mindspore 2.4.0__cp311-cp311-macosx_11_0_arm64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of mindspore might be problematic. Click here for more details.
- mindspore/.commit_id +1 -0
- mindspore/__init__.py +53 -0
- mindspore/_c_dataengine.cpython-311-darwin.so +0 -0
- mindspore/_c_expression.cpython-311-darwin.so +0 -0
- mindspore/_c_mindrecord.cpython-311-darwin.so +0 -0
- mindspore/_check_jit_forbidden_api.py +106 -0
- mindspore/_checkparam.py +1419 -0
- mindspore/_extends/__init__.py +23 -0
- mindspore/_extends/builtin_operations.py +224 -0
- mindspore/_extends/graph_kernel/__init__.py +17 -0
- mindspore/_extends/graph_kernel/model/__init__.py +19 -0
- mindspore/_extends/graph_kernel/model/graph_parallel.py +311 -0
- mindspore/_extends/graph_kernel/model/graph_split.py +1348 -0
- mindspore/_extends/graph_kernel/model/model.py +553 -0
- mindspore/_extends/graph_kernel/model/model_builder.py +216 -0
- mindspore/_extends/graph_kernel/parallel_estimate.py +60 -0
- mindspore/_extends/graph_kernel/splitter.py +140 -0
- mindspore/_extends/graph_kernel/utils.py +28 -0
- mindspore/_extends/parallel_compile/__init__.py +19 -0
- mindspore/_extends/parallel_compile/akg_compiler/__init__.py +19 -0
- mindspore/_extends/parallel_compile/akg_compiler/akg_process.py +269 -0
- mindspore/_extends/parallel_compile/akg_compiler/build_tbe_kernel.py +529 -0
- mindspore/_extends/parallel_compile/akg_compiler/compiler.py +56 -0
- mindspore/_extends/parallel_compile/akg_compiler/gen_custom_op_files.py +96 -0
- mindspore/_extends/parallel_compile/akg_compiler/get_file_path.py +36 -0
- mindspore/_extends/parallel_compile/akg_compiler/tbe_topi.py +556 -0
- mindspore/_extends/parallel_compile/akg_compiler/util.py +159 -0
- mindspore/_extends/parse/__init__.py +49 -0
- mindspore/_extends/parse/compile_config.py +299 -0
- mindspore/_extends/parse/namespace.py +136 -0
- mindspore/_extends/parse/parser.py +1448 -0
- mindspore/_extends/parse/resources.py +213 -0
- mindspore/_extends/parse/standard_method.py +4475 -0
- mindspore/_extends/parse/trope.py +97 -0
- mindspore/_extends/pijit/__init__.py +23 -0
- mindspore/_extends/pijit/pijit_func_white_list.py +669 -0
- mindspore/_extends/remote/__init__.py +19 -0
- mindspore/_extends/remote/kernel_build_server.py +199 -0
- mindspore/_extends/remote/kernel_build_server_akg.py +55 -0
- mindspore/_extends/remote/kernel_build_server_akg_v2.py +55 -0
- mindspore/_extends/remote/kernel_build_server_ascend.py +75 -0
- mindspore/_extends/utils.py +68 -0
- mindspore/_install_custom.py +43 -0
- mindspore/_profiler.py +30 -0
- mindspore/amp.py +433 -0
- mindspore/boost/__init__.py +42 -0
- mindspore/boost/adasum.py +319 -0
- mindspore/boost/base.py +535 -0
- mindspore/boost/boost.py +400 -0
- mindspore/boost/boost_cell_wrapper.py +790 -0
- mindspore/boost/dim_reduce.py +323 -0
- mindspore/boost/grad_accumulation.py +79 -0
- mindspore/boost/grad_freeze.py +382 -0
- mindspore/boost/group_loss_scale_manager.py +166 -0
- mindspore/boost/less_batch_normalization.py +174 -0
- mindspore/common/__init__.py +86 -0
- mindspore/common/_auto_dynamic.py +68 -0
- mindspore/common/_decorator.py +50 -0
- mindspore/common/_jit_fallback_utils.py +110 -0
- mindspore/common/_monad.py +25 -0
- mindspore/common/_pijit_context.py +190 -0
- mindspore/common/_register_for_adapter.py +74 -0
- mindspore/common/_register_for_recompute.py +48 -0
- mindspore/common/_register_for_tensor.py +46 -0
- mindspore/common/_stub_tensor.py +210 -0
- mindspore/common/_tensor_overload.py +139 -0
- mindspore/common/_utils.py +122 -0
- mindspore/common/api.py +2064 -0
- mindspore/common/auto_dynamic_shape.py +507 -0
- mindspore/common/dtype.py +422 -0
- mindspore/common/dump.py +130 -0
- mindspore/common/file_system.py +48 -0
- mindspore/common/generator.py +254 -0
- mindspore/common/hook_handle.py +143 -0
- mindspore/common/initializer.py +880 -0
- mindspore/common/jit_config.py +98 -0
- mindspore/common/lazy_inline.py +240 -0
- mindspore/common/mindir_util.py +111 -0
- mindspore/common/mutable.py +234 -0
- mindspore/common/no_inline.py +54 -0
- mindspore/common/np_dtype.py +25 -0
- mindspore/common/parameter.py +1081 -0
- mindspore/common/recompute.py +292 -0
- mindspore/common/seed.py +260 -0
- mindspore/common/sparse_tensor.py +1175 -0
- mindspore/common/symbol.py +122 -0
- mindspore/common/tensor.py +5039 -0
- mindspore/communication/__init__.py +37 -0
- mindspore/communication/_comm_helper.py +501 -0
- mindspore/communication/_hccl_management.py +297 -0
- mindspore/communication/comm_func.py +1395 -0
- mindspore/communication/management.py +673 -0
- mindspore/config/op_info.config +533 -0
- mindspore/context.py +2077 -0
- mindspore/dataset/__init__.py +90 -0
- mindspore/dataset/audio/__init__.py +61 -0
- mindspore/dataset/audio/transforms.py +3690 -0
- mindspore/dataset/audio/utils.py +386 -0
- mindspore/dataset/audio/validators.py +1172 -0
- mindspore/dataset/callback/__init__.py +20 -0
- mindspore/dataset/callback/ds_callback.py +368 -0
- mindspore/dataset/callback/validators.py +32 -0
- mindspore/dataset/core/__init__.py +13 -0
- mindspore/dataset/core/config.py +1095 -0
- mindspore/dataset/core/datatypes.py +101 -0
- mindspore/dataset/core/py_util_helpers.py +65 -0
- mindspore/dataset/core/validator_helpers.py +781 -0
- mindspore/dataset/debug/__init__.py +21 -0
- mindspore/dataset/debug/debug_hook.py +97 -0
- mindspore/dataset/debug/pre_defined_hook.py +67 -0
- mindspore/dataset/engine/__init__.py +124 -0
- mindspore/dataset/engine/cache_admin.py +47 -0
- mindspore/dataset/engine/cache_client.py +129 -0
- mindspore/dataset/engine/datasets.py +4582 -0
- mindspore/dataset/engine/datasets_audio.py +911 -0
- mindspore/dataset/engine/datasets_standard_format.py +543 -0
- mindspore/dataset/engine/datasets_text.py +2161 -0
- mindspore/dataset/engine/datasets_user_defined.py +1184 -0
- mindspore/dataset/engine/datasets_vision.py +4816 -0
- mindspore/dataset/engine/iterators.py +371 -0
- mindspore/dataset/engine/obs/__init__.py +23 -0
- mindspore/dataset/engine/obs/config_loader.py +68 -0
- mindspore/dataset/engine/obs/obs_mindrecord_dataset.py +508 -0
- mindspore/dataset/engine/obs/util.py +482 -0
- mindspore/dataset/engine/offload.py +596 -0
- mindspore/dataset/engine/queue.py +304 -0
- mindspore/dataset/engine/samplers.py +895 -0
- mindspore/dataset/engine/serializer_deserializer.py +159 -0
- mindspore/dataset/engine/validators.py +2895 -0
- mindspore/dataset/text/__init__.py +51 -0
- mindspore/dataset/text/transforms.py +1703 -0
- mindspore/dataset/text/utils.py +715 -0
- mindspore/dataset/text/validators.py +642 -0
- mindspore/dataset/transforms/__init__.py +45 -0
- mindspore/dataset/transforms/c_transforms.py +638 -0
- mindspore/dataset/transforms/py_transforms.py +393 -0
- mindspore/dataset/transforms/py_transforms_util.py +255 -0
- mindspore/dataset/transforms/transforms.py +1260 -0
- mindspore/dataset/transforms/validators.py +410 -0
- mindspore/dataset/utils/__init__.py +19 -0
- mindspore/dataset/utils/browse_dataset.py +190 -0
- mindspore/dataset/utils/line_reader.py +126 -0
- mindspore/dataset/vision/__init__.py +65 -0
- mindspore/dataset/vision/c_transforms.py +2641 -0
- mindspore/dataset/vision/py_transforms.py +2120 -0
- mindspore/dataset/vision/py_transforms_util.py +1660 -0
- mindspore/dataset/vision/transforms.py +7295 -0
- mindspore/dataset/vision/utils.py +863 -0
- mindspore/dataset/vision/validators.py +1483 -0
- mindspore/default_config.py +2 -0
- mindspore/experimental/__init__.py +20 -0
- mindspore/experimental/es/__init__.py +22 -0
- mindspore/experimental/es/embedding_service.py +883 -0
- mindspore/experimental/es/embedding_service_layer.py +581 -0
- mindspore/experimental/llm_boost/__init__.py +21 -0
- mindspore/experimental/llm_boost/atb/__init__.py +23 -0
- mindspore/experimental/llm_boost/atb/boost_base.py +211 -0
- mindspore/experimental/llm_boost/atb/llama_boost.py +115 -0
- mindspore/experimental/llm_boost/atb/qwen_boost.py +101 -0
- mindspore/experimental/llm_boost/register.py +129 -0
- mindspore/experimental/llm_boost/utils.py +31 -0
- mindspore/experimental/map_parameter.py +309 -0
- mindspore/experimental/optim/__init__.py +40 -0
- mindspore/experimental/optim/adadelta.py +161 -0
- mindspore/experimental/optim/adagrad.py +168 -0
- mindspore/experimental/optim/adam.py +193 -0
- mindspore/experimental/optim/adamax.py +170 -0
