construct(self, input_x):
1579
1585
  dim = len(self.shape_op(input_x))
@@ -648,7 +648,7 @@ class CellDict(_CellDictBase, Cell):
648
648
  Remove key from the CellDict and return its cell.
649
649
 
650
650
  Args:
651
- key (string): key to pop from the CellDict.
651
+ key (str): key to pop from the CellDict.
652
652
 
653
653
  Raises:
654
654
  KeyError: If `key` not exist in CellDict when attempt to access cell.
@@ -856,11 +856,12 @@ class Conv3dTranspose(_Conv):
856
856
  where :math:`N` is batch size, :math:`C_{in}` is a number of
857
857
  channels, :math:`D_{in}, H_{in}, W_{in}` are the depth, height and width of the feature layer respectively.
858
858
 
859
- When Conv3d and Conv3dTranspose are initialized with the same parameters, and `pad_mode` is set to 'pad',
859
+ When Conv3d and Conv3dTranspose are initialized with the same parameters, and `pad_mode` is set to ``'pad'``,
860
860
  :math:`dilation * (kernel\_size - 1) - padding` amount of zero will be paded to the depth, height and width
861
861
  directions of the input, they are inverses of each other in regard to the input and output shapes in this case.
862
- However, when `stride` > 1, Conv2d maps multiple input shapes to the same output shape. Deconvolutional network
863
- can refer to `Deconvolutional Networks <https://www.matthewzeiler.com/mattzeiler/deconvolutionalnetworks.pdf>`_.
862
+ However, when `stride` > 1, Conv2d maps multiple input shapes to the same output shape.
863
+ For the detailed information of Deconvolutional network,
864
+ refer to `Deconvolutional Networks <https://www.matthewzeiler.com/mattzeiler/deconvolutionalnetworks.pdf>`_.
864
865
 
865
866
  Note:
866
867
  For Atlas A2 training series products, `output_padding` is currently not supported.
@@ -872,7 +873,7 @@ class Conv3dTranspose(_Conv):
872
873
  The data type is an integer or a tuple of three integers. An integer represents the depth, height
873
874
  and width of the convolution kernel. A tuple of three integers represents the depth, height
874
875
  and width of the convolution kernel respectively.
875
- stride (Union[int, tuple[int]]): The movement stride of the 3D convolution kernel.
876
+ stride (Union[int, tuple[int]], optional): The movement stride of the 3D convolution kernel.
876
877
  The data type is an integer or a tuple of three integers. An integer represents the movement step size
877
878
  in depth, height and width directions. A tuple of three integers represents the movement step size
878
879
  in the depth, height and width directions respectively. Default: ``1`` .
@@ -892,13 +893,15 @@ class Conv3dTranspose(_Conv):
892
893
  in the depth, height and width dimension is determined by the `padding` parameter.
893
894
  If this mode is set, `padding` must be greater than or equal to 0.
894
895
 
