mindspore 2.5.0__cp310-cp310-win_amd64.whl → 2.6.0__cp310-cp310-win_amd64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of mindspore might be problematic. Click here for more details.
- mindspore/.commit_id +1 -1
- mindspore/Microsoft.VisualStudio.Telemetry.dll +0 -0
- mindspore/Newtonsoft.Json.dll +0 -0
- mindspore/__init__.py +6 -4
- mindspore/_c_dataengine.cp310-win_amd64.pyd +0 -0
- mindspore/_c_expression.cp310-win_amd64.pyd +0 -0
- mindspore/_c_mindrecord.cp310-win_amd64.pyd +0 -0
- mindspore/_check_jit_forbidden_api.py +3 -0
- mindspore/_checkparam.py +3 -33
- mindspore/_deprecated/__init__.py +17 -0
- mindspore/_deprecated/jit.py +198 -0
- mindspore/_extends/builtin_operations.py +1 -1
- mindspore/_extends/parse/__init__.py +6 -7
- mindspore/_extends/parse/compile_config.py +19 -0
- mindspore/_extends/parse/deprecated/deprecated_tensor_method.py +22 -3
- mindspore/_extends/parse/jit_fallback_modules/__init__.py +0 -0
- mindspore/_extends/parse/jit_fallback_modules/check_utils.py +123 -0
- mindspore/_extends/parse/jit_fallback_modules/third_party_modules.py +50 -0
- mindspore/_extends/parse/parser.py +25 -194
- mindspore/_extends/parse/resources.py +1 -5
- mindspore/_extends/parse/standard_method.py +109 -75
- mindspore/_extends/pijit/__init__.py +2 -2
- mindspore/_extends/pijit/pijit_func_white_list.py +16 -11
- mindspore/_extends/pijit/tensor_func_list.py +27 -0
- mindspore/_extends/utils.py +1 -1
- mindspore/amp.py +4 -4
- mindspore/atlprov.dll +0 -0
- mindspore/avcodec-59.dll +0 -0
- mindspore/avdevice-59.dll +0 -0
- mindspore/avfilter-8.dll +0 -0
- mindspore/avformat-59.dll +0 -0
- mindspore/avutil-57.dll +0 -0
- mindspore/boost/__init__.py +2 -2
- mindspore/boost/base.py +3 -7
- mindspore/boost/boost_cell_wrapper.py +2 -2
- mindspore/c1.dll +0 -0
- mindspore/c1xx.dll +0 -0
- mindspore/c2.dll +0 -0
- mindspore/common/__init__.py +4 -3
- mindspore/common/_grad_function.py +56 -0
- mindspore/common/_pijit_context.py +14 -5
- mindspore/common/_register_for_tensor.py +1 -1
- mindspore/common/_stub_tensor.py +5 -10
- mindspore/common/_tensor_cpp_method.py +1 -1
- mindspore/common/_tensor_docs.py +2014 -3386
- mindspore/common/api.py +386 -355
- mindspore/common/auto_dynamic_shape.py +41 -44
- mindspore/common/dtype.py +5 -2
- mindspore/common/dump.py +7 -5
- mindspore/common/file_system.py +3 -0
- mindspore/common/generator.py +3 -0
- mindspore/common/hook_handle.py +5 -3
- mindspore/common/initializer.py +10 -6
- mindspore/common/jit_begin_end.py +94 -0
- mindspore/common/jit_config.py +6 -1
- mindspore/common/jit_context.py +76 -0
- mindspore/common/jit_trace.py +378 -0
- mindspore/common/lazy_inline.py +2 -2
- mindspore/common/mutable.py +5 -4
- mindspore/common/parameter.py +106 -39
- mindspore/common/seed.py +2 -2
- mindspore/common/sparse_tensor.py +23 -17
- mindspore/common/tensor.py +332 -714
- mindspore/communication/__init__.py +7 -5
- mindspore/communication/_comm_helper.py +47 -2
- mindspore/communication/comm_func.py +70 -53
- mindspore/communication/management.py +83 -17
- mindspore/context.py +228 -571
- mindspore/dataset/__init__.py +44 -20
- mindspore/dataset/audio/__init__.py +2 -8
- mindspore/dataset/audio/transforms.py +3 -17
- mindspore/dataset/core/config.py +3 -3
- mindspore/dataset/engine/cache_client.py +1 -1
- mindspore/dataset/engine/datasets.py +102 -120
- mindspore/dataset/engine/datasets_audio.py +22 -22
- mindspore/dataset/engine/datasets_standard_format.py +43 -24
- mindspore/dataset/engine/datasets_text.py +78 -85
- mindspore/dataset/engine/datasets_user_defined.py +109 -77
- mindspore/dataset/engine/datasets_vision.py +111 -108
- mindspore/dataset/engine/iterators.py +5 -3
- mindspore/dataset/engine/obs/obs_mindrecord_dataset.py +1 -1
- mindspore/dataset/engine/samplers.py +279 -57
- mindspore/dataset/engine/serializer_deserializer.py +2 -1
- mindspore/dataset/engine/validators.py +10 -0
- mindspore/dataset/text/__init__.py +7 -6
- mindspore/dataset/text/transforms.py +6 -5
- mindspore/dataset/text/utils.py +3 -3
- mindspore/dataset/transforms/__init__.py +0 -9
- mindspore/dataset/transforms/transforms.py +3 -3
- mindspore/dataset/utils/browse_dataset.py +1 -1
- mindspore/dataset/vision/__init__.py +2 -9
- mindspore/dataset/vision/transforms.py +202 -158
- mindspore/dataset/vision/utils.py +7 -5
- mindspore/device_context/ascend/op_debug.py +60 -1
- mindspore/device_context/ascend/op_tuning.py +0 -4
- mindspore/device_manager.py +39 -3
- mindspore/dnnl.dll +0 -0
- mindspore/dpcmi.dll +0 -0
- mindspore/experimental/es/embedding_service.py +35 -27
- mindspore/experimental/llm_boost/ascend_native/llama_boost_ascend_native.py +0 -2
- mindspore/experimental/map_parameter.py +4 -4
- mindspore/experimental/optim/adadelta.py +22 -26
- mindspore/experimental/optim/adagrad.py +4 -4
- mindspore/experimental/optim/adam.py +4 -0
- mindspore/experimental/optim/adamax.py +4 -4
- mindspore/experimental/optim/adamw.py +4 -0
- mindspore/experimental/optim/asgd.py +1 -1
- mindspore/experimental/optim/lr_scheduler.py +40 -22
- mindspore/experimental/optim/radam.py +5 -5
- mindspore/experimental/optim/rprop.py +1 -1
- mindspore/experimental/optim/sgd.py +1 -1
- mindspore/hal/contiguous_tensors_handle.py +6 -10
- mindspore/hal/device.py +55 -81
- mindspore/hal/event.py +38 -55
- mindspore/hal/memory.py +115 -147
- mindspore/hal/stream.py +81 -125
- mindspore/include/dataset/constants.h +7 -4
- mindspore/include/dataset/execute.h +2 -2
- mindspore/jpeg62.dll +0 -0
- mindspore/log.py +40 -2
- mindspore/mindrecord/__init__.py +20 -7
- mindspore/mindspore_backend_common.dll +0 -0
- mindspore/mindspore_backend_manager.dll +0 -0
- mindspore/mindspore_common.dll +0 -0
- mindspore/mindspore_core.dll +0 -0
- mindspore/mindspore_dump.dll +0 -0
- mindspore/mindspore_frontend.dll +0 -0
- mindspore/mindspore_glog.dll +0 -0
- mindspore/mindspore_memory_pool.dll +0 -0
- mindspore/mindspore_ms_backend.dll +0 -0
- mindspore/mindspore_ops.dll +0 -0
- mindspore/{mindspore_backend.dll → mindspore_ops_host.dll} +0 -0
- mindspore/mindspore_ops_kernel_common.dll +0 -0
- mindspore/mindspore_profiler.dll +0 -0
- mindspore/mindspore_pyboost.dll +0 -0
- mindspore/mindspore_pynative.dll +0 -0
- mindspore/mindspore_res_manager.dll +0 -0
- mindspore/mindspore_runtime_pipeline.dll +0 -0
- mindspore/mint/__init__.py +133 -702
- mindspore/mint/distributed/__init__.py +5 -1
- mindspore/mint/distributed/distributed.py +198 -113
- mindspore/mint/linalg/__init__.py +2 -0
- mindspore/mint/nn/__init__.py +280 -18
- mindspore/mint/nn/functional.py +282 -64
- mindspore/mint/nn/layer/__init__.py +4 -0
- mindspore/mint/nn/layer/_functions.py +7 -3
- mindspore/mint/nn/layer/activation.py +120 -13
- mindspore/mint/nn/layer/conv.py +234 -28
- mindspore/mint/nn/layer/normalization.py +15 -16
- mindspore/mint/nn/layer/padding.py +1 -1
- mindspore/mint/nn/layer/pooling.py +66 -1
- mindspore/mint/optim/__init__.py +2 -1
- mindspore/mint/optim/sgd.py +171 -0
- mindspore/msobj140.dll +0 -0
- mindspore/mspdb140.dll +0 -0
- mindspore/mspdbcore.dll +0 -0
- mindspore/mspdbst.dll +0 -0
- mindspore/mspft140.dll +0 -0
- mindspore/msvcdis140.dll +0 -0
- mindspore/msvcp140_1.dll +0 -0
- mindspore/msvcp140_2.dll +0 -0
- mindspore/msvcp140_atomic_wait.dll +0 -0
- mindspore/msvcp140_codecvt_ids.dll +0 -0
- mindspore/nn/__init__.py +4 -1
- mindspore/nn/cell.py +1253 -179
- mindspore/nn/layer/activation.py +23 -21
- mindspore/nn/layer/basic.py +22 -16
- mindspore/nn/layer/container.py +1 -1
- mindspore/nn/layer/conv.py +53 -42
- mindspore/nn/layer/embedding.py +9 -8
- mindspore/nn/layer/normalization.py +48 -42
- mindspore/nn/layer/pooling.py +75 -31