- mindspore/experimental/optim/adamw.py +290 -0
- mindspore/experimental/optim/asgd.py +153 -0
- mindspore/experimental/optim/lr_scheduler.py +1371 -0
- mindspore/experimental/optim/nadam.py +157 -0
- mindspore/experimental/optim/optimizer.py +262 -0
- mindspore/experimental/optim/radam.py +194 -0
- mindspore/experimental/optim/rmsprop.py +154 -0
- mindspore/experimental/optim/rprop.py +164 -0
- mindspore/experimental/optim/sgd.py +156 -0
- mindspore/hal/__init__.py +40 -0
- mindspore/hal/_ascend.py +57 -0
- mindspore/hal/_base.py +57 -0
- mindspore/hal/_cpu.py +56 -0
- mindspore/hal/_gpu.py +57 -0
- mindspore/hal/contiguous_tensors_handle.py +175 -0
- mindspore/hal/device.py +356 -0
- mindspore/hal/event.py +179 -0
- mindspore/hal/memory.py +326 -0
- mindspore/hal/stream.py +357 -0
- mindspore/include/OWNERS +7 -0
- mindspore/include/api/allocator.h +97 -0
- mindspore/include/api/callback/callback.h +93 -0
- mindspore/include/api/callback/ckpt_saver.h +41 -0
- mindspore/include/api/callback/loss_monitor.h +33 -0
- mindspore/include/api/callback/lr_scheduler.h +51 -0
- mindspore/include/api/callback/time_monitor.h +34 -0
- mindspore/include/api/callback/train_accuracy.h +37 -0
- mindspore/include/api/cell.h +90 -0
- mindspore/include/api/cfg.h +82 -0
- mindspore/include/api/context.h +602 -0
- mindspore/include/api/data_type.h +47 -0
- mindspore/include/api/delegate.h +178 -0
- mindspore/include/api/delegate_api.h +75 -0
- mindspore/include/api/dual_abi_helper.h +208 -0
- mindspore/include/api/format.h +28 -0
- mindspore/include/api/graph.h +46 -0
- mindspore/include/api/kernel.h +58 -0
- mindspore/include/api/kernel_api.h +168 -0
- mindspore/include/api/metrics/accuracy.h +36 -0
- mindspore/include/api/metrics/metrics.h +41 -0
- mindspore/include/api/model.h +438 -0
- mindspore/include/api/model_group.h +91 -0
- mindspore/include/api/model_parallel_runner.h +168 -0
- mindspore/include/api/serialization.h +185 -0
- mindspore/include/api/status.h +192 -0
- mindspore/include/api/types.h +431 -0
- mindspore/include/api/visible.h +41 -0
- mindspore/include/c_api/context_c.h +179 -0
- mindspore/include/c_api/data_type_c.h +52 -0
- mindspore/include/c_api/format_c.h +46 -0
- mindspore/include/c_api/model_c.h +347 -0
- mindspore/include/c_api/status_c.h +79 -0
- mindspore/include/c_api/tensor_c.h +146 -0
- mindspore/include/c_api/types_c.h +67 -0
- mindspore/include/dataset/config.h +163 -0
- mindspore/include/dataset/constants.h +363 -0
- mindspore/include/dataset/execute.h +196 -0
- mindspore/include/dataset/text.h +1092 -0
- mindspore/include/dataset/transforms.h +638 -0
- mindspore/include/dataset/vision.h +2129 -0
- mindspore/include/dataset/vision_ascend.h +206 -0
- mindspore/include/dataset/vision_lite.h +625 -0
- mindspore/lib/libavcodec.59.dylib +0 -0
- mindspore/lib/libavdevice.59.dylib +0 -0
- mindspore/lib/libavfilter.8.dylib +0 -0
- mindspore/lib/libavformat.59.dylib +0 -0
- mindspore/lib/libavutil.57.dylib +0 -0
- mindspore/lib/libdnnl.2.dylib +0 -0
- mindspore/lib/libicudata.69.dylib +0 -0
- mindspore/lib/libicui18n.69.dylib +0 -0
- mindspore/lib/libicuuc.69.dylib +0 -0
- mindspore/lib/libmindspore_address_sorting.15.dylib +0 -0
- mindspore/lib/libmindspore_backend.dylib +0 -0
- mindspore/lib/libmindspore_common.dylib +0 -0
- mindspore/lib/libmindspore_core.dylib +0 -0
- mindspore/lib/libmindspore_glog.0.dylib +0 -0
- mindspore/lib/libmindspore_gpr.15.dylib +0 -0
- mindspore/lib/libmindspore_grpc++.1.dylib +0 -0
- mindspore/lib/libmindspore_grpc.15.dylib +0 -0
- mindspore/lib/libmindspore_np_dtype.dylib +0 -0
- mindspore/lib/libmindspore_ops.dylib +0 -0
- mindspore/lib/libmindspore_upb.15.dylib +0 -0
- mindspore/lib/libnnacl.dylib +0 -0
- mindspore/lib/libopencv_core.4.5.dylib +0 -0
- mindspore/lib/libopencv_imgcodecs.4.5.dylib +0 -0
- mindspore/lib/libopencv_imgproc.4.5.dylib +0 -0
- mindspore/lib/libps_cache.dylib +0 -0
- mindspore/lib/libswresample.4.dylib +0 -0
- mindspore/lib/libswscale.6.dylib +0 -0
- mindspore/lib/libtinyxml2.8.dylib +0 -0
- mindspore/log.py +633 -0
- mindspore/mindrecord/__init__.py +43 -0
- mindspore/mindrecord/common/__init__.py +17 -0
- mindspore/mindrecord/common/constant.py +20 -0
- mindspore/mindrecord/common/enums.py +44 -0
- mindspore/mindrecord/common/exceptions.py +311 -0
- mindspore/mindrecord/config.py +809 -0
- mindspore/mindrecord/filereader.py +174 -0
- mindspore/mindrecord/filewriter.py +722 -0
- mindspore/mindrecord/mindpage.py +210 -0
- mindspore/mindrecord/shardheader.py +141 -0
- mindspore/mindrecord/shardindexgenerator.py +74 -0
- mindspore/mindrecord/shardreader.py +117 -0
- mindspore/mindrecord/shardsegment.py +128 -0
- mindspore/mindrecord/shardutils.py +185 -0
- mindspore/mindrecord/shardwriter.py +237 -0
- mindspore/mindrecord/tools/__init__.py +17 -0
- mindspore/mindrecord/tools/cifar10.py +140 -0
- mindspore/mindrecord/tools/cifar100.py +153 -0
- mindspore/mindrecord/tools/cifar100_to_mr.py +185 -0
- mindspore/mindrecord/tools/cifar10_to_mr.py +177 -0
- mindspore/mindrecord/tools/csv_to_mr.py +200 -0
- mindspore/mindrecord/tools/imagenet_to_mr.py +206 -0
- mindspore/mindrecord/tools/mnist_to_mr.py +259 -0
- mindspore/mindrecord/tools/tfrecord_to_mr.py +360 -0
- mindspore/mint/__init__.py +1586 -0
- mindspore/mint/distributed/__init__.py +31 -0
- mindspore/mint/distributed/distributed.py +254 -0
- mindspore/mint/linalg/__init__.py +22 -0
- mindspore/mint/nn/__init__.py +757 -0
- mindspore/mint/nn/functional.py +679 -0
- mindspore/mint/nn/layer/__init__.py +39 -0
- mindspore/mint/nn/layer/activation.py +133 -0
- mindspore/mint/nn/layer/normalization.py +477 -0
- mindspore/mint/nn/layer/pooling.py +110 -0
- mindspore/mint/optim/__init__.py +24 -0
- mindspore/mint/optim/adamw.py +206 -0
- mindspore/mint/special/__init__.py +63 -0
- mindspore/multiprocessing/__init__.py +73 -0
- mindspore/nn/__init__.py +47 -0
- mindspore/nn/cell.py +2787 -0
- mindspore/nn/dynamic_lr.py +482 -0
- mindspore/nn/grad/__init__.py +21 -0
- mindspore/nn/grad/cell_grad.py +196 -0
- mindspore/nn/layer/__init__.py +63 -0
- mindspore/nn/layer/activation.py +1822 -0
- mindspore/nn/layer/basic.py +1629 -0
- mindspore/nn/layer/channel_shuffle.py +90 -0
- mindspore/nn/layer/combined.py +248 -0
- mindspore/nn/layer/container.py +734 -0
- mindspore/nn/layer/conv.py +1505 -0
- mindspore/nn/layer/dense.py +204 -0
- mindspore/nn/layer/embedding.py +869 -0
- mindspore/nn/layer/image.py +661 -0
- mindspore/nn/layer/math.py +1069 -0
- mindspore/nn/layer/normalization.py +1273 -0
- mindspore/nn/layer/padding.py +880 -0
- mindspore/nn/layer/pooling.py +2302 -0
- mindspore/nn/layer/rnn_cells.py +388 -0
- mindspore/nn/layer/rnns.py +849 -0
- mindspore/nn/layer/thor_layer.py +963 -0
- mindspore/nn/layer/timedistributed.py +155 -0
- mindspore/nn/layer/transformer.py +823 -0
- mindspore/nn/learning_rate_schedule.py +512 -0
- mindspore/nn/loss/__init__.py +36 -0
- mindspore/nn/loss/loss.py +2924 -0
- mindspore/nn/metrics.py +53 -0
- mindspore/nn/optim/__init__.py +45 -0
- mindspore/nn/optim/_dist_optimizer_registry.py +111 -0
- mindspore/nn/optim/ada_grad.py +217 -0
- mindspore/nn/optim/adadelta.py +206 -0
- mindspore/nn/optim/adafactor.py +448 -0
- mindspore/nn/optim/adam.py +1297 -0
- mindspore/nn/optim/adamax.py +220 -0
- mindspore/nn/optim/adasum.py +548 -0
- mindspore/nn/optim/asgd.py +216 -0
- mindspore/nn/optim/ftrl.py +401 -0
- mindspore/nn/optim/lamb.py +296 -0
- mindspore/nn/optim/lars.py +202 -0
- mindspore/nn/optim/lazyadam.py +533 -0
- mindspore/nn/optim/momentum.py +239 -0
- mindspore/nn/optim/optimizer.py +1034 -0
- mindspore/nn/optim/proximal_ada_grad.py +242 -0
- mindspore/nn/optim/rmsprop.py +264 -0
- mindspore/nn/optim/rprop.py +251 -0
- mindspore/nn/optim/sgd.py +237 -0
- mindspore/nn/optim/tft_wrapper.py +127 -0
- mindspore/nn/optim/thor.py +1310 -0
- mindspore/nn/probability/__init__.py +22 -0
- mindspore/nn/probability/bijector/__init__.py +35 -0
- mindspore/nn/probability/bijector/bijector.py +337 -0
- mindspore/nn/probability/bijector/exp.py +65 -0
- mindspore/nn/probability/bijector/gumbel_cdf.py +144 -0
- mindspore/nn/probability/bijector/invert.py +126 -0
- mindspore/nn/probability/bijector/power_transform.py +196 -0
- mindspore/nn/probability/bijector/scalar_affine.py +167 -0
- mindspore/nn/probability/bijector/softplus.py +189 -0
- mindspore/nn/probability/bnn_layers/__init__.py +29 -0
