mindspore 2.4.1__cp310-cp310-win_amd64.whl → 2.5.0__cp310-cp310-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of mindspore might be problematic. Click here for more details.

Files changed (372) hide show
  1. mindspore/.commit_id +1 -1
  2. mindspore/__init__.py +8 -3
  3. mindspore/_c_dataengine.cp310-win_amd64.pyd +0 -0
  4. mindspore/_c_expression.cp310-win_amd64.pyd +0 -0
  5. mindspore/_c_mindrecord.cp310-win_amd64.pyd +0 -0
  6. mindspore/_checkparam.py +0 -5
  7. mindspore/_extends/parallel_compile/akg_compiler/gen_custom_op_files.py +1 -1
  8. mindspore/_extends/parse/compile_config.py +64 -0
  9. mindspore/_extends/parse/deprecated/__init__.py +0 -0
  10. mindspore/_extends/parse/deprecated/deprecated_tensor_method.py +375 -0
  11. mindspore/_extends/parse/parser.py +23 -5
  12. mindspore/_extends/parse/standard_method.py +123 -27
  13. mindspore/_extends/pijit/pijit_func_white_list.py +1 -1
  14. mindspore/amp.py +7 -1
  15. mindspore/avcodec-59.dll +0 -0
  16. mindspore/avdevice-59.dll +0 -0
  17. mindspore/avfilter-8.dll +0 -0
  18. mindspore/avformat-59.dll +0 -0
  19. mindspore/avutil-57.dll +0 -0
  20. mindspore/boost/boost_cell_wrapper.py +136 -41
  21. mindspore/common/__init__.py +3 -1
  22. mindspore/common/_register_for_tensor.py +0 -1
  23. mindspore/common/_stub_tensor.py +25 -4
  24. mindspore/common/_tensor_cpp_method.py +17 -0
  25. mindspore/common/_tensor_docs.py +6132 -0
  26. mindspore/common/api.py +99 -25
  27. mindspore/common/dtype.py +34 -34
  28. mindspore/common/dump.py +2 -1
  29. mindspore/common/file_system.py +8 -1
  30. mindspore/common/generator.py +2 -0
  31. mindspore/common/hook_handle.py +3 -1
  32. mindspore/common/initializer.py +3 -4
  33. mindspore/common/lazy_inline.py +8 -2
  34. mindspore/common/mindir_util.py +10 -2
  35. mindspore/common/parameter.py +30 -27
  36. mindspore/common/tensor.py +713 -1337
  37. mindspore/communication/__init__.py +1 -1
  38. mindspore/communication/_comm_helper.py +10 -0
  39. mindspore/communication/comm_func.py +215 -173
  40. mindspore/communication/management.py +23 -20
  41. mindspore/context.py +292 -193
  42. mindspore/dataset/__init__.py +23 -19
  43. mindspore/dataset/callback/ds_callback.py +2 -1
  44. mindspore/dataset/core/config.py +84 -3
  45. mindspore/dataset/engine/cache_admin.py +3 -3
  46. mindspore/dataset/engine/cache_client.py +5 -4
  47. mindspore/dataset/engine/datasets.py +192 -149
  48. mindspore/dataset/engine/datasets_audio.py +14 -0
  49. mindspore/dataset/engine/datasets_standard_format.py +28 -11
  50. mindspore/dataset/engine/datasets_text.py +38 -1
  51. mindspore/dataset/engine/datasets_user_defined.py +125 -65
  52. mindspore/dataset/engine/datasets_vision.py +81 -8
  53. mindspore/dataset/engine/iterators.py +281 -63
  54. mindspore/dataset/engine/obs/util.py +8 -0
  55. mindspore/dataset/engine/queue.py +40 -0
  56. mindspore/dataset/engine/samplers.py +26 -2
  57. mindspore/dataset/engine/serializer_deserializer.py +1 -1
  58. mindspore/dataset/engine/validators.py +43 -11
  59. mindspore/dataset/transforms/py_transforms_util.py +17 -0
  60. mindspore/dataset/transforms/transforms.py +29 -12
  61. mindspore/dataset/vision/validators.py +1 -2
  62. mindspore/device_context/__init__.py +21 -0
  63. mindspore/device_context/ascend/__init__.py +25 -0
  64. mindspore/device_context/ascend/device.py +72 -0
  65. mindspore/device_context/ascend/op_debug.py +94 -0
  66. mindspore/device_context/ascend/op_precision.py +193 -0
  67. mindspore/device_context/ascend/op_tuning.py +127 -0
  68. mindspore/device_context/cpu/__init__.py +25 -0
  69. mindspore/device_context/cpu/device.py +62 -0
  70. mindspore/device_context/cpu/op_tuning.py +43 -0
  71. mindspore/device_context/gpu/__init__.py +21 -0
  72. mindspore/device_context/gpu/device.py +70 -0
  73. mindspore/device_context/gpu/op_precision.py +67 -0
  74. mindspore/device_context/gpu/op_tuning.py +175 -0
  75. mindspore/device_manager.py +134 -0
  76. mindspore/dnnl.dll +0 -0
  77. mindspore/experimental/llm_boost/__init__.py +3 -2
  78. mindspore/experimental/llm_boost/ascend_native/__init__.py +22 -0
  79. mindspore/experimental/llm_boost/ascend_native/llama_boost_ascend_native.py +211 -0
  80. mindspore/experimental/llm_boost/ascend_native/llm_boost.py +52 -0
  81. mindspore/experimental/llm_boost/atb/boost_base.py +239 -64
  82. mindspore/experimental/llm_boost/atb/llama_boost.py +52 -30
  83. mindspore/experimental/llm_boost/atb/qwen_boost.py +47 -24
  84. mindspore/experimental/llm_boost/register.py +1 -0
  85. mindspore/experimental/optim/adadelta.py +26 -22
  86. mindspore/experimental/optim/adam.py +3 -0
  87. mindspore/experimental/optim/lr_scheduler.py +33 -24
  88. mindspore/experimental/optim/radam.py +33 -30
  89. mindspore/hal/device.py +28 -0
  90. mindspore/hal/event.py +17 -0
  91. mindspore/hal/memory.py +94 -3
  92. mindspore/hal/stream.py +91 -6
  93. mindspore/include/api/context.h +1 -2
  94. mindspore/include/dataset/constants.h +2 -2
  95. mindspore/jpeg62.dll +0 -0
  96. mindspore/log.py +12 -0
  97. mindspore/mindrecord/__init__.py +1 -1
  98. mindspore/mindrecord/config.py +17 -316
  99. mindspore/mindrecord/filereader.py +1 -9
  100. mindspore/mindrecord/filewriter.py +5 -15
  101. mindspore/mindrecord/mindpage.py +1 -9
  102. mindspore/mindspore_backend.dll +0 -0
  103. mindspore/mindspore_common.dll +0 -0
  104. mindspore/mindspore_core.dll +0 -0
  105. mindspore/mindspore_glog.dll +0 -0
  106. mindspore/mindspore_ops.dll +0 -0
  107. mindspore/mint/__init__.py +824 -218
  108. mindspore/mint/distributed/__init__.py +66 -4
  109. mindspore/mint/distributed/distributed.py +2594 -44
  110. mindspore/mint/linalg/__init__.py +6 -0
  111. mindspore/mint/nn/__init__.py +473 -14
  112. mindspore/mint/nn/functional.py +486 -11
  113. mindspore/mint/nn/layer/__init__.py +17 -4
  114. mindspore/mint/nn/layer/_functions.py +330 -0
  115. mindspore/mint/nn/layer/activation.py +169 -1
  116. mindspore/mint/nn/layer/basic.py +123 -0
  117. mindspore/mint/nn/layer/conv.py +727 -0
  118. mindspore/mint/nn/layer/normalization.py +215 -19
  119. mindspore/mint/nn/layer/padding.py +797 -0
  120. mindspore/mint/nn/layer/pooling.py +170 -0
  121. mindspore/mint/optim/__init__.py +2 -1
  122. mindspore/mint/optim/adam.py +223 -0
  123. mindspore/mint/optim/adamw.py +26 -19
  124. mindspore/mint/special/__init__.py +2 -1
  125. mindspore/multiprocessing/__init__.py +5 -0
  126. mindspore/nn/__init__.py +2 -0