- mindspore/nn/layer/transformer.py +11 -10
- mindspore/nn/learning_rate_schedule.py +4 -2
- mindspore/nn/loss/loss.py +27 -19
- mindspore/nn/optim/ada_grad.py +6 -5
- mindspore/nn/optim/adadelta.py +9 -7
- mindspore/nn/optim/adafactor.py +1 -1
- mindspore/nn/optim/adam.py +18 -14
- mindspore/nn/optim/adamax.py +8 -7
- mindspore/nn/optim/adasum.py +5 -5
- mindspore/nn/optim/asgd.py +3 -1
- mindspore/nn/optim/ftrl.py +11 -9
- mindspore/nn/optim/lamb.py +1 -1
- mindspore/nn/optim/lazyadam.py +12 -10
- mindspore/nn/optim/momentum.py +7 -6
- mindspore/nn/optim/optimizer.py +2 -2
- mindspore/nn/optim/proximal_ada_grad.py +12 -10
- mindspore/nn/optim/rmsprop.py +13 -12
- mindspore/nn/optim/rprop.py +9 -7
- mindspore/nn/optim/sgd.py +9 -6
- mindspore/nn/optim/tft_wrapper.py +5 -2
- mindspore/nn/probability/bijector/bijector.py +17 -11
- mindspore/nn/probability/bijector/gumbel_cdf.py +5 -5
- mindspore/nn/probability/bijector/invert.py +2 -2
- mindspore/nn/probability/bijector/scalar_affine.py +3 -3
- mindspore/nn/probability/bijector/softplus.py +3 -2
- mindspore/nn/probability/distribution/beta.py +3 -3
- mindspore/nn/probability/distribution/categorical.py +1 -1
- mindspore/nn/probability/distribution/cauchy.py +4 -2
- mindspore/nn/probability/distribution/exponential.py +6 -7
- mindspore/nn/probability/distribution/gamma.py +2 -2
- mindspore/nn/probability/distribution/gumbel.py +2 -2
- mindspore/nn/probability/distribution/half_normal.py +5 -3
- mindspore/nn/probability/distribution/logistic.py +5 -3
- mindspore/nn/probability/distribution/poisson.py +1 -1
- mindspore/nn/probability/distribution/uniform.py +5 -3
- mindspore/nn/reinforcement/_tensors_queue.py +1 -1
- mindspore/nn/reinforcement/tensor_array.py +1 -1
- mindspore/nn/wrap/__init__.py +6 -6
- mindspore/nn/wrap/cell_wrapper.py +178 -117
- mindspore/nn/wrap/grad_reducer.py +45 -36
- mindspore/nn/wrap/loss_scale.py +3 -3
- mindspore/numpy/array_creations.py +3 -3
- mindspore/numpy/array_ops.py +1 -1
- mindspore/numpy/utils.py +1 -2
- mindspore/numpy/utils_const.py +1 -2
- mindspore/opencv_core452.dll +0 -0
- mindspore/opencv_imgcodecs452.dll +0 -0
- mindspore/opencv_imgproc452.dll +0 -0
- mindspore/ops/__init__.py +3 -2
- mindspore/ops/_grad_experimental/grad_comm_ops.py +18 -3
- mindspore/ops/_grad_experimental/grad_debug_ops.py +8 -1
- mindspore/ops/_grad_experimental/taylor_rule.py +29 -0
- mindspore/ops/_register_for_op.py +0 -11
- mindspore/{ops_generate → ops/_utils}/arg_dtype_cast.py +123 -4
- mindspore/{ops_generate → ops/_utils}/arg_handler.py +3 -4
- mindspore/ops/_vmap/vmap_array_ops.py +32 -6
- mindspore/ops/_vmap/vmap_grad_nn_ops.py +2 -1
- mindspore/ops/_vmap/vmap_math_ops.py +4 -7
- mindspore/ops/_vmap/vmap_nn_ops.py +9 -8
- mindspore/ops/auto_generate/__init__.py +4 -3
- mindspore/ops/auto_generate/cpp_create_prim_instance_helper.py +127 -52
- mindspore/ops/auto_generate/gen_extend_func.py +286 -208
- mindspore/ops/auto_generate/gen_ops_def.py +2783 -2335
- mindspore/ops/auto_generate/gen_ops_prim.py +8992 -2686
- mindspore/ops/auto_generate/pyboost_inner_prim.py +106 -76
- mindspore/ops/composite/__init__.py +2 -1
- mindspore/ops/composite/base.py +19 -24
- mindspore/ops/composite/math_ops.py +6 -16
- mindspore/ops/composite/multitype_ops/__init__.py +5 -2
- mindspore/ops/composite/multitype_ops/_compile_utils.py +4 -5
- mindspore/ops/composite/multitype_ops/_constexpr_utils.py +1 -2
- mindspore/ops/composite/multitype_ops/add_impl.py +2 -1
- mindspore/ops/composite/multitype_ops/bitwise_and_impl.py +2 -1
- mindspore/ops/composite/multitype_ops/bitwise_or_impl.py +2 -1
- mindspore/ops/composite/multitype_ops/bitwise_xor_impl.py +2 -1
- mindspore/ops/composite/multitype_ops/div_impl.py +6 -4
- mindspore/ops/composite/multitype_ops/equal_impl.py +4 -3
- mindspore/ops/composite/multitype_ops/floordiv_impl.py +2 -1
- mindspore/ops/composite/multitype_ops/getitem_impl.py +3 -2
- mindspore/ops/composite/multitype_ops/greater_equal_impl.py +4 -3
- mindspore/ops/composite/multitype_ops/greater_impl.py +4 -3
- mindspore/ops/composite/multitype_ops/in_impl.py +2 -1
- mindspore/ops/composite/multitype_ops/invert_impl.py +50 -0
- mindspore/ops/composite/multitype_ops/left_shift_impl.py +2 -1
- mindspore/ops/composite/multitype_ops/less_equal_impl.py +4 -3
- mindspore/ops/composite/multitype_ops/less_impl.py +4 -3
- mindspore/ops/composite/multitype_ops/logic_not_impl.py +3 -2
- mindspore/ops/composite/multitype_ops/logical_and_impl.py +2 -1
- mindspore/ops/composite/multitype_ops/logical_or_impl.py +2 -1
- mindspore/ops/composite/multitype_ops/mod_impl.py +2 -1
- mindspore/ops/composite/multitype_ops/mul_impl.py +3 -2
- mindspore/ops/composite/multitype_ops/negative_impl.py +2 -1
- mindspore/ops/composite/multitype_ops/not_equal_impl.py +2 -1
- mindspore/ops/composite/multitype_ops/not_in_impl.py +2 -1
- mindspore/ops/composite/multitype_ops/ones_like_impl.py +18 -0
- mindspore/ops/composite/multitype_ops/pow_impl.py +2 -1
- mindspore/ops/composite/multitype_ops/right_shift_impl.py +2 -1
- mindspore/ops/composite/multitype_ops/setitem_impl.py +2 -1
- mindspore/ops/composite/multitype_ops/sub_impl.py +2 -1
- mindspore/ops/function/__init__.py +28 -2
- mindspore/ops/function/_add_attr_func.py +58 -0
- mindspore/ops/function/array_func.py +1631 -2347
- mindspore/ops/function/clip_func.py +38 -45
- mindspore/ops/function/debug_func.py +36 -44
- mindspore/ops/function/grad/__init__.py +1 -0
- mindspore/ops/function/grad/grad_func.py +104 -71
- mindspore/ops/function/image_func.py +1 -1
- mindspore/ops/function/linalg_func.py +46 -78
- mindspore/ops/function/math_func.py +3024 -3855
- mindspore/ops/function/nn_func.py +678 -274
- mindspore/ops/function/other_func.py +159 -1
- mindspore/ops/function/parameter_func.py +17 -30
- mindspore/ops/function/random_func.py +216 -361
- mindspore/ops/function/reshard_func.py +4 -70
- mindspore/ops/function/sparse_func.py +3 -3
- mindspore/ops/function/sparse_unary_func.py +5 -5
- mindspore/ops/function/spectral_func.py +25 -58
- mindspore/ops/function/vmap_func.py +26 -18
- mindspore/ops/functional.py +8 -5
- mindspore/ops/functional_overload.py +655 -4
- mindspore/ops/op_info_register.py +32 -244
- mindspore/ops/operations/__init__.py +21 -14
- mindspore/ops/operations/_custom_ops_utils.py +235 -0
- mindspore/ops/operations/_grad_ops.py +1 -10
- mindspore/ops/operations/_inner_ops.py +5 -76
- mindspore/ops/operations/_ms_kernel.py +4 -10
- mindspore/ops/operations/_rl_inner_ops.py +1 -1
- mindspore/ops/operations/_scalar_ops.py +3 -2
- mindspore/ops/operations/_sequence_ops.py +1 -1
- mindspore/ops/operations/_tensor_array.py +1 -1
- mindspore/ops/operations/array_ops.py +39 -24
- mindspore/ops/operations/comm_ops.py +150 -107
- mindspore/ops/operations/custom_ops.py +287 -32
- mindspore/ops/operations/debug_ops.py +119 -16
- mindspore/ops/operations/inner_ops.py +1 -1
- mindspore/ops/operations/linalg_ops.py +1 -58
- mindspore/ops/operations/manually_defined/_inner.py +1 -1
- mindspore/ops/operations/manually_defined/ops_def.py +746 -79
- mindspore/ops/operations/math_ops.py +21 -18
- mindspore/ops/operations/nn_ops.py +67 -224
- mindspore/ops/operations/other_ops.py +62 -9
- mindspore/ops/operations/random_ops.py +13 -7
- mindspore/ops/operations/reshard_ops.py +1 -1
- mindspore/ops/operations/sparse_ops.py +2 -2
- mindspore/ops/primitive.py +43 -32
- mindspore/ops/tensor_method.py +243 -17
- mindspore/ops_generate/__init__.py +0 -5
- mindspore/ops_generate/aclnn/__init__.py +0 -0
- mindspore/ops_generate/{aclnn_kernel_register_auto_cc_generator.py → aclnn/aclnn_kernel_register_auto_cc_generator.py} +43 -18
