mindspore 2.4.10__cp311-none-any.whl → 2.5.0__cp311-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of mindspore might be problematic. Click here for more details.
- mindspore/.commit_id +1 -1
- mindspore/Third_Party_Open_Source_Software_Notice +39 -0
- mindspore/__init__.py +8 -3
- mindspore/_akg/akg/composite/build_module.py +6 -2
- mindspore/_akg/akg/utils/kernel_exec.py +2 -2
- mindspore/_c_dataengine.cpython-311-aarch64-linux-gnu.so +0 -0
- mindspore/_c_expression.cpython-311-aarch64-linux-gnu.so +0 -0
- mindspore/_c_mindrecord.cpython-311-aarch64-linux-gnu.so +0 -0
- mindspore/_checkparam.py +0 -5
- mindspore/_extends/parallel_compile/akg_compiler/gen_custom_op_files.py +1 -1
- mindspore/_extends/parse/compile_config.py +64 -0
- mindspore/_extends/parse/deprecated/__init__.py +0 -0
- mindspore/_extends/parse/deprecated/deprecated_tensor_method.py +375 -0
- mindspore/_extends/parse/parser.py +23 -5
- mindspore/_extends/parse/standard_method.py +123 -27
- mindspore/_extends/pijit/pijit_func_white_list.py +1 -1
- mindspore/amp.py +7 -1
- mindspore/boost/boost_cell_wrapper.py +136 -41
- mindspore/common/__init__.py +3 -1
- mindspore/common/_register_for_tensor.py +0 -1
- mindspore/common/_stub_tensor.py +25 -4
- mindspore/common/_tensor_cpp_method.py +17 -0
- mindspore/common/_tensor_docs.py +6132 -0
- mindspore/common/api.py +98 -21
- mindspore/common/dtype.py +34 -34
- mindspore/common/dump.py +2 -1
- mindspore/common/file_system.py +8 -3
- mindspore/common/generator.py +2 -0
- mindspore/common/hook_handle.py +3 -1
- mindspore/common/initializer.py +3 -4
- mindspore/common/lazy_inline.py +8 -2
- mindspore/common/mindir_util.py +10 -2
- mindspore/common/parameter.py +31 -15
- mindspore/common/tensor.py +713 -1337
- mindspore/communication/__init__.py +1 -1
- mindspore/communication/_comm_helper.py +5 -0
- mindspore/communication/comm_func.py +215 -173
- mindspore/communication/management.py +23 -20
- mindspore/context.py +285 -191
- mindspore/dataset/__init__.py +23 -19
- mindspore/dataset/callback/ds_callback.py +2 -1
- mindspore/dataset/core/config.py +84 -3
- mindspore/dataset/engine/cache_admin.py +3 -3
- mindspore/dataset/engine/cache_client.py +5 -4
- mindspore/dataset/engine/datasets.py +192 -149
- mindspore/dataset/engine/datasets_audio.py +14 -0
- mindspore/dataset/engine/datasets_standard_format.py +11 -11
- mindspore/dataset/engine/datasets_text.py +38 -1
- mindspore/dataset/engine/datasets_user_defined.py +100 -66
- mindspore/dataset/engine/datasets_vision.py +81 -8
- mindspore/dataset/engine/iterators.py +281 -63
- mindspore/dataset/engine/obs/util.py +8 -0
- mindspore/dataset/engine/queue.py +40 -0
- mindspore/dataset/engine/samplers.py +26 -2
- mindspore/dataset/engine/serializer_deserializer.py +1 -1
- mindspore/dataset/engine/validators.py +43 -11
- mindspore/dataset/transforms/py_transforms_util.py +17 -0
- mindspore/dataset/transforms/transforms.py +29 -12
- mindspore/dataset/vision/validators.py +1 -2
- mindspore/device_context/__init__.py +21 -0
- mindspore/device_context/ascend/__init__.py +25 -0
- mindspore/device_context/ascend/device.py +72 -0
- mindspore/device_context/ascend/op_debug.py +94 -0
- mindspore/device_context/ascend/op_precision.py +193 -0
- mindspore/device_context/ascend/op_tuning.py +127 -0
- mindspore/device_context/cpu/__init__.py +25 -0
- mindspore/device_context/cpu/device.py +62 -0
- mindspore/device_context/cpu/op_tuning.py +43 -0
- mindspore/device_context/gpu/__init__.py +21 -0
- mindspore/device_context/gpu/device.py +70 -0
- mindspore/device_context/gpu/op_precision.py +67 -0
- mindspore/device_context/gpu/op_tuning.py +175 -0
- mindspore/device_manager.py +134 -0
- mindspore/experimental/llm_boost/__init__.py +1 -0
- mindspore/experimental/llm_boost/ascend_native/__init__.py +22 -0
- mindspore/experimental/llm_boost/ascend_native/llama_boost_ascend_native.py +211 -0
- mindspore/experimental/llm_boost/ascend_native/llm_boost.py +52 -0
- mindspore/experimental/llm_boost/atb/boost_base.py +2 -3
- mindspore/experimental/llm_boost/atb/llama_boost.py +6 -1
- mindspore/experimental/llm_boost/register.py +1 -0
- mindspore/experimental/optim/adadelta.py +26 -22
- mindspore/experimental/optim/adam.py +3 -0
- mindspore/experimental/optim/lr_scheduler.py +33 -24
- mindspore/experimental/optim/radam.py +33 -30
- mindspore/hal/device.py +28 -0
- mindspore/hal/event.py +17 -0
- mindspore/hal/memory.py +94 -3
- mindspore/hal/stream.py +91 -6
- mindspore/include/api/context.h +0 -1
- mindspore/lib/libavcodec.so.59 +0 -0
- mindspore/lib/libavdevice.so.59 +0 -0
- mindspore/lib/libavfilter.so.8 +0 -0
- mindspore/lib/libavformat.so.59 +0 -0
- mindspore/lib/libavutil.so.57 +0 -0
- mindspore/lib/libdnnl.so.2 +0 -0
- mindspore/lib/libmindspore_backend.so +0 -0
- mindspore/lib/libmindspore_common.so +0 -0
- mindspore/lib/libmindspore_core.so +0 -0
- mindspore/lib/libmindspore_glog.so.0 +0 -0
- mindspore/lib/libmindspore_gpr.so.15 +0 -0
- mindspore/lib/libmindspore_grpc++.so.1 +0 -0
- mindspore/lib/libmindspore_grpc.so.15 +0 -0
- mindspore/lib/libmindspore_ops.so +0 -0
- mindspore/lib/libmpi_adapter.so +0 -0
- mindspore/lib/libmpi_collective.so +0 -0
- mindspore/lib/libnnacl.so +0 -0
- mindspore/lib/libopencv_core.so.4.5 +0 -0
- mindspore/lib/libopencv_imgcodecs.so.4.5 +0 -0
- mindspore/lib/libopencv_imgproc.so.4.5 +0 -0
- mindspore/lib/libps_cache.so +0 -0
- mindspore/lib/libswresample.so.4 +0 -0
- mindspore/lib/libswscale.so.6 +0 -0
- mindspore/lib/plugin/ascend/custom_aicore_ops/op_impl/ai_core/tbe/config/ascend910_93/aic-ascend910_93-ops-info.json +2048 -0
- mindspore/lib/plugin/ascend/custom_aicpu_ops/op_impl/cpu/aicpu_kernel/impl/libcust_cpu_kernels.so +0 -0
- mindspore/lib/plugin/ascend/custom_aicpu_ops/op_proto/libcust_op_proto.so +0 -0
- mindspore/lib/plugin/ascend/custom_ascendc_910/op_api/lib/libcust_opapi.so +0 -0
- mindspore/lib/plugin/ascend/custom_ascendc_910/op_impl/ai_core/tbe/custom_ascendc_910_impl/dynamic/decoder_kv_cache.py +1 -1
- mindspore/lib/plugin/ascend/custom_ascendc_910/op_impl/ai_core/tbe/custom_ascendc_910_impl/dynamic/prompt_kv_cache.py +1 -1
- mindspore/lib/plugin/ascend/custom_ascendc_910/op_impl/ai_core/tbe/op_tiling/lib/linux/aarch64/libcust_opmaster_rt2.0.so +0 -0
- mindspore/lib/plugin/ascend/custom_ascendc_910/op_impl/ai_core/tbe/op_tiling/liboptiling.so +0 -0
- mindspore/lib/plugin/ascend/custom_ascendc_910/op_proto/lib/linux/aarch64/libcust_opsproto_rt2.0.so +0 -0
- mindspore/lib/plugin/ascend/custom_ascendc_910/version.info +1 -1
- mindspore/lib/plugin/ascend/custom_ascendc_910b/op_api/lib/libcust_opapi.so +0 -0
- mindspore/lib/plugin/ascend/custom_ascendc_910b/op_impl/ai_core/tbe/config/ascend910_93/aic-ascend910_93-ops-info.json +224 -0
- mindspore/lib/plugin/ascend/custom_ascendc_910b/op_impl/ai_core/tbe/custom_ascendc_910b_impl/dynamic/all_finite.py +1 -1
- mindspore/lib/plugin/ascend/custom_ascendc_910b/op_impl/ai_core/tbe/custom_ascendc_910b_impl/dynamic/decoder_kv_cache.py +1 -1
- mindspore/lib/plugin/ascend/custom_ascendc_910b/op_impl/ai_core/tbe/custom_ascendc_910b_impl/dynamic/prompt_kv_cache.py +1 -1
- mindspore/lib/plugin/ascend/custom_ascendc_910b/op_impl/ai_core/tbe/kernel/ascend910_93/all_finite/AllFinite_52f59e2a65d9b1bb002de35c2819754a.json +78 -0
- mindspore/lib/plugin/ascend/custom_ascendc_910b/op_impl/ai_core/tbe/kernel/ascend910_93/all_finite/AllFinite_52f59e2a65d9b1bb002de35c2819754a.o +0 -0
- mindspore/lib/plugin/ascend/custom_ascendc_910b/op_impl/ai_core/tbe/kernel/ascend910_93/all_finite/AllFinite_6b5e50e30256d85838d6ce83514df20f.json +78 -0
- mindspore/lib/plugin/ascend/custom_ascendc_910b/op_impl/ai_core/tbe/kernel/ascend910_93/all_finite/AllFinite_6b5e50e30256d85838d6ce83514df20f.o +0 -0
- mindspore/lib/plugin/ascend/custom_ascendc_910b/op_impl/ai_core/tbe/kernel/ascend910_93/all_finite/AllFinite_74e4ac02880d452e3308c94af273562e.json +78 -0
- mindspore/lib/plugin/ascend/custom_ascendc_910b/op_impl/ai_core/tbe/kernel/ascend910_93/all_finite/AllFinite_74e4ac02880d452e3308c94af273562e.o +0 -0
- mindspore/lib/plugin/ascend/custom_ascendc_910b/op_impl/ai_core/tbe/kernel/ascend910_93/decoder_kv_cache/DecoderKvCache_0d5520cc587ad44ce634bf3fbcffc272.json +156 -0
- mindspore/lib/plugin/ascend/custom_ascendc_910b/op_impl/ai_core/tbe/kernel/ascend910_93/decoder_kv_cache/DecoderKvCache_0d5520cc587ad44ce634bf3fbcffc272.o +0 -0
- mindspore/lib/plugin/ascend/custom_ascendc_910b/op_impl/ai_core/tbe/kernel/ascend910_93/decoder_kv_cache/DecoderKvCache_20390d30b3c4c0d23167ccca6c030c2b.json +156 -0
- mindspore/lib/plugin/ascend/custom_ascendc_910b/op_impl/ai_core/tbe/kernel/ascend910_93/decoder_kv_cache/DecoderKvCache_20390d30b3c4c0d23167ccca6c030c2b.o +0 -0
- mindspore/lib/plugin/ascend/custom_ascendc_910b/op_impl/ai_core/tbe/kernel/ascend910_93/decoder_kv_cache/DecoderKvCache_2d151f0b1d2db51faa2968d5b67544e2.json +156 -0
- mindspore/lib/plugin/ascend/custom_ascendc_910b/op_impl/ai_core/tbe/kernel/ascend910_93/decoder_kv_cache/DecoderKvCache_2d151f0b1d2db51faa2968d5b67544e2.o +0 -0
- mindspore/lib/plugin/ascend/custom_ascendc_910b/op_impl/ai_core/tbe/kernel/ascend910_93/decoder_kv_cache/DecoderKvCache_561690ec17cc1def3d2fcf68c1b07b56.json +156 -0
- mindspore/lib/plugin/ascend/custom_ascendc_910b/op_impl/ai_core/tbe/kernel/ascend910_93/decoder_kv_cache/DecoderKvCache_561690ec17cc1def3d2fcf68c1b07b56.o +0 -0
- mindspore/lib/plugin/ascend/custom_ascendc_910b/op_impl/ai_core/tbe/kernel/ascend910_93/decoder_kv_cache/DecoderKvCache_570f9aaa99e5e773b3dd0a33784363f4.json +156 -0
- mindspore/lib/plugin/ascend/custom_ascendc_910b/op_impl/ai_core/tbe/kernel/ascend910_93/decoder_kv_cache/DecoderKvCache_570f9aaa99e5e773b3dd0a33784363f4.o +0 -0
- mindspore/lib/plugin/ascend/custom_ascendc_910b/op_impl/ai_core/tbe/kernel/ascend910_93/decoder_kv_cache/DecoderKvCache_59668a0f0764afb98fda8ab9e84126f1.json +156 -0
- mindspore/lib/plugin/ascend/custom_ascendc_910b/op_impl/ai_core/tbe/kernel/ascend910_93/decoder_kv_cache/DecoderKvCache_59668a0f0764afb98fda8ab9e84126f1.o +0 -0
- mindspore/lib/plugin/ascend/custom_ascendc_910b/op_impl/ai_core/tbe/kernel/ascend910_93/decoder_kv_cache/DecoderKvCache_91d9833e4792b70b670e4e2b916abd86.json +156 -0
- mindspore/lib/plugin/ascend/custom_ascendc_910b/op_impl/ai_core/tbe/kernel/ascend910_93/decoder_kv_cache/DecoderKvCache_91d9833e4792b70b670e4e2b916abd86.o +0 -0
- mindspore/lib/plugin/ascend/custom_ascendc_910b/op_impl/ai_core/tbe/kernel/ascend910_93/decoder_kv_cache/DecoderKvCache_c74cdc5fef094383401856f8519504af.json +156 -0
- mindspore/lib/plugin/ascend/custom_ascendc_910b/op_impl/ai_core/tbe/kernel/ascend910_93/decoder_kv_cache/DecoderKvCache_c74cdc5fef094383401856f8519504af.o +0 -0
- mindspore/lib/plugin/ascend/custom_ascendc_910b/op_impl/ai_core/tbe/kernel/ascend910_93/prompt_kv_cache/PromptKvCache_0515c7b1a4cd614449e38c5e9a7e3f8d.json +165 -0
- mindspore/lib/plugin/ascend/custom_ascendc_910b/op_impl/ai_core/tbe/kernel/ascend910_93/prompt_kv_cache/PromptKvCache_0515c7b1a4cd614449e38c5e9a7e3f8d.o +0 -0
- mindspore/lib/plugin/ascend/custom_ascendc_910b/op_impl/ai_core/tbe/kernel/ascend910_93/prompt_kv_cache/PromptKvCache_09f22d898d6358c91e7c4fc48bac48e7.json +165 -0
- mindspore/lib/plugin/ascend/custom_ascendc_910b/op_impl/ai_core/tbe/kernel/ascend910_93/prompt_kv_cache/PromptKvCache_09f22d898d6358c91e7c4fc48bac48e7.o +0 -0
- mindspore/lib/plugin/ascend/custom_ascendc_910b/op_impl/ai_core/tbe/kernel/ascend910_93/prompt_kv_cache/PromptKvCache_0cb9a6f894b925250227136e5aab7061.json +165 -0
- mindspore/lib/plugin/ascend/custom_ascendc_910b/op_impl/ai_core/tbe/kernel/ascend910_93/prompt_kv_cache/PromptKvCache_0cb9a6f894b925250227136e5aab7061.o +0 -0
- mindspore/lib/plugin/ascend/custom_ascendc_910b/op_impl/ai_core/tbe/kernel/ascend910_93/prompt_kv_cache/PromptKvCache_2fa8702ffd7ca85e9e194f62644415d5.json +165 -0
- mindspore/lib/plugin/ascend/custom_ascendc_910b/op_impl/ai_core/tbe/kernel/ascend910_93/prompt_kv_cache/PromptKvCache_2fa8702ffd7ca85e9e194f62644415d5.o +0 -0
- mindspore/lib/plugin/ascend/custom_ascendc_910b/op_impl/ai_core/tbe/kernel/ascend910_93/prompt_kv_cache/PromptKvCache_570b62f187dfd439b64613d881deedb7.json +165 -0
- mindspore/lib/plugin/ascend/custom_ascendc_910b/op_impl/ai_core/tbe/kernel/ascend910_93/prompt_kv_cache/PromptKvCache_570b62f187dfd439b64613d881deedb7.o +0 -0
- mindspore/lib/plugin/ascend/custom_ascendc_910b/op_impl/ai_core/tbe/kernel/ascend910_93/prompt_kv_cache/PromptKvCache_585218c11411ff84709b9e725b66c435.json +165 -0
- mindspore/lib/plugin/ascend/custom_ascendc_910b/op_impl/ai_core/tbe/kernel/ascend910_93/prompt_kv_cache/PromptKvCache_585218c11411ff84709b9e725b66c435.o +0 -0
- mindspore/lib/plugin/ascend/custom_ascendc_910b/op_impl/ai_core/tbe/kernel/ascend910_93/prompt_kv_cache/PromptKvCache_5c9365ccde170b358c5b126d69dae13e.json +165 -0
- mindspore/lib/plugin/ascend/custom_ascendc_910b/op_impl/ai_core/tbe/kernel/ascend910_93/prompt_kv_cache/PromptKvCache_5c9365ccde170b358c5b126d69dae13e.o +0 -0
- mindspore/lib/plugin/ascend/custom_ascendc_910b/op_impl/ai_core/tbe/kernel/ascend910_93/prompt_kv_cache/PromptKvCache_6d97c45b7c43bc16fcff8baa5dacac4e.json +165 -0
- mindspore/lib/plugin/ascend/custom_ascendc_910b/op_impl/ai_core/tbe/kernel/ascend910_93/prompt_kv_cache/PromptKvCache_6d97c45b7c43bc16fcff8baa5dacac4e.o +0 -0
- mindspore/lib/plugin/ascend/custom_ascendc_910b/op_impl/ai_core/tbe/kernel/config/ascend910_93/all_finite.json +139 -0
- mindspore/lib/plugin/ascend/custom_ascendc_910b/op_impl/ai_core/tbe/kernel/config/ascend910_93/binary_info_config.json +361 -0
- mindspore/lib/plugin/ascend/custom_ascendc_910b/op_impl/ai_core/tbe/kernel/config/ascend910_93/decoder_kv_cache.json +892 -0
- mindspore/lib/plugin/ascend/custom_ascendc_910b/op_impl/ai_core/tbe/kernel/config/ascend910_93/prompt_kv_cache.json +892 -0
- mindspore/lib/plugin/ascend/custom_ascendc_910b/op_impl/ai_core/tbe/op_tiling/lib/linux/aarch64/libcust_opmaster_rt2.0.so +0 -0
- mindspore/lib/plugin/ascend/custom_ascendc_910b/op_impl/ai_core/tbe/op_tiling/liboptiling.so +0 -0
- mindspore/lib/plugin/ascend/custom_ascendc_910b/op_proto/lib/linux/aarch64/libcust_opsproto_rt2.0.so +0 -0
- mindspore/lib/plugin/ascend/custom_ascendc_910b/version.info +1 -1
- mindspore/lib/plugin/ascend/custom_compiler/setup.py +1 -1
- mindspore/lib/plugin/ascend/libascend_collective.so +0 -0
- mindspore/lib/plugin/ascend/libdvpp_utils.so +0 -0
- mindspore/lib/plugin/ascend/liblowlatency_collective.so +0 -0
- mindspore/lib/plugin/ascend/libmindspore_cpu_kernels.so +0 -0
- mindspore/lib/plugin/ascend/libmindspore_internal_kernels.so +0 -0
- mindspore/lib/plugin/ascend/libms_ascend_native_boost.so +0 -0
- mindspore/lib/plugin/ascend/libms_atb_boost.so +0 -0
- mindspore/lib/plugin/ascend/ms_kernels_internal/asdops/device/ascend910b/bin/ascend910b.bin +957 -955
- mindspore/lib/plugin/ascend/ms_kernels_internal/asdops/lib/libasdops_static.a +0 -0
- mindspore/lib/plugin/ascend/ms_kernels_internal/asdops/lib/liblcal_static.a +0 -0
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/{acme/include/base_type.h → base_type.h} +25 -20
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/{cast/cast_tiling.h → internal.h} +6 -4
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/internal_op.h +114 -0
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/llm/boost_kernel.h +70 -0
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/llm/llama_impl.h +85 -0
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/llm/model_interface.h +52 -0
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/llm/tensor.h +81 -0
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/op_creator.h +123 -0
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/op_param.h +155 -110
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/{acme/include/tiling_info.h → tiling_info.h} +12 -9
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/tiling_utils.h +178 -0
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/lib/libadd_layer_norm_op.so +0 -0
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/lib/libadd_rms_norm_op.so +0 -0
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/lib/libadd_rms_norm_quant_op.so +0 -0
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/lib/libapply_rotary_pos_emb_310p_op.so +0 -0