  127. mindspore/nn/cell.py +142 -21
  128. mindspore/nn/dynamic_lr.py +2 -1
  129. mindspore/nn/layer/activation.py +6 -6
  130. mindspore/nn/layer/basic.py +35 -25
  131. mindspore/nn/layer/channel_shuffle.py +3 -3
  132. mindspore/nn/layer/conv.py +3 -0
  133. mindspore/nn/layer/embedding.py +3 -3
  134. mindspore/nn/layer/normalization.py +8 -7
  135. mindspore/nn/layer/padding.py +4 -3
  136. mindspore/nn/layer/pooling.py +55 -23
  137. mindspore/nn/layer/rnn_cells.py +1 -1
  138. mindspore/nn/layer/rnns.py +2 -1
  139. mindspore/nn/layer/timedistributed.py +5 -5
  140. mindspore/nn/layer/transformer.py +48 -26
  141. mindspore/nn/learning_rate_schedule.py +5 -3
  142. mindspore/nn/loss/loss.py +31 -36
  143. mindspore/nn/optim/ada_grad.py +1 -0
  144. mindspore/nn/optim/adadelta.py +2 -2
  145. mindspore/nn/optim/adam.py +1 -1
  146. mindspore/nn/optim/lars.py +1 -4
  147. mindspore/nn/optim/optimizer.py +1 -1
  148. mindspore/nn/optim/rprop.py +2 -2
  149. mindspore/nn/optim/thor.py +2 -1
  150. mindspore/nn/utils/__init__.py +22 -0
  151. mindspore/nn/utils/init.py +73 -0
  152. mindspore/nn/wrap/cell_wrapper.py +4 -6
  153. mindspore/nn/wrap/loss_scale.py +3 -4
  154. mindspore/numpy/array_creations.py +60 -62
  155. mindspore/numpy/array_ops.py +148 -143
  156. mindspore/numpy/logic_ops.py +41 -42
  157. mindspore/numpy/math_ops.py +361 -359
  158. mindspore/numpy/utils.py +16 -16
  159. mindspore/numpy/utils_const.py +4 -4
  160. mindspore/opencv_core452.dll +0 -0
  161. mindspore/opencv_imgcodecs452.dll +0 -0
  162. mindspore/opencv_imgproc452.dll +0 -0
  163. mindspore/ops/__init__.py +2 -1
  164. mindspore/ops/_grad_experimental/grad_comm_ops.py +107 -8
  165. mindspore/ops/_grad_experimental/grad_debug_ops.py +6 -1
  166. mindspore/ops/_grad_experimental/grad_inner_ops.py +9 -0
  167. mindspore/ops/_grad_experimental/grad_math_ops.py +2 -1
  168. mindspore/ops/_op_impl/cpu/__init__.py +1 -0
  169. mindspore/ops/_op_impl/cpu/raise_op.py +28 -0
  170. mindspore/ops/_vmap/vmap_array_ops.py +20 -19
  171. mindspore/ops/_vmap/vmap_base.py +0 -2
  172. mindspore/ops/_vmap/vmap_grad_nn_ops.py +19 -13
  173. mindspore/ops/_vmap/vmap_math_ops.py +11 -9
  174. mindspore/ops/_vmap/vmap_nn_ops.py +20 -34
  175. mindspore/ops/auto_generate/cpp_create_prim_instance_helper.py +149 -12
  176. mindspore/ops/auto_generate/gen_arg_handler.py +0 -61
  177. mindspore/ops/auto_generate/gen_extend_func.py +554 -60
  178. mindspore/ops/auto_generate/gen_ops_def.py +1621 -115
  179. mindspore/ops/auto_generate/gen_ops_prim.py +8027 -3411
  180. mindspore/ops/auto_generate/pyboost_inner_prim.py +183 -79
  181. mindspore/ops/composite/base.py +1 -1
  182. mindspore/ops/composite/multitype_ops/_compile_utils.py +229 -30
  183. mindspore/ops/composite/multitype_ops/pow_impl.py +0 -29
  184. mindspore/ops/function/__init__.py +12 -0
  185. mindspore/ops/function/array_func.py +561 -159
  186. mindspore/ops/function/clip_func.py +64 -0
  187. mindspore/ops/function/debug_func.py +28 -20
  188. mindspore/ops/function/image_func.py +1 -1
  189. mindspore/ops/function/linalg_func.py +5 -4
  190. mindspore/ops/function/math_func.py +1664 -294
  191. mindspore/ops/function/nn_func.py +988 -317
  192. mindspore/ops/function/parameter_func.py +3 -56
  193. mindspore/ops/function/random_func.py +243 -33
  194. mindspore/ops/function/sparse_unary_func.py +1 -1
  195. mindspore/ops/functional.py +18 -5
  196. mindspore/ops/functional_overload.py +897 -0
  197. mindspore/ops/operations/__init__.py +3 -2
  198. mindspore/ops/operations/_embedding_cache_ops.py +4 -4
  199. mindspore/ops/operations/_grad_ops.py +2 -34
  200. mindspore/ops/operations/_infer_ops.py +2 -1
  201. mindspore/ops/operations/_inner_ops.py +38 -8
  202. mindspore/ops/operations/array_ops.py +45 -303
  203. mindspore/ops/operations/comm_ops.py +23 -17
  204. mindspore/ops/operations/custom_ops.py +7 -49
  205. mindspore/ops/operations/debug_ops.py +42 -47
  206. mindspore/ops/operations/inner_ops.py +6 -4
  207. mindspore/ops/operations/linalg_ops.py +3 -2
  208. mindspore/ops/operations/manually_defined/ops_def.py +185 -104
  209. mindspore/ops/operations/math_ops.py +11 -216
  210. mindspore/ops/operations/nn_ops.py +153 -310
  211. mindspore/ops/primitive.py +23 -21
  212. mindspore/ops/tensor_method.py +1669 -0
  213. mindspore/ops_generate/aclnn_kernel_register_auto_cc_generator.py +110 -0
  214. mindspore/ops_generate/add_tensor_docs_generator.py +54 -0
  215. mindspore/ops_generate/arg_handler.py +0 -61
  216. mindspore/ops_generate/auto_grad_impl_cc_generator.py +135 -0
  217. mindspore/ops_generate/auto_grad_reg_cc_generator.py +93 -0
  218. mindspore/ops_generate/base_generator.py +11 -0
  219. mindspore/ops_generate/cpp_create_prim_instance_helper_generator.py +108 -0
  220. mindspore/ops_generate/functional_map_cpp_generator.py +491 -0
  221. mindspore/ops_generate/functional_overload_py_generator.py +110 -0
  222. mindspore/ops_generate/functions_cc_generator.py +233 -0
  223. mindspore/ops_generate/gen_aclnn_implement.py +110 -114
  224. mindspore/ops_generate/gen_constants.py +157 -3
  225. mindspore/ops_generate/gen_ops.py +245 -990
  226. mindspore/ops_generate/gen_pyboost_func.py +97 -998
  227. mindspore/ops_generate/gen_utils.py +119 -33
  228. mindspore/ops_generate/lite_ops_cpp_generator.py +155 -0
  229. mindspore/ops_generate/op_api_proto.py +206 -0
  230. mindspore/ops_generate/op_def_py_generator.py +131 -0
  231. mindspore/ops_generate/op_prim_py_generator.py +480 -0
  232. mindspore/ops_generate/op_proto.py +373 -108
  233. mindspore/ops_generate/op_template_parser.py +436 -0
  234. mindspore/ops_generate/ops_def_cc_generator.py +288 -0
  235. mindspore/ops_generate/ops_def_h_generator.py +74 -0
  236. mindspore/ops_generate/ops_name_h_generator.py +68 -0
  237. mindspore/ops_generate/ops_primitive_h_generator.py +81 -0
  238. mindspore/ops_generate/pyboost_functions_cpp_generator.py +370 -0
  239. mindspore/ops_generate/pyboost_functions_h_generator.py +68 -0
  240. mindspore/ops_generate/pyboost_functions_py_generator.py +148 -0
  241. mindspore/ops_generate/pyboost_grad_function_cpp_generator.py +154 -0
  242. mindspore/ops_generate/pyboost_inner_prim_generator.py +131 -0
  243. mindspore/ops_generate/pyboost_native_grad_functions_generator.py +268 -0
  244. mindspore/ops_generate/pyboost_op_cpp_code_generator.py +851 -0
  245. mindspore/ops_generate/pyboost_overload_functions_cpp_generator.py +344 -0