- mindspore/ops_generate/{gen_aclnn_implement.py → aclnn/gen_aclnn_implement.py} +49 -51
- mindspore/ops_generate/api/__init__.py +0 -0
- mindspore/ops_generate/{add_tensor_docs_generator.py → api/add_tensor_docs_generator.py} +9 -7
- mindspore/ops_generate/{cpp_create_prim_instance_helper_generator.py → api/cpp_create_prim_instance_helper_generator.py} +6 -9
- mindspore/ops_generate/{functional_map_cpp_generator.py → api/functional_map_cpp_generator.py} +25 -12
- mindspore/ops_generate/{functional_overload_py_generator.py → api/functional_overload_py_generator.py} +8 -6
- mindspore/ops_generate/{functions_cc_generator.py → api/functions_cc_generator.py} +14 -10
- mindspore/ops_generate/api/gen_api.py +103 -0
- mindspore/ops_generate/{op_api_proto.py → api/op_api_proto.py} +98 -69
- mindspore/ops_generate/{tensor_func_reg_cpp_generator.py → api/tensor_func_reg_cpp_generator.py} +82 -43
- mindspore/ops_generate/common/__init__.py +0 -0
- mindspore/ops_generate/common/gen_constants.py +91 -0
- mindspore/ops_generate/{gen_utils.py → common/gen_utils.py} +72 -19
- mindspore/ops_generate/{op_proto.py → common/op_proto.py} +64 -1
- mindspore/ops_generate/{template.py → common/template.py} +96 -84
- mindspore/ops_generate/gen_ops.py +23 -325
- mindspore/ops_generate/op_def/__init__.py +0 -0
- mindspore/ops_generate/op_def/gen_op_def.py +90 -0
- mindspore/ops_generate/{lite_ops_cpp_generator.py → op_def/lite_ops_cpp_generator.py} +47 -11
- mindspore/ops_generate/{ops_def_cc_generator.py → op_def/ops_def_cc_generator.py} +18 -10
- mindspore/ops_generate/{ops_def_h_generator.py → op_def/ops_def_h_generator.py} +5 -5
- mindspore/ops_generate/{ops_name_h_generator.py → op_def/ops_name_h_generator.py} +30 -15
- mindspore/ops_generate/op_def/ops_primitive_h_generator.py +125 -0
- mindspore/ops_generate/op_def_py/__init__.py +0 -0
- mindspore/ops_generate/op_def_py/gen_op_def_py.py +47 -0
- mindspore/ops_generate/{op_def_py_generator.py → op_def_py/op_def_py_generator.py} +6 -5
- mindspore/ops_generate/{op_prim_py_generator.py → op_def_py/op_prim_py_generator.py} +24 -15
- mindspore/ops_generate/pyboost/__init__.py +0 -0
- mindspore/ops_generate/{auto_grad_impl_cc_generator.py → pyboost/auto_grad_impl_cc_generator.py} +11 -7
- mindspore/ops_generate/{auto_grad_reg_cc_generator.py → pyboost/auto_grad_reg_cc_generator.py} +7 -7
- mindspore/ops_generate/{gen_pyboost_func.py → pyboost/gen_pyboost_func.py} +40 -16
- mindspore/ops_generate/{op_template_parser.py → pyboost/op_template_parser.py} +105 -24
- mindspore/ops_generate/{pyboost_functions_cpp_generator.py → pyboost/pyboost_functions_cpp_generator.py} +55 -18
- mindspore/ops_generate/{pyboost_functions_h_generator.py → pyboost/pyboost_functions_h_generator.py} +42 -10
- mindspore/ops_generate/{pyboost_functions_py_generator.py → pyboost/pyboost_functions_py_generator.py} +6 -6
- mindspore/ops_generate/{pyboost_grad_function_cpp_generator.py → pyboost/pyboost_grad_function_cpp_generator.py} +11 -10
- mindspore/ops_generate/{pyboost_inner_prim_generator.py → pyboost/pyboost_inner_prim_generator.py} +8 -7
- mindspore/ops_generate/{pyboost_native_grad_functions_generator.py → pyboost/pyboost_native_grad_functions_generator.py} +14 -10
- mindspore/ops_generate/{pyboost_op_cpp_code_generator.py → pyboost/pyboost_op_cpp_code_generator.py} +140 -53
- mindspore/ops_generate/{pyboost_overload_functions_cpp_generator.py → pyboost/pyboost_overload_functions_cpp_generator.py} +28 -15
- mindspore/ops_generate/{pyboost_utils.py → pyboost/pyboost_utils.py} +88 -4
- mindspore/ops_generate/resources/__init__.py +0 -0
- mindspore/ops_generate/resources/resource_list.py +30 -0
- mindspore/ops_generate/resources/resource_loader.py +36 -0
- mindspore/ops_generate/resources/resource_manager.py +64 -0
- mindspore/ops_generate/resources/yaml_loader.py +88 -0
- mindspore/ops_generate/tensor_py_cc_generator.py +122 -0
- mindspore/parallel/__init__.py +6 -2
- mindspore/parallel/_auto_parallel_context.py +140 -12
- mindspore/parallel/_cell_wrapper.py +132 -15
- mindspore/parallel/_parallel_serialization.py +95 -4
- mindspore/parallel/_ps_context.py +1 -1
- mindspore/parallel/_recovery_context.py +7 -2
- mindspore/parallel/_tensor.py +142 -18
- mindspore/parallel/_utils.py +198 -25
- mindspore/parallel/algo_parameter_config.py +3 -3
- mindspore/parallel/auto_parallel.py +732 -0
- mindspore/parallel/checkpoint_convert.py +159 -0
- mindspore/parallel/checkpoint_transform.py +658 -37
- mindspore/parallel/cluster/process_entity/_api.py +151 -19
- mindspore/parallel/cluster/run.py +1 -1
- mindspore/parallel/function/__init__.py +24 -0
- mindspore/parallel/function/reshard_func.py +258 -0
- mindspore/parallel/nn/__init__.py +25 -0
- mindspore/parallel/nn/parallel_cell_wrapper.py +263 -0
- mindspore/parallel/nn/parallel_grad_reducer.py +169 -0
- mindspore/parallel/parameter_broadcast.py +24 -13
- mindspore/parallel/shard.py +137 -62
- mindspore/parallel/transform_safetensors.py +288 -95
- mindspore/pgodb140.dll +0 -0
- mindspore/pgort140.dll +0 -0
- mindspore/profiler/__init__.py +9 -5
- mindspore/profiler/analysis/parser/ascend_cann_parser.py +6 -2
- mindspore/profiler/analysis/parser/ms_framework_parser.py +4 -4
- mindspore/profiler/analysis/parser/timeline_assembly_factory/ascend_timeline_assembler.py +7 -4
- mindspore/profiler/analysis/parser/timeline_assembly_factory/trace_view_container.py +25 -0
- mindspore/profiler/analysis/parser/timeline_creator/fwk_timeline_creator.py +3 -3
- mindspore/profiler/analysis/parser/timeline_event/fwk_event.py +241 -86
- mindspore/profiler/analysis/viewer/ascend_communication_viewer.py +41 -2
- mindspore/profiler/analysis/viewer/ascend_kernel_details_viewer.py +33 -35
- mindspore/profiler/analysis/viewer/ascend_memory_viewer.py +7 -0
- mindspore/profiler/analysis/viewer/ascend_op_memory_viewer.py +8 -3
- mindspore/profiler/analysis/viewer/ascend_step_trace_time_viewer.py +141 -30
- mindspore/profiler/analysis/viewer/ms_dataset_viewer.py +5 -6
- mindspore/profiler/common/ascend_msprof_exporter.py +5 -4
- mindspore/profiler/common/constant.py +12 -0
- mindspore/profiler/common/msprof_cmd_tool.py +42 -23
- mindspore/profiler/common/path_manager.py +24 -0
- mindspore/profiler/common/profiler_context.py +26 -2
- mindspore/profiler/common/profiler_meta_data.py +74 -0
- mindspore/profiler/common/profiler_parameters.py +59 -18
- mindspore/profiler/common/profiler_path_manager.py +66 -7
- mindspore/profiler/dynamic_profiler.py +112 -79
- mindspore/profiler/envprofiler.py +26 -1
- mindspore/profiler/experimental_config.py +197 -0
- mindspore/profiler/mstx.py +57 -14
- mindspore/profiler/platform/npu_profiler.py +33 -7
- mindspore/profiler/profiler.py +541 -45
- mindspore/profiler/profiler_action_controller.py +1 -1
- mindspore/profiler/profiler_interface.py +4 -0
- mindspore/profiler/schedule.py +57 -22
- mindspore/rewrite/api/node.py +15 -13
- mindspore/rewrite/api/symbol_tree.py +1 -1
- mindspore/run_check/_check_version.py +25 -14
- mindspore/run_check/run_check.py +1 -1
- mindspore/runtime/__init__.py +2 -2
- mindspore/runtime/executor.py +40 -11
- mindspore/runtime/memory.py +37 -13
- mindspore/safeguard/rewrite_obfuscation.py +12 -9
- mindspore/swresample-4.dll +0 -0
- mindspore/swscale-6.dll +0 -0
- mindspore/tbbmalloc.dll +0 -0
- mindspore/tinyxml2.dll +0 -0
- mindspore/train/__init__.py +8 -8
- mindspore/train/_utils.py +43 -9
- mindspore/train/amp.py +1 -1
- mindspore/train/callback/__init__.py +2 -2
- mindspore/train/callback/_callback.py +2 -16
- mindspore/train/callback/_checkpoint.py +24 -40
- mindspore/train/callback/_cluster_monitor.py +14 -18