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/lib/libapply_rotary_pos_emb_op.so +0 -0
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/lib/libcast_op.so +0 -0
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/lib/libcompare_op.so +0 -0
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/lib/libgelu_op.so +0 -0
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/lib/libllama_op.so +0 -0
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/lib/libmatmul_op.so +0 -0
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/lib/libms_kernels_internal.so +0 -0
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/lib/libms_optiling.so +0 -0
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/lib/libmulti_weight_matmul_kernel_op.so +0 -0
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/lib/libreshape_and_cache_nz_op.so +0 -0
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/lib/libreshape_and_cache_op.so +0 -0
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/lib/librms_norm_op.so +0 -0
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend310p/object_kernels/internal_pp_matmul_f16_nz/internal_pp_matmul_f16_nz.o +0 -0
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend310p/object_kernels/internal_pp_matmul_f16_nz/internal_pp_matmul_f16_nz_0.o +0 -0
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend310p/object_kernels/internal_pp_matmul_i8_nz_compress/internal_pp_matmul_i8_nz_compress.o +0 -0
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend310p/object_kernels/internal_pp_matmul_i8_nz_compress/internal_pp_matmul_i8_nz_compress_0.o +0 -0
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend310p/object_kernels/internal_pp_matmul_int8_nz/internal_pp_matmul_int8_nz.o +0 -0
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend310p/object_kernels/internal_pp_matmul_int8_nz/internal_pp_matmul_int8_nz_0.o +0 -0
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend310p/so_kernels/libadd_rms_norm_quant_ascend310p.so +0 -0
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/{lib/libapply_rotary_pos_emb_310p_impl.so → op_kernels/ascend310p/so_kernels/libapply_rotary_pos_emb_310p_ascend310p.so} +0 -0
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend310p/so_kernels/libcast_ascend310p.so +0 -0
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend310p/so_kernels/libcompare_ascend310p.so +0 -0
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend310p/so_kernels/libgelu_ascend310p.so +0 -0
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend310p/so_kernels/libmatmul_ascend310p.so +0 -0
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend310p/so_kernels/libreshape_and_cache_nz_ascend310p.so +0 -0
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/hphol_kernels/add_rms_norm_dynamic_quant/AddRmsNormDynamicQuant_4b60f88cdc28b25a36bad2d8b0a88092.json +163 -0
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/hphol_kernels/add_rms_norm_dynamic_quant/AddRmsNormDynamicQuant_4b60f88cdc28b25a36bad2d8b0a88092.o +0 -0
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/hphol_kernels/add_rms_norm_dynamic_quant/AddRmsNormDynamicQuant_cde61da2bd6fededcb1ba310a6ad16ee.json +163 -0
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/hphol_kernels/add_rms_norm_dynamic_quant/AddRmsNormDynamicQuant_cde61da2bd6fededcb1ba310a6ad16ee.o +0 -0
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/object_kernels/flash_attention_score/flash_attention_score_bf16_bnsd_full_mix.o +0 -0
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/object_kernels/flash_attention_score/flash_attention_score_bf16_bnsd_tri_mix.o +0 -0
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/object_kernels/flash_attention_score/flash_attention_score_bf16_bsh_full_mix.o +0 -0
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/object_kernels/flash_attention_score/flash_attention_score_bf16_bsh_tri_mix.o +0 -0
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/object_kernels/flash_attention_score/flash_attention_score_fp16_bnsd_full_mix.o +0 -0
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/object_kernels/flash_attention_score/flash_attention_score_fp16_bnsd_tri_mix.o +0 -0
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/object_kernels/flash_attention_score/flash_attention_score_fp16_bsh_full_mix.o +0 -0
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/object_kernels/flash_attention_score/flash_attention_score_fp16_bsh_tri_mix.o +0 -0
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/object_kernels/internal_matmul_postfusion_mix/internal_matmul_postfusion_mix.o +0 -0
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/object_kernels/internal_matmul_postfusion_mix/internal_matmul_postfusion_mix_mix_aic_0.o +0 -0
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/object_kernels/internal_matmul_postfusion_mix/internal_matmul_postfusion_mix_mix_aiv_0.o +0 -0
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/object_kernels/internal_multi_weight_matmul_postfusion_mix/internal_multi_weight_matmul_postfusion_mix.o +0 -0
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/object_kernels/internal_multi_weight_matmul_postfusion_mix/internal_multi_weight_matmul_postfusion_mix_mix_aic_0.o +0 -0
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/object_kernels/internal_multi_weight_matmul_postfusion_mix/internal_multi_weight_matmul_postfusion_mix_mix_aiv_0.o +0 -0
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/{matmul_add_rmsnorm → object_kernels/matmul_add_rmsnorm}/matmul_add_rmsnorm_bf16_bf16.o +0 -0
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/{matmul_add_rmsnorm → object_kernels/matmul_add_rmsnorm}/matmul_add_rmsnorm_bf16_fp16.o +0 -0
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/{matmul_add_rmsnorm → object_kernels/matmul_add_rmsnorm}/matmul_add_rmsnorm_bf16_fp32.o +0 -0
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/{matmul_add_rmsnorm → object_kernels/matmul_add_rmsnorm}/matmul_add_rmsnorm_fp16_bf16.o +0 -0
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/{matmul_add_rmsnorm → object_kernels/matmul_add_rmsnorm}/matmul_add_rmsnorm_fp16_fp16.o +0 -0
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/{matmul_add_rmsnorm → object_kernels/matmul_add_rmsnorm}/matmul_add_rmsnorm_fp16_fp32.o +0 -0
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/object_kernels/paged_attention_v2/paged_attention_v2.o +0 -0
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/object_kernels/paged_attention_v2/paged_attention_v2_mix_aic_0.o +0 -0
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/object_kernels/paged_attention_v2/paged_attention_v2_mix_aiv_0.o +0 -0
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/{lib/libadd_layer_norm_impl.so → op_kernels/ascend910b/so_kernels/libadd_layer_norm_ascend910b.so} +0 -0
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/{lib/libadd_rms_norm_impl.so → op_kernels/ascend910b/so_kernels/libadd_rms_norm_ascend910b.so} +0 -0
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/so_kernels/libadd_rms_norm_quant_ascend910b.so +0 -0
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/{lib/libapply_rotary_pos_emb_impl.so → op_kernels/ascend910b/so_kernels/libapply_rotary_pos_emb_ascend910b.so} +0 -0
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/{lib/libcast_impl.so → op_kernels/ascend910b/so_kernels/libcast_ascend910b.so} +0 -0
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/{lib/libnot_equal_impl.so → op_kernels/ascend910b/so_kernels/libcompare_ascend910b.so} +0 -0
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/{lib/libgelu_impl.so → op_kernels/ascend910b/so_kernels/libgelu_ascend910b.so} +0 -0
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/so_kernels/libllama_ascend910b.so +0 -0
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/{lib/libmatmul_impl.so → op_kernels/ascend910b/so_kernels/libmatmul_ascend910b.so} +0 -0
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/{lib/libmulti_weight_matmul_kernel_impl.so → op_kernels/ascend910b/so_kernels/libmulti_weight_matmul_kernel_ascend910b.so} +0 -0
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/{lib/libreshape_and_cache_impl.so → op_kernels/ascend910b/so_kernels/libreshape_and_cache_ascend910b.so} +0 -0
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/{lib/librms_norm_impl.so → op_kernels/ascend910b/so_kernels/librms_norm_ascend910b.so} +0 -0
- mindspore/lib/plugin/ascend/ms_kernels_internal/lccl/lib/liblccl_wrapper.so +0 -0
- mindspore/lib/plugin/libmindspore_ascend.so.2 +0 -0
- mindspore/log.py +12 -0
- mindspore/mindrecord/__init__.py +1 -1
- mindspore/mindrecord/config.py +17 -316
- mindspore/mindrecord/filereader.py +1 -9
- mindspore/mindrecord/filewriter.py +5 -15
- mindspore/mindrecord/mindpage.py +1 -9
- mindspore/mint/__init__.py +824 -218
- mindspore/mint/distributed/__init__.py +66 -4
- mindspore/mint/distributed/distributed.py +2594 -44
- mindspore/mint/linalg/__init__.py +6 -0
- mindspore/mint/nn/__init__.py +473 -14
- mindspore/mint/nn/functional.py +486 -11
- mindspore/mint/nn/layer/__init__.py +17 -4
- mindspore/mint/nn/layer/_functions.py +330 -0
- mindspore/mint/nn/layer/activation.py +169 -1
- mindspore/mint/nn/layer/basic.py +123 -0
- mindspore/mint/nn/layer/conv.py +727 -0
- mindspore/mint/nn/layer/normalization.py +215 -19
- mindspore/mint/nn/layer/padding.py +797 -0
- mindspore/mint/nn/layer/pooling.py +170 -0
- mindspore/mint/optim/__init__.py +2 -1
- mindspore/mint/optim/adam.py +223 -0
- mindspore/mint/optim/adamw.py +26 -19
- mindspore/mint/special/__init__.py +2 -1
- mindspore/multiprocessing/__init__.py +5 -0
- mindspore/nn/cell.py +126 -19
- mindspore/nn/dynamic_lr.py +2 -1
- mindspore/nn/layer/activation.py +6 -6
- mindspore/nn/layer/basic.py +35 -25
- mindspore/nn/layer/channel_shuffle.py +3 -3
- mindspore/nn/layer/embedding.py +3 -3
- mindspore/nn/layer/normalization.py +8 -7
- mindspore/nn/layer/padding.py +4 -3
- mindspore/nn/layer/pooling.py +47 -13
- mindspore/nn/layer/rnn_cells.py +1 -1
- mindspore/nn/layer/rnns.py +2 -1
- mindspore/nn/layer/timedistributed.py +5 -5
- mindspore/nn/layer/transformer.py +48 -26
- mindspore/nn/learning_rate_schedule.py +5 -3
- mindspore/nn/loss/loss.py +31 -36
- mindspore/nn/optim/ada_grad.py +1 -0
- mindspore/nn/optim/adadelta.py +2 -2
- mindspore/nn/optim/adam.py +1 -1
- mindspore/nn/optim/lars.py +1 -4
- mindspore/nn/optim/optimizer.py +1 -1
- mindspore/nn/optim/rprop.py +2 -2
- mindspore/nn/optim/thor.py +2 -1
- mindspore/nn/utils/init.py +13 -11
- mindspore/nn/wrap/cell_wrapper.py +4 -6
- mindspore/nn/wrap/loss_scale.py +3 -4
- mindspore/numpy/array_creations.py +60 -62
- mindspore/numpy/array_ops.py +148 -143
- mindspore/numpy/logic_ops.py +41 -42
- mindspore/numpy/math_ops.py +361 -359
- mindspore/numpy/utils.py +16 -16
- mindspore/numpy/utils_const.py +4 -4
- mindspore/ops/__init__.py +2 -1
- mindspore/ops/_grad_experimental/grad_comm_ops.py +94 -13
- mindspore/ops/_grad_experimental/grad_debug_ops.py +6 -1
- mindspore/ops/_grad_experimental/grad_inner_ops.py +9 -0
- mindspore/ops/_grad_experimental/grad_math_ops.py +2 -1
- mindspore/ops/_op_impl/cpu/__init__.py +1 -0
- mindspore/ops/_op_impl/cpu/raise_op.py +28 -0
- mindspore/ops/_vmap/vmap_array_ops.py +20 -19
- mindspore/ops/_vmap/vmap_base.py +0 -2
- mindspore/ops/_vmap/vmap_grad_nn_ops.py +19 -13
- mindspore/ops/_vmap/vmap_math_ops.py +11 -9
- mindspore/ops/_vmap/vmap_nn_ops.py +20 -34
- mindspore/ops/auto_generate/cpp_create_prim_instance_helper.py +149 -12
- mindspore/ops/auto_generate/gen_arg_handler.py +0 -61
- mindspore/ops/auto_generate/gen_extend_func.py +554 -60
- mindspore/ops/auto_generate/gen_ops_def.py +1621 -115
- mindspore/ops/auto_generate/gen_ops_prim.py +8024 -3409
- mindspore/ops/auto_generate/pyboost_inner_prim.py +183 -79
- mindspore/ops/composite/base.py +1 -1
- mindspore/ops/composite/multitype_ops/_compile_utils.py +229 -30
- mindspore/ops/composite/multitype_ops/pow_impl.py +0 -29
- mindspore/ops/function/__init__.py +12 -0
- mindspore/ops/function/array_func.py +561 -159
- mindspore/ops/function/clip_func.py +64 -0
- mindspore/ops/function/debug_func.py +28 -20
- mindspore/ops/function/image_func.py +1 -1
- mindspore/ops/function/linalg_func.py +5 -4
- mindspore/ops/function/math_func.py +1659 -290
- mindspore/ops/function/nn_func.py +988 -317
- mindspore/ops/function/parameter_func.py +3 -56
- mindspore/ops/function/random_func.py +243 -33
- mindspore/ops/function/sparse_unary_func.py +1 -1
- mindspore/ops/functional.py +18 -5
- mindspore/ops/functional_overload.py +897 -0
- mindspore/ops/operations/__init__.py +3 -2
- mindspore/ops/operations/_embedding_cache_ops.py +4 -4
- mindspore/ops/operations/_grad_ops.py +2 -34
- mindspore/ops/operations/_infer_ops.py +2 -1
- mindspore/ops/operations/_inner_ops.py +38 -8
- mindspore/ops/operations/array_ops.py +45 -303
- mindspore/ops/operations/comm_ops.py +19 -16
- mindspore/ops/operations/custom_ops.py +11 -55
- mindspore/ops/operations/debug_ops.py +42 -47
- mindspore/ops/operations/inner_ops.py +6 -4
- mindspore/ops/operations/linalg_ops.py +3 -2
- mindspore/ops/operations/manually_defined/ops_def.py +185 -104
- mindspore/ops/operations/math_ops.py +11 -216
- mindspore/ops/operations/nn_ops.py +146 -308
- mindspore/ops/primitive.py +23 -21
- mindspore/ops/tensor_method.py +1669 -0
- mindspore/ops_generate/aclnn_kernel_register_auto_cc_generator.py +110 -0
- mindspore/ops_generate/add_tensor_docs_generator.py +54 -0
- mindspore/ops_generate/arg_handler.py +0 -61
- mindspore/ops_generate/auto_grad_impl_cc_generator.py +135 -0
- mindspore/ops_generate/auto_grad_reg_cc_generator.py +93 -0
- mindspore/ops_generate/base_generator.py +11 -0
- mindspore/ops_generate/cpp_create_prim_instance_helper_generator.py +108 -0
- mindspore/ops_generate/functional_map_cpp_generator.py +491 -0
- mindspore/ops_generate/functional_overload_py_generator.py +110 -0
- mindspore/ops_generate/functions_cc_generator.py +233 -0
- mindspore/ops_generate/gen_aclnn_implement.py +110 -114
- mindspore/ops_generate/gen_constants.py +157 -3
- mindspore/ops_generate/gen_ops.py +245 -990
- mindspore/ops_generate/gen_pyboost_func.py +97 -998
- mindspore/ops_generate/gen_utils.py +119 -33
- mindspore/ops_generate/lite_ops_cpp_generator.py +155 -0
- mindspore/ops_generate/op_api_proto.py +206 -0
- mindspore/ops_generate/op_def_py_generator.py +131 -0
- mindspore/ops_generate/op_prim_py_generator.py +480 -0
- mindspore/ops_generate/op_proto.py +373 -108
- mindspore/ops_generate/op_template_parser.py +436 -0
- mindspore/ops_generate/ops_def_cc_generator.py +288 -0
- mindspore/ops_generate/ops_def_h_generator.py +74 -0
- mindspore/ops_generate/ops_name_h_generator.py +68 -0
- mindspore/ops_generate/ops_primitive_h_generator.py +81 -0
- mindspore/ops_generate/pyboost_functions_cpp_generator.py +370 -0
- mindspore/ops_generate/pyboost_functions_h_generator.py +68 -0
- mindspore/ops_generate/pyboost_functions_py_generator.py +148 -0
- mindspore/ops_generate/pyboost_grad_function_cpp_generator.py +154 -0
- mindspore/ops_generate/pyboost_inner_prim_generator.py +131 -0
- mindspore/ops_generate/pyboost_native_grad_functions_generator.py +268 -0
- mindspore/ops_generate/pyboost_op_cpp_code_generator.py +851 -0
- mindspore/ops_generate/pyboost_overload_functions_cpp_generator.py +344 -0
- mindspore/ops_generate/pyboost_utils.py +92 -33
- mindspore/ops_generate/template.py +294 -44
- mindspore/ops_generate/tensor_func_reg_cpp_generator.py +422 -0
- mindspore/parallel/__init__.py +3 -3
- mindspore/parallel/_auto_parallel_context.py +24 -33
- mindspore/parallel/_parallel_serialization.py +13 -2
- mindspore/parallel/_utils.py +4 -1
- mindspore/parallel/algo_parameter_config.py +1 -1
- mindspore/parallel/checkpoint_transform.py +44 -0
- mindspore/parallel/cluster/process_entity/_api.py +131 -37
- mindspore/parallel/cluster/process_entity/_utils.py +41 -6
- mindspore/parallel/cluster/run.py +20 -3
- mindspore/parallel/parameter_broadcast.py +1 -1
- mindspore/parallel/shard.py +3 -0
- mindspore/parallel/transform_safetensors.py +119 -253
- mindspore/profiler/__init__.py +17 -4
- mindspore/profiler/analysis/__init__.py +0 -0
- mindspore/profiler/analysis/parser/__init__.py +0 -0