895
- padding (Union(int, tuple[int])): The number of padding on the depth, height and width directions of the input.
896
+ padding (Union(int, tuple[int]), optional): The number of padding on the depth, height and
897
+ width directions of the input.
896
898
  The data type is an integer or a tuple of six integers. If `padding` is an integer,
897
899
  then the head, tail, top, bottom, left, and right padding are all equal to `padding`.
898
900
  If `padding` is a tuple of six integers, then the head, tail, top, bottom, left, and right padding
899
901
  is equal to `padding[0]`, `padding[1]`, `padding[2]`, `padding[3]`, `padding[4]` and `padding[5]`
900
902
  respectively. The value should be greater than or equal to 0. Default: ``0`` .
901
- dilation (Union[int, tuple[int]]): Specifies the dilation rate to use for dilated convolution. The data type
903
+ dilation (Union[int, tuple[int]], optional): Specifies the dilation rate to use for dilated convolution.
904
+ The data type
902
905
  can be a single int or a tuple of 3 integers. A single int means the dilation size is the same in the
903
906
  depth, height and width directions. A tuple of 3 ints represents the dilation size in the depth, height
904
907
  and width directions, respectively.
@@ -908,33 +911,35 @@ class Conv3dTranspose(_Conv):
908
911
  The values in the depth, height and width dimensions are in
909
912
  the ranges [1, D], [1, H] and [1, W], respectively.
910
913
  Default: ``1`` .
911
- group (int): Splits filter into groups, `in_channels` and `out_channels` must be
914
+ group (int, optional): Splits filter into groups, `in_channels` and `out_channels` must be
912
915
  divisible by `group`. Default: ``1`` .
913
- output_padding (Union(int, tuple[int])): The number of padding on the depth, height and width directions of
916
+ output_padding (Union(int, tuple[int]), optional): The number of padding on the depth,
917
+ height and width directions of
914
918
  the output. The data type is an integer or a tuple of three integers. If `output_padding` is an integer,
915
919
  then the depth, height, and width dimension padding are all equal to `output_padding`.
916
920
  If `output_padding` is a tuple of three integers, then the depth, height, and width padding is equal to
917
921
  `output_padding[0]`, `output_padding[1]` and `output_padding[2]` respectively.
918
922
  The value should be greater than or equal to 0.
919
923
  Default: ``0`` .
920
- has_bias (bool): Whether the Conv3dTranspose layer has a bias parameter. Default: ``False`` .
921
- weight_init (Union[Tensor, str, Initializer, numbers.Number]): Initialization method of weight parameter.
924
+ has_bias (bool, optional): Whether the Conv3dTranspose layer has a bias parameter. Default: ``False`` .
925
+ weight_init (Union[Tensor, str, Initializer, numbers.Number], optional): Initialization method of
926
+ weight parameter.
922
927
  It can be a Tensor, a string, an Initializer or a numbers.Number. When a string is specified,
923
928
  values from ``'TruncatedNormal'`` , ``'Normal'`` , ``'Uniform'`` , ``'HeUniform'`` and ``'XavierUniform'``
924
929
  distributions as well as constant ``'One'`` and ``'Zero'`` distributions are possible. Alias
925
930
  ``'xavier_uniform'`` , ``'he_uniform'`` , ``'ones'`` and ``'zeros'`` are acceptable. Uppercase and
926
931
  lowercase are both acceptable. Refer to the values of Initializer for more details. Default: ``None`` ,
927
932
  weight will be initialized using HeUniform.
928
- bias_init (Union[Tensor, str, Initializer, numbers.Number]): Initialization method of bias parameter.
933
+ bias_init (Union[Tensor, str, Initializer, numbers.Number], optional): Initialization method of bias parameter.
929
934
  Available initialization methods are the same as 'weight_init'. Refer to the values of
930
935
  Initializer for more details. Default: ``None`` , bias will be initialized using Uniform.
931
- data_format (str): The optional value for data format. Currently only support ``'NCDHW'`` .
936
+ data_format (str, optional): The optional value for data format. Currently only support ``'NCDHW'`` .
932
937
  Default: ``'NCDHW'`` .
933
- dtype (:class:`mindspore.dtype`): Dtype of Parameters. Default: ``mstype.float32`` .
938
+ dtype (:class:`mindspore.dtype`, optional): Dtype of Parameters. Default: ``mstype.float32`` .
934
939
 
935
940
  Inputs:
936
941
  - **x** (Tensor) - Tensor of shape :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`.
937
- Currently input data dtype only support float16 and float32.
942
+ Currently input data dtype only supports float16 and float32.
938
943
 
939
944
  Outputs:
940
945
  Tensor, the shape is :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`.
@@ -980,10 +985,10 @@ class Conv3dTranspose(_Conv):
980
985
  TypeError: If input data type is not float16 or float32.
981
986
  ValueError: If `in_channels`, `out_channels`, `kernel_size`, `stride` or `dilation` is less than 1.
982
987
  ValueError: If `padding` is less than 0.
983
- ValueError: If `pad_mode` is not one of 'same', 'valid', 'pad'.
988
+ ValueError: If `pad_mode` is not one of ``'same'``, ``'valid'``, ``'pad'``.
984
989
  ValueError: If `padding` is a tuple whose length is not equal to 6.
985
- ValueError: If `pad_mode` is not equal to 'pad' and `padding` is not equal to (0, 0, 0, 0, 0, 0).
986
- ValueError: If `data_format` is not 'NCDHW'.
990
+ ValueError: If `pad_mode` is not equal to ``'pad'`` and `padding` is not equal to (0, 0, 0, 0, 0, 0).
991
+ ValueError: If `data_format` is not ``'NCDHW'``.
987
992
 