- mindspore/train/callback/_flops_collector.py +2 -3
- mindspore/train/callback/_history.py +7 -4
- mindspore/train/callback/_lambda_callback.py +2 -2
- mindspore/train/callback/_landscape.py +0 -3
- mindspore/train/callback/_loss_monitor.py +2 -1
- mindspore/train/callback/_on_request_exit.py +6 -5
- mindspore/train/callback/_reduce_lr_on_plateau.py +11 -6
- mindspore/train/callback/_summary_collector.py +8 -13
- mindspore/train/callback/_time_monitor.py +2 -1
- mindspore/train/callback/{_tft_register.py → _train_fault_tolerance.py} +204 -105
- mindspore/train/data_sink.py +25 -2
- mindspore/train/dataset_helper.py +4 -5
- mindspore/train/loss_scale_manager.py +8 -7
- mindspore/train/metrics/accuracy.py +3 -3
- mindspore/train/metrics/confusion_matrix.py +9 -9
- mindspore/train/metrics/error.py +3 -3
- mindspore/train/metrics/hausdorff_distance.py +4 -4
- mindspore/train/metrics/mean_surface_distance.py +3 -3
- mindspore/train/metrics/metric.py +0 -12
- mindspore/train/metrics/occlusion_sensitivity.py +4 -2
- mindspore/train/metrics/precision.py +8 -6
- mindspore/train/metrics/recall.py +9 -9
- mindspore/train/metrics/root_mean_square_surface_distance.py +2 -2
- mindspore/train/mind_ir_pb2.py +19 -12
- mindspore/train/model.py +262 -127
- mindspore/train/serialization.py +246 -988
- mindspore/train/summary/_summary_adapter.py +2 -2
- mindspore/train/summary/summary_record.py +1 -1
- mindspore/turbojpeg.dll +0 -0
- mindspore/utils/__init__.py +3 -2
- mindspore/utils/dryrun.py +4 -2
- mindspore/utils/hooks.py +81 -0
- mindspore/utils/runtime_execution_order_check.py +2 -0
- mindspore/utils/utils.py +138 -4
- mindspore/vcmeta.dll +0 -0
- mindspore/vcruntime140.dll +0 -0
- mindspore/vcruntime140_1.dll +0 -0
- mindspore/version.py +1 -1
- {mindspore-2.5.0.dist-info → mindspore-2.6.0.dist-info}/METADATA +2 -1
- {mindspore-2.5.0.dist-info → mindspore-2.6.0.dist-info}/RECORD +485 -440
- mindspore/_install_custom.py +0 -43
- mindspore/common/_register_for_adapter.py +0 -74
- mindspore/ops/auto_generate/gen_arg_dtype_cast.py +0 -252
- mindspore/ops/auto_generate/gen_arg_handler.py +0 -136
- mindspore/ops/operations/_opaque_predicate_registry.py +0 -41
- mindspore/ops_generate/gen_constants.py +0 -190
- mindspore/ops_generate/gen_ops_inner_prim.py +0 -131
- mindspore/ops_generate/ops_primitive_h_generator.py +0 -81
- /mindspore/ops_generate/{base_generator.py → common/base_generator.py} +0 -0
- {mindspore-2.5.0.dist-info → mindspore-2.6.0.dist-info}/WHEEL +0 -0
- {mindspore-2.5.0.dist-info → mindspore-2.6.0.dist-info}/entry_points.txt +0 -0
- {mindspore-2.5.0.dist-info → mindspore-2.6.0.dist-info}/top_level.txt +0 -0
|
@@ -1,4 +1,4 @@
|
|
|
1
|
-
# Copyright
|
|
1
|
+
# Copyright 2023 Huawei Technologies Co., Ltd
|
|
2
2
|
#
|
|
3
3
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
4
|
# you may not use this file except in compliance with the License.
|
|
@@ -17,17 +17,20 @@ from mindspore.common import dtype as mstype
|
|
|
17
17
|
from mindspore.ops.auto_generate.pyboost_inner_prim import *
|
|
18
18
|
|
|
19
19
|
|
|
20
|
-
def
|
|
20
|
+
def acosh(input):
|
|
21
21
|
r"""
|
|
22
|
-
Computes
|
|
22
|
+
Computes inverse hyperbolic cosine of the inputs element-wise.
|
|
23
23
|
|
|
24
24
|
.. math::
|
|
25
25
|
|
|
26
|
-
out_i = \
|
|
26
|
+
out_i = \cosh^{-1}(input_i)
|
|
27
|
+
|
|
28
|
+
.. note::
|
|
29
|
+
Given an input tensor input, the function computes inverse hyperbolic cosine of every element.
|
|
30
|
+
Input range is [1, inf].
|
|
27
31
|
|
|
28
32
|
Args:
|
|
29
|
-
input (Tensor): The
|
|
30
|
-
:math:`(N,*)`, where :math:`*` means any number of additional dimensions.
|
|
33
|
+
input (Tensor): The input tensor of inverse hyperbolic cosine function.
|
|
31
34
|
|
|
32
35
|
Returns:
|
|
33
36
|
Tensor, has the same shape as `input`. The dtype of output is float32 when dtype of `input` is in [bool, int8, uint8, int16, int32, int64]. Otherwise output has the same dtype as `input`.
|
|
@@ -42,28 +45,25 @@ def acos(input):
|
|
|
42
45
|
>>> import mindspore
|
|
43
46
|
>>> import numpy as np
|
|
44
47
|
>>> from mindspore import Tensor, ops
|
|
45
|
-
>>> input = Tensor(np.array([0
|
|
46
|
-
>>> output = ops.
|
|
48
|
+
>>> input = Tensor(np.array([1.0, 1.5, 3.0, 100.0]), mindspore.float32)
|
|
49
|
+
>>> output = ops.acosh_ext(input)
|
|
47
50
|
>>> print(output)
|
|
48
|
-
[0.
|
|
51
|
+
[0. 0.9624236 1.7627472 5.298292 ]
|
|
49
52
|
"""
|
|
50
|
-
return
|
|
53
|
+
return acosh_impl(input)
|
|
51
54
|
|
|
52
55
|
|
|
53
|
-
def
|
|
56
|
+
def acos(input):
|
|
54
57
|
r"""
|
|
55
|
-
Computes
|
|
58
|
+
Computes arccosine of input tensors element-wise.
|
|
56
59
|
|
|
57
60
|
.. math::
|
|
58
61
|
|
|
59
|
-
out_i = \
|
|
60
|
-
|
|
61
|
-
.. note::
|
|
62
|
-
Given an input tensor input, the function computes inverse hyperbolic cosine of every element.
|
|
63
|
-
Input range is [1, inf].
|
|
62
|
+
out_i = \cos^{-1}(input_i)
|
|
64
63
|
|
|
65
64
|
Args:
|
|
66
|
-
input (Tensor): The
|
|
65
|
+
input (Tensor): The shape of tensor is
|
|
66
|
+
:math:`(N,*)`, where :math:`*` means any number of additional dimensions.
|
|
67
67
|
|
|
68
68
|
Returns:
|
|
69
69
|
Tensor, has the same shape as `input`. The dtype of output is float32 when dtype of `input` is in [bool, int8, uint8, int16, int32, int64]. Otherwise output has the same dtype as `input`.
|
|
@@ -78,12 +78,12 @@ def acosh(input):
|
|
|
78
78
|
>>> import mindspore
|
|
79
79
|
>>> import numpy as np
|
|
80
80
|
>>> from mindspore import Tensor, ops
|
|
81
|
-
>>> input = Tensor(np.array([
|
|
82
|
-
>>> output = ops.
|
|
81
|
+
>>> input = Tensor(np.array([0.74, 0.04, 0.30, 0.56]), mindspore.float32)
|
|
82
|
+
>>> output = ops.acos_ext(input)
|
|
83
83
|
>>> print(output)
|
|
84
|
-
[0.
|
|
84
|
+
[0.7377037 1.5307857 1.2661037 0.9764114]
|
|
85
85
|
"""
|
|
86
|
-
return
|
|
86
|
+
return acos_impl(input)
|
|
87
87
|
|
|
88
88
|
|
|
89
89
|
def adaptive_avg_pool2d_grad(grad_output, x):
|
|
@@ -237,16 +237,16 @@ def argmin(input, dim=None, keepdim=False):
|
|
|
237
237
|
Examples:
|
|
238
238
|
>>> import numpy as np
|
|
239
239
|
>>> from mindspore import Tensor
|
|
240
|
-
>>> from mindspore import
|
|
240
|
+
>>> from mindspore import ops
|
|
241
241
|
>>> x = Tensor(np.array([[1, 20, 5], [67, 8, 9], [130, 24, 15]]).astype(np.float32))
|
|
242
|
-
>>> output =
|
|
242
|
+
>>> output = ops.auto_generate.argmin_ext(x, dim=-1)
|
|
243
243
|
>>> print(output)
|
|
244
244
|
[0 1 2]
|
|
245
245
|
"""
|
|
246
246
|
return argmin_impl(input, dim, keepdim)
|
|
247
247
|
|
|
248
248
|
|
|
249
|
-
def argsort(input, dim=-1, descending=False):
|
|
249
|
+
def argsort(input, dim=-1, descending=False, stable=False):
|
|
250
250
|
r"""
|
|
251
251
|
Sorts the input tensor along the given dimension in specified order and return the sorted indices.
|
|
252
252
|
|
|
@@ -259,39 +259,44 @@ def argsort(input, dim=-1, descending=False):
|
|
|
259
259
|
The Ascend backend only supports sorting the last dimension.
|
|
260
260
|
descending (bool, optional): The sort order. If `descending` is ``True`` then the elements
|
|
261
261
|
are sorted in descending order by value. Otherwise sort in ascending order. Default: ``False`` .
|
|
262
|
+
stable (bool, optional): Whether to use stable sorting algorithm. Default: ``False``.
|
|
262
263
|
|
|
263
264
|
Returns:
|
|
264
265
|
Tensor, the indices of sorted input tensor. Data type is int64.
|
|
265
266
|
|
|
267
|
+
Raises:
|
|
268
|
+
ValueError: If `dim` is out of range.
|
|
269
|
+
TypeError: If dtype of `dim` is not int32.
|
|
270
|
+
TypeError: If dtype of `descending` is not bool.
|
|
271
|
+
TypeError: If dtype of `stable` is not bool.