- mindspore/profiler/analysis/parser/ascend_cann_parser.py +166 -0
- mindspore/profiler/analysis/parser/base_parser.py +158 -0
- mindspore/profiler/analysis/parser/framework_cann_relation_parser.py +45 -0
- mindspore/profiler/analysis/parser/ms_framework_parser.py +142 -0
- mindspore/profiler/analysis/parser/ms_minddata_parser.py +145 -0
- mindspore/profiler/analysis/parser/timeline_assembly_factory/__init__.py +0 -0
- mindspore/profiler/analysis/parser/timeline_assembly_factory/ascend_timeline_assembler.py +261 -0
- mindspore/profiler/analysis/parser/timeline_assembly_factory/base_timeline_assembler.py +40 -0
- mindspore/profiler/analysis/parser/timeline_assembly_factory/trace_view_container.py +84 -0
- mindspore/profiler/analysis/parser/timeline_creator/__init__.py +0 -0
- mindspore/profiler/analysis/parser/timeline_creator/base_timeline_creator.py +44 -0
- mindspore/profiler/analysis/parser/timeline_creator/cpu_op_timeline_creator.py +90 -0
- mindspore/profiler/analysis/parser/timeline_creator/fwk_timeline_creator.py +76 -0
- mindspore/profiler/analysis/parser/timeline_creator/msprof_timeline_creator.py +103 -0
- mindspore/profiler/analysis/parser/timeline_creator/scope_layer_timeline_creator.py +134 -0
- mindspore/profiler/analysis/parser/timeline_event/__init__.py +0 -0
- mindspore/profiler/analysis/parser/timeline_event/base_event.py +233 -0
- mindspore/profiler/analysis/parser/timeline_event/cpu_op_event.py +47 -0
- mindspore/profiler/analysis/parser/timeline_event/flow_event.py +36 -0
- mindspore/profiler/analysis/parser/timeline_event/fwk_event.py +260 -0
- mindspore/profiler/analysis/parser/timeline_event/msprof_event.py +73 -0
- mindspore/profiler/analysis/parser/timeline_event/scope_layer_event.py +53 -0
- mindspore/profiler/analysis/parser/timeline_event/timeline_event_pool.py +146 -0
- mindspore/profiler/analysis/task_manager.py +131 -0
- mindspore/profiler/analysis/time_converter.py +84 -0
- mindspore/profiler/analysis/viewer/__init__.py +0 -0
- mindspore/profiler/analysis/viewer/ascend_communication_viewer.py +333 -0
- mindspore/profiler/analysis/viewer/ascend_integrate_viewer.py +87 -0
- mindspore/profiler/analysis/viewer/ascend_kernel_details_viewer.py +252 -0
- mindspore/profiler/analysis/viewer/ascend_memory_viewer.py +313 -0
- mindspore/profiler/analysis/viewer/ascend_op_memory_viewer.py +322 -0
- mindspore/profiler/analysis/viewer/ascend_step_trace_time_viewer.py +265 -0
- mindspore/profiler/analysis/viewer/ascend_timeline_viewer.py +58 -0
- mindspore/profiler/analysis/viewer/base_viewer.py +26 -0
- mindspore/profiler/analysis/viewer/ms_dataset_viewer.py +97 -0
- mindspore/profiler/analysis/viewer/ms_minddata_viewer.py +581 -0
- mindspore/profiler/analysis/work_flow.py +73 -0
- mindspore/profiler/common/ascend_msprof_exporter.py +138 -0
- mindspore/profiler/common/command_executor.py +90 -0
- mindspore/profiler/common/constant.py +174 -3
- mindspore/profiler/common/file_manager.py +208 -0
- mindspore/profiler/common/log.py +130 -0
- mindspore/profiler/common/msprof_cmd_tool.py +202 -0
- mindspore/profiler/common/path_manager.py +371 -0
- mindspore/profiler/common/process_bar.py +168 -0
- mindspore/profiler/common/process_pool.py +9 -3
- mindspore/profiler/common/profiler_context.py +476 -0
- mindspore/profiler/common/profiler_info.py +304 -0
- mindspore/profiler/common/profiler_output_path.py +284 -0
- mindspore/profiler/common/profiler_parameters.py +210 -0
- mindspore/profiler/common/profiler_path_manager.py +120 -0
- mindspore/profiler/common/record_function.py +76 -0
- mindspore/profiler/common/tlv_decoder.py +76 -0
- mindspore/profiler/common/util.py +75 -2
- mindspore/profiler/dynamic_profiler.py +270 -37
- mindspore/profiler/envprofiler.py +138 -0
- mindspore/profiler/mstx.py +199 -0
- mindspore/profiler/platform/__init__.py +21 -0
- mindspore/profiler/platform/base_profiler.py +40 -0
- mindspore/profiler/platform/cpu_profiler.py +124 -0
- mindspore/profiler/platform/gpu_profiler.py +74 -0
- mindspore/profiler/platform/npu_profiler.py +309 -0
- mindspore/profiler/profiler.py +580 -93
- mindspore/profiler/profiler_action_controller.py +187 -0
- mindspore/profiler/profiler_interface.py +114 -0
- mindspore/profiler/schedule.py +208 -0
- mindspore/rewrite/api/symbol_tree.py +1 -2
- mindspore/run_check/_check_version.py +2 -6
- mindspore/runtime/__init__.py +37 -0
- mindspore/runtime/device.py +27 -0
- mindspore/runtime/event.py +209 -0
- mindspore/runtime/executor.py +148 -0
- mindspore/runtime/memory.py +392 -0
- mindspore/runtime/stream.py +460 -0
- mindspore/runtime/thread_bind_core.py +401 -0
- mindspore/train/__init__.py +2 -2
- mindspore/train/_utils.py +53 -18
- mindspore/train/amp.py +8 -4
- mindspore/train/callback/_checkpoint.py +32 -18
- mindspore/train/callback/_early_stop.py +1 -1
- mindspore/train/callback/_flops_collector.py +105 -69
- mindspore/train/callback/_history.py +1 -1
- mindspore/train/callback/_summary_collector.py +44 -6
- mindspore/train/callback/_tft_register.py +31 -10
- mindspore/train/dataset_helper.py +11 -11
- mindspore/train/metrics/precision.py +4 -5
- mindspore/train/mind_ir_pb2.py +167 -46
- mindspore/train/model.py +13 -15
- mindspore/train/serialization.py +462 -76
- mindspore/train/summary/summary_record.py +1 -2
- mindspore/train/train_thor/model_thor.py +1 -1
- mindspore/utils/__init__.py +4 -2
- mindspore/utils/bin/dataset-cache +0 -0
- mindspore/utils/bin/dataset-cache-server +0 -0
- mindspore/utils/dryrun.py +138 -0
- mindspore/utils/runtime_execution_order_check.py +550 -0
- mindspore/version.py +1 -1
- {mindspore-2.4.10.dist-info → mindspore-2.5.0.dist-info}/METADATA +2 -3
- {mindspore-2.4.10.dist-info → mindspore-2.5.0.dist-info}/RECORD +524 -458
- {mindspore-2.4.10.dist-info → mindspore-2.5.0.dist-info}/entry_points.txt +1 -1
- mindspore/_data_dump.cpython-311-aarch64-linux-gnu.so +0 -0
- mindspore/bin/cache_admin +0 -0
- mindspore/bin/cache_server +0 -0
- mindspore/common/_tensor_overload.py +0 -139
- mindspore/lib/libmindspore_np_dtype.so +0 -0
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/acme/include/acme.h +0 -24
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/acme/include/acme_op.h +0 -82
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/acme/include/op_creator.h +0 -113
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/acme/include/op_param.h +0 -193
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/acme/src/core/dtype_registry.h +0 -90
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/acme/src/core/kernel_register.h +0 -46
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/acme/src/core/platform/platform_configs.h +0 -89
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/acme/src/core/platform/rt_funcs.h +0 -135
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/acme/src/ops/host_src/add_layer_norm_op.h +0 -60
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/acme/src/ops/host_src/add_rms_norm_op.h +0 -50
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/acme/src/ops/host_src/add_rms_norm_quant_op.h +0 -50
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/acme/src/ops/host_src/apply_rotary_pos_emb_nz_op.h +0 -42
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/acme/src/ops/host_src/apply_rotary_pos_emb_op.h +0 -55
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/acme/src/ops/host_src/asd_elewise_op.h +0 -34
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/acme/src/ops/host_src/asd_only_ops.h +0 -94
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/acme/src/ops/host_src/asd_op_base.h +0 -97
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/acme/src/ops/host_src/cast_op.h +0 -52
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/acme/src/ops/host_src/flash_attention_score_op.h +0 -97
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/acme/src/ops/host_src/gelu_op.h +0 -44
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/acme/src/ops/host_src/matmul_add_rmsnorm_op.h +0 -73
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/acme/src/ops/host_src/matmul_op.h +0 -108
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/acme/src/ops/host_src/multi_impls_op.h +0 -64
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/acme/src/ops/host_src/multi_weight_matmul_op.h +0 -91
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/acme/src/ops/host_src/paged_attention_op.h +0 -99
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/acme/src/ops/host_src/reshape_and_cache_nz_op.h +0 -44
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/acme/src/ops/host_src/reshape_and_cache_op.h +0 -44
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/acme/src/ops/host_src/rms_norm_op.h +0 -64
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/acme/src/utils/asd_utils.h +0 -179
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/acme/src/utils/comm_utils.h +0 -69
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/acme/src/utils/profiling_util.h +0 -366
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/add/add_impl.h +0 -56
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/add/kernel/add.h +0 -21
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/add/tiling/add_tiling.h +0 -43
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/apply_rotary_pos_emb/apply_rotary_pos_emb_impl.h +0 -46
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/apply_rotary_pos_emb/kernel/apply_rotary_pos_emb.h +0 -23
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/apply_rotary_pos_emb/kernel/apply_rotary_pos_emb_base.h +0 -456
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/apply_rotary_pos_emb/kernel/apply_rotary_pos_emb_bf16.h +0 -217
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/apply_rotary_pos_emb/kernel/apply_rotary_pos_emb_fp.h +0 -391
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/apply_rotary_pos_emb/kernel/apply_rotary_pos_emb_fp16.h +0 -126
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/apply_rotary_pos_emb/kernel/apply_rotary_pos_emb_fp32.h +0 -230
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/apply_rotary_pos_emb/kernel/apply_rotary_pos_emb_tiling.h +0 -43
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/apply_rotary_pos_emb/kernel/apply_rotary_pos_emb_value.h +0 -27
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/apply_rotary_pos_emb_nz/apply_rotary_pos_emb_nz_impl.h +0 -34
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/apply_rotary_pos_emb_nz/kernel/apply_rotary_pos_emb_nz.h +0 -23
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/apply_rotary_pos_emb_nz/kernel/apply_rotary_pos_emb_nz_base.h +0 -460
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/apply_rotary_pos_emb_nz/kernel/apply_rotary_pos_emb_nz_fp16.h +0 -116
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/apply_rotary_pos_emb_nz/kernel/apply_rotary_pos_emb_nz_fp32.h +0 -230
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/apply_rotary_pos_emb_nz/kernel/apply_rotary_pos_emb_nz_tiling.h +0 -43
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/apply_rotary_pos_emb_nz/kernel/apply_rotary_pos_emb_nz_value.h +0 -27
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/asdop/asd_op_impl.h +0 -74
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/backend_param.h +0 -74
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/cast/cast_impl.h +0 -48
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/cast/kernel/cast_kernel.h +0 -21
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/compare/compare_impl.h +0 -55
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/compare/compare_tiling.h +0 -27
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/compare/kernel/compare_kernel.h +0 -23
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/elewise_binary/and_impl.h +0 -29
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/elewise_binary/div_impl.h +0 -29
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/elewise_binary/elewise_binary_impl.h +0 -48
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/elewise_binary/elewise_binary_tiling.h +0 -25
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/elewise_binary/kernel/and_kernel.h +0 -46
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/elewise_binary/kernel/div_kernel.h +0 -46
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/elewise_binary/kernel/elewise_binary_base.h +0 -260
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/elewise_binary/kernel/elewise_binary_kernel.h +0 -35
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/elewise_binary/kernel/max_kernel.h +0 -66
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/elewise_binary/kernel/min_kernel.h +0 -66
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/elewise_binary/kernel/mul_kernel.h +0 -66
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/elewise_binary/kernel/or_kernel.h +0 -46
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/elewise_binary/max_impl.h +0 -29
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/elewise_binary/min_impl.h +0 -29
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/elewise_binary/mul_impl.h +0 -29
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/elewise_binary/or_impl.h +0 -29
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/elewise_unary/abs_impl.h +0 -29
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/elewise_unary/elewise_unary_impl.h +0 -47
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/elewise_unary/elewise_unary_tiling.h +0 -24
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/elewise_unary/exp_impl.h +0 -29
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/elewise_unary/kernel/abs_kernel.h +0 -45
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/elewise_unary/kernel/elewise_unary_base.h +0 -148
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/elewise_unary/kernel/elewise_unary_kernel.h +0 -31
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/elewise_unary/kernel/exp_kernel.h +0 -45
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/elewise_unary/kernel/ln_kernel.h +0 -45
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/elewise_unary/kernel/not_kernel.h +0 -45
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/elewise_unary/kernel/reciprocal_kernel.h +0 -45
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/elewise_unary/kernel/relu_kernel.h +0 -55
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/elewise_unary/kernel/rsqrt_kernel.h +0 -45
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/elewise_unary/kernel/sqrt_kernel.h +0 -45
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/elewise_unary/ln_impl.h +0 -29
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/elewise_unary/not_impl.h +0 -29
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/elewise_unary/reciprocal_impl.h +0 -29
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/elewise_unary/relu_impl.h +0 -29
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/elewise_unary/rsqrt_impl.h +0 -29
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/elewise_unary/sqrt_impl.h +0 -29
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/flash_attention_score/flash_attention_score_impl.h +0 -68
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/internal_kernel.h +0 -99
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/internal_rtbackend.h +0 -21
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/lccl/lccl_wrapper.h +0 -58
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/ms_int_types.h +0 -91
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/ms_int_utils.h +0 -108
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/paged_attention/paged_attention_impl.h +0 -64
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/param/add_param.h +0 -68
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/param/attention_param.h +0 -40
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/param/cast_param.h +0 -30
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/param/compare_param.h +0 -31
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/param/elewise_param.h +0 -41
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/param/grouped_matmul_param.h +0 -40
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/param/matmul_ext_param.h +0 -38