- mindspore/nn/probability/bnn_layers/_util.py +46 -0
- mindspore/nn/probability/bnn_layers/bnn_cell_wrapper.py +112 -0
- mindspore/nn/probability/bnn_layers/conv_variational.py +267 -0
- mindspore/nn/probability/bnn_layers/dense_variational.py +302 -0
- mindspore/nn/probability/bnn_layers/layer_distribution.py +123 -0
- mindspore/nn/probability/distribution/__init__.py +56 -0
- mindspore/nn/probability/distribution/_utils/__init__.py +34 -0
- mindspore/nn/probability/distribution/_utils/custom_ops.py +96 -0
- mindspore/nn/probability/distribution/_utils/utils.py +362 -0
- mindspore/nn/probability/distribution/bernoulli.py +334 -0
- mindspore/nn/probability/distribution/beta.py +391 -0
- mindspore/nn/probability/distribution/categorical.py +435 -0
- mindspore/nn/probability/distribution/cauchy.py +383 -0
- mindspore/nn/probability/distribution/distribution.py +827 -0
- mindspore/nn/probability/distribution/exponential.py +350 -0
- mindspore/nn/probability/distribution/gamma.py +391 -0
- mindspore/nn/probability/distribution/geometric.py +335 -0
- mindspore/nn/probability/distribution/gumbel.py +257 -0
- mindspore/nn/probability/distribution/half_normal.py +133 -0
- mindspore/nn/probability/distribution/laplace.py +128 -0
- mindspore/nn/probability/distribution/log_normal.py +272 -0
- mindspore/nn/probability/distribution/logistic.py +379 -0
- mindspore/nn/probability/distribution/normal.py +336 -0
- mindspore/nn/probability/distribution/poisson.py +288 -0
- mindspore/nn/probability/distribution/student_t.py +149 -0
- mindspore/nn/probability/distribution/transformed_distribution.py +235 -0
- mindspore/nn/probability/distribution/uniform.py +375 -0
- mindspore/nn/reinforcement/__init__.py +24 -0
- mindspore/nn/reinforcement/_batch_read_write.py +142 -0
- mindspore/nn/reinforcement/_tensors_queue.py +152 -0
- mindspore/nn/reinforcement/tensor_array.py +145 -0
- mindspore/nn/sparse/__init__.py +23 -0
- mindspore/nn/sparse/sparse.py +147 -0
- mindspore/nn/wrap/__init__.py +49 -0
- mindspore/nn/wrap/cell_wrapper.py +968 -0
- mindspore/nn/wrap/grad_reducer.py +608 -0
- mindspore/nn/wrap/loss_scale.py +694 -0
- mindspore/numpy/__init__.py +121 -0
- mindspore/numpy/array_creations.py +2731 -0
- mindspore/numpy/array_ops.py +2629 -0
- mindspore/numpy/dtypes.py +185 -0
- mindspore/numpy/fft.py +966 -0
- mindspore/numpy/logic_ops.py +936 -0
- mindspore/numpy/math_ops.py +5911 -0
- mindspore/numpy/utils.py +214 -0
- mindspore/numpy/utils_const.py +565 -0
- mindspore/ops/__init__.py +56 -0
- mindspore/ops/_constants.py +30 -0
- mindspore/ops/_grad_experimental/__init__.py +31 -0
- mindspore/ops/_grad_experimental/grad_array_ops.py +830 -0
- mindspore/ops/_grad_experimental/grad_base.py +143 -0
- mindspore/ops/_grad_experimental/grad_comm_ops.py +714 -0
- mindspore/ops/_grad_experimental/grad_debug_ops.py +31 -0
- mindspore/ops/_grad_experimental/grad_implementations.py +203 -0
- mindspore/ops/_grad_experimental/grad_inner_ops.py +79 -0
- mindspore/ops/_grad_experimental/grad_math_ops.py +802 -0
- mindspore/ops/_grad_experimental/grad_nn_ops.py +231 -0
- mindspore/ops/_grad_experimental/grad_quant_ops.py +238 -0
- mindspore/ops/_grad_experimental/grad_sparse.py +342 -0
- mindspore/ops/_grad_experimental/grad_sparse_ops.py +399 -0
- mindspore/ops/_grad_experimental/taylor_rule.py +220 -0
- mindspore/ops/_op_impl/__init__.py +23 -0
- mindspore/ops/_op_impl/_custom_op/__init__.py +39 -0
- mindspore/ops/_op_impl/_custom_op/_basic.py +158 -0
- mindspore/ops/_op_impl/_custom_op/batch_matmul_impl.py +279 -0
- mindspore/ops/_op_impl/_custom_op/batchnorm_fold.py +156 -0
- mindspore/ops/_op_impl/_custom_op/batchnorm_fold2.py +109 -0
- mindspore/ops/_op_impl/_custom_op/batchnorm_fold2_grad.py +125 -0
- mindspore/ops/_op_impl/_custom_op/batchnorm_fold2_grad_reduce.py +105 -0
- mindspore/ops/_op_impl/_custom_op/batchnorm_fold_grad.py +124 -0
- mindspore/ops/_op_impl/_custom_op/cholesky_trsm_impl.py +116 -0
- mindspore/ops/_op_impl/_custom_op/correction_mul.py +89 -0
- mindspore/ops/_op_impl/_custom_op/correction_mul_grad.py +196 -0
- mindspore/ops/_op_impl/_custom_op/dsd_back_impl.py +366 -0
- mindspore/ops/_op_impl/_custom_op/dsd_impl.py +162 -0
- mindspore/ops/_op_impl/_custom_op/fake_learned_scale_quant_perchannel.py +136 -0
- mindspore/ops/_op_impl/_custom_op/fake_learned_scale_quant_perchannel_grad.py +206 -0
- mindspore/ops/_op_impl/_custom_op/fake_learned_scale_quant_perchannel_grad_reduce.py +88 -0
- mindspore/ops/_op_impl/_custom_op/fake_learned_scale_quant_perlayer.py +128 -0
- mindspore/ops/_op_impl/_custom_op/fake_learned_scale_quant_perlayer_grad.py +199 -0
- mindspore/ops/_op_impl/_custom_op/fake_learned_scale_quant_perlayer_grad_reduce.py +88 -0
- mindspore/ops/_op_impl/_custom_op/fake_quant_perchannel.py +156 -0
- mindspore/ops/_op_impl/_custom_op/fake_quant_perchannel_grad.py +184 -0
- mindspore/ops/_op_impl/_custom_op/fake_quant_perlayer.py +143 -0
- mindspore/ops/_op_impl/_custom_op/fake_quant_perlayer_grad.py +169 -0
- mindspore/ops/_op_impl/_custom_op/fused_abs_max1_impl.py +548 -0
- mindspore/ops/_op_impl/_custom_op/img2col_impl.py +881 -0
- mindspore/ops/_op_impl/_custom_op/matmul_cube_dense_left_impl.py +278 -0
- mindspore/ops/_op_impl/_custom_op/matmul_cube_dense_right_impl.py +200 -0
- mindspore/ops/_op_impl/_custom_op/matmul_cube_fracz_left_cast_impl.py +334 -0
- mindspore/ops/_op_impl/_custom_op/matmul_cube_fracz_right_mul_impl.py +255 -0
- mindspore/ops/_op_impl/_custom_op/matmul_cube_impl.py +222 -0
- mindspore/ops/_op_impl/_custom_op/matmul_dds_grad_impl.py +644 -0
- mindspore/ops/_op_impl/_custom_op/matmul_dds_impl.py +488 -0
- mindspore/ops/_op_impl/_custom_op/matrix_combine_impl.py +87 -0
- mindspore/ops/_op_impl/_custom_op/minmax_update_perchannel.py +129 -0
- mindspore/ops/_op_impl/_custom_op/minmax_update_perlayer.py +121 -0
- mindspore/ops/_op_impl/_custom_op/transpose02314_impl.py +352 -0
- mindspore/ops/_op_impl/aicpu/__init__.py +441 -0
- mindspore/ops/_op_impl/aicpu/abs.py +36 -0
- mindspore/ops/_op_impl/aicpu/acos.py +32 -0
- mindspore/ops/_op_impl/aicpu/acos_grad.py +33 -0
- mindspore/ops/_op_impl/aicpu/acosh.py +34 -0
- mindspore/ops/_op_impl/aicpu/acosh_grad.py +35 -0
- mindspore/ops/_op_impl/aicpu/adaptive_avg_pool_2d.py +34 -0
- mindspore/ops/_op_impl/aicpu/adaptive_avg_pool_2d_grad.py +34 -0
- mindspore/ops/_op_impl/aicpu/adaptive_avg_pool_3d.py +39 -0
- mindspore/ops/_op_impl/aicpu/adaptive_avg_pool_3d_grad.py +39 -0
- mindspore/ops/_op_impl/aicpu/adaptive_max_pool_2d.py +37 -0
- mindspore/ops/_op_impl/aicpu/adaptive_max_pool_2d_grad.py +37 -0
- mindspore/ops/_op_impl/aicpu/adaptive_max_pool_3d.py +42 -0
- mindspore/ops/_op_impl/aicpu/adaptive_max_pool_3d_grad.py +152 -0
- mindspore/ops/_op_impl/aicpu/add.py +43 -0
- mindspore/ops/_op_impl/aicpu/add_n.py +41 -0
- mindspore/ops/_op_impl/aicpu/add_v2.py +40 -0
- mindspore/ops/_op_impl/aicpu/addcdiv.py +41 -0
- mindspore/ops/_op_impl/aicpu/addcmul.py +47 -0
- mindspore/ops/_op_impl/aicpu/adjust_contrastv2.py +32 -0
- mindspore/ops/_op_impl/aicpu/adjust_hue.py +31 -0
- mindspore/ops/_op_impl/aicpu/adjust_saturation.py +32 -0
- mindspore/ops/_op_impl/aicpu/affine_grid.py +33 -0
- mindspore/ops/_op_impl/aicpu/affine_grid_grad.py +35 -0
- mindspore/ops/_op_impl/aicpu/angle.py +31 -0
- mindspore/ops/_op_impl/aicpu/arg_max.py +75 -0
- mindspore/ops/_op_impl/aicpu/arg_min.py +75 -0
- mindspore/ops/_op_impl/aicpu/argmax_with_value.py +43 -0
- mindspore/ops/_op_impl/aicpu/argmin_with_value.py +43 -0
- mindspore/ops/_op_impl/aicpu/asin.py +32 -0
- mindspore/ops/_op_impl/aicpu/asin_grad.py +33 -0
- mindspore/ops/_op_impl/aicpu/asinh.py +34 -0
- mindspore/ops/_op_impl/aicpu/asinh_grad.py +35 -0
- mindspore/ops/_op_impl/aicpu/atanh.py +34 -0
- mindspore/ops/_op_impl/aicpu/avgpool_grad_v1.py +37 -0
- mindspore/ops/_op_impl/aicpu/avgpool_v1.py +36 -0
- mindspore/ops/_op_impl/aicpu/bartlett_window.py +36 -0
- mindspore/ops/_op_impl/aicpu/batch_matmul.py +43 -0
- mindspore/ops/_op_impl/aicpu/batch_norm_grad_grad.py +49 -0
- mindspore/ops/_op_impl/aicpu/bernoulli.py +48 -0
- mindspore/ops/_op_impl/aicpu/bessel_i0.py +31 -0
- mindspore/ops/_op_impl/aicpu/betainc.py +31 -0
- mindspore/ops/_op_impl/aicpu/bias_add.py +44 -0
- mindspore/ops/_op_impl/aicpu/bias_add_grad.py +42 -0
- mindspore/ops/_op_impl/aicpu/bincount.py +33 -0
- mindspore/ops/_op_impl/aicpu/blackman_window.py +36 -0