988
993
  Supported Platforms:
989
994
  ``Ascend`` ``GPU`` ``CPU``
@@ -220,18 +220,19 @@ class EmbeddingExt(Cell):
220
220
  >>> import mindspore
221
221
  >>> import numpy as np
222
222
  >>> from mindspore import Tensor, nn
223
+ >>> mindspore.set_seed(0)
223
224
  >>> input = Tensor([[1, 0, 1, 1], [0, 0, 1, 0]])
224
225
  >>> embedding = nn.EmbeddingExt(num_embeddings=10, embedding_dim=3)
225
226
  >>> output = embedding(input)
226
227
  >>> print(output)
227
- [[[-0.0024154 -0.01203444 0.00811537]
228
- [ 0.00233847 -0.00596091 0.00536799]
229
- [-0.0024154 -0.01203444 0.00811537]
230
- [-0.0024154 -0.01203444 0.00811537]]
231
- [[ 0.00233847 -0.00596091 0.00536799]
232
- [ 0.00233847 -0.00596091 0.00536799]
233
- [-0.0024154 -0.01203444 0.00811537]
234
- [ 0.00233847 -0.00596091 0.00536799]]]
228
+ [[[ 0.6712398 0.5407775 1.0317237]
229
+ [-0.49091062 -0.42302188 -1.4807187]
230
+ [ 0.6712398 0.5407775 1.0317237]
231
+ [ 0.0024154 0.5407775 1.0317237]]
232
+ [[-0.49091062 -0.42302188 -1.4807187]
233
+ [-0.49091062 -0.42302188 -1.4807187]
234
+ [ 0.6712398 0.5407775 1.0317237]
235
+ [-0.49091062 -0.42302188 -1.4807187]]]
235
236
  """
236
237
 
237
238
  def __init__(self, num_embeddings, embedding_dim, padding_idx=None, max_norm=None, norm_type=2.0,
@@ -286,37 +286,40 @@ class BatchNorm2d(_BatchNorm):
286
286
  Note that the formula for updating the :math:`moving\_mean` and :math:`moving\_var` is
287
287
 
288
288
  .. math::
289
- \text{moving_mean}=\text{moving_mean*momentum}+μ_β\text{*(1momentum)}\\
290
- \text{moving_var}=\text{moving_var*momentum}+σ^2_β\text{*(1momentum)}
289
+ \text{moving_mean}=\text{moving_mean*momentum}+μ_β\text{*(1-momentum)}\\
290
+ \text{moving_var}=\text{moving_var*momentum}+σ^2_β\text{*(1-momentum)}
291
291
 
292
292
  where :math:`moving\_mean` is the updated mean, :math:`moving\_var` is the updated variance,
293
- :math:`μ_β, σ^2_β` are the observed value (mean and variance) of each batch of data.
293
+ :math:`μ_β, σ^2_β` are the observed value (mean and variance respectively) of each batch of data.
294
294
 