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/param/matmul_qkv_param.h +0 -42
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/param/sub_param.h +0 -33
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/profiling_util.h +0 -377
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/reshape_and_cache_nz/kernel/reshape_and_cache_nz.h +0 -24
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/reshape_and_cache_nz/reshape_and_cache_nz_impl.h +0 -42
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/reshape_and_cache_nz/reshape_and_cache_nz_tiling.h +0 -27
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/rms_norm/rms_norm_impl.h +0 -46
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/sub/kernel/sub_kernel.h +0 -20
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/sub/sub_impl.h +0 -48
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/sub/sub_tiling.h +0 -25
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/tune_repo/matmul_table.h +0 -399
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/tune_repo/utils.h +0 -41
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/utils/backend.h +0 -45
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/utils/elewise_tiling.h +0 -29
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/utils/elewise_utils.h +0 -30
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/utils/log/log.h +0 -69
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/utils/log/log_core.h +0 -43
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/utils/log/log_entity.h +0 -38
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/utils/log/log_sink.h +0 -69
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/utils/log/log_stream.h +0 -41
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/utils/log/log_tiling.h +0 -71
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/utils/log/log_utils.h +0 -165
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/utils/math.h +0 -20
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/utils/register/kernel_creator.h +0 -39
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/utils/register/kernel_registry.h +0 -121
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/include/utils/utils.h +0 -106
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/lib/libAdd_impl.so +0 -0
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/lib/libSub_impl.so +0 -0
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/lib/libadd_rms_norm_quant_acme_impl.so +0 -0
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/lib/libapply_rotary_pos_emb_310p_old_impl.so +0 -0
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/lib/libapply_rotary_pos_emb_old_impl.so +0 -0
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/lib/libreshape_and_cache_nz_impl.so +0 -0
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/lib/libreshape_and_cache_nz_old_impl.so +0 -0
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/AcmeMatMulPostFusionMixTactic/acme_matmul_postfusion_mix.json +0 -19
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/AcmeMatMulPostFusionMixTactic/acme_matmul_postfusion_mix.o +0 -0
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/AcmeMatMulPostFusionMixTactic/acme_matmul_postfusion_mix_mix_aic_0.o +0 -0
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/AcmeMatMulPostFusionMixTactic/acme_matmul_postfusion_mix_mix_aiv_0.o +0 -0
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/AcmeMultiWeightMatMulPostFusionMixTactic/acme_multi_weight_matmul_postfusion_mix.json +0 -19
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/AcmeMultiWeightMatMulPostFusionMixTactic/acme_multi_weight_matmul_postfusion_mix.o +0 -0
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/AcmeMultiWeightMatMulPostFusionMixTactic/acme_multi_weight_matmul_postfusion_mix_mix_aic_0.o +0 -0
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/AcmeMultiWeightMatMulPostFusionMixTactic/acme_multi_weight_matmul_postfusion_mix_mix_aiv_0.o +0 -0
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/flash_attention_score/flash_attention_score_bf16_bnsd_full_mix.o +0 -0
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/flash_attention_score/flash_attention_score_bf16_bnsd_tri_mix.o +0 -0
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/flash_attention_score/flash_attention_score_bf16_bsh_full_mix.o +0 -0
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/flash_attention_score/flash_attention_score_bf16_bsh_tri_mix.o +0 -0
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/flash_attention_score/flash_attention_score_fp16_bnsd_full_mix.o +0 -0
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/flash_attention_score/flash_attention_score_fp16_bnsd_tri_mix.o +0 -0
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/flash_attention_score/flash_attention_score_fp16_bsh_full_mix.o +0 -0
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/flash_attention_score/flash_attention_score_fp16_bsh_tri_mix.o +0 -0
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/paged_attention/paged_attention_bf16_bnsd_mix.o +0 -0
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/paged_attention/paged_attention_bf16_bsh_mix.o +0 -0
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/paged_attention/paged_attention_fp16_bnsd_mix.o +0 -0
- mindspore/lib/plugin/ascend/ms_kernels_internal/internal_kernel/op_kernels/ascend910b/paged_attention/paged_attention_fp16_bsh_mix.o +0 -0
- mindspore/profiler/envprofiling.py +0 -254
- mindspore/profiler/profiling.py +0 -1926
- {mindspore-2.4.10.dist-info → mindspore-2.5.0.dist-info}/WHEEL +0 -0
- {mindspore-2.4.10.dist-info → mindspore-2.5.0.dist-info}/top_level.txt +0 -0
|
@@ -33,12 +33,12 @@ from mindspore.ops.operations._sequence_ops import TupleToTensor
|
|
|
33
33
|
from mindspore.ops.composite.multitype_ops import _constexpr_utils as const_utils
|
|
34
34
|
from mindspore.ops.operations._sequence_ops import TensorToList
|
|
35
35
|
from mindspore.ops.auto_generate import OnesLikeExt, ZerosLikeExt, FillScalar, FillTensor, Arange, Chunk, UniqueDim, \
|
|
36
|
-
Unique2, SortExt, NonZero, NonZeroExt, Scatter, ScatterValue
|
|
37
|
-
from mindspore.ops.auto_generate.gen_ops_prim import SplitTensor
|
|
36
|
+
Unique2, SortExt, NonZero, NonZeroExt, Scatter, ScatterValue, NewOnes, NewZeros
|
|
37
|
+
from mindspore.ops.auto_generate.gen_ops_prim import SplitTensor, Meshgrid
|
|
38
38
|
from mindspore.ops.auto_generate.gen_ops_prim import SplitWithSize, RepeatInterleaveInt, RepeatInterleaveTensor
|
|
39
|
-
from mindspore.ops.auto_generate.pyboost_inner_prim import _PyboostSearchSortedPrim
|
|
39
|
+
from mindspore.ops.auto_generate.pyboost_inner_prim import _PyboostSearchSortedPrim, meshgrid_impl, \
|
|
40
|
+
unique_consecutive_impl
|
|
40
41
|
from mindspore.ops.operations.array_ops import (
|
|
41
|
-
UniqueConsecutive,
|
|
42
42
|
MatrixDiagV3,
|
|
43
43
|
MatrixDiagPartV3,
|
|
44
44
|
MatrixSetDiagV3,
|
|
@@ -60,16 +60,21 @@ from mindspore.ops.operations.array_ops import (
|
|
|
60
60
|
from mindspore.common import Tensor
|
|
61
61
|
from mindspore.ops._primitive_cache import _get_cache_prim
|
|
62
62
|
from mindspore import _checkparam as validator
|
|
63
|
-
from mindspore._c_expression import Tensor as Tensor_
|
|
64
63
|
from mindspore.ops._utils.utils import ms_arrange
|
|
65
64
|
|
|
66
65
|
from mindspore.ops.auto_generate import cat, range, scatter_nd, deepcopy, masked_fill, diagonal, expand_dims, \
|
|
67
66
|
flip, transpose, triu, unsorted_segment_sum, diag, gather, gather_d, gather_nd, reshape, masked_select, \
|
|
68
|
-
broadcast_to, strided_slice, ones, zeros, max_, min_, select, zero_
|
|
67
|
+
broadcast_to, strided_slice, ones, zeros, max_, min_, select, zero_, view_as, \
|
|
68
|
+
expand_as, unstack_ext_op, full_like_op, \
|
|
69
|
+
index_fill_scalar, index_fill_tensor
|
|
69
70
|
from mindspore.ops.auto_generate import tensor_scatter_elements as tensor_scatter_elements_ext
|
|
70
|
-
from mindspore.ops.auto_generate.gen_ops_prim import scatter_add_ext_op,
|
|
71
|
+
from mindspore.ops.auto_generate.gen_ops_prim import scatter_add_ext_op, gather_d_op, slice_op
|
|
71
72
|
from mindspore.ops.operations.manually_defined import tile, rank, scalar_cast
|
|
72
73
|
from mindspore.ops.auto_generate.pyboost_inner_prim import _PyboostOneHotExtPrim, tril_ext_impl
|
|
74
|
+
from mindspore._c_expression import pyboost_empty
|
|
75
|
+
from mindspore._c_expression import pyboost_empty_like
|
|
76
|
+
from mindspore._c_expression import pyboost_new_empty
|
|
77
|
+
from mindspore.common._stub_tensor import _convert_stub
|
|
73
78
|
|
|
74
79
|
arg_max_with_value_ = ArgMaxWithValue()
|
|
75
80
|
arg_min_with_value_ = ArgMinWithValue()
|
|
@@ -116,9 +121,10 @@ tensor_scatter_mul_ = P.TensorScatterMul()
|
|
|
116
121
|
tensor_scatter_sub_ = P.TensorScatterSub()
|
|
117
122
|
tensor_select_ = P.Select()
|
|
118
123
|
tensor_shape_ = P.TensorShape()
|
|
119
|
-
tensor_slice =
|
|
124
|
+
tensor_slice = slice_op
|
|
120
125
|
tile_ = P.Tile()
|
|
121
126
|
transpose_ = P.Transpose()
|
|
127
|
+
type_as_ = P.TypeAs()
|
|
122
128
|
tuple_to_array_ = P.TupleToArray()
|
|
123
129
|
tuple_to_tensor_ = TupleToTensor()
|
|
124
130
|
unique_ = P.Unique()
|
|
@@ -131,10 +137,12 @@ one_hot_ext_impl = _PyboostOneHotExtPrim()
|
|
|
131
137
|
zeros_like_ = P.ZerosLike()
|
|
132
138
|
ones_like_ext_ = OnesLikeExt()
|
|
133
139
|
zeros_like_ext_ = ZerosLikeExt()
|
|
140
|
+
new_ones_ = NewOnes()
|
|
141
|
+
new_zeros_ = NewZeros()
|
|
134
142
|
fill_scalar_ = FillScalar()
|
|
135
143
|
fill_tensor_ = FillTensor()
|
|
136
144
|
sort_ext_ = SortExt()
|
|
137
|
-
|
|
145
|
+
scatter_prim = Scatter()
|
|
138
146
|
scatter_value_ = ScatterValue()
|
|
139
147
|
arange_ = Arange()
|
|
140
148
|
chunk_ = Chunk()
|
|
@@ -521,12 +529,97 @@ def where(condition, input, other):
|
|
|
521
529
|
|
|
522
530
|
def reverse(x, axis):
|
|
523
531
|
"""
|
|
524
|
-
|
|
525
|
-
Please use :func:`mindspore.ops.flip` instead.
|
|
532
|
+
This interface will be deprecated in the future, and use :func:`mindspore.ops.flip` instead.
|
|
526
533
|
"""
|
|
527
534
|
return flip(x, axis)
|
|
528
535
|
|
|
529
536
|
|
|
537
|
+
def empty(*size, dtype=None, device=None):
|
|
538
|
+
r"""
|
|
539
|
+
Creates a tensor with uninitialized data, whose shape, dtype and device are described by the argument `size`,
|
|
540
|
+
`dtype` and `device` respectively.
|
|
541
|
+
|
|
542
|
+
.. warning::
|
|
543
|
+
This is an experimental API that is subject to change or deletion.
|
|
544
|
+
|
|
545
|
+
Args:
|
|
546
|
+
size (Union[tuple[int], list[int], int]): The specified shape of output tensor. Only positive integer or
|
|
547
|
+
tuple or list containing positive integers are allowed.
|
|
548
|
+
|
|
549
|
+
Keyword Args:
|
|
550
|
+
dtype (:class:`mindspore.dtype`, optional): The specified type of output tensor. If `dtype` is ``None`` ,
|
|
551
|
+
`mindspore.float32` will be used. Default: ``None`` .
|
|
552
|
+
device (string, optional): The specified device of the output tensor. Support ``CPU`` and ``Ascend``. If
|
|
553
|
+
`device = None`, the value set by :func:`mindspore.set_device` will be used. Default ``None``.
|
|
554
|
+
|
|
555
|
+
Returns:
|
|
556
|
+
Tensor, whose dtype and size are defined by input.
|
|
557
|
+
|
|
558
|
+
Raises:
|
|
559
|
+
TypeError: If `size` is neither an int nor a tuple or list of int.
|
|
560
|
+
|
|
561
|
+
Supported Platforms:
|
|
562
|
+
``Ascend``
|
|
563
|
+
|
|
564
|
+
Examples:
|
|
565
|
+
>>> import mindspore
|
|
566
|
+
>>> from mindspore import ops
|
|
567
|
+
>>> output = ops.empty((2, 3), dtype=mindspore.float32)
|
|
568
|
+
>>> print(output)
|
|
569
|
+
[[0. 0. 0.]
|
|
570
|
+
[0. 0. 0.]]
|
|
571
|
+
"""
|
|
572
|
+
|
|
573
|
+
return _convert_stub(pyboost_empty([size, dtype, device]))
|
|
574
|
+
|
|
575
|
+
def empty_like(input, *, dtype=None, device=None):
|
|
576
|
+
r"""
|
|
577
|
+
Returns an uninitialized Tensor with the same shape as the `input`. Its dtype is specified by `dtype` and its
|
|
578
|
+
device is specified by `device`.
|
|
579
|
+
|
|
580
|
+
.. warning::
|
|
581
|
+
This is an experimental API that is subject to change or deletion.
|
|
582
|
+
|
|
583
|
+
Args:
|
|
584
|
+
input (Tensor): Tensor of any dimension.
|
|
585
|
+
|
|
586
|
+
Keyword Args:
|
|
587
|
+
dtype (:class:`mindspore.dtype`, optional): The specified dtype of the output tensor. If `dtype = None`, the
|
|
588
|
+
tensor will have the same dtype as input `input`. Default ``None``.
|
|
589
|
+
device (string, optional): The specified device of the output tensor. Support ``CPU`` and ``Ascend``. If
|
|
590
|
+
`device = None`, the tensor will have the same device as input `input` and if the device of the input
|
|
591
|
+
tensor is not defined, the value set by :func:`mindspore.set_device` will be used. Default ``None``.
|
|
592
|
+
|
|
593
|
+
Returns:
|
|
594
|
+
Tensor, has the same shape, type and device as `input` but with uninitialized data (May be a random value).
|
|
595
|
+
|
|
596
|
+
Raises:
|
|
597
|
+
TypeError: If `input` is not a Tensor.
|
|
598
|
+
|
|
599
|
+
Supported Platforms:
|
|
600
|
+
``Ascend``
|
|
601
|
+
|
|
602
|
+
Examples:
|
|
603
|
+
>>> import mindspore
|
|
604
|
+
>>> from mindspore import ops, Tensor
|
|
605
|
+
>>> x = Tensor([[1, 2, 3], [4, 5, 6]])
|
|
606
|
+
>>> output1 = ops.empty_like(x)
|
|
607
|
+
>>> print(output1)
|
|
608
|
+
[[0 0 0]
|
|
609
|
+
[0 0 0]]
|
|
610
|
+
>>> output2 = ops.empty_like(x, dtype=mindspore.float64)
|
|
611
|
+
>>> print(output2)
|
|
612
|
+
[[0. 0. 0.]
|
|
613
|
+
[0. 0. 0.]]
|
|
614
|
+
"""
|
|
615
|
+
|
|
616
|
+
return _convert_stub(pyboost_empty_like([input, dtype, device]))
|
|
617
|
+
|
|
618
|
+
|
|
619
|
+
def new_empty(input, size, dtype, device):
|
|
620
|
+
return _convert_stub(pyboost_new_empty([input, size, dtype, device]))
|
|
621
|
+
|
|
622
|
+
|
|
530
623
|
def ravel(input):
|
|
531
624
|
"""
|
|
532
625
|
Expand the multidimensional Tensor into 1D along the 0 axis direction.
|
|
@@ -818,7 +911,8 @@ def full_ext(size, fill_value, *, dtype=None): # pylint: disable=redefined-oute
|
|
|
818
911
|
Tensor, or a 1-D Tensor with only one element.
|
|
819
912
|
|
|
820
913
|
Keyword Args:
|
|
821
|
-
dtype (mindspore.dtype): The specified type of output tensor.
|
|
914
|
+
dtype (mindspore.dtype, optional): The specified type of output tensor.
|
|
915
|
+
`bool_` and `number` are supported, for details,
|
|
822
916
|
please refer to :class:`mindspore.dtype` . Default: ``None`` .
|
|
823
917
|
|
|
824
918
|
Returns:
|
|
@@ -890,6 +984,50 @@ def full_like(input, fill_value, *, dtype=None):
|
|
|
890
984
|
return full(input.shape, fill_value, dtype=dtype)
|
|
891
985
|
|
|
892
986
|
|
|
987
|
+
def full_like_ext(input, fill_value, *, dtype=None):
|
|
988
|
+
"""
|
|
989
|
+
Return a Tensor of the same shape as `input` and filled with `fill_value`.
|
|
990
|
+
|
|
991
|
+
.. warning::
|
|
992
|
+
This is an experimental API that is subject to change or deletion.
|
|
993
|
+
|
|
994
|
+
Args:
|
|
995
|
+
input (Tensor): input Tensor and the output Tensor have the same shape as `input`.
|
|
996
|
+
fill_value (Number): Value to fill the returned tensor. Complex numbers are not supported for now.
|
|
997
|
+
|
|
998
|
+
Keyword Args:
|
|
999
|
+
dtype (mindspore.dtype, optional): The specified type of output tensor. `bool_` and `number` are supported,
|
|
1000
|
+
for details, please refer to :class:`mindspore.dtype` . Default: ``None`` .
|
|
1001
|
+
|
|
1002
|
+
Returns:
|
|
1003
|
+
Tensor.
|
|
1004
|
+
|
|
1005
|
+
Raises:
|
|
1006
|
+
TypeError: If `input` is not a Tensor.
|
|
1007
|
+
|
|
1008
|
+
Supported Platforms:
|
|
1009
|
+
``Ascend``
|
|
1010
|
+
|
|
1011
|
+
Examples:
|
|
1012
|
+
>>> import mindspore
|
|
1013
|
+
>>> from mindspore import Tensor, mint
|
|
1014
|
+
>>> input = Tensor([[0, 1], [2, 1]], dtype=mindspore.int32)
|
|
1015
|
+
>>> output = mint.full_like(input, 1)
|
|
1016
|
+
>>> print(output)
|
|
1017
|
+
[[1 1]
|
|
1018
|
+
[1 1]]
|
|
1019
|
+
>>> input = Tensor([[0, 1, 1], [2, 1, 2], [1, 3, 4]], dtype=mindspore.int32)
|
|
1020
|
+
>>> output = mint.full_like(input, 0, dtype=mindspore.float32)
|
|
1021
|
+
>>> print(output)
|
|
1022
|
+
[[0. 0. 0.]