- mindspore/ops/_op_impl/aicpu/broadcast_to.py +58 -0
- mindspore/ops/_op_impl/aicpu/bucketize.py +34 -0
- mindspore/ops/_op_impl/aicpu/cache_swap_table.py +102 -0
- mindspore/ops/_op_impl/aicpu/cast.py +225 -0
- mindspore/ops/_op_impl/aicpu/cauchy.py +33 -0
- mindspore/ops/_op_impl/aicpu/channel_shuffle.py +40 -0
- mindspore/ops/_op_impl/aicpu/check_numerics.py +33 -0
- mindspore/ops/_op_impl/aicpu/cholesky.py +32 -0
- mindspore/ops/_op_impl/aicpu/cholesky_inverse.py +31 -0
- mindspore/ops/_op_impl/aicpu/cholesky_solve.py +33 -0
- mindspore/ops/_op_impl/aicpu/choleskygrad.py +32 -0
- mindspore/ops/_op_impl/aicpu/coalesce.py +37 -0
- mindspore/ops/_op_impl/aicpu/col2im.py +38 -0
- mindspore/ops/_op_impl/aicpu/combined_non_max_suppression.py +42 -0
- mindspore/ops/_op_impl/aicpu/compare_and_bitpack.py +37 -0
- mindspore/ops/_op_impl/aicpu/complex.py +32 -0
- mindspore/ops/_op_impl/aicpu/complex_abs.py +31 -0
- mindspore/ops/_op_impl/aicpu/compute_accidental_hits.py +44 -0
- mindspore/ops/_op_impl/aicpu/concat.py +57 -0
- mindspore/ops/_op_impl/aicpu/concat_offset.py +42 -0
- mindspore/ops/_op_impl/aicpu/concat_offset_v1.py +31 -0
- mindspore/ops/_op_impl/aicpu/conj.py +42 -0
- mindspore/ops/_op_impl/aicpu/conjugate_transpose.py +58 -0
- mindspore/ops/_op_impl/aicpu/cos.py +34 -0
- mindspore/ops/_op_impl/aicpu/cosh.py +34 -0
- mindspore/ops/_op_impl/aicpu/count_nonzero.py +43 -0
- mindspore/ops/_op_impl/aicpu/crop_and_resize.py +69 -0
- mindspore/ops/_op_impl/aicpu/crop_and_resize_grad_boxes.py +68 -0
- mindspore/ops/_op_impl/aicpu/crop_and_resize_grad_image.py +38 -0
- mindspore/ops/_op_impl/aicpu/cross.py +42 -0
- mindspore/ops/_op_impl/aicpu/csr_sparse_matrix_to_dense.py +48 -0
- mindspore/ops/_op_impl/aicpu/csr_sparse_matrix_to_sparse_tensor.py +51 -0
- mindspore/ops/_op_impl/aicpu/ctc_greedy_decoder.py +35 -0
- mindspore/ops/_op_impl/aicpu/ctc_loss_v2.py +43 -0
- mindspore/ops/_op_impl/aicpu/ctc_loss_v2_grad.py +45 -0
- mindspore/ops/_op_impl/aicpu/ctcloss.py +38 -0
- mindspore/ops/_op_impl/aicpu/cummax.py +41 -0
- mindspore/ops/_op_impl/aicpu/cumprod.py +58 -0
- mindspore/ops/_op_impl/aicpu/cumsum.py +58 -0
- mindspore/ops/_op_impl/aicpu/cumulative_logsumexp.py +36 -0
- mindspore/ops/_op_impl/aicpu/data_format_vec_permute.py +32 -0
- mindspore/ops/_op_impl/aicpu/deformable_offsets.py +38 -0
- mindspore/ops/_op_impl/aicpu/deformable_offsets_grad.py +43 -0
- mindspore/ops/_op_impl/aicpu/dense_to_csr_sparse_matrix.py +49 -0
- mindspore/ops/_op_impl/aicpu/dense_to_dense_set_operation.py +45 -0
- mindspore/ops/_op_impl/aicpu/dense_to_sparse_set_operation.py +48 -0
- mindspore/ops/_op_impl/aicpu/depth_to_space.py +44 -0
- mindspore/ops/_op_impl/aicpu/diag.py +36 -0
- mindspore/ops/_op_impl/aicpu/diag_part.py +36 -0
- mindspore/ops/_op_impl/aicpu/diagonal.py +35 -0
- mindspore/ops/_op_impl/aicpu/digamma.py +31 -0
- mindspore/ops/_op_impl/aicpu/div.py +41 -0
- mindspore/ops/_op_impl/aicpu/div_no_nan.py +35 -0
- mindspore/ops/_op_impl/aicpu/dropout2d.py +42 -0
- mindspore/ops/_op_impl/aicpu/dropout3d.py +42 -0
- mindspore/ops/_op_impl/aicpu/dropout_genmask.py +41 -0
- mindspore/ops/_op_impl/aicpu/dropout_genmask_v3.py +32 -0
- mindspore/ops/_op_impl/aicpu/dynamic_stitch.py +42 -0
- mindspore/ops/_op_impl/aicpu/edit_distance.py +56 -0
- mindspore/ops/_op_impl/aicpu/eig.py +35 -0
- mindspore/ops/_op_impl/aicpu/embedding_lookup.py +102 -0
- mindspore/ops/_op_impl/aicpu/end_of_sequence.py +30 -0
- mindspore/ops/_op_impl/aicpu/environ_create.py +28 -0
- mindspore/ops/_op_impl/aicpu/environ_destroy_all.py +28 -0
- mindspore/ops/_op_impl/aicpu/environ_get.py +41 -0
- mindspore/ops/_op_impl/aicpu/environ_set.py +40 -0
- mindspore/ops/_op_impl/aicpu/eps.py +32 -0
- mindspore/ops/_op_impl/aicpu/equal.py +41 -0
- mindspore/ops/_op_impl/aicpu/exp.py +37 -0
- mindspore/ops/_op_impl/aicpu/expand.py +45 -0
- mindspore/ops/_op_impl/aicpu/expand_dims.py +42 -0
- mindspore/ops/_op_impl/aicpu/expm1.py +34 -0
- mindspore/ops/_op_impl/aicpu/extract_glimpse.py +35 -0
- mindspore/ops/_op_impl/aicpu/eye.py +44 -0
- mindspore/ops/_op_impl/aicpu/fft_with_size.py +47 -0
- mindspore/ops/_op_impl/aicpu/fill_diagonal.py +39 -0
- mindspore/ops/_op_impl/aicpu/fill_v2.py +58 -0
- mindspore/ops/_op_impl/aicpu/flatten.py +43 -0
- mindspore/ops/_op_impl/aicpu/floor_div.py +38 -0
- mindspore/ops/_op_impl/aicpu/fmax.py +36 -0
- mindspore/ops/_op_impl/aicpu/fmin.py +37 -0
- mindspore/ops/_op_impl/aicpu/fractional_avg_pool.py +41 -0
- mindspore/ops/_op_impl/aicpu/fractional_avg_pool_grad.py +41 -0
- mindspore/ops/_op_impl/aicpu/fractional_max_pool.py +41 -0
- mindspore/ops/_op_impl/aicpu/fractional_max_pool3d_grad_with_fixed_ksize.py +43 -0
- mindspore/ops/_op_impl/aicpu/fractional_max_pool3d_with_fixed_ksize.py +65 -0
- mindspore/ops/_op_impl/aicpu/fractional_max_pool_grad.py +42 -0
- mindspore/ops/_op_impl/aicpu/fractional_max_pool_grad_with_fixed_ksize.py +42 -0
- mindspore/ops/_op_impl/aicpu/fractional_max_pool_with_fixed_ksize.py +49 -0
- mindspore/ops/_op_impl/aicpu/fse_decode.py +43 -0
- mindspore/ops/_op_impl/aicpu/fused_sparse_adam.py +46 -0
- mindspore/ops/_op_impl/aicpu/fused_sparse_ftrl.py +41 -0
- mindspore/ops/_op_impl/aicpu/fused_sparse_lazy_adam.py +46 -0
- mindspore/ops/_op_impl/aicpu/fused_sparse_proximal_adagrad.py +39 -0
- mindspore/ops/_op_impl/aicpu/gamma.py +38 -0
- mindspore/ops/_op_impl/aicpu/gather.py +46 -0
- mindspore/ops/_op_impl/aicpu/gather_d.py +79 -0
- mindspore/ops/_op_impl/aicpu/gather_d_grad_v2.py +79 -0
- mindspore/ops/_op_impl/aicpu/gather_grad.py +54 -0
- mindspore/ops/_op_impl/aicpu/gather_nd.py +56 -0
- mindspore/ops/_op_impl/aicpu/gcd.py +32 -0
- mindspore/ops/_op_impl/aicpu/generate_eod_mask.py +38 -0
- mindspore/ops/_op_impl/aicpu/geqrf.py +32 -0
- mindspore/ops/_op_impl/aicpu/get_next.py +39 -0
- mindspore/ops/_op_impl/aicpu/glu.py +33 -0
- mindspore/ops/_op_impl/aicpu/glu_grad.py +34 -0
- mindspore/ops/_op_impl/aicpu/greater.py +41 -0
- mindspore/ops/_op_impl/aicpu/greater_equal.py +41 -0
- mindspore/ops/_op_impl/aicpu/grid_sampler_2d.py +35 -0
- mindspore/ops/_op_impl/aicpu/grid_sampler_2d_grad.py +38 -0
- mindspore/ops/_op_impl/aicpu/grid_sampler_3d.py +34 -0
- mindspore/ops/_op_impl/aicpu/grid_sampler_3d_grad.py +38 -0
- mindspore/ops/_op_impl/aicpu/hamming_window.py +57 -0
- mindspore/ops/_op_impl/aicpu/hard_sigmoid.py +32 -0
- mindspore/ops/_op_impl/aicpu/hard_sigmoid_grad.py +33 -0
- mindspore/ops/_op_impl/aicpu/heaviside.py +40 -0
- mindspore/ops/_op_impl/aicpu/histogram.py +35 -0
- mindspore/ops/_op_impl/aicpu/hsv_to_rgb.py +32 -0
- mindspore/ops/_op_impl/aicpu/hypot.py +32 -0
- mindspore/ops/_op_impl/aicpu/identity.py +42 -0
- mindspore/ops/_op_impl/aicpu/identity_n.py +41 -0
- mindspore/ops/_op_impl/aicpu/igamma.py +30 -0
- mindspore/ops/_op_impl/aicpu/igammac.py +30 -0
- mindspore/ops/_op_impl/aicpu/igammagrada.py +30 -0
- mindspore/ops/_op_impl/aicpu/im2col.py +43 -0
- mindspore/ops/_op_impl/aicpu/imag.py +31 -0
- mindspore/ops/_op_impl/aicpu/index_fill.py +54 -0
- mindspore/ops/_op_impl/aicpu/index_put.py +50 -0
- mindspore/ops/_op_impl/aicpu/init_data_set_queue.py +27 -0
- mindspore/ops/_op_impl/aicpu/inplace_index_add.py +39 -0
- mindspore/ops/_op_impl/aicpu/instance_norm_v2.py +41 -0
- mindspore/ops/_op_impl/aicpu/instance_norm_v2_grad.py +44 -0
- mindspore/ops/_op_impl/aicpu/is_finite.py +40 -0
- mindspore/ops/_op_impl/aicpu/is_inf.py +31 -0
- mindspore/ops/_op_impl/aicpu/is_nan.py +31 -0
- mindspore/ops/_op_impl/aicpu/kldivloss.py +34 -0
- mindspore/ops/_op_impl/aicpu/kldivlossgrad.py +35 -0
- mindspore/ops/_op_impl/aicpu/layer_norm_grad_grad.py +47 -0
- mindspore/ops/_op_impl/aicpu/lcm.py +32 -0
- mindspore/ops/_op_impl/aicpu/left_shift.py +38 -0
- mindspore/ops/_op_impl/aicpu/less.py +41 -0
- mindspore/ops/_op_impl/aicpu/less_equal.py +41 -0
- mindspore/ops/_op_impl/aicpu/lgamma.py +33 -0
- mindspore/ops/_op_impl/aicpu/linear_sum_assignment.py +57 -0
- mindspore/ops/_op_impl/aicpu/linspace.py +33 -0
- mindspore/ops/_op_impl/aicpu/list_diff.py +50 -0
- mindspore/ops/_op_impl/aicpu/log.py +37 -0
- mindspore/ops/_op_impl/aicpu/log1p.py +34 -0
- mindspore/ops/_op_impl/aicpu/log_matrix_determinant.py +31 -0
- mindspore/ops/_op_impl/aicpu/log_normal_reverse.py +33 -0
- mindspore/ops/_op_impl/aicpu/log_uniform_candidate_sampler.py +37 -0
- mindspore/ops/_op_impl/aicpu/logical_xor.py +30 -0
- mindspore/ops/_op_impl/aicpu/logit.py +33 -0