295
295
  Args:
296
296
  num_features (int): The number of channels of the input tensor. Expected input size is :math:`(N, C, H, W)`,
297
297
  `C` represents the number of channels.
298
- eps (float): :math:`\epsilon` added to the denominator for numerical stability. Default: ``1e-5`` .
299
- momentum (float): A floating hyperparameter of the momentum for the
298
+ eps (float, optional): :math:`\epsilon` added to the denominator for numerical stability. Default: ``1e-5`` .
299
+ momentum (float, optional): A floating hyperparameter of the momentum for the
300
300
  running_mean and running_var computation. Default: ``0.9`` .
301
- affine (bool): A bool value. When set to ``True`` , :math:`\gamma` and :math:`\beta` can be learned.
301
+ affine (bool, optional): A bool value. When set to ``True`` , :math:`\gamma` and :math:`\beta` can be learned.
302
302
  Default: ``True`` .
303
- gamma_init (Union[Tensor, str, Initializer, numbers.Number]): Initializer for the :math:`\gamma` weight.
303
+ gamma_init (Union[Tensor, str, Initializer, numbers.Number], optional): Initializer for the
304
+ :math:`\gamma` weight.
304
305
  The values of str refer to the function `mindspore.common.initializer
305
306
  <https://www.mindspore.cn/docs/en/master/api_python/mindspore.common.initializer.html>`_
306
307
  including ``'zeros'`` , ``'ones'`` , etc. Default: ``'ones'`` .
307
- beta_init (Union[Tensor, str, Initializer, numbers.Number]): Initializer for the :math:`\beta` weight.
308
+ beta_init (Union[Tensor, str, Initializer, numbers.Number], optional): Initializer for the
309
+ :math:`\beta` weight.
308
310
  The values of str refer to the function `mindspore.common.initializer
309
311
  <https://www.mindspore.cn/docs/en/master/api_python/mindspore.common.initializer.html>`_
310
312
  including ``'zeros'`` , ``'ones'`` , etc. Default: ``'zeros'`` .
311
- moving_mean_init (Union[Tensor, str, Initializer, numbers.Number]): Initializer for the moving mean.
313
+ moving_mean_init (Union[Tensor, str, Initializer, numbers.Number], optional): Initializer for the moving mean.
312
314
  The values of str refer to the function `mindspore.common.initializer
313
315
  <https://www.mindspore.cn/docs/en/master/api_python/mindspore.common.initializer.html>`_
314
316
  including ``'zeros'`` , ``'ones'`` , etc. Default: ``'zeros'`` .
315
- moving_var_init (Union[Tensor, str, Initializer, numbers.Number]): Initializer for the moving variance.
317
+ moving_var_init (Union[Tensor, str, Initializer, numbers.Number], optional): Initializer for
318
+ the moving variance.
316
319
  The values of str refer to the function `mindspore.common.initializer
317
320
  <https://www.mindspore.cn/docs/en/master/api_python/mindspore.common.initializer.html>`_
318
321
  including ``'zeros'`` , ``'ones'`` , etc. Default: ``'ones'`` .
319
- use_batch_statistics (bool): Default: ``None`` .
322
+ use_batch_statistics (bool, optional): Default: ``None`` .
320
323
 
321
324
  - If ``true`` , use the mean value and variance value of current batch data and track running mean
322
325
  and running variance.
@@ -325,9 +328,9 @@ class BatchNorm2d(_BatchNorm):
325
328
  training and evaluation mode. During training, the parameter is set to true, and during evaluation, the
326
329
  parameter is set to false.
327
330
 
328
- data_format (str): The optional value for data format, is ``'NHWC'`` or ``'NCHW'`` .
331
+ data_format (str, optional): The optional value for data format, is ``'NHWC'`` or ``'NCHW'`` .
329
332
  Default: ``'NCHW'`` .
330
- dtype (:class:`mindspore.dtype`): Dtype of Parameters. Default: ``mstype.float32`` .
333
+ dtype (:class:`mindspore.dtype`, optional): Dtype of Parameters. Default: ``mstype.float32`` .
331
334
 
332
335
  Inputs:
333
336
  - **x** (Tensor) - Tensor of shape :math:`(N, C, H, W)`. Supported types: float16, float32.
@@ -340,7 +343,7 @@ class BatchNorm2d(_BatchNorm):
340
343
  TypeError: If `eps` is not a float.
341
344
  ValueError: If `num_features` is less than 1.
342
345
  ValueError: If `momentum` is not in range [0, 1].
343
- ValueError: If `data_format` is neither 'NHWC' not 'NCHW'.
346
+ ValueError: If `data_format` is neither ``'NHWC'`` not ``'NCHW'``.
344
347
 
345
348
  Supported Platforms:
346
349
  ``Ascend`` ``GPU`` ``CPU``
@@ -508,32 +511,34 @@ class SyncBatchNorm(_BatchNorm):
508
511
 