|
|
272
|
+
|
|
266
273
|
Supported Platforms:
|
|
267
274
|
``Ascend``
|
|
268
275
|
|
|
269
276
|
Examples:
|
|
270
277
|
>>> import mindspore
|
|
271
278
|
>>> import numpy as np
|
|
272
|
-
>>> from mindspore import Tensor
|
|
273
|
-
>>> import mindspore.mint as mint
|
|
279
|
+
>>> from mindspore import Tensor, ops
|
|
274
280
|
>>> x = Tensor(np.array([[8, 2, 1], [5, 9, 3], [4, 6, 7]]), mindspore.float16)
|
|
275
|
-
>>> sort =
|
|
281
|
+
>>> sort = ops.auto_generate.argsort_ext(x)
|
|
276
282
|
>>> print(sort)
|
|
277
283
|
[[2 1 0]
|
|
278
|
-
|
|
279
|
-
|
|
284
|
+
[2 0 1]
|
|
285
|
+
[0 1 2]]
|
|
280
286
|
"""
|
|
281
|
-
return argsort_impl(input, dim, descending)
|
|
287
|
+
return argsort_impl(input, dim, descending, stable)
|
|
282
288
|
|
|
283
289
|
|
|
284
|
-
def
|
|
290
|
+
def asinh(input):
|
|
285
291
|
r"""
|
|
286
|
-
Computes
|
|
292
|
+
Computes inverse hyperbolic sine of the input element-wise.
|
|
287
293
|
|
|
288
294
|
.. math::
|
|
289
295
|
|
|
290
|
-
out_i = \
|
|
296
|
+
out_i = \sinh^{-1}(input_i)
|
|
291
297
|
|
|
292
298
|
Args:
|
|
293
|
-
input (Tensor): The
|
|
294
|
-
:math:`(N,*)`, where :math:`*` means any number of additional dimensions.
|
|
299
|
+
input (Tensor): The input tensor of inverse hyperbolic sine function.
|
|
295
300
|
|
|
296
301
|
Returns:
|
|
297
302
|
Tensor, has the same shape as `input`. The dtype of output is float32 when dtype of `input` is in [bool, int8, uint8, int16, int32, int64]. Otherwise output has the same dtype as `input`.
|
|
@@ -306,24 +311,25 @@ def asin(input):
|
|
|
306
311
|
>>> import mindspore
|
|
307
312
|
>>> import numpy as np
|
|
308
313
|
>>> from mindspore import Tensor, ops
|
|
309
|
-
>>> input = Tensor(np.array([0
|
|
310
|
-
>>> output = ops.
|
|
314
|
+
>>> input = Tensor(np.array([-5.0, 1.5, 3.0, 100.0]), mindspore.float32)
|
|
315
|
+
>>> output = ops.asinh_ext(input)
|
|
311
316
|
>>> print(output)
|
|
312
|
-
[
|
|
317
|
+
[-2.3124385 1.1947632 1.8184465 5.298342 ]
|
|
313
318
|
"""
|
|
314
|
-
return
|
|
319
|
+
return asinh_impl(input)
|
|
315
320
|
|
|
316
321
|
|
|
317
|
-
def
|
|
322
|
+
def asin(input):
|
|
318
323
|
r"""
|
|
319
|
-
Computes
|
|
324
|
+
Computes arcsine of input tensors element-wise.
|
|
320
325
|
|
|
321
326
|
.. math::
|
|
322
327
|
|
|
323
|
-
out_i = \
|
|
328
|
+
out_i = \sin^{-1}(input_i)
|
|
324
329
|
|
|
325
330
|
Args:
|
|
326
|
-
input (Tensor): The
|
|
331
|
+
input (Tensor): The shape of tensor is
|
|
332
|
+
:math:`(N,*)`, where :math:`*` means any number of additional dimensions.
|
|
327
333
|
|
|
328
334
|
Returns:
|
|
329
335
|
Tensor, has the same shape as `input`. The dtype of output is float32 when dtype of `input` is in [bool, int8, uint8, int16, int32, int64]. Otherwise output has the same dtype as `input`.
|
|
@@ -338,12 +344,12 @@ def asinh(input):
|
|
|
338
344
|
>>> import mindspore
|
|
339
345
|
>>> import numpy as np
|
|
340
346
|
>>> from mindspore import Tensor, ops
|
|
341
|
-
>>> input = Tensor(np.array([
|
|
342
|
-
>>> output = ops.
|
|
347
|
+
>>> input = Tensor(np.array([0.74, 0.04, 0.30, 0.56]), mindspore.float32)
|
|
348
|
+
>>> output = ops.asin_ext(input)
|
|
343
349
|
>>> print(output)
|
|
344
|
-
[
|
|
350
|
+
[0.8330927 0.04001068 0.30469266 0.59438497 ]
|
|
345
351
|
"""
|
|
346
|
-
return
|
|
352
|
+
return asin_impl(input)
|
|
347
353
|
|
|
348
354
|
|
|
349
355
|
def atan2(input, other):
|
|
@@ -382,7 +388,7 @@ def atan2(input, other):
|
|
|
382
388
|
>>> from mindspore import Tensor, ops
|
|
383
389
|
>>> input = Tensor(np.array([0, 1]), mindspore.float32)
|
|
384
390
|
>>> other = Tensor(np.array([1, 1]), mindspore.float32)
|
|
385
|
-
>>> output =
|
|
391
|
+
>>> output = ops.auto_generate.atan2_ext(input, other)
|
|
386
392
|
>>> print(output)
|
|
387
393
|
[0. 0.7853982]
|
|
388
394
|
"""
|
|
@@ -463,9 +469,9 @@ def avg_pool1d(input, kernel_size, stride=None, padding=0, ceil_mode=False, coun
|
|
|
463
469
|
Examples:
|
|
464
470
|
>>> import mindspore
|
|
465
471
|
>>> import numpy as np
|
|
466
|
-
>>> from mindspore import Tensor,
|
|
472
|
+
>>> from mindspore import Tensor, ops
|
|
467
473
|
>>> input_x = Tensor(np.random.randint(0, 10, [1, 3, 6]), mindspore.float32)
|
|
468
|
-
>>> output =
|
|
474
|
+
>>> output = ops.auto_generate.avg_pool1d_ext(input_x, kernel_size=6, stride=1)
|
|
469
475
|
>>> print(output.shape)
|
|
470
476
|
(1, 3, 1)
|
|
471
477
|
"""
|
|
@@ -505,15 +511,15 @@ def bincount(input, weights=None, minlength=0):
|
|
|
505
511
|
``Ascend``
|
|
506
512
|
|
|
507
513
|
Examples:
|
|
508
|
-
>>> from mindspore import
|
|
509
|
-
>>> print(
|
|
510
|
-
[1
|
|
511
|
-
>>> print(
|
|
512
|
-
[1
|
|
513
|
-
>>> w = np.array([0.3, 0.5, 0.2, 0.7, 1., -0.6]) # weights
|
|
514
|
-
>>> x = np.array([0, 1, 1, 2, 2, 2])
|
|
515
|
-
>>> print(
|
|
516
|
-
[0.3 0.7 1.1 0.0
|
|
514
|
+
>>> from mindspore import ops, Tensor
|
|
515
|
+
>>> print(ops.auto_generate.bincount_ext(Tensor(np.arange(5))))
|
|
516
|
+
[1 1 1 1 1]
|
|
517
|
+
>>> print(ops.auto_generate.bincount_ext(Tensor(np.array([0, 1, 1, 3, 2, 1, 7]))))
|
|
518
|
+
[1 3 1 1 0 0 0 1]
|
|
519
|
+
>>> w = Tensor(np.array([0.3, 0.5, 0.2, 0.7, 1., -0.6])) # weights
|
|
520
|
+
>>> x = Tensor(np.array([0, 1, 1, 2, 2, 2]))
|
|
521
|
+
>>> print(ops.auto_generate.bincount_ext(x, weights=w, minlength=5))
|
|
522
|
+
[0.3 0.7 1.1 0. 0. ]
|
|
517
523
|
"""
|
|
518
524
|
return bincount_impl(input, weights, minlength)
|
|
519
525
|
|
|
@@ -716,6 +722,54 @@ def cumsum(input, dim, dtype=None):
|
|
|
716
722
|
return cumsum_impl(input, dim, dtype)
|
|
717
723
|
|
|
718
724
|
|
|
725
|
+
def diag(input, diagonal=0):
|
|
726
|
+
r"""
|
|
727
|
+
If input is a vector (1-D tensor), then returns a 2-D square tensor with the elements of input as the diagonal.
|
|
728
|
+
|
|
729
|
+
If input is a matrix (2-D tensor), then returns a 1-D tensor with the diagonal elements of input.
|
|
730
|
+
|
|
731
|
+
The argument diagonal controls which diagonal to consider:
|
|
732
|
+
|
|
733
|
+
- If `diagonal` = 0, it is the main diagonal.
|
|
734
|
+
|
|
735
|
+
- If `diagonal` > 0, it is above the main diagonal.
|
|
736
|
+
|
|
737
|
+
- If `diagonal` < 0, it is below the main diagonal.
|
|
738
|
+
|
|
739
|
+
.. warning::
|
|
740
|
+
This is an experimental API that is subject to change or deletion.
|
|
741
|
+
|
|
742
|
+
Args:
|
|
743
|
+
input (Tensor): The input tensor.
|
|
744
|
+
diagonal (int, optional): the diagonal to consider. Defaults: ``0``.
|
|
745
|
+
|
|
746
|
+
Returns:
|
|
747
|
+
Tensor, has the same dtype as the `input`, its shape is up to `diagonal`.
|
|
748
|
+
|
|
749
|
+
- If `input` shape is :math:`(x_0)` : then output shape is :math:`(x_0 + \left | diagonal \right | , x_0 + \left | diagonal \right | )` 2-D Tensor.
|
|
750
|
+
|
|
751
|
+
- If `input` shape is :math:`(x_0, x_1)` : then output shape is main diagonal to move :math:`(\left | diagonal \right |)` elements remains elements' length 1-D Tensor.
|
|
752
|
+
|
|
753
|
+
Raises:
|
|
754
|
+
TypeError: If `input` is not a Tensor.
|
|
755
|
+
ValueError: If shape of `input` is not 1-D and 2-D.