  246. mindspore/ops_generate/pyboost_utils.py +92 -33
  247. mindspore/ops_generate/template.py +294 -44
  248. mindspore/ops_generate/tensor_func_reg_cpp_generator.py +422 -0
  249. mindspore/parallel/__init__.py +3 -3
  250. mindspore/parallel/_auto_parallel_context.py +44 -34
  251. mindspore/parallel/_cell_wrapper.py +22 -3
  252. mindspore/parallel/_parallel_serialization.py +13 -2
  253. mindspore/parallel/_utils.py +4 -2
  254. mindspore/parallel/algo_parameter_config.py +1 -1
  255. mindspore/parallel/checkpoint_transform.py +44 -0
  256. mindspore/parallel/cluster/process_entity/_api.py +131 -37
  257. mindspore/parallel/cluster/process_entity/_utils.py +41 -6
  258. mindspore/parallel/cluster/run.py +20 -3
  259. mindspore/parallel/parameter_broadcast.py +1 -1
  260. mindspore/parallel/shard.py +3 -0
  261. mindspore/parallel/transform_safetensors.py +119 -253
  262. mindspore/profiler/__init__.py +17 -4
  263. mindspore/profiler/analysis/__init__.py +0 -0
  264. mindspore/profiler/analysis/parser/__init__.py +0 -0
  265. mindspore/profiler/analysis/parser/ascend_cann_parser.py +166 -0
  266. mindspore/profiler/analysis/parser/base_parser.py +158 -0
  267. mindspore/profiler/analysis/parser/framework_cann_relation_parser.py +45 -0
  268. mindspore/profiler/analysis/parser/ms_framework_parser.py +142 -0
  269. mindspore/profiler/analysis/parser/ms_minddata_parser.py +145 -0
  270. mindspore/profiler/analysis/parser/timeline_assembly_factory/__init__.py +0 -0
  271. mindspore/profiler/analysis/parser/timeline_assembly_factory/ascend_timeline_assembler.py +261 -0
  272. mindspore/profiler/analysis/parser/timeline_assembly_factory/base_timeline_assembler.py +40 -0
  273. mindspore/profiler/analysis/parser/timeline_assembly_factory/trace_view_container.py +84 -0
  274. mindspore/profiler/analysis/parser/timeline_creator/__init__.py +0 -0
  275. mindspore/profiler/analysis/parser/timeline_creator/base_timeline_creator.py +44 -0
  276. mindspore/profiler/analysis/parser/timeline_creator/cpu_op_timeline_creator.py +90 -0
  277. mindspore/profiler/analysis/parser/timeline_creator/fwk_timeline_creator.py +76 -0
  278. mindspore/profiler/analysis/parser/timeline_creator/msprof_timeline_creator.py +103 -0
  279. mindspore/profiler/analysis/parser/timeline_creator/scope_layer_timeline_creator.py +134 -0
  280. mindspore/profiler/analysis/parser/timeline_event/__init__.py +0 -0
  281. mindspore/profiler/analysis/parser/timeline_event/base_event.py +233 -0
  282. mindspore/profiler/analysis/parser/timeline_event/cpu_op_event.py +47 -0
  283. mindspore/profiler/analysis/parser/timeline_event/flow_event.py +36 -0
  284. mindspore/profiler/analysis/parser/timeline_event/fwk_event.py +260 -0
  285. mindspore/profiler/analysis/parser/timeline_event/msprof_event.py +73 -0
  286. mindspore/profiler/analysis/parser/timeline_event/scope_layer_event.py +53 -0
  287. mindspore/profiler/analysis/parser/timeline_event/timeline_event_pool.py +146 -0
  288. mindspore/profiler/analysis/task_manager.py +131 -0
  289. mindspore/profiler/analysis/time_converter.py +84 -0
  290. mindspore/profiler/analysis/viewer/__init__.py +0 -0
  291. mindspore/profiler/analysis/viewer/ascend_communication_viewer.py +333 -0
  292. mindspore/profiler/analysis/viewer/ascend_integrate_viewer.py +87 -0
  293. mindspore/profiler/analysis/viewer/ascend_kernel_details_viewer.py +252 -0
  294. mindspore/profiler/analysis/viewer/ascend_memory_viewer.py +313 -0
  295. mindspore/profiler/analysis/viewer/ascend_op_memory_viewer.py +322 -0
  296. mindspore/profiler/analysis/viewer/ascend_step_trace_time_viewer.py +265 -0
  297. mindspore/profiler/analysis/viewer/ascend_timeline_viewer.py +58 -0
  298. mindspore/profiler/analysis/viewer/base_viewer.py +26 -0
  299. mindspore/profiler/analysis/viewer/ms_dataset_viewer.py +97 -0
  300. mindspore/profiler/analysis/viewer/ms_minddata_viewer.py +581 -0
  301. mindspore/profiler/analysis/work_flow.py +73 -0
  302. mindspore/profiler/common/ascend_msprof_exporter.py +138 -0
  303. mindspore/profiler/common/command_executor.py +90 -0
  304. mindspore/profiler/common/constant.py +174 -3
  305. mindspore/profiler/common/file_manager.py +208 -0
  306. mindspore/profiler/common/log.py +130 -0
  307. mindspore/profiler/common/msprof_cmd_tool.py +202 -0
  308. mindspore/profiler/common/path_manager.py +371 -0
  309. mindspore/profiler/common/process_bar.py +168 -0
  310. mindspore/profiler/common/process_pool.py +9 -3
  311. mindspore/profiler/common/profiler_context.py +476 -0
  312. mindspore/profiler/common/profiler_info.py +304 -0
  313. mindspore/profiler/common/profiler_output_path.py +284 -0
  314. mindspore/profiler/common/profiler_parameters.py +210 -0
  315. mindspore/profiler/common/profiler_path_manager.py +120 -0
  316. mindspore/profiler/common/record_function.py +76 -0
  317. mindspore/profiler/common/tlv_decoder.py +76 -0
  318. mindspore/profiler/common/util.py +75 -2
  319. mindspore/profiler/dynamic_profiler.py +270 -37
  320. mindspore/profiler/envprofiler.py +138 -0
  321. mindspore/profiler/mstx.py +199 -0
  322. mindspore/profiler/platform/__init__.py +21 -0
  323. mindspore/profiler/platform/base_profiler.py +40 -0
  324. mindspore/profiler/platform/cpu_profiler.py +124 -0
  325. mindspore/profiler/platform/gpu_profiler.py +74 -0
  326. mindspore/profiler/platform/npu_profiler.py +309 -0
  327. mindspore/profiler/profiler.py +580 -93
  328. mindspore/profiler/profiler_action_controller.py +187 -0
  329. mindspore/profiler/profiler_interface.py +114 -0
  330. mindspore/profiler/schedule.py +208 -0
  331. mindspore/rewrite/api/symbol_tree.py +1 -2
  332. mindspore/run_check/_check_version.py +18 -13
  333. mindspore/runtime/__init__.py +37 -0
  334. mindspore/runtime/device.py +27 -0
  335. mindspore/runtime/event.py +209 -0
  336. mindspore/runtime/executor.py +148 -0
  337. mindspore/runtime/memory.py +392 -0
  338. mindspore/runtime/stream.py +460 -0
  339. mindspore/runtime/thread_bind_core.py +401 -0
  340. mindspore/swresample-4.dll +0 -0
  341. mindspore/swscale-6.dll +0 -0
  342. mindspore/tinyxml2.dll +0 -0
  343. mindspore/train/__init__.py +2 -2
  344. mindspore/train/_utils.py +53 -18
  345. mindspore/train/amp.py +8 -4
  346. mindspore/train/callback/_checkpoint.py +32 -18
  347. mindspore/train/callback/_early_stop.py +1 -1
  348. mindspore/train/callback/_flops_collector.py +105 -69
  349. mindspore/train/callback/_history.py +1 -1