|
|
1023
|
+
[0. 0. 0.]
|
|
1024
|
+
[0. 0. 0.]]
|
|
1025
|
+
"""
|
|
1026
|
+
if dtype is None:
|
|
1027
|
+
dtype = input.dtype
|
|
1028
|
+
return full_like_op(input, fill_value, dtype)
|
|
1029
|
+
|
|
1030
|
+
|
|
893
1031
|
def chunk(input, chunks, axis=0):
|
|
894
1032
|
"""
|
|
895
1033
|
Cut the input Tensor into `chunks` sub-tensors along the specified axis.
|
|
@@ -1167,6 +1305,82 @@ def zeros_like_ext(input, *, dtype=None):
|
|
|
1167
1305
|
return zeros_like_ext_(input, dtype)
|
|
1168
1306
|
|
|
1169
1307
|
|
|
1308
|
+
def new_ones(input, size, *, dtype=None):
|
|
1309
|
+
"""
|
|
1310
|
+
Return a tensor of `size` filled with ones.
|
|
1311
|
+
|
|
1312
|
+
.. warning::
|
|
1313
|
+
This is an experimental API that is subject to change or deletion.
|
|
1314
|
+
|
|
1315
|
+
Args:
|
|
1316
|
+
input (Tensor): Tensor of any dimension.
|
|
1317
|
+
size (Union[int, tuple(int), list(int)]): An int, list or tuple of integers defining the output shape.
|
|
1318
|
+
|
|
1319
|
+
Keyword Args:
|
|
1320
|
+
dtype (:class:`mindspore.dtype`, optional): The desired dtype of the output tensor. If None, the returned
|
|
1321
|
+
tensor has the same dtype as `self`. Default: ``None``.
|
|
1322
|
+
|
|
1323
|
+
Returns:
|
|
1324
|
+
Tensor, the shape and dtype is defined above and filled with ones.
|
|
1325
|
+
|
|
1326
|
+
Raises:
|
|
1327
|
+
TypeError: If `input` is not a Tensor.
|
|
1328
|
+
TypeError: If `size` is neither an int nor a tuple/list of int.
|
|
1329
|
+
TypeError: If `dtype` is not a MindSpore dtype.
|
|
1330
|
+
ValueError: If `size` contains negative values.
|
|
1331
|
+
|
|
1332
|
+
Supported Platforms:
|
|
1333
|
+
``Ascend`` ``GPU`` ``CPU``
|
|
1334
|
+
|
|
1335
|
+
Examples:
|
|
1336
|
+
>>> from mindspore import Tensor, ops
|
|
1337
|
+
>>> input = Tensor([1, 2, 3, 4], mindspore.int32)
|
|
1338
|
+
>>> output = ops.function.array_func.new_ones(input, (2, 3))
|
|
1339
|
+
>>> print(output)
|
|
1340
|
+
[[1 1 1]
|
|
1341
|
+
[1 1 1]]
|
|
1342
|
+
"""
|
|
1343
|
+
return new_ones_(input, size, dtype)
|
|
1344
|
+
|
|
1345
|
+
|
|
1346
|
+
def new_zeros(input, size, *, dtype=None):
|
|
1347
|
+
"""
|
|
1348
|
+
Return a tensor of `size` filled with zeros.
|
|
1349
|
+
|
|
1350
|
+
.. warning::
|
|
1351
|
+
This is an experimental API that is subject to change or deletion.
|
|
1352
|
+
|
|
1353
|
+
Args:
|
|
1354
|
+
input (Tensor): Tensor of any dimension.
|
|
1355
|
+
size (Union[int, tuple(int), list(int)]): An int, list or tuple of integers defining the output shape.
|
|
1356
|
+
|
|
1357
|
+
Keyword Args:
|
|
1358
|
+
dtype (:class:`mindspore.dtype`, optional): The desired dtype of the output tensor. If None, the returned
|
|
1359
|
+
tensor has the same dtype as `self`. Default: ``None``.
|
|
1360
|
+
|
|
1361
|
+
Returns:
|
|
1362
|
+
Tensor, the shape and dtype is defined above and filled with zeros.
|
|
1363
|
+
|
|
1364
|
+
Raises:
|
|
1365
|
+
TypeError: If `input` is not a Tensor.
|
|
1366
|
+
TypeError: If `size` is neither an int nor a tuple/list of int.
|
|
1367
|
+
TypeError: If `dtype` is not a MindSpore dtype.
|
|
1368
|
+
ValueError: If `size` contains negative values.
|
|
1369
|
+
|
|
1370
|
+
Supported Platforms:
|
|
1371
|
+
``Ascend`` ``GPU`` ``CPU``
|
|
1372
|
+
|
|
1373
|
+
Examples:
|
|
1374
|
+
>>> from mindspore import Tensor, ops
|
|
1375
|
+
>>> input = Tensor([1, 2, 3, 4], mindspore.int32)
|
|
1376
|
+
>>> output = ops.function.array_func.new_zeros(input, (2, 3))
|
|
1377
|
+
>>> print(output)
|
|
1378
|
+
[[0 0 0]
|
|
1379
|
+
[0 0 0]]
|
|
1380
|
+
"""
|
|
1381
|
+
return new_zeros_(input, size, dtype)
|
|
1382
|
+
|
|
1383
|
+
|
|
1170
1384
|
##############################
|
|
1171
1385
|
# Tensor Operation Functions.
|
|
1172
1386
|
##############################
|
|
@@ -1233,16 +1447,17 @@ def unique_ext(input, sorted=True, return_inverse=False, return_counts=False, di
|
|
|
1233
1447
|
when `return_inverse=True`, also return a tensor containing the index of each value of input
|
|
1234
1448
|
tensor corresponding to the output unique tensor.
|
|
1235
1449
|
when `return_counts=True`, also return a tensor containing the number of occurrences for each
|
|
1236
|
-
unique value or tensor
|
|
1450
|
+
unique value or tensor.
|
|
1237
1451
|
|
|
1238
1452
|
Args:
|
|
1239
1453
|
input (Tensor): The input tensor.
|
|
1240
|
-
sorted(bool): Whether to sort the unique elements in ascending order before returning as output.
|
|
1454
|
+
sorted (bool, optional): Whether to sort the unique elements in ascending order before returning as output.
|
|
1241
1455
|
Default: ``True`` .
|
|
1242
|
-
return_inverse(bool): Whether to also return the indices for where elements
|
|
1456
|
+
return_inverse (bool, optional): Whether to also return the indices for where elements
|
|
1457
|
+
in the original input ended up in
|
|
1243
1458
|
the returned unique list. Default: ``False`` .
|
|
1244
|
-
return_counts(bool): Whether to also return the counts for each unique element. Default: ``False`` .
|
|
1245
|
-
dim(int): the dimension to operate upon. If ``None``, the unique of the flattened input is returned.
|
|
1459
|
+
return_counts (bool, optional): Whether to also return the counts for each unique element. Default: ``False`` .
|
|
1460
|
+
dim (int, optional): the dimension to operate upon. If ``None``, the unique of the flattened input is returned.
|
|
1246
1461
|
Otherwise, each of the tensors indexed by the given dimension is treated as one of the elements to apply the
|
|
1247
1462
|
unique operation upon. Default: ``None`` .
|
|
1248
1463
|
|
|
@@ -1397,11 +1612,10 @@ def unique_consecutive(input, return_idx=False, return_counts=False, axis=None):
|
|
|
1397
1612
|
[2 2 1 2 1]
|
|
1398
1613
|
"""
|
|
1399
1614
|
|
|
1400
|
-
if not
|
|
1401
|
-
raise
|
|
1402
|
-
|
|
1403
|
-
|
|
1404
|
-
output, idx, counts = unique_consecutive_op(input)
|
|
1615
|
+
if not F.isconstant(return_idx) or not F.isconstant(return_counts):
|
|
1616
|
+
raise ValueError(
|
|
1617
|
+
f"For 'unique_consecutive', 'return_inverse' and 'return_counts' cannot be mutable")
|
|
1618
|
+
output, idx, counts = unique_consecutive_impl(input, return_idx, return_counts, axis)
|
|
1405
1619
|
if return_idx and return_counts:
|
|
1406
1620
|
return output, idx, counts
|
|
1407
1621
|
if return_idx:
|
|
@@ -1928,6 +2142,44 @@ def unbind(input, dim=0):
|
|
|
1928
2142
|
return _unstack(input)
|
|
1929
2143
|
|
|
1930
2144
|
|
|
2145
|
+
def unbind_ext(input, dim=0):
|
|
2146
|
+
r"""
|
|
2147
|
+
Unbind a tensor dimension in specified axis.
|
|
2148
|
+
|
|
2149
|
+
Given a tensor of shape :math:`(n_1, n_2, ..., n_R)` and unbinding it in the specified `dim`,
|
|
2150
|
+
multiple tensors with shape :math:`(n_1, n_2, ..., n_{dim}, n_{dim+2}, ..., n_R)` are returned.
|
|
2151
|
+
|
|
2152
|
+
.. warning::
|
|
2153
|
+
This is an experimental API that is subject to change or deletion.
|
|
2154
|
+
|
|
2155
|
+
Args:
|
|
2156
|
+
input (Tensor): The input tensor to unbind, with a shape of :math:`(n_1, n_2, ..., n_R)`.
|
|
2157
|
+
The rank of the tensor must be greater than 0.
|
|
2158
|
+
dim (int, optional): Dimension along which to unbind. The range is [-R, R). Default: ``0`` .
|
|
2159
|
+
|
|
2160
|
+
Returns:
|
|
2161
|
+
A tuple of tensors, the shape of each objects is the same.
|
|
2162
|
+
|
|
2163
|
+
Raises:
|
|
2164
|
+
TypeError: If `input` is not a Tensor.
|
|
2165
|
+
TypeError: If `dim` is not an int.
|
|
2166
|
+
ValueError: If `dim` is out of the range [-R, R).
|
|
2167
|
+
|
|
2168
|
+
Supported Platforms:
|
|
2169
|
+
``Ascend``
|
|
2170
|
+
|
|
2171
|
+
Examples:
|
|
2172
|
+
>>> import numpy as np
|
|
2173
|
+
>>> from mindspore import Tensor, ops
|
|
2174
|
+
>>> input = Tensor(np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]))
|
|
2175
|
+
>>> output = ops.unbind_ext(input, dim=0)
|
|
2176
|
+
>>> print(output)
|
|
2177
|
+
(Tensor(shape=[3], dtype=Int64, value=[1, 2, 3]), Tensor(shape=[3], dtype=Int64, value=[4, 5, 6]),
|
|
2178
|
+
Tensor(shape=[3], dtype=Int64, value=[7, 8, 9]))
|
|
2179
|
+
"""
|
|
2180
|
+
return unstack_ext_op(input, dim)
|
|
2181
|
+
|
|
2182
|
+
|
|
1931
2183
|
def unsqueeze(input, dim):
|
|
1932
2184
|
"""
|
|
1933
2185
|
Adds an additional dimension to `input` at the given dim.
|
|
@@ -1970,14 +2222,17 @@ def squeeze(input, axis=None):
|
|
|
1970
2222
|
If `axis` is specified, it will remove the dimensions of size 1 in the given `axis`.
|
|
1971
2223
|
For example, if the dimension is not specified :math:`axis=None`, input shape is (A, 1, B, C, 1, D),
|
|
1972
2224
|
then the shape of the output Tensor is (A, B, C, D). If the dimension is specified, the squeeze operation
|
|
1973
|
-
is only performed in the specified dimension. If input shape is (A, 1, B),
|
|
1974
|
-
|
|
2225
|
+
is only performed in the specified dimension. If input shape is (A, 1, B), when :math:`axis=0` or :math:`axis=2`,
|
|
2226
|
+
the input tensor is not changed, while when :math:`axis=1`, the input tensor shape is changed to (A, B).
|
|
1975
2227
|
|
|
1976
2228
|
Note:
|
|
1977
|
-
- Squeezing a dimension that is not 1 will raise an error.
|
|
1978
2229
|
- Please note that in dynamic graph mode, the output Tensor will share data with the input Tensor,
|
|
1979
2230
|
and there is no Tensor data copy process.
|
|
1980
2231
|
- The dimension index starts at 0 and must be in the range `[-input.ndim, input.ndim]`.
|
|
2232
|
+
- In GE mode, only support remove dimensions of size 1 from the shape of input tensor.
|
|
2233
|
+
|
|
2234
|
+
.. warning::
|
|
2235
|
+
This is an experimental API that is subject to change or deletion.
|
|
1981
2236
|
|
|
1982
2237
|
Args:
|
|
1983
2238
|
input (Tensor): The shape of tensor is :math:`(x_1, x_2, ..., x_R)`.
|
|
@@ -1992,7 +2247,6 @@ def squeeze(input, axis=None):
|
|
|
1992
2247
|
TypeError: If `input` is not a tensor.
|
|
1993
2248
|
TypeError: If `axis` is not an int, tuple or list.
|
|
1994
2249
|
TypeError: If `axis` is a tuple or list whose elements are not all int.
|
|
1995
|
-
ValueError: If the corresponding dimension of the specified axis isn't equal to 1.
|
|
1996
2250
|
|
|
1997
2251
|
Supported Platforms:
|
|
1998
2252
|
``Ascend`` ``GPU`` ``CPU``
|
|
@@ -2033,7 +2287,7 @@ def scatter_mul(input_x, indices, updates):
|
|
|
2033
2287
|
when the data types of parameters need to be converted.
|
|
2034
2288
|
|
|
2035
2289
|
Args:
|
|
2036
|
-
input_x (Parameter): The target tensor to be updated, with data type of Parameter.
|
|
2290
|
+
input_x (Union[Parameter, Tensor]): The target tensor to be updated, with data type of Parameter or Tensor.
|
|
2037
2291
|
The shape is :math:`(N,*)` where :math:`*` means any number of additional dimensions.
|
|
2038
2292
|
indices (Tensor): The index to do mul operation whose data type must be int32 or int64.
|
|
2039
2293
|
updates (Tensor): The tensor doing the mul operation with `input_x`,
|
|
@@ -2045,8 +2299,8 @@ def scatter_mul(input_x, indices, updates):
|
|
|
2045
2299
|
Raises:
|
|
2046
2300
|
TypeError: If `indices` is not an int32 or int64.
|
|
2047
2301
|
ValueError: If the shape of `updates` is not equal to `indices.shape + input_x.shape[1:]`.
|
|
2048
|
-
RuntimeError: If the data type of `input_x` and `updates` conversion
|
|
2049
|
-
is
|
|
2302
|
+
RuntimeError: If the data type of `input_x` and `updates` conversion is required when data type conversion
|
|
2303
|
+
is not supported.
|
|
2050
2304
|
|
|
2051
2305
|
Supported Platforms:
|
|
2052
2306
|
``Ascend`` ``GPU`` ``CPU``
|
|
@@ -2132,7 +2386,7 @@ def scatter_max(input_x, indices, updates):
|
|
|
2132
2386
|
required by `input_x`.
|
|
2133
2387
|
|
|
2134
2388
|
Args:
|
|
2135
|
-
input_x (Parameter): The target tensor, with data type of Parameter.
|
|
2389
|
+
input_x (Union[Parameter, Tensor]): The target tensor, with data type of Parameter or Tensor.
|
|
2136
2390
|
The shape is :math:`(N, *)` where :math:`*` means, any number of additional dimensions.
|
|
2137
2391
|
indices (Tensor): The index to do max operation whose data type must be mindspore.int32.
|
|
2138
2392
|
updates (Tensor): The tensor doing the max operation with `input_x`,
|
|
@@ -2144,8 +2398,8 @@ def scatter_max(input_x, indices, updates):
|
|
|
2144
2398
|
Raises:
|
|
2145
2399
|
TypeError: If `indices` is not an int32 or int64.
|
|
2146
2400
|
ValueError: If the shape of `updates` is not equal to `indices.shape + input_x.shape[1:]`.
|
|
2147
|
-
RuntimeError: If the data type of `input_x` and `updates` conversion
|
|
2148
|
-
is
|
|
2401
|
+
RuntimeError: If the data type of `input_x` and `updates` conversion is required when data type conversion
|
|
2402
|
+
is not supported.
|
|
2149
2403
|
RuntimeError: On the Ascend platform, the input data dimension of `input_x` , `indices`
|
|
2150
2404
|
and `updates` is greater than 8 dimensions.
|
|
2151
2405
|
|
|
@@ -2173,7 +2427,7 @@ def scatter_add(input_x, indices, updates):
|
|
|
2173
2427
|
This operation outputs the `input_x` after the update is done, which makes it convenient to use the updated value.
|
|
2174
2428
|
|
|
2175
2429
|
Args:
|
|
2176
|
-
input_x (Parameter): The target tensor, with data type of Parameter.
|
|
2430
|
+
input_x (Union[Parameter, Tensor]): The target tensor, with data type of Parameter or Tensor.
|
|
2177
2431
|
indices (Tensor): The index to do add operation whose data type must be int32 or int64.
|
|
2178
2432
|
updates (Tensor): The tensor doing the add operation with `input_x`,
|
|
2179
2433
|
the data type is same as `input_x`, the shape is `indices.shape + x.shape[1:]`.
|
|
@@ -2184,8 +2438,8 @@ def scatter_add(input_x, indices, updates):
|
|
|
2184
2438
|
Raises:
|
|
2185
2439
|
TypeError: If `indices` is not an int32 or int64.
|
|
2186
2440
|
ValueError: If the shape of `updates` is not equal to `indices.shape + input_x.shape[1:]`.