|
|
756
|
+
|
|
757
|
+
Supported Platforms:
|
|
758
|
+
``Ascend``
|
|
759
|
+
|
|
760
|
+
Examples:
|
|
761
|
+
>>> from mindspore import Tensor, ops
|
|
762
|
+
>>> input = Tensor([1, 2, 3, 4]).astype('int32')
|
|
763
|
+
>>> output = ops.auto_generate.diag_ext(input)
|
|
764
|
+
>>> print(output)
|
|
765
|
+
[[1 0 0 0]
|
|
766
|
+
[0 2 0 0]
|
|
767
|
+
[0 0 3 0]
|
|
768
|
+
[0 0 0 4]]
|
|
769
|
+
"""
|
|
770
|
+
return diag_impl(input, diagonal)
|
|
771
|
+
|
|
772
|
+
|
|
719
773
|
def elu(input, alpha=1.0):
|
|
720
774
|
r"""
|
|
721
775
|
Exponential Linear Unit activation function.
|
|
@@ -956,6 +1010,56 @@ def unfold(input, kernel_size, dilation=1, padding=0, stride=1):
|
|
|
956
1010
|
return unfold_impl(input, converted_kernel_size, converted_dilation, converted_padding, converted_stride)
|
|
957
1011
|
|
|
958
1012
|
|
|
1013
|
+
def index_add(input, dim, index, source, alpha=1):
|
|
1014
|
+
r"""
|
|
1015
|
+
Accumulate the elements of `alpha` times `source` into the `input` by adding to the index in the order given in `index`. For example, if ``dim == 0`` , ``index[i] == j`` , and ``alpha = -1`` , then the `i` th row of `source` is subtracted from the `j` th row of `input` . The `dim` th dimension of `source` must have the same size as the length of `index` , and all other dimensions must match `input`, or an error will be raised. For a 3-D tensor, the output is defined as follows:
|
|
1016
|
+
|
|
1017
|
+
.. math::
|
|
1018
|
+
\begin{array}{ll}
|
|
1019
|
+
input[index[i],\ :,\ :]\ +=\ alpha * source[i,\ :,\ :] \qquad \#if\ dim == 0 \\
|
|
1020
|
+
input[:,\ \ index[i],\ :]\ +=\ alpha * source[:,\ \ i,\ :] \qquad \#if\ dim == 1 \\
|
|
1021
|
+
input[:,\ :,\ \ index[i]]\ +=\ alpha * source[:,\ :,\ \ i] \qquad\#if\ dim == 2 \\
|
|
1022
|
+
\end{array}
|
|
1023
|
+
|
|
1024
|
+
.. warning::
|
|
1025
|
+
This is an experimental API that is subject to change or deletion.
|
|
1026
|
+
|
|
1027
|
+
Args:
|
|
1028
|
+
input (Tensor): The input Tensor.
|
|
1029
|
+
dim (int): The dimension along which to index.
|
|
1030
|
+
index (Tensor): Add the value of "input Tensor" and `source` along the dimension of the `dim` according to the specified index value, with data type int32. The `index` must be 1D with the same size as the size of `source` in the `dim` dimension. The values of `index` should be in [0, b), where the b is the size of "input Tensor" in the `dim` dimension.
|
|
1031
|
+
source (Tensor): The input tensor with the value to add. Must have same data type as "input Tensor". The shape must be the same as "input Tensor" except the `dim` th dimension.
|
|
1032
|
+
alpha (number, optional): The scalar multiplier for source. Default: ``1``.
|
|
1033
|
+
|
|
1034
|
+
Returns:
|
|
1035
|
+
Tensor, has the same shape and dtype as `input`.
|
|
1036
|
+
|
|
1037
|
+
Raises:
|
|
1038
|
+
TypeError: If neither `index` nor `source` is a Tensor.
|
|
1039
|
+
ValueError: If the value of `dim` is out of the dimension range of `source` shape.
|
|
1040
|
+
ValueError: If `index` rank is not the same as `source` rank.
|
|
1041
|
+
ValueError: If shape of `index` is not 1D or size of `index` is not equal to dimension of source[dim].
|
|
1042
|
+
ValueError: If the shape of `source` is not the same as that of `input` except the `dim` axis.
|
|
1043
|
+
|
|
1044
|
+
Supported Platforms:
|
|
1045
|
+
``Ascend``
|
|
1046
|
+
|
|
1047
|
+
Examples:
|
|
1048
|
+
>>> import numpy as np
|
|
1049
|
+
>>> import mindspore
|
|
1050
|
+
>>> from mindspore import Tensor, ops
|
|
1051
|
+
>>> x = Tensor(np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]), mindspore.float32)
|
|
1052
|
+
>>> index = Tensor(np.array([0, 2]), mindspore.int32)
|
|
1053
|
+
>>> y = Tensor(np.array([[0.5, 1.0], [1.0, 1.5], [2.0, 2.5]]), mindspore.float32)
|
|
1054
|
+
>>> output = ops.auto_generate.index_add_ext(x, 1, index, y, alpha=1)
|
|
1055
|
+
>>> print(output)
|
|
1056
|
+
[[ 1.5 2. 4. ]
|
|
1057
|
+
[ 5. 5. 7.5]
|
|
1058
|
+
[ 9. 8. 11.5]]
|
|
1059
|
+
"""
|
|
1060
|
+
return index_add_impl(input, dim, index, source, alpha)
|
|
1061
|
+
|
|
1062
|
+
|
|
959
1063
|
def index_select(input, dim, index):
|
|
960
1064
|
r"""
|
|
961
1065
|
Generates a new Tensor that accesses the values of `input` along the specified `dim` dimension
|
|
@@ -1002,18 +1106,18 @@ def index_select(input, dim, index):
|
|
|
1002
1106
|
return index_select_impl(input, dim, index)
|
|
1003
1107
|
|
|
1004
1108
|
|
|
1005
|
-
def
|
|
1109
|
+
def inplace_adds(input, other, alpha=1):
|
|
1006
1110
|
r"""
|
|
1007
1111
|
None
|
|
1008
1112
|
"""
|
|
1009
|
-
return
|
|
1113
|
+
return inplace_adds_impl(input, other, alpha)
|
|
1010
1114
|
|
|
1011
1115
|
|
|
1012
|
-
def
|
|
1116
|
+
def inplace_add(input, other, alpha=1):
|
|
1013
1117
|
r"""
|
|
1014
1118
|
None
|
|
1015
1119
|
"""
|
|
1016
|
-
return
|
|
1120
|
+
return inplace_add_impl(input, other, alpha)
|
|
1017
1121
|
|
|
1018
1122
|
|
|
1019
1123
|
def sub_tensor_(input, other, alpha=1):
|
|
@@ -1028,7 +1132,6 @@ def isneginf(input):
|
|
|
1028
1132
|
Determines which elements are -inf for each position.
|
|
1029
1133
|
|
|
1030
1134
|
.. warning::
|
|
1031
|
-
- This is an experimental API that is subject to change.
|
|
1032
1135
|
- This API can be used only on the Atlas A2 training series.
|
|
1033
1136
|
|
|
1034
1137
|
Args:
|
|
@@ -1190,9 +1293,9 @@ def log10(input):
|
|
|
1190
1293
|
Examples:
|
|
1191
1294
|
>>> import mindspore
|
|
1192
1295
|
>>> import numpy as np
|
|
1193
|
-
>>> from mindspore import Tensor,
|
|
1296
|
+
>>> from mindspore import Tensor, ops
|
|
1194
1297
|
>>> x = Tensor(np.array([3.0, 5.0, 7.0]), mindspore.float32)
|
|
1195
|
-
>>> output =
|
|
1298
|
+
>>> output = ops.auto_generate.log10_ext(x)
|
|
1196
1299
|
>>> print(output)
|
|
1197
1300
|
[0.47712136 0.69897 0.845098 ]
|
|
1198
1301
|
"""
|
|
@@ -1207,7 +1310,6 @@ def log2(input):
|
|
|
1207
1310
|
y_i = \log_2(x_i)
|
|
1208
1311
|
|
|
1209
1312
|
.. warning::
|
|
1210
|
-
- This is an experimental API that is subject to change or deletion.
|
|
1211
1313
|
- If the input value of operator Log2 is within the range (0, 0.01] or [0.95, 1.05], the output accuracy
|
|
1212
1314
|
may be affacted.
|
|
1213
1315
|
|
|
@@ -1215,10 +1317,8 @@ def log2(input):
|
|
|
1215
1317
|
input (Tensor): Input Tensor of any dimension. The value must be greater than 0.
|
|
1216
1318
|
|
|
1217
1319
|
Returns:
|
|
1218
|
-
Tensor, has the same shape as the `input
|
|
1219
|
-
|
|
1220
|
-
- if `input.dtype` is in [float16, float32, float64, bfloat16], the output dtype is the same as the `input.dtype`.
|
|
1221
|
-
- if `input.dtype` is integer or boolean type, the output dtype is float32.
|
|
1320
|
+
Tensor, has the same shape as the `input`. If `input.dtype` is of integer or boolean type, the output dtype
|
|
1321
|
+
will be float32. Otherwise, the output dtype will be the same as `input.dtype`.
|
|
1222
1322
|
|
|
1223
1323
|
Raises:
|
|
1224
1324
|
TypeError: If `input` is not a Tensor.
|
|
@@ -1229,57 +1329,15 @@ def log2(input):
|
|
|
1229
1329
|
Examples:
|
|
1230
1330
|
>>> import mindspore
|
|
1231
1331
|
>>> import numpy as np
|
|
1232
|
-
>>> from mindspore import Tensor,
|
|
1332
|
+
>>> from mindspore import Tensor, ops
|
|
1233
1333
|
>>> x = Tensor(np.array([3.0, 5.0, 7.0]), mindspore.float32)
|
|
1234
|
-
>>> output =
|
|
1334
|
+
>>> output = ops.auto_generate.log2_ext(x)
|
|
1235
1335
|
>>> print(output)
|
|
1236
1336
|
[1.5849625 2.321928 2.807355 ]
|
|
1237
1337
|
"""
|
|
1238
1338
|
return log2_impl(input)
|
|
1239
1339
|
|
|
1240
1340
|
|
|
1241
|
-
def log_softmax(input, dim=None, dtype=None):
|
|
1242
|
-
r"""
|
|
1243
|
-
Applies the Log Softmax function to the input tensor on the specified axis.