  350. mindspore/train/callback/_summary_collector.py +44 -6
  351. mindspore/train/callback/_tft_register.py +37 -15
  352. mindspore/train/dataset_helper.py +11 -11
  353. mindspore/train/metrics/precision.py +4 -5
  354. mindspore/train/mind_ir_pb2.py +167 -46
  355. mindspore/train/model.py +13 -14
  356. mindspore/train/serialization.py +461 -72
  357. mindspore/train/summary/summary_record.py +1 -2
  358. mindspore/train/train_thor/model_thor.py +1 -1
  359. mindspore/turbojpeg.dll +0 -0
  360. mindspore/utils/__init__.py +4 -2
  361. mindspore/utils/dryrun.py +138 -0
  362. mindspore/utils/runtime_execution_order_check.py +550 -0
  363. mindspore/version.py +1 -1
  364. {mindspore-2.4.1.dist-info → mindspore-2.5.0.dist-info}/METADATA +3 -4
  365. {mindspore-2.4.1.dist-info → mindspore-2.5.0.dist-info}/RECORD +368 -242
  366. {mindspore-2.4.1.dist-info → mindspore-2.5.0.dist-info}/entry_points.txt +1 -1
  367. mindspore/common/_tensor_overload.py +0 -139
  368. mindspore/mindspore_np_dtype.dll +0 -0
  369. mindspore/profiler/envprofiling.py +0 -254
  370. mindspore/profiler/profiling.py +0 -1926
  371. {mindspore-2.4.1.dist-info → mindspore-2.5.0.dist-info}/WHEEL +0 -0
  372. {mindspore-2.4.1.dist-info → mindspore-2.5.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,727 @@
1
+ # Copyright 2024 Huawei Technologies Co., Ltd
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ============================================================================
15
+ """conv"""
16
+ from __future__ import absolute_import
17
+
18
+ import math
19
+
20
+ from mindspore.ops.auto_generate.gen_ops_prim import conv2d_ext_op, conv2d_padding_op, conv3d_ext_op, conv3d_padding_op
21
+ from mindspore.ops.function.nn_func import pad_ext, conv_transpose2d
22
+ from mindspore.ops.function.array_func import rank
23
+ import mindspore.common.dtype as mstype
24
+ from mindspore.common.parameter import Parameter
25
+ from mindspore.common.initializer import initializer, HeUniform, Uniform, _calculate_fan_in_and_fan_out
26
+ from mindspore import _checkparam as Validator
27
+ from mindspore._checkparam import twice, triple
28
+ from mindspore._extends import cell_attr_register
29
+ from mindspore.nn.cell import Cell
30
+ from mindspore.ops.functional import isconstant
31
+
32
+ __all__ = ['Conv2d', 'ConvTranspose2d', 'Conv3d']
33
+
34
+
35
+ class _Conv(Cell):
36
+ """
37
+ Applies a N-D convolution over an input signal composed of several input planes.
38
+ """
39
+ def __init__(self,
40
+ in_channels,
41
+ out_channels,
42
+ kernel_size,
43
+ stride,
44
+ padding,
45
+ dilation,
46
+ transposed,
47
+ output_padding,
48
+ groups,
49
+ bias,
50
+ padding_mode,
51
+ dtype=mstype.float32):
52
+ """Initialize _Conv."""
53
+ super(_Conv, self).__init__()
54
+ if groups <= 0:
55
+ raise ValueError('groups must be a positive integer.')
56
+ self.in_channels = in_channels
57
+ if self.in_channels % groups != 0:
58
+ raise ValueError('in_channels must be divisible by groups.')
59
+ self.out_channels = out_channels
60
+ if self.out_channels % groups != 0:
61
+ raise ValueError('out_channels must be divisible by groups.')
62
+ valid_padding_strings = {'same', 'valid'}
63
+ self.padding = padding
64
+ self.stride = stride
65
+ if isinstance(self.padding, str):
66
+ if self.padding not in valid_padding_strings:
67
+ raise ValueError(f"The value of 'padding' must be one of '{valid_padding_strings}', "
68
+ f"but got {self.padding}.")
69
+ if self.padding == 'same' and any(s != 1 for s in self.stride):
70
+ raise ValueError("padding='same' is not supported for strided convolutions")
71
+
72
+ valid_padding_modes = {'zeros', 'reflect', 'replicate', 'circular'}
73
+ if padding_mode not in valid_padding_modes:
74
+ raise ValueError(f"The value of 'padding_mode' must be one of '{valid_padding_modes}', "
75
+ f"but got {padding_mode}.")
76
+ self.transposed = transposed
77
+ self.groups = Validator.check_positive_int(groups)
78
+ self.output_padding = output_padding
79
+ self.padding_mode = padding_mode
80
+ self.kernel_size = kernel_size
81
+ for kernel_size_elem in kernel_size:
82
+ Validator.check_positive_int(kernel_size_elem, 'kernel_size item', self.cls_name)
83
+ for stride_elem in stride:
84
+ Validator.check_positive_int(stride_elem, 'stride item', self.cls_name)
85
+ self.dilation = dilation
86
+ for dilation_elem in dilation:
87
+ Validator.check_positive_int(dilation_elem, 'dilation item', self.cls_name)
88
+ if isinstance(self.padding, str):
89
+ self._reversed_padding = [0, 0] * len(kernel_size)
90
+ if padding == 'same':
91
+ for d, k, i in zip(dilation, kernel_size,
92
+ range(len(kernel_size) - 1, -1, -1)):
93
+ total_padding = d * (k - 1)
94
+ left_pad = total_padding // 2
95
+ self._reversed_padding[2 * i] = left_pad
96
+ self._reversed_padding[2 * i + 1] = (
97
+ total_padding - left_pad)
98
+ else:
99
+ self._reversed_padding = tuple(x for x in reversed(self.padding) for _ in range(2))
100
+ if transposed:
101
+ shape = [in_channels, out_channels // groups, *kernel_size]
102
+ else:
103
+ shape = [out_channels, in_channels // groups, *kernel_size]
104
+ weight_init = HeUniform(math.sqrt(5))
105
+ self.weight = Parameter(initializer(weight_init, shape, dtype=dtype), name='weight')
106
+
107
+ if Validator.check_bool(bias, "bias", self.cls_name):
108
+ fan_in, _ = _calculate_fan_in_and_fan_out(shape)
109
+ if fan_in != 0:
110
+ bound = 1 / math.sqrt(fan_in)
111
+ bias_init = Uniform(bound)
112
+ else:
113
+ bias_init = 'zeros'
114
+ self.bias = Parameter(initializer(bias_init, [out_channels], dtype=dtype), name='bias')
115
+ else:
116
+ self.bias = None
117
+
118
+ def construct(self, *inputs):
119
+ """Must be overridden by all subclasses."""
120
+ raise NotImplementedError
121
+
122
+ def extend_repr(self):
123
+ bias = self.bias is not None
124
+ s = 'input_channels={}, output_channels={}, kernel_size={}, ' \
125
+ 'stride={}, padding={}, dilation={}, ' \
126
+ 'groups={}, bias={}'.format(
127
+ self.in_channels,
128
+ self.out_channels,
129
+ self.kernel_size,
130
+ self.stride,
131
+ self.padding,
132
+ self.dilation,
133
+ self.groups,
134
+ bias)
135
+ return s
136
+
137
+
138
+ class Conv2d(_Conv):
139
+ r"""
140
+ 2D convolution layer.
141
+
142
+ Applies a 2D convolution over an input tensor which is typically of shape :math:`(N, C_{in}, H_{in}, W_{in})`,
143
+ where :math:`N` is batch size, :math:`C` is channel number, :math:`H` is feature height, :math:`W` is feature width.