509
512
  Args:
510
513
  num_features (int): `C` from an expected input of size :math:`(N, C, H, W)`.
511
- eps (float): :math:`\epsilon`, a value added to the denominator for numerical stability. Default: ``1e-5`` .
512
- momentum (float): A floating hyperparameter of the momentum for the
514
+ eps (float, optional): :math:`\epsilon`, a value added to the denominator for numerical stability.
515
+ Default: ``1e-5`` .
516
+ momentum (float, optional): A floating hyperparameter of the momentum for the
513
517
  running_mean and running_var computation. Default: ``0.9`` .
514
- affine (bool): A bool value. When set to ``True`` , :math:`\gamma` and :math:`\beta` can be learned.
518
+ affine (bool, optional): A bool value. When set to ``True`` , :math:`\gamma` and :math:`\beta` are learnable
519
+ parameters. When set to ``False`` , :math:`\gamma` and :math:`\beta` are unlearnable parameters.
515
520
  Default: ``True`` .
516
- gamma_init (Union[Tensor, str, Initializer, numbers.Number]): Initializer for the :math:`\gamma` weight.
517
- The values of str refer to the function `initializer` including ``'zeros'`` , ``'ones'`` ,
521
+ gamma_init (Union[Tensor, str, Initializer, numbers.Number], optional): Initializer for the :math:`\gamma`
522
+ weight. The values of str refer to the function `initializer` including ``'zeros'`` , ``'ones'`` ,
518
523
  ``'xavier_uniform'`` , ``'he_uniform'`` , etc. Default: ``'ones'`` .
519
- beta_init (Union[Tensor, str, Initializer, numbers.Number]): Initializer for the :math:`\beta` weight.
524
+ beta_init (Union[Tensor, str, Initializer, numbers.Number], optional): Initializer for the :math:`\beta` weight.
520
525
  The values of str refer to the function `initializer` including ``'zeros'`` , ``'ones'`` ,
521
526
  ``'xavier_uniform'`` , ``'he_uniform'`` , etc. Default: ``'zeros'`` .
522
- moving_mean_init (Union[Tensor, str, Initializer, numbers.Number]): Initializer for the moving mean.
527
+ moving_mean_init (Union[Tensor, str, Initializer, numbers.Number], optional): Initializer for the moving mean.
523
528
  The values of str refer to the function `initializer` including ``'zeros'`` , ``'ones'`` ,
524
529
  ``'xavier_uniform'`` , ``'he_uniform'`` , etc. Default: ``'zeros'`` .
525
- moving_var_init (Union[Tensor, str, Initializer, numbers.Number]): Initializer for the moving variance.
526
- The values of str refer to the function `initializer` including ``'zeros'`` , ``'ones'`` ,
530
+ moving_var_init (Union[Tensor, str, Initializer, numbers.Number], optional): Initializer for the moving
531
+ variance. The values of str refer to the function `initializer` including ``'zeros'`` , ``'ones'`` ,
527
532
  ``'xavier_uniform'`` , ``'he_uniform'`` , etc. Default: ``'ones'`` .
528
- use_batch_statistics (bool): If ``true`` , use the mean value and variance value of current batch data. If
529
- ``false`` , use the mean value and variance value of specified value. If ``None`` , training process will
530
- use the mean and variance of current batch data and track the running mean and variance, eval process will
531
- use the running mean and variance. Default: ``None`` .
532
- process_groups (list): A list to divide devices into different sync groups, containing N subtraction lists.
533
- Each subtraction list contains int numbers identifying rank ids which need to be synchronized in the same
534
- group. All int values must be in [0, rank_size) and different from each other. Default: ``None`` ,
533
+ use_batch_statistics (bool, optional): If ``true`` , use the mean value and variance value of current batch
534
+ data. If ``false`` , use the mean value and variance value of specified value. If ``None`` , training
535
+ process will use the mean and variance of current batch data and track the running mean and variance, eval
536
+ process will use the running mean and variance. Default: ``None`` .
537
+ process_groups (list, optional): A list to divide devices into different sync groups, containing N subtraction
538
+ lists. Each subtraction list contains int numbers identifying rank ids which need to be synchronized in the
539
+ same group. All int values must be in [0, rank_size) and different from each other. Default: ``None`` ,
535
540
  indicating synchronization across all devices.
536
- dtype (:class:`mindspore.dtype`): Dtype of Parameters. Default: ``mstype.float32`` .
541
+ dtype (:class:`mindspore.dtype`, optional): Dtype of Parameters. Default: ``mstype.float32`` .
537
542
 