|
|
2187
|
-
RuntimeError: If the data type of `input_x` and `updates` conversion
|
|
2188
|
-
|
|
2441
|
+
RuntimeError: If the data type of `input_x` and `updates` conversion is required when data type conversion
|
|
2442
|
+
is not supported.
|
|
2189
2443
|
|
|
2190
2444
|
Supported Platforms:
|
|
2191
2445
|
``Ascend`` ``GPU`` ``CPU``
|
|
@@ -2225,7 +2479,7 @@ def scatter_min(input_x, indices, updates):
|
|
|
2225
2479
|
when `updates` does not support conversion to the data type required by `input_x`.
|
|
2226
2480
|
|
|
2227
2481
|
Args:
|
|
2228
|
-
input_x (Parameter): The target tensor, with data type of Parameter.
|
|
2482
|
+
input_x (Union[Parameter, Tensor]): The target tensor, with data type of Parameter or Tensor.
|
|
2229
2483
|
indices (Tensor): The index to do min operation whose data type must be mindspore.int32 or mindspore.int64.
|
|
2230
2484
|
updates (Tensor): The tensor doing the min operation with `input_x`,
|
|
2231
2485
|
the data type is same as `input_x`, the shape is `indices.shape + input_x.shape[1:]`.
|
|
@@ -2236,8 +2490,8 @@ def scatter_min(input_x, indices, updates):
|
|
|
2236
2490
|
Raises:
|
|
2237
2491
|
TypeError: If `indices` is not an int32 or an int64.
|
|
2238
2492
|
ValueError: If the shape of `updates` is not equal to `indices.shape + input_x.shape[1:]`.
|
|
2239
|
-
RuntimeError: If the data type of `input_x` and `updates` conversion
|
|
2240
|
-
is
|
|
2493
|
+
RuntimeError: If the data type of `input_x` and `updates` conversion is required when data type conversion
|
|
2494
|
+
is not supported.
|
|
2241
2495
|
RuntimeError: On the Ascend platform, the input data dimension of `input_x` , `indices`
|
|
2242
2496
|
and `updates` is greater than 8 dimensions.
|
|
2243
2497
|
|
|
@@ -2277,7 +2531,7 @@ def scatter_div(input_x, indices, updates):
|
|
|
2277
2531
|
when `updates` does not support conversion to the data type required by `input_x`.
|
|
2278
2532
|
|
|
2279
2533
|
Args:
|
|
2280
|
-
input_x (Parameter): The target tensor, with data type of Parameter.
|
|
2534
|
+
input_x (Union[Parameter, Tensor]): The target tensor, with data type of Parameter or Tensor.
|
|
2281
2535
|
indices (Tensor): The index to do divide operation whose data type must be mindspore.int32 or
|
|
2282
2536
|
mindspore.int64.
|
|
2283
2537
|
updates (Tensor): The tensor doing the divide operation with `input_x`, the data type is same as `input_x`,
|
|
@@ -2289,8 +2543,8 @@ def scatter_div(input_x, indices, updates):
|
|
|
2289
2543
|
Raises:
|
|
2290
2544
|
TypeError: If the type of `indices` is not one of the following dtype: int32, int64.
|
|
2291
2545
|
ValueError: If the shape of `updates` is not equal to `indices.shape + input_x.shape[1:]`.
|
|
2292
|
-
RuntimeError: If the data type of `input_x` and `updates` conversion of Parameter is required
|
|
2293
|
-
when data type conversion of Parameter is not supported.
|
|
2546
|
+
RuntimeError: If the data type of `input_x` and `updates` conversion of Parameter or Tensor is required
|
|
2547
|
+
when data type conversion of Parameter or Tensor is not supported.
|
|
2294
2548
|
RuntimeError: On the Ascend platform, the input data dimension of `input_x` , `indices`
|
|
2295
2549
|
and `updates` is greater than 8 dimensions.
|
|
2296
2550
|
|
|
@@ -2363,7 +2617,7 @@ def scatter_update(input_x, indices, updates):
|
|
|
2363
2617
|
the relatively highest priority data type.
|
|
2364
2618
|
|
|
2365
2619
|
Args:
|
|
2366
|
-
input_x (Parameter): The target tensor, with data type of Parameter.
|
|
2620
|
+
input_x (Union[Parameter, Tensor]): The target tensor, with data type of Parameter or Tensor.
|
|
2367
2621
|
indices (Tensor): The index of input tensor. With int32 or int64 data type.
|
|
2368
2622
|
If there are duplicates in indices, the order for updating is undefined.
|
|
2369
2623
|
updates (Tensor): The tensor to update the input tensor, has the same type as input,
|
|
@@ -2375,8 +2629,8 @@ def scatter_update(input_x, indices, updates):
|
|
|
2375
2629
|
Raises:
|
|
2376
2630
|
TypeError: If `indices` is not an int32 or an int64.
|
|
2377
2631
|
ValueError: If the shape of `updates` is not equal to `indices.shape + input_x.shape[1:]`.
|
|
2378
|
-
RuntimeError: If the data type of `input_x` and `updates` conversion
|
|
2379
|
-
is
|
|
2632
|
+
RuntimeError: If the data type of `input_x` and `updates` conversion is required when data type conversion
|
|
2633
|
+
is not supported.
|
|
2380
2634
|
|
|
2381
2635
|
Supported Platforms:
|
|
2382
2636
|
``Ascend`` ``GPU`` ``CPU``
|
|
@@ -2415,7 +2669,7 @@ def scatter_nd_add(input_x, indices, updates, use_locking=False):
|
|
|
2415
2669
|
:math:`(i_0, i_1, ..., i_{Q-2}, x\_shape_N, ..., x\_shape_{P-1})`.
|
|
2416
2670
|
|
|
2417
2671
|
Args:
|
|
2418
|
-
input_x (Parameter): The target tensor, with data type of Parameter.
|
|
2672
|
+
input_x (Union[Parameter, Tensor]): The target tensor, with data type of Parameter or Tensor.
|
|
2419
2673
|
indices (Tensor): The index to do min operation whose data type must be mindspore.int32 or mindspore.int64.
|
|
2420
2674
|
The rank of indices must be at least 2 and `indices.shape[-1] <= len(shape)`.
|
|
2421
2675
|
updates (Tensor): The tensor doing the addition operation with `input_x`,
|
|
@@ -2430,8 +2684,8 @@ def scatter_nd_add(input_x, indices, updates, use_locking=False):
|
|
|
2430
2684
|
TypeError: If the dtype of `indices` is not int32 or int64.
|
|
2431
2685
|
TypeError: If dtype of `input_x` and `updates` are not the same.
|
|
2432
2686
|
ValueError: If the shape of `updates` is not equal to `indices.shape[:-1] + x.shape[indices.shape[-1]:]`.
|
|
2433
|
-
RuntimeError: If the data type of `input_x` and `updates` conversion
|
|
2434
|
-
is
|
|
2687
|
+
RuntimeError: If the data type of `input_x` and `updates` conversion is required when data type conversion
|
|
2688
|
+
is not supported.
|
|
2435
2689
|
|
|
2436
2690
|
Supported Platforms:
|
|
2437
2691
|
``Ascend`` ``GPU`` ``CPU``
|
|
@@ -2490,7 +2744,7 @@ def scatter_nd_sub(input_x, indices, updates, use_locking=False):
|
|
|
2490
2744
|
:math:`(i_0, i_1, ..., i_{Q-2}, x\_shape_N, ..., x\_shape_{P-1})`.
|
|
2491
2745
|
|
|
2492
2746
|
Args:
|
|
2493
|
-
input_x (Parameter): The target tensor, with data type of Parameter.
|
|
2747
|
+
input_x (Union[Parameter, Tensor]): The target tensor, with data type of Parameter or Tensor.
|
|
2494
2748
|
indices (Tensor): The index of input tensor, with int32 or int64 data type.
|
|
2495
2749
|
The rank of indices must be at least 2 and `indices.shape[-1] <= len(shape)`.
|
|
2496
2750
|
updates (Tensor): The tensor doing the subtraction operation with `input_x`, has the same type as input.
|
|
@@ -2505,8 +2759,8 @@ def scatter_nd_sub(input_x, indices, updates, use_locking=False):
|
|
|
2505
2759
|
TypeError: If the dtype of `indices` is not int32 or int64.
|
|
2506
2760
|
TypeError: If dtype of `input_x` and `updates` are not the same.
|
|
2507
2761
|
ValueError: If the shape of `updates` is not equal to `indices.shape[:-1] + x.shape[indices.shape[-1]:]`.
|
|
2508
|
-
RuntimeError: If the data type of `input_x` and `updates` conversion
|
|
2509
|
-
is
|
|
2762
|
+
RuntimeError: If the data type of `input_x` and `updates` conversion is required when data type conversion
|
|
2763
|
+
is not supported.
|
|
2510
2764
|
|
|
2511
2765
|
Supported Platforms:
|
|
2512
2766
|
``Ascend`` ``GPU`` ``CPU``
|
|
@@ -2565,7 +2819,7 @@ def scatter_nd_mul(input_x, indices, updates, use_locking=False):
|
|
|
2565
2819
|
:math:`(i_0, i_1, ..., i_{Q-2}, x\_shape_N, ..., x\_shape_{P-1})`.
|
|
2566
2820
|
|
|
2567
2821
|
Args:
|
|
2568
|
-
input_x (Parameter):
|
|
2822
|
+
input_x (Union[Parameter, Tensor]): The target tensor, with data type of Parameter or Tensor.
|
|
2569
2823
|
indices (Tensor): The index to do multiplication operation whose data type must be mindspore.int32 or
|
|
2570
2824
|
mindspore.int64. The rank of indices must be at least 2 and `indices.shape[-1] <= len(shape)`.
|
|
2571
2825
|
updates (Tensor): The tensor to do the multiplication operation with `input_x`.
|
|
@@ -2580,8 +2834,8 @@ def scatter_nd_mul(input_x, indices, updates, use_locking=False):
|
|
|
2580
2834
|
TypeError: If the dtype of `indices` is not int32 or int64.
|
|
2581
2835
|
TypeError: If dtype of `input_x` and `updates` are not the same.
|
|
2582
2836
|
ValueError: If the shape of `updates` is not equal to `indices.shape[:-1] + x.shape[indices.shape[-1]:]`.
|
|
2583
|
-
RuntimeError: If the data type of `input_x` and `updates` conversion
|
|
2584
|
-
is
|
|
2837
|
+
RuntimeError: If the data type of `input_x` and `updates` conversion is required when data type conversion
|
|
2838
|
+
is not supported.
|
|
2585
2839
|
|
|
2586
2840
|
Supported Platforms:
|
|
2587
2841
|
``GPU`` ``CPU``
|
|
@@ -2640,7 +2894,7 @@ def scatter_nd_div(input_x, indices, updates, use_locking=False):
|
|
|
2640
2894
|
:math:`(i_0, i_1, ..., i_{Q-2}, x\_shape_N, ..., x\_shape_{P-1})`.
|
|
2641
2895
|
|
|
2642
2896
|
Args:
|
|
2643
|
-
input_x (Parameter): The target tensor, with data type of Parameter.
|
|
2897
|
+
input_x (Union[Parameter, Tensor]): The target tensor, with data type of Parameter or Tensor.
|
|
2644
2898
|
indices (Tensor): The index to do div operation whose data type must be mindspore.int32 or mindspore.int64.
|
|
2645
2899
|
The rank of indices must be at least 2 and `indices.shape[-1] <= len(shape)`.
|
|
2646
2900
|
updates (Tensor): The tensor to do the div operation with `input_x`.
|
|
@@ -2655,8 +2909,8 @@ def scatter_nd_div(input_x, indices, updates, use_locking=False):
|
|
|
2655
2909
|
TypeError: If the dtype of `indices` is not int32 or int64.
|
|
2656
2910
|
TypeError: If dtype of `input_x` and `updates` are not the same.
|
|
2657
2911
|
ValueError: If the shape of `updates` is not equal to `indices.shape[:-1] + x.shape[indices.shape[-1]:]`.
|
|
2658
|
-
RuntimeError: If the data type of `input_x` and `updates` conversion
|
|
2659
|
-
is
|
|
2912
|
+
RuntimeError: If the data type of `input_x` and `updates` conversion is required when data type conversion
|
|
2913
|
+
is not supported.
|
|
2660
2914
|
|
|
2661
2915
|
Supported Platforms:
|
|
2662
2916
|
``GPU`` ``CPU``
|
|
@@ -2716,7 +2970,7 @@ def scatter_nd_max(input_x, indices, updates, use_locking=False):
|
|
|
2716
2970
|
:math:`(i_0, i_1, ..., i_{Q-2}, x\_shape_N, ..., x\_shape_{P-1})`.
|
|
2717
2971
|
|
|
2718
2972
|
Args:
|
|
2719
|
-
input_x (Parameter): The target tensor, with data type of Parameter.
|
|
2973
|
+
input_x (Union[Parameter, Tensor]): The target tensor, with data type of Parameter or Tensor.
|
|
2720
2974
|
indices (Tensor): The index to do maximum operation whose data type must be mindspore.int32 or mindspore.int64.
|
|
2721
2975
|
The rank of indices must be at least 2 and `indices.shape[-1] <= len(shape)`.
|
|
2722
2976
|
updates (Tensor): The tensor to do the max operation with `input_x`.
|
|
@@ -2731,8 +2985,8 @@ def scatter_nd_max(input_x, indices, updates, use_locking=False):
|
|
|
2731
2985
|
TypeError: If the dtype of `indices` is not int32 or int64.
|
|
2732
2986
|
TypeError: If dtype of `input_x` and `updates` are not the same.
|
|
2733
2987
|
ValueError: If the shape of `updates` is not equal to `indices.shape[:-1] + x.shape[indices.shape[-1]:]`.
|
|
2734
|
-
RuntimeError: If the data type of `input_x` and `updates` conversion
|
|
2735
|
-
is
|
|
2988
|
+
RuntimeError: If the data type of `input_x` and `updates` conversion is required when data type conversion
|
|
2989
|
+
is not supported.
|
|
2736
2990
|
|
|
2737
2991
|
Supported Platforms:
|
|
2738
2992
|
``Ascend`` ``GPU`` ``CPU``
|
|
@@ -2791,7 +3045,7 @@ def scatter_nd_min(input_x, indices, updates, use_locking=False):
|
|
|
2791
3045
|
:math:`(i_0, i_1, ..., i_{Q-2}, x\_shape_N, ..., x\_shape_{P-1})`.
|
|
2792
3046
|
|
|
2793
3047
|
Args:
|
|
2794
|
-
input_x (Parameter): The target tensor, with data type of Parameter.
|
|
3048
|
+
input_x (Union[Parameter, Tensor]): The target tensor, with data type of Parameter or Tensor.
|
|
2795
3049
|
indices (Tensor): The index to do min operation whose data type must be mindspore.int32 or mindspore.int64.
|
|
2796
3050
|
The rank of indices must be at least 2 and `indices.shape[-1] <= len(shape)`.
|
|
2797
3051
|
updates (Tensor): The tensor to do the min operation with `input_x`.
|
|
@@ -2806,8 +3060,8 @@ def scatter_nd_min(input_x, indices, updates, use_locking=False):
|
|
|
2806
3060
|
TypeError: If the dtype of `indices` is not int32 or int64.
|
|
2807
3061
|
TypeError: If dtype of `input_x` and `updates` are not the same.
|
|
2808
3062
|
ValueError: If the shape of `updates` is not equal to `indices.shape[:-1] + x.shape[indices.shape[-1]:]`.
|
|
2809
|
-
RuntimeError: If the data type of `input_x` and `updates` conversion
|
|
2810
|
-
is
|
|
3063
|
+
RuntimeError: If the data type of `input_x` and `updates` conversion is required when data type conversion
|
|
3064
|
+
is not supported.
|
|
2811
3065
|
|
|
2812
3066
|
Supported Platforms:
|
|
2813
3067
|
``Ascend`` ``GPU`` ``CPU``
|
|
@@ -2929,7 +3183,7 @@ def sort_ext(input, *, dim=-1, descending=False, stable=False):
|
|
|
2929
3183
|
TypeError: If `descending` is not a bool.
|
|
2930
3184
|
TypeError: If `input` not in float16, float32, uint8, int8, int16, int32, int64, bfloat16
|
|
2931
3185
|
TypeError: If `stable` is not a bool.
|
|
2932
|
-
ValueError: If `dim` is not in range of [-len(
|
|
3186
|
+
ValueError: If `dim` is not in range of [-len(input.shape), len(input.shape)).
|
|
2933
3187
|
|
|
2934
3188
|
Supported Platforms:
|
|
2935
3189
|
``Ascend``
|
|
@@ -3414,7 +3668,7 @@ def scatter(input, axis, index, src):
|
|
|
3414
3668
|
[0. 0. 0. 0. 0.]]
|
|
3415
3669
|
"""
|
|
3416
3670
|
if isinstance(src, Tensor):
|
|
3417
|
-
return
|
|
3671
|
+
return scatter_prim(input, axis, index, src)
|
|
3418
3672
|
return scatter_value_(input, axis, index, src)
|
|
3419
3673
|
|
|
3420
3674
|
|
|
@@ -3435,7 +3689,7 @@ def scatter_add_ext(input, dim, index, src):
|
|
|
3435
3689
|
|
|
3436
3690
|
Args:
|
|
3437
3691
|
input (Tensor): The target tensor. The rank must be at least 1.
|
|
3438
|
-
dim (int): Which dim to scatter. Accepted range is [-r, r) where r = rank(`input`).
|
|
3692
|
+
dim (int): Which dim to scatter. Accepted range is [-r, r) where r = rank(`input`).
|
|
3439
3693
|
index (Tensor): The index of `input` to do scatter operation whose data type must be mindspore.int32 or
|
|
3440
3694
|
mindspore.int64. Same rank as `input`. Except for the dimension specified by `dim`,
|
|
3441
3695
|
the size of each dimension of `index` must be less than or equal to the size of
|
|
@@ -3448,10 +3702,10 @@ def scatter_add_ext(input, dim, index, src):
|
|
|
3448
3702
|
|
|
3449
3703
|
Raises:
|
|
3450
3704
|
TypeError: If `index` is neither int32 nor int64.