144
+
145
+ The output is calculated based on formula:
146
+
147
+ .. math::
148
+
149
+ \text{out}(N_i, C_{\text{out}_j}) = \text{bias}(C_{\text{out}_j}) +
150
+ \sum_{k = 0}^{C_{in} - 1} \text{ccor}({\text{weight}(C_{\text{out}_j}, k), \text{X}(N_i, k)})
151
+
152
+ where :math:`bias` is the output channel bias, :math:`ccor` is
153
+ the `cross-correlation <https://en.wikipedia.org/wiki/Cross-correlation>`_,
154
+ :math:`weight` is the convolution kernel value and :math:`X` represents the input feature map.
155
+
156
+ - :math:`i` corresponds to the batch number, the range is :math:`[0, N-1]`,
157
+ where :math:`N` is the batch size of the input.
158
+
159
+ - :math:`j` corresponds to the output channel, the range is :math:`[0, C_{out}-1]`,
160
+ where :math:`C_{out}` is the number of
161
+ output channels, which is also equal to the number of kernels.
162
+
163
+ - :math:`k` corresponds to the input channel, the range is :math:`[0, C_{in}-1]`,
164
+ where :math:`C_{in}` is the number of
165
+ input channels, which is also equal to the number of channels in the convolutional kernels.
166
+
167
+ Therefore, in the above formula, :math:`{bias}(C_{\text{out}_j})` represents the bias of the :math:`j`-th
168
+ output channel, :math:`{weight}(C_{\text{out}_j}, k)` represents the slice of the :math:`j`-th convolutional
169
+ kernel in the :math:`k`-th channel, and :math:`{X}(N_i, k)` represents the slice of the :math:`k`-th input
170
+ channel in the :math:`i`-th batch of the input feature map.
171
+
172
+ The shape of the convolutional kernel is given by :math:`(\text{kernel_size[0]},\text{kernel_size[1]})`,
173
+ where :math:`\text{kernel_size[0]}`
174
+ and :math:`\text{kernel_size[1]}` are the height and width of the kernel, respectively.
175
+ If we consider the input and output channels as well as the `groups` parameter, the complete kernel shape
176
+ will be :math:`(C_{out}, C_{in} / \text{groups}, \text{kernel_size[0]}, \text{kernel_size[1]})`,
177
+ where `groups` is the number of groups dividing `x`'s input channel when applying groups convolution.
178
+
179
+ For more details about convolution layer, please refer to `Gradient Based Learning Applied to Document Recognition
180
+ <http://vision.stanford.edu/cs598_spring07/papers/Lecun98.pdf>`_.
181
+
182
+ Args:
183
+ in_channels (int): The channel number of the input tensor of the Conv2d layer.
184
+ out_channels (int): The channel number of the output tensor of the Conv2d layer.
185
+ kernel_size (Union[int, tuple[int]]): Specifies the height and width of the 2D convolution kernel.
186
+ The data type is an integer or a tuple of two integers. An integer represents the height
187
+ and width of the convolution kernel. A tuple of two integers represents the height
188
+ and width of the convolution kernel respectively.
189
+ stride (Union[int, tuple[int]], optional): The movement stride of the 2D convolution kernel.
190
+ The data type is an integer or a tuple of two integers. An integer represents the movement step size
191
+ in both height and width directions. A tuple of two integers represents the movement step size in the height
192
+ and width directions respectively. Default: ``1`` .
193
+ padding (Union[int, tuple[int], str], optional): The number of padding
194
+ on the height and width directions of the input.
195
+ The data type is an integer or a tuple of two integers or string {`valid`, `same`}. If `padding` is an
196
+ integer, then `padding_{H}` and `padding_{W}` are all equal to `padding`.
197
+ If `padding` is a tuple of 2 integers, then `padding_{H}` and `padding_{W}`
198
+ is equal to `padding[0]` and `padding[1]` respectively.
199
+ The value should be greater than or equal to 0. Default: ``0`` .
200
+
201
+ - ``"same"``: Pad the input around its edges so that the shape of input and output
202
+ are the same when `stride` is set to ``1``.
203
+ The amount of padding to is calculated by the operator internally, If the amount is even, it is
204
+ uniformly distributed around the input, if it is odd, the excess amount goes to the right/bottom side.
205
+ If this mode is set, `stride` must be 1.
206
+
207
+ - ``"valid"``: No padding is applied to the input, and the output returns the maximum
208
+ possible height and width. Extra pixels that could not complete a full stride will
209
+ be discarded.
210
+
211
+ padding_mode (str, optional): Specifies the padding mode with a padding value of 0. It can be set to:
212
+ ``"zeros"`` , ``"reflect"`` ``"circular"`` or ``"replicate"`` . Default: ``"zeros"`` .
213
+ dilation (Union[int, tuple[int]], optional): Specifies the dilation rate to use for dilated convolution.
214
+ It can be a single int or a tuple of 2 or 4 integers. A single int means the dilation size is the same
215
+ in both the height and width directions. A tuple of two ints represents the dilation size in
216
+ the height and width directions, respectively. For a tuple of four ints, the two ints correspond
217
+ to (N, C) dimension are treated as 1, and the two correspond to (H, W) dimensions is the
218
+ dilation size in the height and width directions respectively.
219
+ Assuming :math:`dilation=(d0, d1)`, the convolutional kernel samples the input with a
220
+ spacing of :math:`d0-1` elements in the height direction and :math:`d1-1` elements in the width direction.
221
+ The values in the height and width dimensions are in the ranges [1, H] and [1, W], respectively.
222
+ Default: ``1`` .
223
+ groups (int, optional): Splits filter into groups, `in_channels` and `out_channels` must be
224
+ divisible by `groups`. If the groups is equal to `in_channels` and `out_channels`,
225
+ this 2D convolution layer also can be called 2D depthwise convolution layer. Default: ``1`` .
226
+
227
+ - :math:`(C_{in} \text{ % } \text{groups} == 0)` , :math:`(C_{out} \text{ % } \text{groups} == 0)` ,
228
+ :math:`(C_{out} >= \text{groups})` , :math:`(\text{kernel_size[1]} = C_{in} / \text{groups})`
229
+
230
+ bias (bool, optional): Whether the Conv2d layer has a bias parameter. Default: ``True`` .
231
+ dtype (mindspore.dtype, optional): Dtype of Parameters. Default: mstype.float32 .
232
+
233
+ Inputs:
234
+ - **x** (Tensor) - Tensor of shape :math:`(N, C_{in}, H_{in}, W_{in})` \
235
+ or :math:`(C_{in}, H_{in}, W_{in})`.
236
+
237
+ Outputs:
238
+ Tensor of shape :math:`(N, C_{out}, H_{out}, W_{out})` or :math:`(C_{out}, H_{out}, W_{out})`.
239
+
240
+ padding is ``'same'``:
241
+
242
+ .. math::
243
+ \begin{array}{ll} \\
244
+ H_{out} = \left \lceil{\frac{H_{in}}{\text{stride[0]}}} \right \rceil \\
245
+ W_{out} = \left \lceil{\frac{W_{in}}{\text{stride[1]}}} \right \rceil \\
246
+ \end{array}
247
+
248
+ padding is ``'valid'``:
249
+
250
+ .. math::
251
+ \begin{array}{ll} \\
252
+ H_{out} = \left \lceil{\frac{H_{in} - \text{dilation[0]} \times (\text{kernel_size[0]} - 1) }
253
+ {\text{stride[0]}}} \right \rceil \\
254
+ W_{out} = \left \lceil{\frac{W_{in} - \text{dilation[1]} \times (\text{kernel_size[1]} - 1) }
255
+ {\text{stride[1]}}} \right \rceil \\
256
+ \end{array}
257
+
258
+ Raises:
259
+ ValueError: Args and size of the input feature map should satisfy the output formula to ensure that the size of
260
+ the output feature map is positive; otherwise, an error will be reported.
261
+ RuntimeError: On Ascend, due to the limitation of the L1 cache size of different NPU chip, if input size or
262
+ kernel size is too large, it may trigger an error.
263
+ TypeError: If `in_channels`, `out_channels` or `groups` is not an int.
264
+ TypeError: If `kernel_size`, `stride` or `dilation` is neither an int not a tuple.