- mindspore/ops/_op_impl/aicpu/logit_grad.py +34 -0
- mindspore/ops/_op_impl/aicpu/logspace.py +36 -0
- mindspore/ops/_op_impl/aicpu/lower_bound.py +47 -0
- mindspore/ops/_op_impl/aicpu/lstsq.py +34 -0
- mindspore/ops/_op_impl/aicpu/lu.py +39 -0
- mindspore/ops/_op_impl/aicpu/lu_solve.py +32 -0
- mindspore/ops/_op_impl/aicpu/lu_unpack.py +114 -0
- mindspore/ops/_op_impl/aicpu/lu_unpack_grad.py +49 -0
- mindspore/ops/_op_impl/aicpu/masked_fill.py +42 -0
- mindspore/ops/_op_impl/aicpu/masked_scatter.py +40 -0
- mindspore/ops/_op_impl/aicpu/masked_select.py +31 -0
- mindspore/ops/_op_impl/aicpu/masked_select_grad.py +35 -0
- mindspore/ops/_op_impl/aicpu/matmul.py +39 -0
- mindspore/ops/_op_impl/aicpu/matrix_band_part.py +59 -0
- mindspore/ops/_op_impl/aicpu/matrix_determinant.py +30 -0
- mindspore/ops/_op_impl/aicpu/matrix_diag_part_v3.py +54 -0
- mindspore/ops/_op_impl/aicpu/matrix_diag_v3.py +56 -0
- mindspore/ops/_op_impl/aicpu/matrix_exp.py +34 -0
- mindspore/ops/_op_impl/aicpu/matrix_inverse.py +31 -0
- mindspore/ops/_op_impl/aicpu/matrix_logarithm.py +31 -0
- mindspore/ops/_op_impl/aicpu/matrix_power.py +37 -0
- mindspore/ops/_op_impl/aicpu/matrix_set_diag_v3.py +54 -0
- mindspore/ops/_op_impl/aicpu/matrix_solve.py +35 -0
- mindspore/ops/_op_impl/aicpu/matrix_solve_ls.py +36 -0
- mindspore/ops/_op_impl/aicpu/matrix_triangular_solve.py +36 -0
- mindspore/ops/_op_impl/aicpu/max_pool3d_grad_with_argmax.py +60 -0
- mindspore/ops/_op_impl/aicpu/max_pool3d_with_argmax.py +59 -0
- mindspore/ops/_op_impl/aicpu/max_unpool2d.py +57 -0
- mindspore/ops/_op_impl/aicpu/max_unpool2d_grad.py +58 -0
- mindspore/ops/_op_impl/aicpu/max_unpool3d.py +57 -0
- mindspore/ops/_op_impl/aicpu/max_unpool3d_grad.py +58 -0
- mindspore/ops/_op_impl/aicpu/maximum_grad_grad.py +40 -0
- mindspore/ops/_op_impl/aicpu/maxpool_grad_v1.py +46 -0
- mindspore/ops/_op_impl/aicpu/maxpool_v1.py +42 -0
- mindspore/ops/_op_impl/aicpu/median.py +39 -0
- mindspore/ops/_op_impl/aicpu/median_grad.py +45 -0
- mindspore/ops/_op_impl/aicpu/meshgrid.py +41 -0
- mindspore/ops/_op_impl/aicpu/minimum_grad_grad.py +40 -0
- mindspore/ops/_op_impl/aicpu/mirror_pad.py +50 -0
- mindspore/ops/_op_impl/aicpu/mirror_pad_grad.py +48 -0
- mindspore/ops/_op_impl/aicpu/mul.py +43 -0
- mindspore/ops/_op_impl/aicpu/mul_no_nan.py +42 -0
- mindspore/ops/_op_impl/aicpu/multi_margin_loss.py +37 -0
- mindspore/ops/_op_impl/aicpu/multi_margin_loss_grad.py +41 -0
- mindspore/ops/_op_impl/aicpu/multilabel_margin_loss_grad.py +37 -0
- mindspore/ops/_op_impl/aicpu/multinomial.py +47 -0
- mindspore/ops/_op_impl/aicpu/multinomial_with_replacement.py +35 -0
- mindspore/ops/_op_impl/aicpu/mvlgamma.py +32 -0
- mindspore/ops/_op_impl/aicpu/mvlgamma_grad.py +33 -0
- mindspore/ops/_op_impl/aicpu/nan_to_num.py +34 -0
- mindspore/ops/_op_impl/aicpu/neg.py +36 -0
- mindspore/ops/_op_impl/aicpu/nextafter.py +32 -0
- mindspore/ops/_op_impl/aicpu/nllloss.py +38 -0
- mindspore/ops/_op_impl/aicpu/nllloss_grad.py +39 -0
- mindspore/ops/_op_impl/aicpu/no_repeat_ngram.py +34 -0
- mindspore/ops/_op_impl/aicpu/non_deterministic_ints.py +33 -0
- mindspore/ops/_op_impl/aicpu/non_max_suppression.py +36 -0
- mindspore/ops/_op_impl/aicpu/non_max_suppression_with_overlaps.py +35 -0
- mindspore/ops/_op_impl/aicpu/non_zero.py +43 -0
- mindspore/ops/_op_impl/aicpu/not_equal.py +39 -0
- mindspore/ops/_op_impl/aicpu/nth_element.py +39 -0
- mindspore/ops/_op_impl/aicpu/nuclear_norm.py +33 -0
- mindspore/ops/_op_impl/aicpu/one_hot.py +116 -0
- mindspore/ops/_op_impl/aicpu/ones_like.py +39 -0
- mindspore/ops/_op_impl/aicpu/orgqr.py +34 -0
- mindspore/ops/_op_impl/aicpu/pad_and_shift.py +33 -0
- mindspore/ops/_op_impl/aicpu/pad_v3.py +61 -0
- mindspore/ops/_op_impl/aicpu/pad_v3_grad.py +59 -0
- mindspore/ops/_op_impl/aicpu/padding.py +41 -0
- mindspore/ops/_op_impl/aicpu/parameterized_truncated_normal.py +54 -0
- mindspore/ops/_op_impl/aicpu/pdist_grad.py +33 -0
- mindspore/ops/_op_impl/aicpu/poisson.py +37 -0
- mindspore/ops/_op_impl/aicpu/polar.py +32 -0
- mindspore/ops/_op_impl/aicpu/polygamma.py +34 -0
- mindspore/ops/_op_impl/aicpu/pow.py +39 -0
- mindspore/ops/_op_impl/aicpu/print_tensor.py +39 -0
- mindspore/ops/_op_impl/aicpu/priority_replay_buffer.py +113 -0
- mindspore/ops/_op_impl/aicpu/qr.py +36 -0
- mindspore/ops/_op_impl/aicpu/quant_dtype_cast.py +40 -0
- mindspore/ops/_op_impl/aicpu/quantile.py +35 -0
- mindspore/ops/_op_impl/aicpu/ragged_range.py +49 -0
- mindspore/ops/_op_impl/aicpu/ragged_tensor_to_sparse.py +73 -0
- mindspore/ops/_op_impl/aicpu/ragged_tensor_to_tensor.py +74 -0
- mindspore/ops/_op_impl/aicpu/random_categorical.py +68 -0
- mindspore/ops/_op_impl/aicpu/random_choice_with_mask.py +36 -0
- mindspore/ops/_op_impl/aicpu/random_gamma.py +38 -0
- mindspore/ops/_op_impl/aicpu/random_poisson.py +134 -0
- mindspore/ops/_op_impl/aicpu/random_shuffle.py +47 -0
- mindspore/ops/_op_impl/aicpu/randperm.py +38 -0
- mindspore/ops/_op_impl/aicpu/randperm_v2.py +41 -0
- mindspore/ops/_op_impl/aicpu/range.py +36 -0
- mindspore/ops/_op_impl/aicpu/range_v2.py +35 -0
- mindspore/ops/_op_impl/aicpu/real.py +31 -0
- mindspore/ops/_op_impl/aicpu/real_div.py +40 -0
- mindspore/ops/_op_impl/aicpu/reciprocal.py +34 -0
- mindspore/ops/_op_impl/aicpu/reciprocal_grad.py +35 -0
- mindspore/ops/_op_impl/aicpu/reduce_mean.py +57 -0
- mindspore/ops/_op_impl/aicpu/reduce_prod.py +57 -0
- mindspore/ops/_op_impl/aicpu/reduce_sum.py +57 -0
- mindspore/ops/_op_impl/aicpu/relu_grad_v3.py +41 -0
- mindspore/ops/_op_impl/aicpu/relu_v3.py +38 -0
- mindspore/ops/_op_impl/aicpu/reservoir_replay_buffer.py +96 -0
- mindspore/ops/_op_impl/aicpu/reshape.py +42 -0
- mindspore/ops/_op_impl/aicpu/resize_area.py +40 -0
- mindspore/ops/_op_impl/aicpu/resize_bicubic.py +20 -0
- mindspore/ops/_op_impl/aicpu/resize_bicubic_grad.py +19 -0
- mindspore/ops/_op_impl/aicpu/resize_bilinear.py +32 -0
- mindspore/ops/_op_impl/aicpu/resize_bilinear_grad.py +32 -0
- mindspore/ops/_op_impl/aicpu/resize_nearest_neighbor_v2.py +36 -0
- mindspore/ops/_op_impl/aicpu/resize_nearest_neighbor_v2_grad.py +35 -0
- mindspore/ops/_op_impl/aicpu/resize_v2.py +68 -0
- mindspore/ops/_op_impl/aicpu/resize_v2_grad.py +68 -0
- mindspore/ops/_op_impl/aicpu/reverse_sequence.py +55 -0
- mindspore/ops/_op_impl/aicpu/reversev2.py +54 -0
- mindspore/ops/_op_impl/aicpu/rgb_to_hsv.py +32 -0
- mindspore/ops/_op_impl/aicpu/right_shift.py +38 -0
- mindspore/ops/_op_impl/aicpu/rnnt_loss.py +35 -0
- mindspore/ops/_op_impl/aicpu/round.py +34 -0
- mindspore/ops/_op_impl/aicpu/rsqrt.py +33 -0
- mindspore/ops/_op_impl/aicpu/rsqrt_grad.py +36 -0
- mindspore/ops/_op_impl/aicpu/sample_distorted_bounding_box_v2.py +49 -0
- mindspore/ops/_op_impl/aicpu/scale_and_translate.py +52 -0
- mindspore/ops/_op_impl/aicpu/scale_and_translate_grad.py +36 -0
- mindspore/ops/_op_impl/aicpu/scatter.py +79 -0
- mindspore/ops/_op_impl/aicpu/scatter_add_with_axis.py +53 -0
- mindspore/ops/_op_impl/aicpu/scatter_elements.py +39 -0
- mindspore/ops/_op_impl/aicpu/scatter_nd.py +59 -0
- mindspore/ops/_op_impl/aicpu/scatter_nd_max.py +54 -0
- mindspore/ops/_op_impl/aicpu/scatter_nd_min.py +54 -0
- mindspore/ops/_op_impl/aicpu/scatter_nd_update.py +59 -0
- mindspore/ops/_op_impl/aicpu/search_sorted.py +44 -0
- mindspore/ops/_op_impl/aicpu/segment_max.py +52 -0
- mindspore/ops/_op_impl/aicpu/segment_mean.py +56 -0
- mindspore/ops/_op_impl/aicpu/segment_min.py +52 -0
- mindspore/ops/_op_impl/aicpu/segment_prod.py +56 -0
- mindspore/ops/_op_impl/aicpu/segment_sum.py +56 -0
- mindspore/ops/_op_impl/aicpu/select.py +45 -0
- mindspore/ops/_op_impl/aicpu/self_adjoint_eig.py +34 -0
- mindspore/ops/_op_impl/aicpu/sequence_add.py +34 -0
- mindspore/ops/_op_impl/aicpu/sequence_add_offset.py +34 -0
- mindspore/ops/_op_impl/aicpu/sequence_addn.py +38 -0
- mindspore/ops/_op_impl/aicpu/sequence_concat.py +40 -0
- mindspore/ops/_op_impl/aicpu/sequence_stack.py +40 -0
- mindspore/ops/_op_impl/aicpu/set_size.py +38 -0
- mindspore/ops/_op_impl/aicpu/sign.py +36 -0
- mindspore/ops/_op_impl/aicpu/sin.py +34 -0
- mindspore/ops/_op_impl/aicpu/sinc.py +43 -0
- mindspore/ops/_op_impl/aicpu/sinh.py +34 -0
- mindspore/ops/_op_impl/aicpu/slice.py +59 -0
- mindspore/ops/_op_impl/aicpu/slice_grad.py +76 -0
- mindspore/ops/_op_impl/aicpu/smooth_l1_loss.py +35 -0
- mindspore/ops/_op_impl/aicpu/smooth_l1_loss_grad.py +37 -0
- mindspore/ops/_op_impl/aicpu/sort.py +39 -0