538
543
  Inputs:
539
544
  - **x** (Tensor) - Tensor of shape :math:`(N, C_{in}, H_{in}, W_{in})`.
@@ -558,14 +563,14 @@ class SyncBatchNorm(_BatchNorm):
558
563
 
559
564
  For the Ascend devices, users need to prepare the rank table, set rank_id and device_id.
560
565
  Please see the `Ascend tutorial
561
- <https://www.mindspore.cn/docs/en/master/model_train/parallel/rank_table.html>`_
566
+ <https://www.mindspore.cn/tutorials/en/master/parallel/rank_table.html>`_
562
567
  for more details.
563
568
 
564
569
  For the GPU devices, users need to prepare the host file and mpi, please see the `mpirun Startup
565
- <https://www.mindspore.cn/docs/en/master/model_train/parallel/mpirun.html>`_ .
570
+ <https://www.mindspore.cn/tutorials/en/master/parallel/mpirun.html>`_ .
566
571
 
567
572
  For the CPU device, users need to write a dynamic cluster startup script, please see the `Dynamic Cluster
568
- Startup <https://www.mindspore.cn/docs/en/master/model_train/parallel/dynamic_cluster.html>`_ .
573
+ Startup <https://www.mindspore.cn/tutorials/en/master/parallel/dynamic_cluster.html>`_ .
569
574
 
570
575
  This example should be run with multiple devices.
571
576
 
@@ -987,8 +992,8 @@ class InstanceNorm1d(_InstanceNorm):
987
992
  ValueError: If `num_features` is less than 1.
988
993
  ValueError: If `momentum` is not in range [0, 1].
989
994
  ValueError: If the shape of `gamma_init` / `beta_init` is not :math:`(C)`.
990
- KeyError: If any of `gamma_init`/`beta_init` is str and the homonymous class inheriting from `Initializer` not
991
- exists.
995
+ KeyError: If any of `gamma_init`/`beta_init` is str and
996
+ there is no homonymous class inheriting from `Initializer`.
992
997
 
993
998
  Supported Platforms:
994
999
  ``GPU``
@@ -1065,8 +1070,8 @@ class InstanceNorm2d(_InstanceNorm):
1065
1070
  ValueError: If `num_features` is less than 1.
1066
1071
  ValueError: If `momentum` is not in range [0, 1].
1067
1072
  ValueError: If the shape of `gamma_init` / `beta_init` is not :math:`(C)`.
1068
- KeyError: If any of `gamma_init`/`beta_init` is str and the homonymous class inheriting from `Initializer` not
1069
- exists.
1073
+ KeyError: If any of `gamma_init`/`beta_init` is str and
1074
+ there is no homonymous class inheriting from `Initializer`.
1070
1075
 
1071
1076
  Supported Platforms:
1072
1077
  ``GPU``
@@ -1171,10 +1176,11 @@ class GroupNorm(Cell):
1171
1176
 
1172
1177
  Group Normalization is widely used in recurrent neural networks. It applies
1173
1178
  normalization on a mini-batch of inputs for each single training case as described
1174
- in the paper `Group Normalization <https://arxiv.org/pdf/1803.08494.pdf>`_. Group Normalization
1175
- divides the channels into groups and computes within each group the mean and variance for normalization,
1176
- and it performs very stable over a wide range of batch size. :math:`\gamma` and :math:`\beta` are trainable scale
1177
- and shift.
1179
+ in the paper `Group Normalization <https://arxiv.org/pdf/1803.08494.pdf>`_.
1180
+ Group Normalization
1181
+ divides the channels into groups and computes within each group the mean and variance for normalization.
1182
+ :math:`\gamma` and :math:`\beta` are scale
1183
+ and shift values obtained by training learning.
1178
1184
  It can be described using the following formula:
1179
1185
 
1180
1186
  .. math::