265
+ ValueError: If `in_channels`, `out_channels`, `kernel_size`, `stride` or `dilation` is less than 1.
266
+ ValueError: If `padding` is less than 0.
267
+ ValueError: If `padding` is `same` , `stride` is not equal to 1.
268
+ ValueError: The input parameters do not satisfy the convolution output formula.
269
+ ValueError: The KernelSize cannot exceed the size of the input feature map.
270
+ ValueError: The value of padding cannot cause the calculation area to exceed the input size.
271
+
272
+ Supported Platforms:
273
+ ``Ascend``
274
+
275
+ Examples:
276
+ >>> import mindspore
277
+ >>> from mindspore import Tensor, mint
278
+ >>> import numpy as np
279
+ >>> net = mint.nn.Conv2d(120, 240, 4, bias=False)
280
+ >>> x = Tensor(np.ones([1, 120, 1024, 640]), mindspore.float32)
281
+ >>> output = net(x).shape
282
+ >>> print(output)
283
+ (1, 240, 1024, 640)
284
+ """
285
+ @cell_attr_register
286
+ def __init__(self,
287
+ in_channels,
288
+ out_channels,
289
+ kernel_size,
290
+ stride=1,
291
+ padding=0,
292
+ dilation=1,
293
+ groups=1,
294
+ bias=True,
295
+ padding_mode='zeros',
296
+ dtype=None):
297
+ """Initialize Conv2d."""
298
+ kernel_size_ = twice(kernel_size)
299
+ stride_ = twice(stride)
300
+ padding_ = padding if isinstance(padding, str) else twice(padding)
301
+ dilation_ = twice(dilation)
302
+ if not dtype:
303
+ dtype = mstype.float32
304
+ super(Conv2d, self).__init__(in_channels, out_channels, kernel_size_, stride_, padding_, dilation_, False,
305
+ twice(0), groups, bias, padding_mode, dtype)
306
+ if isinstance(padding, str) and padding_mode == "zeros":
307
+ self.conv2d = conv2d_padding_op
308
+ else:
309
+ self.conv2d = conv2d_ext_op
310
+
311
+
312
+ def construct(self, input):
313
+ if self.padding_mode != "zeros":
314
+ output = self.conv2d(pad_ext(input, self._reversed_padding, mode=self.padding_mode), self.weight,
315
+ self.bias, self.stride, (0, 0), self.dilation, self.groups)
316
+ else:
317
+ output = self.conv2d(input, self.weight, self.bias, self.stride, self.padding, self.dilation, self.groups)
318
+ return output
319
+
320
+
321
+ class Conv3d(_Conv):
322
+ r"""
323
+ 3D convolution layer.
324
+
325
+ Applies a 3D convolution over an input tensor. The input tensor is typically of
326
+ shape :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`, where :math:`N` is batch size, :math:`C`
327
+ is channel number, :math:`D, H, W` are the depth, height and width of the feature graph, respectively.
328
+
329
+ The output is calculated based on formula:
330
+
331
+ .. math::
332
+
333
+ \text{out}(N_i, C_{\text{out}_j}) = \text{bias}(C_{\text{out}_j}) +
334
+ \sum_{k = 0}^{C_{in} - 1} \text{ccor}({\text{weight}(C_{\text{out}_j}, k), \text{X}(N_i, k)})
335
+
336
+ where :math:`bias` is the output channel bias, :math:`ccor` is
337
+ the `cross-correlation <https://en.wikipedia.org/wiki/Cross-correlation>`_,
338
+ :math:`weight` is the convolution kernel value and :math:`X` represents the input feature map.
339
+
340
+ Here are the indices' meanings:
341
+
342
+ - :math:`i` corresponds to the batch number, the range is :math:`[0, N-1]`,
343
+ where :math:`N` is the batch size of the input.
344
+
345
+ - :math:`j` corresponds to the output channel, the range is :math:`[0, C_{out}-1]`,
346
+ where :math:`C_{out}` is the number of
347
+ output channels, which is also equal to the number of kernels.
348
+
349
+ - :math:`k` corresponds to the input channel, the range is :math:`[0, C_{in}-1]`,
350
+ where :math:`C_{in}` is the number of
351
+ input channels, which is also equal to the number of channels in the convolutional kernels.
352
+
353
+ Therefore, in the above formula, :math:`{bias}(C_{\text{out}_j})` represents the bias of the :math:`j`-th
354
+ output channel, :math:`{weight}(C_{\text{out}_j}, k)` represents the slice of the :math:`j`-th convolutional
355
+ kernel in the :math:`k`-th channel, and :math:`{X}(N_i, k)` represents the slice of the :math:`k`-th input
356
+ channel in the :math:`i`-th batch of the input feature map.
357
+
358
+ The shape of the convolutional kernel is given by
359
+ :math:`(\text{kernel_size[0]},\text{kernel_size[1]},\text{kernel_size[2]})`,
360
+ where :math:`\text{kernel_size[0]}`, :math:`\text{kernel_size[1]}`
361
+ and :math:`\text{kernel_size[2]}` are the depth, height and width of the kernel, respectively.
362
+ If we consider the input and output channels as well as the `groups` parameter, the complete kernel shape
363
+ will be
364
+ :math:`(C_{out}, C_{in} / \text{groups}, \text{kernel_size[0]}, \text{kernel_size[1]}, \text{kernel_size[2]})`,
365
+ where `groups` is the number of groups dividing `x`'s input channel when applying groups convolution.
366
+
367
+ For more details about convolution layer, please refer to `Gradient Based Learning Applied to Document Recognition
368
+ <http://vision.stanford.edu/cs598_spring07/papers/Lecun98.pdf>`_.
369
+
370
+ For the detail of limitations of the parameters, please refer to :func:`mindspore.mint.nn.functional.conv3d`.
371
+
372
+ .. warning::
373
+ This is an experimental API that is subject to change or deletion.
374
+
375
+ Args:
376
+ in_channels (int): The channel number of the input tensor of the Conv3d layer.
377
+ out_channels (int): The channel number of the output tensor of the Conv3d layer.
378
+ kernel_size (Union[int, tuple[int]]): Specifies the height and width of the 3D convolution kernel.
379
+ The data type is an integer or a tuple of two integers. An integer represents the height
380
+ and width of the convolution kernel. A tuple of two integers represents the height
381
+ and width of the convolution kernel respectively.
382
+ stride (Union[int, tuple[int]], optional): The movement stride of the 3D convolution kernel.
383
+ The data type is an integer or a tuple of three integers. An integer represents the movement step size
384
+ in both height and width directions. A tuple of three integers represents the movement step size in the depth, height
385
+ and width directions respectively. Default: ``1`` .
386
+ padding (Union[int, tuple[int], str], optional): The number of padding
387
+ on the depth, height and width directions of the input.
388
+ The data type is an integer or string {`valid`, `same`} or a tuple of three integers.
389
+ The value should be greater than or equal to 0. Default: ``0`` .
390
+
391
+ - ``"same"``: Pad the input around its edges so that the shape of input and output
392
+ are the same when `stride` is set to ``1``.
393
+ The amount of padding to is calculated by the operator internally, If the amount is even, it is
394
+ uniformly distributed around the input, if it is odd, the excess amount goes to the right/bottom side.
395
+ If this mode is set, `padding` must be 0.
396
+
397
+ - ``"valid"``: No padding is applied to the input, and the output returns the maximum
398
+ possible height and width. Extra pixels that could not complete a full stride will
399
+ be discarded. If this mode is set, `padding` must be 0.
400
+
401
+ padding_mode (str, optional): Specifies the padding mode with a padding value of 0. It can be set to:
402
+ ``"zeros"`` , ``"reflect"`` ``"circular"`` or ``"replicate"`` . Default: ``"zeros"`` .
403
+ dilation (Union[int, tuple[int]], optional): Controlling the space between the kernel points. Default: ``1`` .
404
+ groups (int, optional): Splits filter into groups, `in_channels` and `out_channels` must be
405
+ divisible by `groups`. If the groups is equal to `in_channels` and `out_channels`. Default: ``1`` .