|
|
3451
|
-
ValueError: If anyone of the rank among `input`, `index` and `src` less than 1.
|
|
3705
|
+
ValueError: If anyone of the rank among `input`, `index` and `src` is less than 1.
|
|
3452
3706
|
ValueError: If the rank of `input`, `index` and `src` is not the same.
|
|
3453
|
-
ValueError:
|
|
3454
|
-
the corresponding dimension of `input
|
|
3707
|
+
ValueError: The size of any dimension of `index` except the dimension specified by `dim` is
|
|
3708
|
+
greater than the size of the corresponding dimension of `input`.
|
|
3455
3709
|
ValueError: If the size of any dimension of `src` is less than that of `index`.
|
|
3456
3710
|
|
|
3457
3711
|
Supported Platforms:
|
|
@@ -3988,6 +4242,94 @@ def matrix_set_diag(x, diagonal, k=0, align="RIGHT_LEFT"): # pylint: disable=re
|
|
|
3988
4242
|
return matrix_set_diag_v3_op(x, diagonal, k)
|
|
3989
4243
|
|
|
3990
4244
|
|
|
4245
|
+
def meshgrid_ext(*tensors, indexing='ij'):
|
|
4246
|
+
"""
|
|
4247
|
+
Generates coordinate matrices from given coordinate tensors.
|
|
4248
|
+
|
|
4249
|
+
Given N one-dimensional coordinate tensors, returns a tuple outputs of N N-D
|
|
4250
|
+
coordinate tensors for evaluating expressions on an N-D grid.
|
|
4251
|
+
|
|
4252
|
+
.. warning::
|
|
4253
|
+
This is an experimental API that is subject to change or deletion.
|
|
4254
|
+
|
|
4255
|
+
Args:
|
|
4256
|
+
tensors (Union(tuple[Tensor], list[Tensor])): In GRAPH_MODE, a tuple of N 1-D Tensor objects and
|
|
4257
|
+
the length of input should be greater than 1. In PYNATIVE_MODE, a tuple of N 0-D or 1-D Tensor objects
|
|
4258
|
+
and the length of input should be greater than 0. The data type is Number.
|
|
4259
|
+
|
|
4260
|
+
Keyword Args:
|
|
4261
|
+
indexing (str, optional): Cartesian ('xy', default) or
|
|
4262
|
+
matrix ('ij') indexing of output. Valid options: xy' or ``'ij'``. In the 2-D case with
|
|
4263
|
+
inputs of length `M` and `N`, for ``'xy'`` indexing, the shape of outputs is :math:`(N, M)`
|
|
4264
|
+
for ``'ij'`` indexing, the shape of outputs is :math:`(M, N)`. In the 3-D
|
|
4265
|
+
case with inputs of length `M`, `N` and `P`, for ``'xy'`` indexing, the shape of outputs is
|
|
4266
|
+
:math:`(N, M, P)` and for ``'ij'`` indexing, the shape of outputs is :math:`(M, N, P)`.
|
|
4267
|
+
Default: ``'ij'`` .
|
|
4268
|
+
|
|
4269
|
+
Returns:
|
|
4270
|
+
Tensors, a Tuple of N N-D Tensor objects. The data type is the same with the Inputs.
|
|
4271
|
+
|
|
4272
|
+
Raises:
|
|
4273
|
+
TypeError: If `indexing` is not a str or `tensors` is not a tuple.
|
|
4274
|
+
ValueError: If `indexing` is neither ``'xy'`` nor ``'ij'``.
|
|
4275
|
+
|
|
4276
|
+
Supported Platforms:
|
|
4277
|
+
``Ascend`` ``GPU`` ``CPU``
|
|
4278
|
+
|
|
4279
|
+
Examples:
|
|
4280
|
+
>>> import numpy as np
|
|
4281
|
+
>>> from mindspore import Tensor
|
|
4282
|
+
>>> from mindspore import ops
|
|
4283
|
+
>>> x = Tensor(np.array([1, 2, 3, 4]).astype(np.int32))
|
|
4284
|
+
>>> y = Tensor(np.array([5, 6, 7]).astype(np.int32))
|
|
4285
|
+
>>> z = Tensor(np.array([8, 9, 0, 1, 2]).astype(np.int32))
|
|
4286
|
+
>>> output = ops.meshgrid(x, y, z, indexing='xy')
|
|
4287
|
+
>>> print(output)
|
|
4288
|
+
(Tensor(shape=[3, 4, 5], dtype=Int32, value=
|
|
4289
|
+
[[[1, 1, 1, 1, 1],
|
|
4290
|
+
[2, 2, 2, 2, 2],
|
|
4291
|
+
[3, 3, 3, 3, 3],
|
|
4292
|
+
[4, 4, 4, 4, 4]],
|
|
4293
|
+
[[1, 1, 1, 1, 1],
|
|
4294
|
+
[2, 2, 2, 2, 2],
|
|
4295
|
+
[3, 3, 3, 3, 3],
|
|
4296
|
+
[4, 4, 4, 4, 4]],
|
|
4297
|
+
[[1, 1, 1, 1, 1],
|
|
4298
|
+
[2, 2, 2, 2, 2],
|
|
4299
|
+
[3, 3, 3, 3, 3],
|
|
4300
|
+
[4, 4, 4, 4, 4]]]),
|
|
4301
|
+
Tensor(shape=[3, 4, 5], dtype=Int32, value=
|
|
4302
|
+
[[[5, 5, 5, 5, 5],
|
|
4303
|
+
[5, 5, 5, 5, 5],
|
|
4304
|
+
[5, 5, 5, 5, 5],
|
|
4305
|
+
[5, 5, 5, 5, 5]],
|
|
4306
|
+
[[6, 6, 6, 6, 6],
|
|
4307
|
+
[6, 6, 6, 6, 6],
|
|
4308
|
+
[6, 6, 6, 6, 6],
|
|
4309
|
+
[6, 6, 6, 6, 6]],
|
|
4310
|
+
[[7, 7, 7, 7, 7],
|
|
4311
|
+
[7, 7, 7, 7, 7],
|
|
4312
|
+
[7, 7, 7, 7, 7],
|
|
4313
|
+
[7, 7, 7, 7, 7]]]),
|
|
4314
|
+
Tensor(shape=[3, 4, 5], dtype=Int32, value=
|
|
4315
|
+
[[[8, 9, 0, 1, 2],
|
|
4316
|
+
[8, 9, 0, 1, 2],
|
|
4317
|
+
[8, 9, 0, 1, 2],
|
|
4318
|
+
[8, 9, 0, 1, 2]],
|
|
4319
|
+
[[8, 9, 0, 1, 2],
|
|
4320
|
+
[8, 9, 0, 1, 2],
|
|
4321
|
+
[8, 9, 0, 1, 2],
|
|
4322
|
+
[8, 9, 0, 1, 2]],
|
|
4323
|
+
[[8, 9, 0, 1, 2],
|
|
4324
|
+
[8, 9, 0, 1, 2],
|
|
4325
|
+
[8, 9, 0, 1, 2],
|
|
4326
|
+
[8, 9, 0, 1, 2]]]))
|
|
4327
|
+
"""
|
|
4328
|
+
if indexing is None:
|
|
4329
|
+
indexing = 'ij'
|
|
4330
|
+
return meshgrid_impl(tensors, indexing)
|
|
4331
|
+
|
|
4332
|
+
|
|
3991
4333
|
def meshgrid(*inputs, indexing='xy'):
|
|
3992
4334
|
"""
|
|
3993
4335
|
Generates coordinate matrices from given coordinate tensors.
|
|
@@ -3996,8 +4338,9 @@ def meshgrid(*inputs, indexing='xy'):
|
|
|
3996
4338
|
coordinate tensors for evaluating expressions on an N-D grid.
|
|
3997
4339
|
|
|
3998
4340
|
Args:
|
|
3999
|
-
inputs (
|
|
4000
|
-
|
|
4341
|
+
inputs (Union(tuple[Tensor], list[Tensor])): In GRAPH_MODE, a tuple of N 1-D Tensor objects and
|
|
4342
|
+
the length of input should be greater than 1. In PYNATIVE_MODE, a tuple of N 0-D or 1-D Tensor objects
|
|
4343
|
+
and the length of input should be greater than 0. The data type is Number.
|
|
4001
4344
|
|
|
4002
4345
|
Keyword Args:
|
|
4003
4346
|
indexing (str, optional): Cartesian ('xy', default) or
|
|
@@ -4067,7 +4410,7 @@ def meshgrid(*inputs, indexing='xy'):
|
|
|
4067
4410
|
[8, 9, 0, 1, 2],
|
|
4068
4411
|
[8, 9, 0, 1, 2]]]))
|
|
4069
4412
|
"""
|
|
4070
|
-
meshgrid_op = _get_cache_prim(
|
|
4413
|
+
meshgrid_op = _get_cache_prim(Meshgrid)(indexing)
|
|
4071
4414
|
return meshgrid_op(inputs)
|
|
4072
4415
|
|
|
4073
4416
|
|
|
@@ -4314,6 +4657,58 @@ def index_fill(x, axis, index, value):
|
|
|
4314
4657
|
value = cast_(value, x.dtype)
|
|
4315
4658
|
return index_fill_(x, axis, index, value)
|
|
4316
4659
|
|
|
4660
|
+
def index_fill_ext(input, dim, index, value):
|
|
4661
|
+
"""
|
|
4662
|
+
Fills the elements under the `dim` dimension of the input Tensor `input` with the input `value`
|
|
4663
|
+
by selecting the indices in the order given in `index`.
|
|
4664
|
+
|
|
4665
|
+
Args:
|
|
4666
|
+
input (Tensor): Input Tensor. The supported data type is Number or Bool.
|
|
4667
|
+
dim (int): Dimension along which to fill the input Tensor. Only supports
|
|
4668
|
+
an int number, which data type is int32 or int64.
|
|
4669
|
+
index (Tensor): Indices of the input Tensor to fill in. The dtype must be int32 or int64.
|
|
4670
|
+
value (Union[bool, int, float, Tensor]): Value to fill the returned Tensor. If `value` is
|
|
4671
|
+
a Tensor, it must be a 0-dimensional Tensor and has the same dtype as `input`. Otherwise,
|
|
4672
|
+
the `value` will be a value with the same data type as `input`.
|
|
4673
|
+
|
|
4674
|
+
Returns:
|
|
4675
|
+
Tensor, has the same dtype and shape as input Tensor.
|
|
4676
|
+
|
|
4677
|
+
Raises:
|
|
4678
|
+
TypeError: If `input` is not a Tensor.
|
|
4679
|
+
TypeError: If `dim` is neither int number nor Tensor.
|
|
4680
|
+
TypeError: When `dim` is a Tensor, its dtype is not int32 or int64.
|
|
4681
|
+
TypeError: If `index` is not a Tensor.
|
|
4682
|
+
TypeError: If dtype of `index` is not int32.
|
|
4683
|
+
TypeError: If `value` is not a bool, int, float, or Tensor.
|
|
4684
|
+
TypeError: When `value` is a Tensor, the dtype of `input` and `value` are not the same.
|
|
4685
|
+
ValueError: If `dim` is a Tensor and its rank is not equal to 0.
|
|
4686
|
+
ValueError: If the rank of `index` is greater than 1D.
|
|
4687
|
+
ValueError: When `value` is a Tensor and its rank is not equal to 0.
|
|
4688
|
+
RuntimeError: If the value of `dim` is out the range of `[-x.ndim, x.ndim - 1]`.
|
|
4689
|
+
RuntimeError: If the values of `index` are out the range of `[-x.shape[dim], x.shape[dim]-1]`.
|
|
4690
|
+
|
|
4691
|
+
Supported Platforms:
|
|
4692
|
+
``Ascend``
|
|
4693
|
+
|
|
4694
|
+
Examples:
|
|
4695
|
+
>>> import mindspore
|
|
4696
|
+
>>> import numpy as np
|
|
4697
|
+
>>> from mindspore import ops
|
|
4698
|
+
>>> from mindspore import Tensor
|
|
4699
|
+
>>> input = Tensor(np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]).astype(np.float32))
|
|
4700
|
+
>>> index = Tensor([0, 2], mindspore.int32)
|
|
4701
|
+
>>> value = Tensor(-2.0, mindspore.float32)
|
|
4702
|
+
>>> y = ops.index_fill_ext(x, 1, index, value)
|
|
4703
|
+
>>> print(y)
|
|
4704
|
+
[[-2. 2. -2.]
|
|
4705
|
+
[-2. 5. -2.]
|
|
4706
|
+
[-2. 8. -2.]]
|
|
4707
|
+
"""
|
|
4708
|
+
if isinstance(value, Tensor):
|
|
4709
|
+
return index_fill_tensor(input, dim, index, value)
|
|
4710
|
+
return index_fill_scalar(input, dim, index, value)
|
|
4711
|
+
|
|
4317
4712
|
|
|
4318
4713
|
@constexpr
|
|
4319
4714
|
def _check_check_axis_in_range(axis, ndim):
|
|
@@ -4881,30 +5276,30 @@ def split(tensor, split_size_or_sections, axis=0):
|
|
|
4881
5276
|
return tuple(res)
|
|
4882
5277
|
|
|
4883
5278
|
|
|
4884
|
-
def split_ext(tensor,
|
|
5279
|
+
def split_ext(tensor, split_size, dim=0):
|
|
4885
5280
|
"""
|
|
4886
|
-
Splits the Tensor into chunks along the given
|
|
5281
|
+
Splits the Tensor into chunks along the given dim.
|
|
4887
5282
|
|
|
4888
5283
|
Args:
|
|
4889
5284
|
tensor (Tensor): A Tensor to be divided.
|
|
4890
|
-
|
|
4891
|
-
If `
|
|
4892
|
-
each chunk with size `
|
|
4893
|
-
if `tensor.shape[
|
|
4894
|
-
If `
|
|
4895
|
-
chunks with sizes `
|
|
4896
|
-
|
|
5285
|
+
split_size (Union[int, tuple(int), list(int)]):
|
|
5286
|
+
If `split_size` is an int type, `tensor` will be split into equally sized chunks,
|
|
5287
|
+
each chunk with size `split_size`. Last chunk will be smaller than `split_size`
|
|
5288
|
+
if `tensor.shape[dim]` is not divisible by `split_size`.
|
|
5289
|
+
If `split_size` is a list type, then `tensor` will be split into len(split_size)
|
|
5290
|
+
chunks with sizes `split_size` along the given `dim`.
|
|
5291
|
+
dim (int): The dim along which to split. Default: ``0`` .
|
|
4897
5292
|
|
|
4898
5293
|
Returns:
|
|
4899
5294
|
A tuple of sub-tensors.
|
|
4900
5295
|
|
|
4901
5296
|
Raises:
|
|
4902
5297
|
TypeError: If argument `tensor` is not Tensor.
|
|
4903
|
-
TypeError: If argument `
|
|
4904
|
-
ValueError: If argument `
|
|
4905
|
-
TypeError: If each element in `
|
|
4906
|
-
TypeError: If argument `
|
|
4907
|
-
ValueError: The sum of `
|
|
5298
|
+
TypeError: If argument `dim` is not int.
|
|
5299
|
+
ValueError: If argument `dim` is out of range of :[-tensor.ndim, tensor.ndim).
|
|
5300
|
+
TypeError: If each element in `split_size` is not integer.
|
|
5301
|
+
TypeError: If argument `split_size` is not int, tuple(int) or list(int).
|
|
5302
|
+
ValueError: The sum of `split_size` is not equal to x.shape[dim].
|
|
4908
5303
|
|
|
4909
5304
|
Supported Platforms:
|
|
4910
5305
|
``Ascend``
|
|
@@ -4919,13 +5314,13 @@ def split_ext(tensor, split_size_or_sections, axis=0):
|
|
|
4919
5314
|
Tensor(shape=[3], dtype=Float32, value= [ 3.00000000e+00, 4.00000000e+00, 5.00000000e+00]),
|
|
4920
5315
|
Tensor(shape=[3], dtype=Float32, value= [ 6.00000000e+00, 7.00000000e+00, 8.00000000e+00]))
|
|
4921
5316
|
"""
|
|
4922
|
-
if isinstance(
|
|
4923
|
-
res = split_tensor(tensor,
|
|
4924
|
-
elif isinstance(
|
|
4925
|
-
res = split_with_size(tensor,
|
|
5317
|
+
if isinstance(split_size, int):
|
|
5318
|
+
res = split_tensor(tensor, split_size, dim)
|
|
5319
|
+
elif isinstance(split_size, (list, tuple)):
|
|
5320
|
+
res = split_with_size(tensor, split_size, dim)
|
|
4926
5321
|
else:
|
|
4927
|
-
raise TypeError(f"Type of Argument `
|
|
4928
|
-
f"but got {type(
|
|
5322
|
+
raise TypeError(f"Type of Argument `split_size` should be integer, tuple(int) or list(int), "
|
|
5323
|
+
f"but got {type(split_size)}")
|
|
4929
5324
|
return res
|
|
4930
5325
|
|
|
4931
5326
|
|
|
@@ -4997,8 +5392,8 @@ def tril_ext(input, diagonal=0):
|
|
|
4997
5392
|
|
|
4998
5393
|
Args:
|
|
4999
5394
|
input (Tensor): A Tensor with shape :math:`(x_1, x_2, ..., x_R)`. The rank must be at least 2.
|
|
5000
|
-
|
|
5001
|
-
diagonal (int, optional): An optional attribute indicates the diagonal to consider, default: 0
|
|
5395
|
+
Supporting all number types including bool.
|
|
5396
|
+
diagonal (int, optional): An optional attribute indicates the diagonal to consider, default: ``0``,
|
|
5002
5397
|
indicating the main diagonal.