|
|
1244
|
-
Supposes a slice in the given axis, :math:`x` for each element :math:`x_i`,
|
|
1245
|
-
the Log Softmax function is shown as follows:
|
|
1246
|
-
|
|
1247
|
-
.. math::
|
|
1248
|
-
\text{output}(x_i) = \log \left(\frac{\exp(x_i)} {\sum_{j = 0}^{N-1}\exp(x_j)}\right),
|
|
1249
|
-
|
|
1250
|
-
where :math:`N` is the length of the Tensor.
|
|
1251
|
-
|
|
1252
|
-
Args:
|
|
1253
|
-
input (Tensor): The input Tensor.
|
|
1254
|
-
dim (int, optional): The axis to perform the Log softmax operation. Default: ``None`` .
|
|
1255
|
-
|
|
1256
|
-
Keyword Args:
|
|
1257
|
-
dtype (:class:`mindspore.dtype`, optional): The desired dtype of returned Tensor. If not set to None, the input
|
|
1258
|
-
Tensor will be cast to `dtype` before the operation is performed. This is useful for preventing overflows.
|
|
1259
|
-
If set to None, stay the same as original Tensor. Default: ``None`` . Supported data type is {float16, float32, double, bfloat16}.
|
|
1260
|
-
|
|
1261
|
-
Returns:
|
|
1262
|
-
Tensor, with the same shape as the input.
|
|
1263
|
-
|
|
1264
|
-
Raises:
|
|
1265
|
-
TypeError: If `dim` is not an int.
|
|
1266
|
-
ValueError: If `dim` is not in range [-len(input.shape), len(input.shape)).
|
|
1267
|
-
|
|
1268
|
-
Supported Platforms:
|
|
1269
|
-
``Ascend``
|
|
1270
|
-
|
|
1271
|
-
Examples:
|
|
1272
|
-
>>> import mindspore
|
|
1273
|
-
>>> import numpy as np
|
|
1274
|
-
>>> from mindspore import Tensor, ops
|
|
1275
|
-
>>> logits = Tensor(np.array([1, 2, 3, 4, 5]), mindspore.float32)
|
|
1276
|
-
>>> output = ops.auto_generate.log_softmax(logits, dim=-1)
|
|
1277
|
-
>>> print(output)
|
|
1278
|
-
[-4.4519143 -3.4519143 -2.4519143 -1.4519144 -0.4519144]
|
|
1279
|
-
"""
|
|
1280
|
-
return log_softmax_impl(input, dim, dtype)
|
|
1281
|
-
|
|
1282
|
-
|
|
1283
1341
|
def logaddexp(input, other):
|
|
1284
1342
|
r"""
|
|
1285
1343
|
Computes the logarithm of the sum of exponentiations of the inputs.
|
|
@@ -1297,7 +1355,7 @@ def logaddexp(input, other):
|
|
|
1297
1355
|
input (Tensor): Input Tensor. The dtype of `input` must be float.
|
|
1298
1356
|
other (Tensor): Input Tensor. The dtype of `other` must be float.
|
|
1299
1357
|
If the shape of `input` is not equal to the shape of `other`,
|
|
1300
|
-
they must be broadcastable to a common shape
|
|
1358
|
+
they must be broadcastable to a common shape.
|
|
1301
1359
|
|
|
1302
1360
|
Returns:
|
|
1303
1361
|
Tensor, with the same dtype as `input` and `other`.
|
|
@@ -1368,6 +1426,48 @@ def logsumexp(input, dim, keepdim=False):
|
|
|
1368
1426
|
return logsumexp_impl(input, dim, keepdim)
|
|
1369
1427
|
|
|
1370
1428
|
|
|
1429
|
+
def log_softmax(input, dim=None, dtype=None):
|
|
1430
|
+
r"""
|
|
1431
|
+
Applies the Log Softmax function to the input tensor on the specified axis.
|
|
1432
|
+
Supposes a slice in the given axis, :math:`x` for each element :math:`x_i`,
|
|
1433
|
+
the Log Softmax function is shown as follows:
|
|
1434
|
+
|
|
1435
|
+
.. math::
|
|
1436
|
+
\text{output}(x_i) = \log \left(\frac{\exp(x_i)} {\sum_{j = 0}^{N-1}\exp(x_j)}\right),
|
|
1437
|
+
|
|
1438
|
+
where :math:`N` is the length of the Tensor.
|
|
1439
|
+
|
|
1440
|
+
Args:
|
|
1441
|
+
input (Tensor): The input Tensor.
|
|
1442
|
+
dim (int, optional): The axis to perform the Log softmax operation. Default: ``None`` .
|
|
1443
|
+
|
|
1444
|
+
Keyword Args:
|
|
1445
|
+
dtype (:class:`mindspore.dtype`, optional): The desired dtype of returned Tensor. If not set to None, the input
|
|
1446
|
+
Tensor will be cast to `dtype` before the operation is performed. This is useful for preventing overflows.
|
|
1447
|
+
If set to None, stay the same as original Tensor. Default: ``None`` . Supported data type is {float16, float32, double, bfloat16}.
|
|
1448
|
+
|
|
1449
|
+
Returns:
|
|
1450
|
+
Tensor, with the same shape as the input.
|
|
1451
|
+
|
|
1452
|
+
Raises:
|
|
1453
|
+
TypeError: If `dim` is not an int.
|
|
1454
|
+
ValueError: If `dim` is not in range [-len(input.shape), len(input.shape)).
|
|
1455
|
+
|
|
1456
|
+
Supported Platforms:
|
|
1457
|
+
``Ascend``
|
|
1458
|
+
|
|
1459
|
+
Examples:
|
|
1460
|
+
>>> import mindspore
|
|
1461
|
+
>>> import numpy as np
|
|
1462
|
+
>>> from mindspore import Tensor, ops
|
|
1463
|
+
>>> logits = Tensor(np.array([1, 2, 3, 4, 5]), mindspore.float32)
|
|
1464
|
+
>>> output = ops.auto_generate.log_softmax(logits, dim=-1)
|
|
1465
|
+
>>> print(output)
|
|
1466
|
+
[-4.4519143 -3.4519143 -2.4519143 -1.4519144 -0.4519144]
|
|
1467
|
+
"""
|
|
1468
|
+
return log_softmax_impl(input, dim, dtype)
|
|
1469
|
+
|
|
1470
|
+
|
|
1371
1471
|
def matmul(input, other):
|
|
1372
1472
|
r"""
|
|
1373
1473
|
None
|
|
@@ -1797,38 +1897,6 @@ def prod(input, dim=None, keepdim=False, dtype=None):
|
|
|
1797
1897
|
return prod_impl(input, dim, keepdim, dtype)
|
|
1798
1898
|
|
|
1799
1899
|
|
|
1800
|
-
def select(input, dim, index):
|
|
1801
|
-
r"""
|
|
1802
|
-
Slices the input tensor along the selected dimension at the given index.
|
|
1803
|
-
|
|
1804
|
-
.. warning::
|
|
1805
|
-
This is an experimental API that is subject to change or deletion.
|
|
1806
|
-
|
|
1807
|
-
Args:
|
|
1808
|
-
input (Tensor): the input tensor.
|
|
1809
|
-
dim (int): the dimension to slice.
|
|
1810
|
-
index (int): the index to select with.
|
|
1811
|
-
|
|
1812
|
-
Returns:
|
|
1813
|
-
Tensor.
|
|
1814
|
-
|
|
1815
|
-
Raises:
|
|
1816
|
-
TypeError: If input is not a Tensor.
|
|
1817
|
-
|
|
1818
|
-
Supported Platforms:
|
|
1819
|
-
``Ascend``
|
|
1820
|
-
|
|
1821
|
-
Examples:
|
|
1822
|
-
>>> import mindspore
|
|
1823
|
-
>>> from mindspore import Tensor, mint
|
|
1824
|
-
>>> input = Tensor([[2, 3, 4, 5],[3, 2, 4, 5]])
|
|
1825
|
-
>>> y = mint.select(input, 0, 0)
|
|
1826
|
-
>>> print(y)
|
|
1827
|
-
[2 3 4 5]
|
|
1828
|
-
"""
|
|
1829
|
-
return select_impl(input, dim, index)
|
|
1830
|
-
|
|
1831
|
-
|
|
1832
1900
|
def selu(input):
|
|
1833
1901
|
r"""
|
|
1834
1902
|
Activation function SELU (Scaled exponential Linear Unit).
|
|
@@ -1868,13 +1936,13 @@ def selu(input):
|
|
|
1868
1936
|
|
|
1869
1937
|
Examples:
|
|
1870
1938
|
>>> import mindspore
|
|
1871
|
-
>>> from mindspore import Tensor,
|
|
1939
|
+
>>> from mindspore import Tensor, ops
|
|
1872
1940
|
>>> import numpy as np
|
|
1873
1941
|
>>> input = Tensor(np.array([[-1.0, 4.0, -8.0], [2.0, -5.0, 9.0]]), mindspore.float32)
|
|
1874
|
-
>>> output =
|
|
1942
|
+
>>> output = ops.auto_generate.selu_ext(input)
|
|
1875
1943
|
>>> print(output)
|
|
1876
1944
|
[[-1.1113307 4.202804 -1.7575096]
|
|
1877
|
-
|
|
1945
|
+
[ 2.101402 -1.7462534 9.456309 ]]
|
|
1878
1946
|
"""
|
|
1879
1947
|
return selu_impl(input)
|
|
1880
1948
|
|
|
@@ -2025,50 +2093,63 @@ def sub(input, other, alpha=1):
|
|
|
2025
2093
|
|
|
2026
2094
|
def sum(input, dim=None, keepdim=False, dtype=None):
|
|
2027
2095
|
r"""
|
|
2028
|
-
|
|
2029
|
-
and the parameters `axis0` and `axis1` correspond to `dim0` and `dim1` in the reference interface respectively.
|
|
2030
|
-
|
|
2031
|
-
.. warning::
|
|
2032
|
-
This is an experimental API that is subject to change or deletion.
|
|
2033
|
-
|
|
2034
|
-
Refer to :func:`mindspore.mint.transpose` for more details.