406
+ bias (bool, optional): Whether the Conv3d layer has a bias parameter. Default: ``True`` .
407
+ dtype (mindspore.dtype, optional): Dtype of Parameters. Default: ``mstype.float32`` .
408
+
409
+ Inputs:
410
+ - **x** (Tensor) - Tensor of shape :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})` \
411
+ or :math:`(C_{in}, D_{in}, H_{in}, W_{in})`.
412
+
413
+ Outputs:
414
+ Tensor of shape :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
415
+ or :math:`(C_{out}, D_{out}, H_{out}, W_{out})`.
416
+
417
+ padding is ``"same"``:
418
+
419
+ .. math::
420
+ \begin{array}{ll} \\
421
+ D_{out} = \left \lceil{\frac{D_{in}}{\text{stride[0]}}} \right \rceil \\
422
+ H_{out} = \left \lceil{\frac{H_{in}}{\text{stride[1]}}} \right \rceil \\
423
+ W_{out} = \left \lceil{\frac{W_{in}}{\text{stride[2]}}} \right \rceil \\
424
+ \end{array}
425
+
426
+ padding is ``"valid"``:
427
+
428
+ .. math::
429
+ \begin{array}{ll} \\
430
+ D_{out} = \left \lceil{\frac{D_{in} - \text{dilation[0]} \times (\text{kernel_size[0]} - 1) }
431
+ {\text{stride[0]}}} \right \rceil \\
432
+ H_{out} = \left \lceil{\frac{H_{in} - \text{dilation[1]} \times (\text{kernel_size[1]} - 1) }
433
+ {\text{stride[1]}}} \right \rceil \\
434
+ W_{out} = \left \lceil{\frac{W_{in} - \text{dilation[2]} \times (\text{kernel_size[2]} - 1) }
435
+ {\text{stride[2]}}} \right \rceil \\
436
+ \end{array}
437
+
438
+ Raises:
439
+ TypeError: If `in_channels`, `out_channels` or `groups` is not an int.
440
+ TypeError: If `kernel_size`, `stride`, `padding` or `dilation` is neither an int not a tuple.
441
+ ValueError: If `in_channels`, `out_channels`, `kernel_size`, `stride` or `dilation` is less than 1.
442
+ ValueError: If `padding` is less than 0.
443
+
444
+ Supported Platforms:
445
+ ``Ascend``
446
+
447
+ Examples:
448
+ >>> import mindspore
449
+ >>> from mindspore import Tensor, mint
450
+ >>> import numpy as np
451
+ >>> net = mint.nn.Conv3d(120, 10, 4)
452
+ >>> x = Tensor(np.ones([1, 120, 10, 23, 34]), mindspore.float32)
453
+ >>> output = net(x).shape
454
+ >>> print(output)
455
+ (1, 10, 7, 20, 31)
456
+ """
457
+ @cell_attr_register
458
+ def __init__(self,
459
+ in_channels,
460
+ out_channels,
461
+ kernel_size,
462
+ stride=1,
463
+ padding=0,
464
+ dilation=1,
465
+ groups=1,
466
+ bias=True,
467
+ padding_mode='zeros',
468
+ dtype=None):
469
+ """Initialize Conv3d."""
470
+ kernel_size_ = triple(kernel_size)
471
+ stride_ = triple(stride)
472
+ padding_ = padding if isinstance(padding, str) else triple(padding)
473
+ dilation_ = triple(dilation)
474
+ if not dtype:
475
+ dtype = mstype.float32
476
+ super(Conv3d, self).__init__(in_channels, out_channels, kernel_size_, stride_, padding_, dilation_, False,
477
+ triple(0), groups, bias, padding_mode, dtype)
478
+ if isinstance(padding, str) and padding_mode == "zeros":
479
+ self.conv3d = conv3d_padding_op
480
+ else:
481
+ self.conv3d = conv3d_ext_op
482
+
483
+
484
+ def construct(self, input):
485
+ if self.padding_mode != "zeros":
486
+ output = self.conv3d(pad_ext(input, self._reversed_padding, mode=self.padding_mode), self.weight,
487
+ self.bias, self.stride, (0, 0, 0), self.dilation, self.groups)
488
+ else:
489
+ output = self.conv3d(input, self.weight, self.bias, self.stride, self.padding, self.dilation, self.groups)
490
+ return output
491
+
492
+
493
+ def batchify(input, num_spatial_dims, ops_name):
494
+ """Conv input batchify"""
495
+ dim_count_no_batch = num_spatial_dims + 1
496
+ dim_count_batch = dim_count_no_batch + 1
497
+ is_batched = (input.ndim == dim_count_batch)
498
+ if not (input.ndim == dim_count_no_batch or is_batched):
499
+ raise TypeError(f"For {ops_name}, Expected {dim_count_no_batch}D (unbatched) or {dim_count_batch}D (batched)," \
500
+ f"but got input of ndim: {input.ndim}D")
501
+ if is_batched:
502
+ return input, is_batched
503
+ return input.unsqueeze(0), is_batched
504
+
505
+
506
+ class _ConvTranspose(_Conv):
507
+ """
508
+ Applies a N-D convolution over an input signal composed of several input planes.
509
+ """
510
+ def __init__(self, in_channels, out_channels, kernel_size, stride,
511
+ padding, dilation, transposed, output_padding, groups,
512
+ bias, padding_mode, dtype=None):
513
+ if padding_mode != "zeros":
514
+ raise ValueError(
515
+ f'Only "zeros" padding mode is supported for {self.__class__.__name__}'
516
+ )
517
+ super(_ConvTranspose, self).__init__(in_channels, out_channels, kernel_size,
518
+ stride, padding, dilation, transposed,
519
+ output_padding, groups, bias, padding_mode, dtype)
520
+
521
+ def _check_output_size(self, output_size, min_sizes, max_sizes, input_shape):
522
+ if isconstant(output_size) and isconstant(min_sizes)\
523
+ and isconstant(max_sizes) and isconstant(input_shape):
524
+ for i in range(len(output_size)):
525
+ size = output_size[i]
526
+ min_size = min_sizes[i]
527
+ max_size = max_sizes[i]
528
+ if size < min_size or size > max_size:
529
+ raise ValueError(
530
+ f"requested an output size of {output_size}, but valid sizes range "
531
+ f"from {min_sizes} to {max_sizes} (for an input of {input_shape})"
532
+ )
533
+
534
+ # dilation being an optional parameter is for backwards
535
+ # compatibility
536
+ def _output_padding(self, input, output_size, stride, padding, kernel_size,
537
+ num_spatial_dims, dilation):
538
+ "the computation of output padding"
539
+ if output_size is None:
540
+ ret = tuple(self.output_padding) # converting to list if was not already
541
+ else:
542
+ input_rank = rank(input)
543
+ has_batch_dim = input_rank == (num_spatial_dims + 2)
544
+ num_non_spatial_dims = 2 if has_batch_dim else 1
545
+ if isconstant(output_size) and isconstant(input_rank) and\
546
+ len(output_size) != num_spatial_dims and len(output_size) != (num_non_spatial_dims + num_spatial_dims):
547
+ raise ValueError(
548
+ f"ConvTranspose{num_spatial_dims}D: for {input_rank}D input, ",
549
+ f"output_size must have {num_spatial_dims} ",
550
+ f"or {num_non_spatial_dims + num_spatial_dims} elements (got {len(output_size)})"
551
+ )
552
+ output_size = output_size[-num_spatial_dims:]
553
+
554
+ min_sizes = []
555
+ max_sizes = []
556
+ for d in range(num_spatial_dims):
557
+ dim_size = (
558
+ (input.shape[d + num_non_spatial_dims] - 1) * stride[d]
559
+ - 2 * padding[d]
560
+ + (dilation[d] if dilation is not None else 1)
561
+ * (kernel_size[d] - 1)
562
+ + 1
563
+ )
564
+ min_sizes.append(dim_size)
565
+ max_sizes.append(min_sizes[d] + stride[d] - 1)
566
+ self._check_output_size(output_size, min_sizes, max_sizes, input.shape)
567
+
568
+ res = []
569
+ for d in range(num_spatial_dims):
570
+ res.append(output_size[d] - min_sizes[d])
571
+ ret = res
572
+ return ret
573
+
574
+ def construct(self, *inputs):
575
+ """Must be overridden by all subclasses."""