- mindspore/ops/_op_impl/aicpu/space_to_depth.py +44 -0
- mindspore/ops/_op_impl/aicpu/sparse_addmm.py +87 -0
- mindspore/ops/_op_impl/aicpu/sparse_apply_adagrad_da.py +80 -0
- mindspore/ops/_op_impl/aicpu/sparse_apply_centered_rms_prop.py +105 -0
- mindspore/ops/_op_impl/aicpu/sparse_apply_momentum.py +80 -0
- mindspore/ops/_op_impl/aicpu/sparse_apply_proximal_gradient_descent.py +79 -0
- mindspore/ops/_op_impl/aicpu/sparse_concat.py +59 -0
- mindspore/ops/_op_impl/aicpu/sparse_cross.py +42 -0
- mindspore/ops/_op_impl/aicpu/sparse_dense_cwise_add.py +58 -0
- mindspore/ops/_op_impl/aicpu/sparse_dense_cwise_div.py +58 -0
- mindspore/ops/_op_impl/aicpu/sparse_dense_cwise_mul.py +58 -0
- mindspore/ops/_op_impl/aicpu/sparse_fill_empty_rows.py +63 -0
- mindspore/ops/_op_impl/aicpu/sparse_fill_empty_rows_grad.py +45 -0
- mindspore/ops/_op_impl/aicpu/sparse_matrix_mat_mul.py +56 -0
- mindspore/ops/_op_impl/aicpu/sparse_matrix_nnz.py +81 -0
- mindspore/ops/_op_impl/aicpu/sparse_matrix_transpose.py +116 -0
- mindspore/ops/_op_impl/aicpu/sparse_reorder.py +56 -0
- mindspore/ops/_op_impl/aicpu/sparse_reshape.py +34 -0
- mindspore/ops/_op_impl/aicpu/sparse_segment_mean_grad.py +36 -0
- mindspore/ops/_op_impl/aicpu/sparse_segment_mean_with_num_segments.py +44 -0
- mindspore/ops/_op_impl/aicpu/sparse_segment_sqrt_n.py +43 -0
- mindspore/ops/_op_impl/aicpu/sparse_segment_sqrt_n_grad.py +38 -0
- mindspore/ops/_op_impl/aicpu/sparse_segment_sqrt_n_with_num_segments.py +44 -0
- mindspore/ops/_op_impl/aicpu/sparse_segment_sum.py +49 -0
- mindspore/ops/_op_impl/aicpu/sparse_segment_sum_with_num_segments.py +68 -0
- mindspore/ops/_op_impl/aicpu/sparse_slice.py +63 -0
- mindspore/ops/_op_impl/aicpu/sparse_slice_grad.py +61 -0
- mindspore/ops/_op_impl/aicpu/sparse_softmax.py +33 -0
- mindspore/ops/_op_impl/aicpu/sparse_softmax_cross_entropy_with_logits_v2.py +35 -0
- mindspore/ops/_op_impl/aicpu/sparse_sparse_maximum.py +53 -0
- mindspore/ops/_op_impl/aicpu/sparse_sparse_minimum.py +53 -0
- mindspore/ops/_op_impl/aicpu/sparse_tensor_dense_add.py +84 -0
- mindspore/ops/_op_impl/aicpu/sparse_tensor_dense_mat_mul.py +190 -0
- mindspore/ops/_op_impl/aicpu/sparse_tensor_to_csr_sparse_matrix.py +51 -0
- mindspore/ops/_op_impl/aicpu/sparse_to_dense_v2.py +73 -0
- mindspore/ops/_op_impl/aicpu/split.py +45 -0
- mindspore/ops/_op_impl/aicpu/sqrt.py +34 -0
- mindspore/ops/_op_impl/aicpu/sqrt_grad.py +35 -0
- mindspore/ops/_op_impl/aicpu/square.py +35 -0
- mindspore/ops/_op_impl/aicpu/squared_difference.py +37 -0
- mindspore/ops/_op_impl/aicpu/squeeze.py +42 -0
- mindspore/ops/_op_impl/aicpu/sspaddmm.py +97 -0
- mindspore/ops/_op_impl/aicpu/stack.py +45 -0
- mindspore/ops/_op_impl/aicpu/stack_push_pop.py +87 -0
- mindspore/ops/_op_impl/aicpu/standard_laplace.py +34 -0
- mindspore/ops/_op_impl/aicpu/standard_normal.py +34 -0
- mindspore/ops/_op_impl/aicpu/stateless_dropout_genmask.py +37 -0
- mindspore/ops/_op_impl/aicpu/stft.py +70 -0
- mindspore/ops/_op_impl/aicpu/strided_slice.py +43 -0
- mindspore/ops/_op_impl/aicpu/strided_slice_grad.py +50 -0
- mindspore/ops/_op_impl/aicpu/sub.py +41 -0
- mindspore/ops/_op_impl/aicpu/sub_and_filter.py +36 -0
- mindspore/ops/_op_impl/aicpu/tan.py +34 -0
- mindspore/ops/_op_impl/aicpu/tanh.py +34 -0
- mindspore/ops/_op_impl/aicpu/tanh_grad.py +35 -0
- mindspore/ops/_op_impl/aicpu/tensor_scatter_update.py +59 -0
- mindspore/ops/_op_impl/aicpu/tile.py +56 -0
- mindspore/ops/_op_impl/aicpu/topk.py +34 -0
- mindspore/ops/_op_impl/aicpu/trace.py +40 -0
- mindspore/ops/_op_impl/aicpu/tracegrad.py +41 -0
- mindspore/ops/_op_impl/aicpu/trans_data.py +35 -0
- mindspore/ops/_op_impl/aicpu/transpose.py +58 -0
- mindspore/ops/_op_impl/aicpu/tridiagonal_matmul.py +42 -0
- mindspore/ops/_op_impl/aicpu/tridiagonal_solve.py +35 -0
- mindspore/ops/_op_impl/aicpu/tril.py +42 -0
- mindspore/ops/_op_impl/aicpu/tril_indices.py +34 -0
- mindspore/ops/_op_impl/aicpu/triplet_margin_loss.py +62 -0
- mindspore/ops/_op_impl/aicpu/triu.py +43 -0
- mindspore/ops/_op_impl/aicpu/triu_indices.py +34 -0
- mindspore/ops/_op_impl/aicpu/truncated_normal.py +39 -0
- mindspore/ops/_op_impl/aicpu/uniform.py +36 -0
- mindspore/ops/_op_impl/aicpu/uniform_candidate_sampler.py +41 -0
- mindspore/ops/_op_impl/aicpu/uniform_int.py +36 -0
- mindspore/ops/_op_impl/aicpu/uniform_real.py +33 -0
- mindspore/ops/_op_impl/aicpu/unique.py +31 -0
- mindspore/ops/_op_impl/aicpu/unique_consecutive.py +47 -0
- mindspore/ops/_op_impl/aicpu/unique_with_pad.py +32 -0
- mindspore/ops/_op_impl/aicpu/unravel_index.py +32 -0
- mindspore/ops/_op_impl/aicpu/unsorted_segment_prod.py +53 -0
- mindspore/ops/_op_impl/aicpu/unsorted_segment_sum.py +57 -0
- mindspore/ops/_op_impl/aicpu/unstack.py +45 -0
- mindspore/ops/_op_impl/aicpu/update_cache.py +44 -0
- mindspore/ops/_op_impl/aicpu/upper_bound.py +47 -0
- mindspore/ops/_op_impl/aicpu/upsample_nearest_3d.py +42 -0
- mindspore/ops/_op_impl/aicpu/upsample_nearest_3d_grad.py +49 -0
- mindspore/ops/_op_impl/aicpu/upsample_trilinear_3d.py +40 -0
- mindspore/ops/_op_impl/aicpu/upsample_trilinear_3d_grad.py +50 -0
- mindspore/ops/_op_impl/aicpu/xdivy.py +35 -0
- mindspore/ops/_op_impl/aicpu/xlogy.py +33 -0
- mindspore/ops/_op_impl/aicpu/zeros_like.py +42 -0
- mindspore/ops/_op_impl/aicpu/zeta.py +31 -0
- mindspore/ops/_op_impl/akg/__init__.py +19 -0
- mindspore/ops/_op_impl/akg/ascend/__init__.py +48 -0
- mindspore/ops/_op_impl/akg/ascend/abs.py +35 -0
- mindspore/ops/_op_impl/akg/ascend/add.py +42 -0
- mindspore/ops/_op_impl/akg/ascend/add_n.py +37 -0
- mindspore/ops/_op_impl/akg/ascend/batchmatmul.py +33 -0
- mindspore/ops/_op_impl/akg/ascend/cast.py +46 -0
- mindspore/ops/_op_impl/akg/ascend/equal.py +35 -0
- mindspore/ops/_op_impl/akg/ascend/exp.py +35 -0
- mindspore/ops/_op_impl/akg/ascend/expand_dims.py +33 -0
- mindspore/ops/_op_impl/akg/ascend/greater.py +34 -0
- mindspore/ops/_op_impl/akg/ascend/greater_equal.py +35 -0
- mindspore/ops/_op_impl/akg/ascend/less.py +31 -0
- mindspore/ops/_op_impl/akg/ascend/less_equal.py +35 -0
- mindspore/ops/_op_impl/akg/ascend/load_im2col.py +33 -0
- mindspore/ops/_op_impl/akg/ascend/log.py +34 -0
- mindspore/ops/_op_impl/akg/ascend/maximum.py +36 -0
- mindspore/ops/_op_impl/akg/ascend/minimum.py +39 -0
- mindspore/ops/_op_impl/akg/ascend/mul.py +41 -0
- mindspore/ops/_op_impl/akg/ascend/neg.py +37 -0
- mindspore/ops/_op_impl/akg/ascend/pow.py +35 -0
- mindspore/ops/_op_impl/akg/ascend/prod_force_se_a.py +33 -0
- mindspore/ops/_op_impl/akg/ascend/real_div.py +36 -0
- mindspore/ops/_op_impl/akg/ascend/reciprocal.py +32 -0
- mindspore/ops/_op_impl/akg/ascend/reduce_max.py +32 -0
- mindspore/ops/_op_impl/akg/ascend/reduce_min.py +32 -0
- mindspore/ops/_op_impl/akg/ascend/reduce_sum.py +37 -0
- mindspore/ops/_op_impl/akg/ascend/rsqrt.py +35 -0
- mindspore/ops/_op_impl/akg/ascend/select.py +37 -0
- mindspore/ops/_op_impl/akg/ascend/sqrt.py +35 -0
- mindspore/ops/_op_impl/akg/ascend/square.py +35 -0
- mindspore/ops/_op_impl/akg/ascend/sub.py +42 -0
- mindspore/ops/_op_impl/akg/cpu/__init__.py +23 -0
- mindspore/ops/_op_impl/akg/cpu/coo2csr.py +29 -0
- mindspore/ops/_op_impl/akg/cpu/csr2coo.py +29 -0
- mindspore/ops/_op_impl/akg/cpu/csr_gather.py +33 -0
- mindspore/ops/_op_impl/akg/cpu/csr_mm.py +34 -0
- mindspore/ops/_op_impl/akg/cpu/csr_mul.py +33 -0
- mindspore/ops/_op_impl/akg/cpu/csr_mv.py +33 -0
- mindspore/ops/_op_impl/akg/cpu/csr_reduce_sum.py +31 -0
- mindspore/ops/_op_impl/akg/gpu/__init__.py +24 -0
- mindspore/ops/_op_impl/akg/gpu/coo2csr.py +29 -0
- mindspore/ops/_op_impl/akg/gpu/csr2coo.py +29 -0
- mindspore/ops/_op_impl/akg/gpu/csr_div.py +36 -0
- mindspore/ops/_op_impl/akg/gpu/csr_gather.py +33 -0
- mindspore/ops/_op_impl/akg/gpu/csr_mm.py +37 -0
- mindspore/ops/_op_impl/akg/gpu/csr_mul.py +36 -0
- mindspore/ops/_op_impl/akg/gpu/csr_mv.py +36 -0
- mindspore/ops/_op_impl/akg/gpu/csr_reduce_sum.py +33 -0
- mindspore/ops/_op_impl/cpu/__init__.py +78 -0
- mindspore/ops/_op_impl/cpu/adam.py +49 -0
- mindspore/ops/_op_impl/cpu/adam_weight_decay.py +47 -0
- mindspore/ops/_op_impl/cpu/arg_max.py +30 -0
- mindspore/ops/_op_impl/cpu/arg_max_with_value.py +31 -0
- mindspore/ops/_op_impl/cpu/arg_min_with_value.py +31 -0
- mindspore/ops/_op_impl/cpu/buffer_append.py +28 -0
- mindspore/ops/_op_impl/cpu/buffer_get.py +28 -0
- mindspore/ops/_op_impl/cpu/buffer_sample.py +28 -0
- mindspore/ops/_op_impl/cpu/cast.py +171 -0