|
|
2035
|
-
"""
|
|
2036
|
-
return sum_impl(input, dim, keepdim, dtype)
|
|
2037
|
-
|
|
2038
|
-
|
|
2039
|
-
def t(input):
|
|
2040
|
-
r"""
|
|
2041
|
-
Transpose the input tensor.
|
|
2096
|
+
Calculate sum of Tensor elements over a given dim.
|
|
2042
2097
|
|
|
2043
|
-
|
|
2044
|
-
|
|
2098
|
+
Note:
|
|
2099
|
+
The `dim` with tensor type is only used for compatibility with older versions and is not recommended.
|
|
2045
2100
|
|
|
2046
2101
|
Args:
|
|
2047
2102
|
input (Tensor): The input tensor.
|
|
2103
|
+
dim (Union[None, int, tuple(int), list(int), Tensor]): Dimensions along which a sum is performed.
|
|
2104
|
+
If ``None`` , sum all the elements of the input tensor.
|
|
2105
|
+
If the `dim` is a tuple or list of ints, a sum is performed on all the dimensions specified in the tuple.
|
|
2106
|
+
Must be in the range :math:`[-input.ndim, input.ndim)` . Default: ``None`` .
|
|
2107
|
+
keepdim (bool): Whether the output tensor has `dim` retained or not.
|
|
2108
|
+
If ``True`` , keep these reduced dimensions and the length is 1.
|
|
2109
|
+
If ``False`` , don't keep these dimensions. Default: ``False`` .
|
|
2110
|
+
dtype (:class:`mindspore.dtype`): The desired data type of returned Tensor. Default: ``None`` .
|
|
2048
2111
|
|
|
2049
2112
|
Returns:
|
|
2050
|
-
Tensor,
|
|
2113
|
+
A Tensor, sum of elements over a given `dim` in `input`.
|
|
2051
2114
|
|
|
2052
2115
|
Raises:
|
|
2053
|
-
|
|
2054
|
-
|
|
2055
|
-
|
|
2116
|
+
TypeError: If `input` is not a Tensor.
|
|
2117
|
+
TypeError: If `dim` is not an int, tulpe(int), list(int), Tensor or None.
|
|
2118
|
+
ValueError: If `dim` is not in the range :math:`[-input.ndim, input.ndim)` .
|
|
2119
|
+
TypeError: If `keepdim` is not a bool.
|
|
2056
2120
|
|
|
2057
2121
|
Supported Platforms:
|
|
2058
|
-
``Ascend``
|
|
2122
|
+
``Ascend`` ``GPU`` ``CPU``
|
|
2059
2123
|
|
|
2060
2124
|
Examples:
|
|
2061
2125
|
>>> import mindspore
|
|
2062
2126
|
>>> import numpy as np
|
|
2063
2127
|
>>> from mindspore import Tensor, ops
|
|
2064
|
-
>>>
|
|
2065
|
-
>>>
|
|
2066
|
-
|
|
2067
|
-
[[
|
|
2068
|
-
|
|
2069
|
-
|
|
2128
|
+
>>> from mindspore import dtype as mstype
|
|
2129
|
+
>>> x = Tensor(np.array([[[1, 1, 1, 1, 1, 1], [2, 2, 2, 2, 2, 2], [3, 3, 3, 3, 3, 3]],
|
|
2130
|
+
... [[4, 4, 4, 4, 4, 4], [5, 5, 5, 5, 5, 5], [6, 6, 6, 6, 6, 6]],
|
|
2131
|
+
... [[7, 7, 7, 7, 7, 7], [8, 8, 8, 8, 8, 8], [9, 9, 9, 9, 9, 9]]]), mstype.float32)
|
|
2132
|
+
>>> out = ops.sum_ext(x)
|
|
2133
|
+
>>> print(out)
|
|
2134
|
+
270.0
|
|
2135
|
+
>>> out = ops.sum_ext(x, dim=2)
|
|
2136
|
+
>>> print(out)
|
|
2137
|
+
[[ 6. 12. 18.]
|
|
2138
|
+
[24. 30. 36.]
|
|
2139
|
+
[42. 48. 54.]]
|
|
2140
|
+
>>> out = ops.sum_ext(x, dim=2, keepdim=True)
|
|
2141
|
+
>>> print(out)
|
|
2142
|
+
[[[ 6.]
|
|
2143
|
+
[12.]
|
|
2144
|
+
[18.]]
|
|
2145
|
+
[[24.]
|
|
2146
|
+
[30.]
|
|
2147
|
+
[36.]]
|
|
2148
|
+
[[42.]
|
|
2149
|
+
[48.]
|
|
2150
|
+
[54.]]]
|
|
2070
2151
|
"""
|
|
2071
|
-
return
|
|
2152
|
+
return sum_impl(input, dim, keepdim, dtype)
|
|
2072
2153
|
|
|
2073
2154
|
|
|
2074
2155
|
def topk(input, k, dim=-1, largest=True, sorted=True):
|
|
@@ -2127,7 +2208,7 @@ def topk(input, k, dim=-1, largest=True, sorted=True):
|
|
|
2127
2208
|
(Tensor(shape=[3, 2], dtype=Float32, value=
|
|
2128
2209
|
[[ 9.67299998e-01, 5.36800027e-01],
|
|
2129
2210
|
[ 6.52499974e-01, 4.68499988e-01],
|
|
2130
|
-
[ 9.67499971e-01, 8.23000014e-01]]), Tensor(shape=[3, 2], dtype=
|
|
2211
|
+
[ 9.67499971e-01, 8.23000014e-01]]), Tensor(shape=[3, 2], dtype=Int64, value=
|
|
2131
2212
|
[[3, 0],
|
|
2132
2213
|
[1, 2],
|
|
2133
2214
|
[2, 3]]))
|
|
@@ -2136,7 +2217,7 @@ def topk(input, k, dim=-1, largest=True, sorted=True):
|
|
|
2136
2217
|
(Tensor(shape=[3, 2], dtype=Float32, value=
|
|
2137
2218
|
[[ 2.44700000e-01, 4.30200011e-01],
|
|
2138
2219
|
[ 1.86800003e-01, 4.38800007e-01],
|
|
2139
|
-
[ 3.56299996e-01, 5.15200019e-01]]), Tensor(shape=[3, 2], dtype=
|
|
2220
|
+
[ 3.56299996e-01, 5.15200019e-01]]), Tensor(shape=[3, 2], dtype=Int64, value=
|
|
2140
2221
|
[[1, 2],
|
|
2141
2222
|
[3, 0],
|
|
2142
2223
|
[0, 1]]))
|
|
@@ -2148,9 +2229,6 @@ def trace(input):
|
|
|
2148
2229
|
r"""
|
|
2149
2230
|
Returns a new tensor that is the sum of the `input` main trace.
|
|
2150
2231
|
|
|
2151
|
-
Note:
|
|
2152
|
-
Input must be tensor.
|
|
2153
|
-
|
|
2154
2232
|
Args:
|
|
2155
2233
|
input (Tensor): 2-D Tensor.
|
|
2156
2234
|
|
|
@@ -2185,44 +2263,44 @@ def trace(input):
|
|
|
2185
2263
|
return trace_impl(input)
|
|
2186
2264
|
|
|
2187
2265
|
|
|
2188
|
-
def
|
|
2266
|
+
def tril(input, diagonal=0):
|
|
2189
2267
|
r"""
|
|
2190
|
-
|
|
2268
|
+
None
|
|
2269
|
+
"""
|
|
2270
|
+
return tril_impl(input, diagonal)
|
|
2271
|
+
|
|
2272
|
+
|
|
2273
|
+
def t(input):
|
|
2274
|
+
r"""
|
|
2275
|
+
Transpose the input tensor.
|
|
2191
2276
|
|
|
2192
2277
|
.. warning::
|
|
2193
2278
|
This is an experimental API that is subject to change or deletion.
|
|
2194
2279
|
|
|
2195
2280
|
Args:
|
|
2196
|
-
input(Tensor):
|
|
2197
|
-
dim0 (int): First axis.
|
|
2198
|
-
dim1 (int): Second axis.
|
|
2281
|
+
input (Tensor): The input tensor.
|
|
2199
2282
|
|
|
2200
2283
|
Returns:
|
|
2201
|
-
|
|
2284
|
+
Tensor, transpose 2D tensor, return 1D tensor as it is.
|
|
2202
2285
|
|
|
2203
2286
|
Raises:
|
|
2204
|
-
|
|
2205
|
-
|
|
2206
|
-
|
|
2287
|
+
ValueError: If the dimension of `input` is greater than 2.
|
|
2288
|
+
ValueError: If `input` is empty.
|
|
2289
|
+
TypeError: If `input` is not a tensor.
|
|
2207
2290
|
|
|
2208
2291
|
Supported Platforms:
|
|
2209
2292
|
``Ascend``
|
|
2210
2293
|
|
|
2211
2294
|
Examples:
|
|
2295
|
+
>>> import mindspore
|
|
2212
2296
|
>>> import numpy as np
|
|
2213
|
-
>>> from mindspore import
|
|
2214
|
-
>>>
|
|
2215
|
-
>>>
|
|
2216
|
-
>>> output
|
|
2217
|
-
|
|
2218
|
-
|
|
2219
|
-
|
|
2220
|
-
return transpose_impl(input, dim0, dim1)
|
|
2221
|
-
|
|
2222
|
-
|
|
2223
|
-
def tril(input, diagonal=0):
|
|
2224
|
-
r"""
|
|
2225
|
-
None
|
|
2297
|
+
>>> from mindspore import Tensor, ops
|
|
2298
|
+
>>> input = Tensor(np.array([[1, 2, 3], [4, 5, 6]]), mindspore.float32)
|
|
2299
|
+
>>> output = ops.t_ext(input)
|
|
2300
|
+
>>> print(output)
|
|
2301
|
+
[[ 1. 4.]
|
|
2302
|
+
[ 2. 5.]
|
|
2303
|
+
[ 3. 6.]]
|
|
2226
2304
|
"""
|
|
2227
|
-
return
|
|
2305
|
+
return t_impl(input)
|
|
2228
2306
|
|