576
+ raise NotImplementedError
577
+
578
+
579
+ def _pair(x, arg_name, class_name):
580
+ if isinstance(x, int):
581
+ return (x, x)
582
+ if isinstance(x, (tuple, list)):
583
+ if len(x) == 1:
584
+ return (x[0], x[-1])
585
+ return x
586
+ raise ValueError(f"For '{class_name}', '{arg_name}'",
587
+ f" should be int, tuple or list, but got {x}")
588
+
589
+
590
+ class ConvTranspose2d(_ConvTranspose):
591
+ r"""
592
+ Applies a 2D transposed convolution operator over an input image
593
+ composed of several input planes.
594
+
595
+ This module can be seen as the gradient of Conv2d with respect to its input.
596
+ It is also known as a fractionally-strided convolution or
597
+ a deconvolution (although it is not an actual deconvolution operation as it does
598
+ not compute a true inverse of convolution).
599
+
600
+ The parameters `kernel_size`, `stride`, `padding`, `output_padding` can either be:
601
+
602
+ - a single ``int`` -- in which case the same value is used for the height and width dimensions
603
+ - a ``tuple`` of two ints -- in which case, the first `int` is used for the height dimension,
604
+ and the second `int` for the width dimension
605
+
606
+ .. warning::
607
+ - This is an experimental API that is subject to change or deletion.
608
+ - In the scenario where inputs are non-contiguous, `output_padding` must be less than `stride` .
609
+ - For Atlas training products, when the dtype of input is float32, the `groups` only supports 1.
610
+
611
+ Args:
612
+ in_channels (int): Number of channels in the input image.
613
+ out_channels (int): Number of channels produced by the convolution.
614
+ kernel_size (Union[int, tuple(int)]): Size of the convolving kernel.
615
+ stride (Union[int, tuple(int)], optional): Stride of the convolution. Default: ``1`` .
616
+ padding (Union[int, tuple(int)], optional): :math:`dilation * (kernel\_size - 1) - padding` zero-padding
617
+ will be added to both sides of each dimension in the input. Default: ``0`` .
618
+ output_padding (Union[int, tuple(int)], optional): Additional size added to one side of each dimension
619
+ in the output shape. The value of `output_padding` must be less than `stride` or `dilation` .
620
+ Default: ``0`` .
621
+ groups (int, optional): Number of blocked connections from input channels to output channels. Default: ``1``
622
+ bias (bool, optional): If ``True``, adds a learnable bias to the output. Default: ``True`` .
623
+ dilation (Union[int, tuple(int)], optional): Spacing between kernel elements. Default: ``1`` .
624
+ padding_mode (str, optional): Specifies the padding mode with a padding value. For now, it can only be
625
+ set to: ``"zeros"``. Default: ``"zeros"`` .
626
+ dtype (mindspore.dtype, optional): Dtype of Parameters. Default: ``None`` , when it's ``None`` ,
627
+ the dtype of Parameters would be mstype.float32.
628
+
629
+ Variables:
630
+ - **weigh** (Parameter) - the learnable weights of the module of shape
631
+ :math:`(\text{in_channels}, \frac{\text{out_channels}}{\text{groups}},
632
+ \text{kernel_size[0]}, \text{kernel_size[1]})` . The values of these weights are sampled from
633
+ :math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})` where
634
+ :math:`k = \frac{groups}{C_\text{out} * \prod_{i=0}^{1}\text{kernel_size}[i]}`
635
+ - **bias** (Parameter) - the learnable bias of the module of shape :math:`(\text{out_channels},)` .
636
+ If :attr:`bias` is ``True``, then the values of these weights are sampled from
637
+ :math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})` where
638
+ :math:`k = \frac{groups}{C_\text{out} * \prod_{i=0}^{1}\text{kernel_size}[i]}` .
639
+
640
+ Inputs:
641
+ - **input** (Tensor) - Tensor of shape :math:`(N, C_{in}, H_{in}, W_{in})` or :math:`(C_{in}, H_{in}, W_{in})` .
642
+
643
+ Outputs:
644
+ Tensor of shape :math:`(N, C_{out}, H_{out}, W_{out})` or :math:`(C_{out}, H_{out}, W_{out})`, where
645
+
646
+ .. math::
647
+ H_{out} = (H_{in} - 1) \times \text{stride}[0] - 2 \times \text{padding}[0] + \text{dilation}[0]
648
+ \times (\text{kernel_size}[0] - 1) + \text{output_padding}[0] + 1
649
+ .. math::
650
+ W_{out} = (W_{in} - 1) \times \text{stride}[1] - 2 \times \text{padding}[1] + \text{dilation}[1]
651
+ \times (\text{kernel_size}[1] - 1) + \text{output_padding}[1] + 1
652
+
653
+ Supported Platforms:
654
+ ``Ascend``
655
+
656
+ Examples:
657
+ >>> import mindspore as ms
658
+ >>> from mindspore import mint
659
+ >>> # With square kernels and equal stride
660
+ >>> m = mint.nn.ConvTranspose2d(16, 33, 3, stride=2)
661
+ >>> # non-square kernels and unequal stride and with padding
662
+ >>> m = mint.nn.ConvTranspose2d(16, 33, (3, 5), stride=(2, 1), padding=(4, 2))
663
+ >>> input = mint.randn(20, 16, 50, 100)
664
+ >>> output = m(input)
665
+ >>> # exact output size can be also specified as an argument
666
+ >>> input = mint.randn(1, 16, 12, 12)
667
+ >>> downsample = mint.nn.Conv2d(16, 16, 3, stride=2, padding=1)
668
+ >>> upsample = mint.nn.ConvTranspose2d(16, 16, 3, stride=2, padding=1)
669
+ >>> h = downsample(input)
670
+ >>> h.shape
671
+ (1, 16, 6, 6)
672
+ >>> output = upsample(h, output_size=input.shape)
673
+ >>> output.shape
674
+ (1, 16, 12, 12)
675
+
676
+ .. _`here`:
677
+ https://github.com/vdumoulin/conv_arithmetic/blob/master/README.md
678
+
679
+ .. _`Deconvolutional Networks`:
680
+ https://www.matthewzeiler.com/mattzeiler/deconvolutionalnetworks.pdf
681
+ """
682
+
683
+ def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, output_padding=0,
684
+ groups=1, bias=True, dilation=1, padding_mode="zeros", dtype=None):
685
+ dtype = mstype.float32 if dtype is None else dtype
686
+ kernel_size = _pair(kernel_size, "kernel_size", "ConvTranspose2d")
687
+ stride = _pair(stride, "kernel_size", "ConvTranspose2d")
688
+ padding = _pair(padding, "kernel_size", "ConvTranspose2d")
689
+ dilation = _pair(dilation, "kernel_size", "ConvTranspose2d")
690
+ output_padding = _pair(output_padding, "kernel_size", "ConvTranspose2d")
691
+ super(ConvTranspose2d, self).__init__(
692
+ in_channels,
693
+ out_channels,
694
+ kernel_size,
695
+ stride,
696
+ padding,
697
+ dilation,
698
+ True,
699
+ output_padding,
700
+ groups,
701
+ bias,
702
+ padding_mode,
703
+ dtype
704
+ )
705
+
706
+ def construct(self, input, output_size=None):
707
+ num_spatial_dims = 2
708
+ output_padding = self._output_padding(
709
+ input,
710
+ output_size,
711
+ self.stride, # type: ignore[arg-type]
712
+ self.padding, # type: ignore[arg-type]
713
+ self.kernel_size, # type: ignore[arg-type]
714
+ num_spatial_dims,
715
+ self.dilation, # type: ignore[arg-type]
716
+ )
717
+
718
+ return conv_transpose2d(
719
+ input,
720
+ self.weight,
721
+ self.bias,
722
+ self.stride,
723
+ self.padding,
724
+ output_padding,
725
+ self.groups,
726
+ self.dilation,
727
+ )