- mindspore/ops/_op_impl/cpu/concat_offset.py +38 -0
- mindspore/ops/_op_impl/cpu/conv2d.py +30 -0
- mindspore/ops/_op_impl/cpu/conv3d.py +30 -0
- mindspore/ops/_op_impl/cpu/div.py +32 -0
- mindspore/ops/_op_impl/cpu/dropout.py +31 -0
- mindspore/ops/_op_impl/cpu/dropout_grad.py +30 -0
- mindspore/ops/_op_impl/cpu/dynamic_shape.py +42 -0
- mindspore/ops/_op_impl/cpu/dynamic_stitch.py +41 -0
- mindspore/ops/_op_impl/cpu/equal_count.py +30 -0
- mindspore/ops/_op_impl/cpu/gather_d.py +49 -0
- mindspore/ops/_op_impl/cpu/gather_d_grad.py +38 -0
- mindspore/ops/_op_impl/cpu/gather_d_grad_v2.py +40 -0
- mindspore/ops/_op_impl/cpu/gather_v2.py +40 -0
- mindspore/ops/_op_impl/cpu/hsigmoid.py +33 -0
- mindspore/ops/_op_impl/cpu/hsigmoid_grad.py +34 -0
- mindspore/ops/_op_impl/cpu/hswish.py +32 -0
- mindspore/ops/_op_impl/cpu/hswish_grad.py +33 -0
- mindspore/ops/_op_impl/cpu/identity_n.py +40 -0
- mindspore/ops/_op_impl/cpu/is_finite.py +39 -0
- mindspore/ops/_op_impl/cpu/l2loss.py +30 -0
- mindspore/ops/_op_impl/cpu/layer_norm.py +36 -0
- mindspore/ops/_op_impl/cpu/layer_norm_grad.py +38 -0
- mindspore/ops/_op_impl/cpu/maximum.py +35 -0
- mindspore/ops/_op_impl/cpu/maximum_grad.py +47 -0
- mindspore/ops/_op_impl/cpu/minimum.py +40 -0
- mindspore/ops/_op_impl/cpu/minimum_grad.py +51 -0
- mindspore/ops/_op_impl/cpu/mirror_pad.py +36 -0
- mindspore/ops/_op_impl/cpu/mirror_pad_grad.py +36 -0
- mindspore/ops/_op_impl/cpu/mul.py +32 -0
- mindspore/ops/_op_impl/cpu/one_hot.py +31 -0
- mindspore/ops/_op_impl/cpu/pad.py +32 -0
- mindspore/ops/_op_impl/cpu/pow.py +32 -0
- mindspore/ops/_op_impl/cpu/priority_replay_buffer.py +42 -0
- mindspore/ops/_op_impl/cpu/pyexecute.py +29 -0
- mindspore/ops/_op_impl/cpu/pyfunc.py +29 -0
- mindspore/ops/_op_impl/cpu/range.py +34 -0
- mindspore/ops/_op_impl/cpu/real_div.py +33 -0
- mindspore/ops/_op_impl/cpu/reduce_all.py +29 -0
- mindspore/ops/_op_impl/cpu/reduce_any.py +29 -0
- mindspore/ops/_op_impl/cpu/reduce_max.py +32 -0
- mindspore/ops/_op_impl/cpu/reduce_mean.py +40 -0
- mindspore/ops/_op_impl/cpu/reduce_min.py +32 -0
- mindspore/ops/_op_impl/cpu/reduce_prod.py +40 -0
- mindspore/ops/_op_impl/cpu/reduce_std.py +31 -0
- mindspore/ops/_op_impl/cpu/reduce_sum.py +41 -0
- mindspore/ops/_op_impl/cpu/space_to_batch_nd.py +38 -0
- mindspore/ops/_op_impl/cpu/sparse_slice.py +62 -0
- mindspore/ops/_op_impl/cpu/sparse_slice_grad.py +60 -0
- mindspore/ops/_op_impl/cpu/split.py +34 -0
- mindspore/ops/_op_impl/cpu/sspaddmm.py +95 -0
- mindspore/ops/_op_impl/cpu/stack.py +38 -0
- mindspore/ops/_op_impl/cpu/sub.py +32 -0
- mindspore/ops/_op_impl/cpu/tensor_copy_slices.py +41 -0
- mindspore/ops/_op_impl/cpu/tile.py +37 -0
- mindspore/ops/_op_impl/cpu/top_k.py +31 -0
- mindspore/ops/_op_impl/cpu/transpose.py +39 -0
- mindspore/ops/_primitive_cache.py +90 -0
- mindspore/ops/_register_for_op.py +73 -0
- mindspore/ops/_utils/__init__.py +20 -0
- mindspore/ops/_utils/utils.py +147 -0
- mindspore/ops/_vmap/__init__.py +25 -0
- mindspore/ops/_vmap/vmap_array_ops.py +2149 -0
- mindspore/ops/_vmap/vmap_base.py +533 -0
- mindspore/ops/_vmap/vmap_convolution_ops.py +441 -0
- mindspore/ops/_vmap/vmap_debug_ops.py +50 -0
- mindspore/ops/_vmap/vmap_grad_math_ops.py +274 -0
- mindspore/ops/_vmap/vmap_grad_nn_ops.py +806 -0
- mindspore/ops/_vmap/vmap_image_ops.py +194 -0
- mindspore/ops/_vmap/vmap_math_ops.py +993 -0
- mindspore/ops/_vmap/vmap_nn_ops.py +2250 -0
- mindspore/ops/_vmap/vmap_other_ops.py +105 -0
- mindspore/ops/_vmap/vmap_random_ops.py +122 -0
- mindspore/ops/_vmap/vmap_sparse_ops.py +89 -0
- mindspore/ops/auto_generate/__init__.py +31 -0
- mindspore/ops/auto_generate/cpp_create_prim_instance_helper.py +309 -0
- mindspore/ops/auto_generate/gen_arg_dtype_cast.py +252 -0
- mindspore/ops/auto_generate/gen_arg_handler.py +197 -0
- mindspore/ops/auto_generate/gen_extend_func.py +1701 -0
- mindspore/ops/auto_generate/gen_ops_def.py +8482 -0
- mindspore/ops/auto_generate/gen_ops_prim.py +16704 -0
- mindspore/ops/auto_generate/pyboost_inner_prim.py +549 -0
- mindspore/ops/composite/__init__.py +71 -0
- mindspore/ops/composite/base.py +1318 -0
- mindspore/ops/composite/env_ops.py +41 -0
- mindspore/ops/composite/math_ops.py +125 -0
- mindspore/ops/composite/multitype_ops/__init__.py +77 -0
- mindspore/ops/composite/multitype_ops/_compile_utils.py +1459 -0
- mindspore/ops/composite/multitype_ops/_constexpr_utils.py +897 -0
- mindspore/ops/composite/multitype_ops/add_impl.py +606 -0
- mindspore/ops/composite/multitype_ops/bitwise_and_impl.py +56 -0
- mindspore/ops/composite/multitype_ops/bitwise_or_impl.py +56 -0
- mindspore/ops/composite/multitype_ops/bitwise_xor_impl.py +56 -0
- mindspore/ops/composite/multitype_ops/div_impl.py +189 -0
- mindspore/ops/composite/multitype_ops/equal_impl.py +335 -0
- mindspore/ops/composite/multitype_ops/floordiv_impl.py +88 -0
- mindspore/ops/composite/multitype_ops/getitem_impl.py +400 -0
- mindspore/ops/composite/multitype_ops/greater_equal_impl.py +109 -0
- mindspore/ops/composite/multitype_ops/greater_impl.py +110 -0
- mindspore/ops/composite/multitype_ops/in_impl.py +196 -0
- mindspore/ops/composite/multitype_ops/left_shift_impl.py +37 -0
- mindspore/ops/composite/multitype_ops/less_equal_impl.py +111 -0
- mindspore/ops/composite/multitype_ops/less_impl.py +112 -0
- mindspore/ops/composite/multitype_ops/logic_not_impl.py +113 -0
- mindspore/ops/composite/multitype_ops/logical_and_impl.py +60 -0
- mindspore/ops/composite/multitype_ops/logical_or_impl.py +61 -0
- mindspore/ops/composite/multitype_ops/mod_impl.py +86 -0
- mindspore/ops/composite/multitype_ops/mul_impl.py +294 -0
- mindspore/ops/composite/multitype_ops/negative_impl.py +79 -0
- mindspore/ops/composite/multitype_ops/not_equal_impl.py +290 -0
- mindspore/ops/composite/multitype_ops/not_in_impl.py +196 -0
- mindspore/ops/composite/multitype_ops/ones_like_impl.py +96 -0
- mindspore/ops/composite/multitype_ops/pow_impl.py +87 -0
- mindspore/ops/composite/multitype_ops/right_shift_impl.py +37 -0
- mindspore/ops/composite/multitype_ops/setitem_impl.py +884 -0
- mindspore/ops/composite/multitype_ops/sub_impl.py +116 -0
- mindspore/ops/composite/multitype_ops/uadd_impl.py +29 -0
- mindspore/ops/composite/multitype_ops/zeros_like_impl.py +228 -0
- mindspore/ops/deprecated.py +315 -0
- mindspore/ops/function/__init__.py +782 -0
- mindspore/ops/function/array_func.py +7226 -0
- mindspore/ops/function/clip_func.py +384 -0
- mindspore/ops/function/debug_func.py +181 -0
- mindspore/ops/function/fft_func.py +44 -0
- mindspore/ops/function/grad/__init__.py +34 -0
- mindspore/ops/function/grad/grad_func.py +1425 -0
- mindspore/ops/function/image_func.py +292 -0
- mindspore/ops/function/linalg_func.py +416 -0
- mindspore/ops/function/math_func.py +12228 -0
- mindspore/ops/function/nn_func.py +8609 -0
- mindspore/ops/function/other_func.py +115 -0
- mindspore/ops/function/parameter_func.py +134 -0
- mindspore/ops/function/random_func.py +1715 -0
- mindspore/ops/function/reshard_func.py +104 -0
- mindspore/ops/function/sparse_func.py +884 -0
- mindspore/ops/function/sparse_unary_func.py +2422 -0
- mindspore/ops/function/spectral_func.py +150 -0
- mindspore/ops/function/vmap_func.py +117 -0
- mindspore/ops/functional.py +464 -0
- mindspore/ops/op_info_register.py +1572 -0
- mindspore/ops/operations/__init__.py +722 -0
- mindspore/ops/operations/_csr_ops.py +403 -0
- mindspore/ops/operations/_custom_grad.py +181 -0
- mindspore/ops/operations/_embedding_cache_ops.py +307 -0
- mindspore/ops/operations/_grad_ops.py +2978 -0
- mindspore/ops/operations/_infer_ops.py +19 -0
- mindspore/ops/operations/_inner_ops.py +2544 -0
- mindspore/ops/operations/_map_tensor_ops.py +112 -0
- mindspore/ops/operations/_ms_kernel.py +601 -0
- mindspore/ops/operations/_ocr_ops.py +379 -0
- mindspore/ops/operations/_opaque_predicate_registry.py +41 -0
- mindspore/ops/operations/_pyfunc_registry.py +58 -0
- mindspore/ops/operations/_quant_ops.py +1844 -0
- mindspore/ops/operations/_rl_inner_ops.py +1231 -0
- mindspore/ops/operations/_scalar_ops.py +106 -0
- mindspore/ops/operations/_sequence_ops.py +1155 -0
- mindspore/ops/operations/_sparse_grad_ops.py +56 -0
- mindspore/ops/operations/_tensor_array.py +359 -0
- mindspore/ops/operations/_thor_ops.py +807 -0
- mindspore/ops/operations/array_ops.py +6124 -0
- mindspore/ops/operations/comm_ops.py +1985 -0