|
|
5003
5398
|
|
|
5004
5399
|
Returns:
|
|
@@ -5195,7 +5590,7 @@ def tensor_split(input, indices_or_sections, axis=0):
|
|
|
5195
5590
|
and :math:`axis=0` , the input tensor will be split into sections :math:`input[:1]` ,
|
|
5196
5591
|
:math:`input[1:4]` , and :math:`input[4:]` .
|
|
5197
5592
|
|
|
5198
|
-
axis (int): The axis along which to split. Default: ``0`` .
|
|
5593
|
+
axis (int, optional): The axis along which to split. Default: ``0`` .
|
|
5199
5594
|
|
|
5200
5595
|
Returns:
|
|
5201
5596
|
A tuple of sub-tensors.
|
|
@@ -5627,16 +6022,13 @@ def aminmax(input, *, axis=0, keepdims=False):
|
|
|
5627
6022
|
argmax_with_value_op = _get_cache_prim(ArgMaxWithValue)(axis, keepdims)
|
|
5628
6023
|
_, output0 = argmin_with_value_op(input)
|
|
5629
6024
|
_, output1 = argmax_with_value_op(input)
|
|
5630
|
-
if keepdims is True and input.ndim == 0:
|
|
5631
|
-
output0 = ops.reshape(output0, [1])
|
|
5632
|
-
output1 = ops.reshape(output1, [1])
|
|
5633
6025
|
return output0, output1
|
|
5634
6026
|
|
|
5635
6027
|
|
|
5636
6028
|
def narrow(input, axis, start, length):
|
|
5637
6029
|
"""
|
|
5638
|
-
|
|
5639
|
-
|
|
6030
|
+
Obtains a tensor of a specified length at a
|
|
6031
|
+
specified start position along a specified axis.
|
|
5640
6032
|
|
|
5641
6033
|
Args:
|
|
5642
6034
|
input (Tensor): the tensor to narrow.
|
|
@@ -5682,48 +6074,6 @@ def narrow(input, axis, start, length):
|
|
|
5682
6074
|
sizes[axis] = length
|
|
5683
6075
|
return tensor_slice(input, begins, sizes)
|
|
5684
6076
|
|
|
5685
|
-
|
|
5686
|
-
def narrow_ext(input, dim, start, length):
|
|
5687
|
-
"""
|
|
5688
|
-
Returns a narrowed tensor from input tensor, and
|
|
5689
|
-
the dimension axis is input from start to start + length.
|
|
5690
|
-
|
|
5691
|
-
Args:
|
|
5692
|
-
input (Tensor): the tensor to narrow.
|
|
5693
|
-
dim (int): dimension along which to narrow.
|
|
5694
|
-
start (int): the starting dimension.
|
|
5695
|
-
length (int): the distance to the ending dimension.
|
|
5696
|
-
|
|
5697
|
-
Returns:
|
|
5698
|
-
Tensor.
|
|
5699
|
-
|
|
5700
|
-
Raises:
|
|
5701
|
-
ValueError: If dim is out of range [-input.ndim, input.ndim).
|
|
5702
|
-
ValueError: If start is out of range [-input.shape[dim], input.shape[dim]].
|
|
5703
|
-
ValueError: It length is out of range [0, input.shape[dim]-start].
|
|
5704
|
-
|
|
5705
|
-
Supported Platforms:
|
|
5706
|
-
``Ascend``
|
|
5707
|
-
|
|
5708
|
-
Examples:
|
|
5709
|
-
>>> import mindspore
|
|
5710
|
-
>>> from mindspore import ops
|
|
5711
|
-
>>> from mindspore import Tensor
|
|
5712
|
-
>>> x = Tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]], mindspore.int32)
|
|
5713
|
-
>>> output = ops.narrow(x, 0, 0, 2)
|
|
5714
|
-
>>> print(output)
|
|
5715
|
-
[[ 1 2 3]
|
|
5716
|
-
[ 4 5 6]]
|
|
5717
|
-
>>> output = ops.narrow(x, 1, 1, 2)
|
|
5718
|
-
>>> print(output)
|
|
5719
|
-
[[ 2 3]
|
|
5720
|
-
[ 5 6]
|
|
5721
|
-
[ 8 9]]
|
|
5722
|
-
"""
|
|
5723
|
-
validator.check_value_type("input", input, Tensor, "narrow")
|
|
5724
|
-
return slice_ext_op(input, dim, start, start + length, 1)
|
|
5725
|
-
|
|
5726
|
-
|
|
5727
6077
|
def topk(input, k, dim=None, largest=True, sorted=True):
|
|
5728
6078
|
r"""
|
|
5729
6079
|
Finds values and indices of the `k` largest or smallest entries along a given dimension.
|
|
@@ -5795,6 +6145,7 @@ def topk(input, k, dim=None, largest=True, sorted=True):
|
|
|
5795
6145
|
[3, 0],
|
|
5796
6146
|
[0, 1]]))
|
|
5797
6147
|
"""
|
|
6148
|
+
validator.check_value_type("largest", largest, [bool], "topk")
|
|
5798
6149
|
top_k_ = _get_cache_prim(P.TopK)(sorted)
|
|
5799
6150
|
if not largest:
|
|
5800
6151
|
input = -input
|
|
@@ -5817,8 +6168,7 @@ def topk(input, k, dim=None, largest=True, sorted=True):
|
|
|
5817
6168
|
|
|
5818
6169
|
def expand(input_x, size):
|
|
5819
6170
|
r"""
|
|
5820
|
-
|
|
5821
|
-
Please use :func:`mindspore.ops.broadcast_to` instead.
|
|
6171
|
+
This interface will be deprecated in the future, and use :func:`mindspore.ops.broadcast_to` instead.
|
|
5822
6172
|
"""
|
|
5823
6173
|
expand_op = _get_cache_prim(Expand)()
|
|
5824
6174
|
return expand_op(input_x, size)
|
|
@@ -6214,17 +6564,21 @@ def mvlgamma(input, p):
|
|
|
6214
6564
|
return mvlgamma_op(input)
|
|
6215
6565
|
|
|
6216
6566
|
|
|
6217
|
-
def nonzero(input, as_tuple=False):
|
|
6567
|
+
def nonzero(input, *, as_tuple=False):
|
|
6218
6568
|
r"""
|
|
6219
6569
|
Return the positions of all non-zero values.
|
|
6220
6570
|
|
|
6221
6571
|
Args:
|
|
6222
|
-
input (Tensor): The input Tensor
|
|
6572
|
+
input (Tensor): The input Tensor.
|
|
6573
|
+
|
|
6574
|
+
- Ascend: its rank can be equal to 0 except O2 mode.
|
|
6575
|
+
- CPU/GPU: its rank should be greater than or eaqual to 1.
|
|
6576
|
+
|
|
6577
|
+
Keyword Args:
|
|
6223
6578
|
as_tuple (bool, optional): Whether the output is tuple.
|
|
6224
6579
|
If ``False`` , return Tensor. Default: ``False`` .
|
|
6225
6580
|
If ``True`` , return Tuple of Tensor, only support ``Ascend`` .
|
|
6226
6581
|
|
|
6227
|
-
|
|
6228
6582
|
Returns:
|
|
6229
6583
|
- If `as_tuple` is ``False``, return the Tensor, a 2-D Tensor whose data type is int64,
|
|
6230
6584
|
containing the positions of all non-zero values of the input.
|
|
@@ -6236,7 +6590,7 @@ def nonzero(input, as_tuple=False):
|
|
|
6236
6590
|
Raises:
|
|
6237
6591
|
TypeError: If `input` is not Tensor.
|
|
6238
6592
|
TypeError: If `as_tuple` is not bool.
|
|
6239
|
-
|
|
6593
|
+
RuntimeError: On GPU or CPU or Ascend O2 mode, if dim of `input` equals to 0.
|
|
6240
6594
|
|
|
6241
6595
|
Supported Platforms:
|
|
6242
6596
|
``Ascend`` ``GPU`` ``CPU``
|
|
@@ -6251,22 +6605,25 @@ def nonzero(input, as_tuple=False):
|
|
|
6251
6605
|
[[0 0 0]
|
|
6252
6606
|
[0 1 0]]
|
|
6253
6607
|
>>> x = Tensor(np.array([1, 0, 2, 0, 3]), mindspore.int32)
|
|
6254
|
-
>>> output = ops.nonzero(x, False)
|
|
6608
|
+
>>> output = ops.nonzero(x, as_tuple=False)
|
|
6255
6609
|
>>> print(output)
|
|
6256
6610
|
[[0]
|
|
6257
6611
|
[2]
|
|
6258
6612
|
[4]]
|
|
6259
6613
|
>>> x = Tensor(np.array([[[1, 0], [-5, 0]]]), mindspore.int32)
|
|
6260
|
-
>>> output = ops.nonzero(x, True)
|
|
6614
|
+
>>> output = ops.nonzero(x, as_tuple=True)
|
|
6261
6615
|
>>> print(output)
|
|
6262
6616
|
(Tensor(shape=[2], dtype=Int64, value=[0, 0]),
|
|
6263
6617
|
Tensor(shape=[2], dtype=Int64, value=[0, 1]),
|
|
6264
6618
|
Tensor(shape=[2], dtype=Int64, value=[0, 0]))
|
|
6265
6619
|
>>> x = Tensor(np.array([1, 0, 2, 0, 3]), mindspore.int32)
|
|
6266
|
-
>>> output = ops.nonzero(x, True)
|
|
6620
|
+
>>> output = ops.nonzero(x, as_tuple=True)
|
|
6267
6621
|
>>> print(output)
|
|
6268
6622
|
(Tensor(shape=[3], dtype=Int64, value=[0, 2, 4]), )
|
|
6269
6623
|
"""
|
|
6624
|
+
if not isinstance(as_tuple, bool):
|
|
6625
|
+
raise TypeError(
|
|
6626
|
+
f"For array function 'nonzero', 'as_tuple' must be bool, but got {type(as_tuple)}.")
|
|
6270
6627
|
if as_tuple:
|
|
6271
6628
|
return non_zero_ext_(input)
|
|
6272
6629
|
return non_zero_(input)
|
|
@@ -6651,7 +7008,7 @@ def _check_rank_range(x_rank, limit, arg_name, op_name):
|
|
|
6651
7008
|
|
|
6652
7009
|
def repeat_interleave(input, repeats, axis=None):
|
|
6653
7010
|
"""
|
|
6654
|
-
Repeat elements of a tensor along an axis, like
|
|
7011
|
+
Repeat elements of a tensor along an axis, like :func:`mindspore.numpy.repeat`.
|
|
6655
7012
|
|
|
6656
7013
|
Args:
|
|
6657
7014
|
input (Tensor): The tensor to repeat values for. Must be of type: float16,
|
|
@@ -6691,7 +7048,7 @@ def repeat_interleave(input, repeats, axis=None):
|
|
|
6691
7048
|
|
|
6692
7049
|
def repeat_interleave_ext(input, repeats, dim=None, output_size=None):
|
|
6693
7050
|
r"""
|
|
6694
|
-
Repeat elements of a tensor along an axis, like
|
|
7051
|
+
Repeat elements of a tensor along an axis, like :func:`mindspore.numpy.repeat`.
|
|
6695
7052
|
|
|
6696
7053
|
.. warning::
|
|
6697
7054
|
Only support on Atlas A2 training series.
|
|
@@ -6732,7 +7089,7 @@ def repeat_interleave_ext(input, repeats, dim=None, output_size=None):
|
|
|
6732
7089
|
|
|
6733
7090
|
def repeat_elements(x, rep, axis=0):
|
|
6734
7091
|
"""
|
|
6735
|
-
Repeat elements of a tensor along an axis, like
|
|
7092
|
+
Repeat elements of a tensor along an axis, like :func:`mindspore.numpy.repeat` .
|
|
6736
7093
|
|
|
6737
7094
|
Note:
|
|
6738
7095
|
It is recommended to use :func:'mindspore.mint.repeat_interleave', the dimension of input 'x' can support
|
|
@@ -6909,10 +7266,9 @@ def gather_ext(input, dim, index):
|
|
|
6909
7266
|
>>> import mindspore
|
|
6910
7267
|
>>> import numpy as np
|
|
6911
7268
|
>>> from mindspore import Tensor, ops
|
|
6912
|
-
>>> from mindspore.ops.function.array_func import gather_ext
|
|
6913
7269
|
>>> input = Tensor(np.array([[-0.1, 0.3, 3.6], [0.4, 0.5, -3.2]]), mindspore.float32)
|
|
6914
7270
|
>>> index = Tensor(np.array([[0, 0], [1, 1]]), mindspore.int32)
|
|
6915
|
-
>>> output = gather_ext(input, 1, index)
|
|
7271
|
+
>>> output = ops.function.array_func.gather_ext(input, 1, index)
|
|
6916
7272
|
>>> print(output)
|
|
6917
7273
|
[[-0.1 -0.1]
|
|
6918
7274
|
[0.5 0.5]]
|
|
@@ -6954,10 +7310,9 @@ def max_ext(input, dim=None, keepdim=False):
|
|
|
6954
7310
|
>>> import mindspore
|
|
6955
7311
|
>>> import numpy as np
|
|
6956
7312
|
>>> from mindspore import Tensor, ops
|
|
6957
|
-
>>> from mindspore.ops.function.array_func import max_ext
|
|
6958
7313
|
>>> y = Tensor(np.array([[0.0, 0.3, 0.4, 0.5, 0.1],
|
|
6959
7314
|
... [3.2, 0.4, 0.1, 2.9, 4.0]]), mindspore.float32)
|
|
6960
|
-
>>> output, index = max_ext(y, 0, True)
|
|
7315
|
+
>>> output, index = ops.function.array_func.max_ext(y, 0, True)
|
|
6961
7316
|
>>> print(output, index)
|
|
6962
7317
|
[[3.2 0.4 0.4 2.9 4. ]] [[1 1 0 1 1]]
|
|
6963
7318
|
"""
|
|
@@ -7005,9 +7360,8 @@ def min_ext(input, dim=None, keepdim=False):
|
|
|
7005
7360
|
>>> import mindspore
|
|
7006
7361
|
>>> import numpy as np
|
|
7007
7362
|
>>> from mindspore import Tensor, ops
|
|
7008
|
-
>>> from mindspore.ops.function.array_func import min_ext
|
|
7009
7363
|
>>> x = Tensor(np.array([0.0, 0.4, 0.6, 0.7, 0.1]), mindspore.float32)
|
|
7010
|
-
>>> output, index = min_ext(x, 0, keepdim=True)
|
|
7364
|
+
>>> output, index = ops.function.array_func.min_ext(x, 0, keepdim=True)
|
|
7011
7365
|
>>> print(output, index)
|
|
7012
7366
|
[0.0] [0]
|
|
7013
7367
|
"""
|
|
@@ -7085,6 +7439,51 @@ def from_numpy(array):
|
|
|
7085
7439
|
"""
|
|
7086
7440
|
return Tensor.from_numpy(array)
|
|
7087
7441
|
|
|
7442
|
+
|
|
7443
|
+
def type_as(input, other):
|
|
7444
|
+
r"""
|
|
7445
|
+
Returns input cast to the type of the with the other.
|
|
7446
|
+
|
|
7447
|
+
.. warning::
|
|
7448
|
+
This is an experimental API that is subject to change or deletion.
|
|
7449
|
+
|
|
7450
|
+
Note:
|
|
7451
|
+
When converting complex numbers to boolean type, the imaginary part of the complex number is not
|
|
7452
|
+
taken into account. As long as the real part is non-zero, it returns True; otherwise, it returns False.
|
|
7453
|
+
|
|
7454
|
+
Args:
|
|
7455
|
+
input (Tensor): The shape of tensor is :math:`(x_0, x_1, ..., x_R)`.
|
|
7456
|
+
The tensor whose data type is to be converted.
|
|
7457
|
+
other (Tensor): The shape of tensor is :math:`(x_0, x_1, ..., x_R)`.
|
|
7458
|
+
The tensor whose data type is specified.
|
|
7459
|
+
|
|
7460
|
+
Returns:
|
|
7461
|
+
Tensor, the shape of tensor is the same as `input`, :math:`(x_0, x_1, ..., x_R)`.
|
|
7462
|
+
|
|
7463
|
+
Raises:
|
|
7464
|
+
TypeError: If `input` is not a Tensor.
|
|
7465
|
+
TypeError: If `other` is not a Tensor.
|
|
7466
|
+
|
|
7467
|
+
Supported Platforms:
|
|
7468
|
+
``Ascend``
|
|
7469
|
+
|
|
7470
|
+
Examples:
|
|
7471
|
+
>>> import mindspore
|
|
7472
|
+
>>> import numpy as np
|
|
7473
|
+
>>> from mindspore import Tensor, ops
|
|
7474
|
+
>>> input_np = np.random.randn(2, 3, 4, 5).astype(np.float32)
|
|
7475
|
+
>>> input = Tensor(input_np)
|
|
7476
|
+
>>> other_np = np.random.randn(2, 3, 4).astype(np.int32)
|
|
7477
|
+
>>> other = Tensor(other_np)
|
|
7478
|
+
>>> output = ops.type_as(input, other)
|
|
7479
|
+
>>> print(output.dtype)
|
|
7480
|
+
Int32
|
|
7481
|
+
>>> print(output.shape)
|
|
7482
|
+
(2, 3, 4, 5)
|
|
7483
|
+
"""
|
|
7484
|
+
return type_as_(input, other)
|
|
7485
|
+
|
|
7486
|
+
|
|
7088
7487
|
__all__ = [
|
|
7089
7488
|
'unique',
|
|
7090
7489
|
'unique_with_pad',
|
|
@@ -7224,5 +7623,8 @@ __all__ = [
|
|
|
7224
7623
|
'top_k',
|
|
7225
7624
|
'deepcopy',
|
|
7226
7625
|
'flip',
|
|
7626
|
+
'view_as',
|
|
7627
|
+
'type_as',
|
|
7628
|
+
'expand_as',
|
|
7227
7629
|
]
|
|
7228
7630
|
__all__.sort()
|