- mindspore/ops/operations/control_ops.py +127 -0
- mindspore/ops/operations/custom_ops.py +1129 -0
- mindspore/ops/operations/debug_ops.py +678 -0
- mindspore/ops/operations/image_ops.py +1041 -0
- mindspore/ops/operations/inner_ops.py +697 -0
- mindspore/ops/operations/linalg_ops.py +95 -0
- mindspore/ops/operations/manually_defined/__init__.py +24 -0
- mindspore/ops/operations/manually_defined/_inner.py +73 -0
- mindspore/ops/operations/manually_defined/ops_def.py +2271 -0
- mindspore/ops/operations/math_ops.py +5095 -0
- mindspore/ops/operations/nn_ops.py +9575 -0
- mindspore/ops/operations/other_ops.py +874 -0
- mindspore/ops/operations/random_ops.py +1288 -0
- mindspore/ops/operations/reshard_ops.py +53 -0
- mindspore/ops/operations/rl_ops.py +288 -0
- mindspore/ops/operations/sparse_ops.py +2753 -0
- mindspore/ops/operations/spectral_ops.py +111 -0
- mindspore/ops/primitive.py +1046 -0
- mindspore/ops/signature.py +54 -0
- mindspore/ops/vm_impl_registry.py +91 -0
- mindspore/ops_generate/__init__.py +27 -0
- mindspore/ops_generate/arg_dtype_cast.py +252 -0
- mindspore/ops_generate/arg_handler.py +197 -0
- mindspore/ops_generate/gen_aclnn_implement.py +263 -0
- mindspore/ops_generate/gen_constants.py +36 -0
- mindspore/ops_generate/gen_ops.py +1099 -0
- mindspore/ops_generate/gen_ops_inner_prim.py +131 -0
- mindspore/ops_generate/gen_pyboost_func.py +1052 -0
- mindspore/ops_generate/gen_utils.py +209 -0
- mindspore/ops_generate/op_proto.py +145 -0
- mindspore/ops_generate/pyboost_utils.py +367 -0
- mindspore/ops_generate/template.py +261 -0
- mindspore/parallel/__init__.py +30 -0
- mindspore/parallel/_auto_parallel_context.py +1486 -0
- mindspore/parallel/_cell_wrapper.py +174 -0
- mindspore/parallel/_cost_model_context.py +700 -0
- mindspore/parallel/_dp_allreduce_fusion.py +159 -0
- mindspore/parallel/_offload_context.py +275 -0
- mindspore/parallel/_parallel_serialization.py +561 -0
- mindspore/parallel/_ps_context.py +242 -0
- mindspore/parallel/_recovery_context.py +110 -0
- mindspore/parallel/_tensor.py +730 -0
- mindspore/parallel/_transformer/__init__.py +35 -0
- mindspore/parallel/_transformer/layers.py +765 -0
- mindspore/parallel/_transformer/loss.py +251 -0
- mindspore/parallel/_transformer/moe.py +693 -0
- mindspore/parallel/_transformer/op_parallel_config.py +222 -0
- mindspore/parallel/_transformer/transformer.py +3119 -0
- mindspore/parallel/_utils.py +612 -0
- mindspore/parallel/algo_parameter_config.py +400 -0
- mindspore/parallel/checkpoint_transform.py +650 -0
- mindspore/parallel/cluster/__init__.py +15 -0
- mindspore/parallel/cluster/process_entity/__init__.py +18 -0
- mindspore/parallel/cluster/process_entity/_api.py +352 -0
- mindspore/parallel/cluster/process_entity/_utils.py +101 -0
- mindspore/parallel/cluster/run.py +136 -0
- mindspore/parallel/mpi/__init__.py +14 -0
- mindspore/parallel/mpi/_mpi_config.py +116 -0
- mindspore/parallel/parameter_broadcast.py +151 -0
- mindspore/parallel/shard.py +481 -0
- mindspore/parallel/transform_safetensors.py +993 -0
- mindspore/profiler/__init__.py +28 -0
- mindspore/profiler/common/__init__.py +14 -0
- mindspore/profiler/common/constant.py +29 -0
- mindspore/profiler/common/exceptions/__init__.py +14 -0
- mindspore/profiler/common/exceptions/error_code.py +83 -0
- mindspore/profiler/common/exceptions/exceptions.py +286 -0
- mindspore/profiler/common/process_pool.py +41 -0
- mindspore/profiler/common/registry.py +47 -0
- mindspore/profiler/common/singleton.py +28 -0
- mindspore/profiler/common/struct_type.py +118 -0
- mindspore/profiler/common/util.py +472 -0
- mindspore/profiler/common/validator/__init__.py +14 -0
- mindspore/profiler/common/validator/validate_path.py +84 -0
- mindspore/profiler/dynamic_profiler.py +694 -0
- mindspore/profiler/envprofiling.py +254 -0
- mindspore/profiler/parser/__init__.py +14 -0
- mindspore/profiler/parser/aicpu_data_parser.py +272 -0
- mindspore/profiler/parser/ascend_analysis/__init__.py +14 -0
- mindspore/profiler/parser/ascend_analysis/constant.py +71 -0
- mindspore/profiler/parser/ascend_analysis/file_manager.py +180 -0
- mindspore/profiler/parser/ascend_analysis/function_event.py +185 -0
- mindspore/profiler/parser/ascend_analysis/fwk_cann_parser.py +136 -0
- mindspore/profiler/parser/ascend_analysis/fwk_file_parser.py +131 -0
- mindspore/profiler/parser/ascend_analysis/msprof_timeline_parser.py +104 -0
- mindspore/profiler/parser/ascend_analysis/path_manager.py +313 -0
- mindspore/profiler/parser/ascend_analysis/profiler_info_parser.py +123 -0
- mindspore/profiler/parser/ascend_analysis/tlv_decoder.py +86 -0
- mindspore/profiler/parser/ascend_analysis/trace_event_manager.py +75 -0
- mindspore/profiler/parser/ascend_cluster_generator.py +116 -0
- mindspore/profiler/parser/ascend_communicate_generator.py +314 -0
- mindspore/profiler/parser/ascend_flops_generator.py +116 -0
- mindspore/profiler/parser/ascend_fpbp_generator.py +82 -0
- mindspore/profiler/parser/ascend_hccl_generator.py +271 -0
- mindspore/profiler/parser/ascend_integrate_generator.py +42 -0
- mindspore/profiler/parser/ascend_memory_generator.py +185 -0
- mindspore/profiler/parser/ascend_msprof_exporter.py +282 -0
- mindspore/profiler/parser/ascend_msprof_generator.py +187 -0
- mindspore/profiler/parser/ascend_op_generator.py +334 -0
- mindspore/profiler/parser/ascend_steptrace_generator.py +94 -0
- mindspore/profiler/parser/ascend_timeline_generator.py +545 -0
- mindspore/profiler/parser/base_timeline_generator.py +483 -0
- mindspore/profiler/parser/container.py +229 -0
- mindspore/profiler/parser/cpu_gpu_timeline_generator.py +697 -0
- mindspore/profiler/parser/flops_parser.py +531 -0
- mindspore/profiler/parser/framework_enum.py +111 -0
- mindspore/profiler/parser/framework_parser.py +464 -0
- mindspore/profiler/parser/framework_struct.py +61 -0
- mindspore/profiler/parser/gpu_analysis/__init__.py +14 -0
- mindspore/profiler/parser/gpu_analysis/function_event.py +44 -0
- mindspore/profiler/parser/gpu_analysis/fwk_file_parser.py +89 -0
- mindspore/profiler/parser/gpu_analysis/profiler_info_parser.py +72 -0
- mindspore/profiler/parser/hccl_parser.py +573 -0
- mindspore/profiler/parser/hwts_log_parser.py +122 -0
- mindspore/profiler/parser/integrator.py +526 -0
- mindspore/profiler/parser/memory_usage_parser.py +277 -0
- mindspore/profiler/parser/minddata_analyzer.py +800 -0
- mindspore/profiler/parser/minddata_parser.py +186 -0
- mindspore/profiler/parser/minddata_pipeline_parser.py +299 -0
- mindspore/profiler/parser/op_intermediate_parser.py +149 -0
- mindspore/profiler/parser/optime_parser.py +250 -0
- mindspore/profiler/parser/profiler_info.py +213 -0
- mindspore/profiler/parser/step_trace_parser.py +666 -0
- mindspore/profiler/profiler.py +153 -0
- mindspore/profiler/profiling.py +1922 -0
- mindspore/rewrite/__init__.py +28 -0
- mindspore/rewrite/api/__init__.py +17 -0
- mindspore/rewrite/api/node.py +519 -0
- mindspore/rewrite/api/node_type.py +53 -0
- mindspore/rewrite/api/pattern_engine.py +490 -0
- mindspore/rewrite/api/scoped_value.py +181 -0
- mindspore/rewrite/api/symbol_tree.py +497 -0
- mindspore/rewrite/ast_helpers/__init__.py +25 -0
- mindspore/rewrite/ast_helpers/ast_converter.py +143 -0
- mindspore/rewrite/ast_helpers/ast_finder.py +404 -0
- mindspore/rewrite/ast_helpers/ast_flattener.py +268 -0
- mindspore/rewrite/ast_helpers/ast_modifier.py +605 -0
- mindspore/rewrite/ast_helpers/ast_replacer.py +79 -0
- mindspore/rewrite/common/__init__.py +19 -0
- mindspore/rewrite/common/config.py +24 -0
- mindspore/rewrite/common/error_log.py +39 -0
- mindspore/rewrite/common/event.py +28 -0
- mindspore/rewrite/common/namer.py +271 -0
- mindspore/rewrite/common/namespace.py +118 -0
- mindspore/rewrite/common/observable.py +44 -0
- mindspore/rewrite/common/observer.py +54 -0
- mindspore/rewrite/node/__init__.py +22 -0
- mindspore/rewrite/node/call_function.py +95 -0
- mindspore/rewrite/node/cell_container.py +139 -0
- mindspore/rewrite/node/control_flow.py +113 -0
- mindspore/rewrite/node/node.py +1428 -0
- mindspore/rewrite/node/node_manager.py +283 -0
- mindspore/rewrite/node/node_topological_manager.py +223 -0
- mindspore/rewrite/parsers/__init__.py +29 -0
- mindspore/rewrite/parsers/arguments_parser.py +63 -0
- mindspore/rewrite/parsers/assign_parser.py +852 -0
- mindspore/rewrite/parsers/attribute_parser.py +57 -0
- mindspore/rewrite/parsers/class_def_parser.py +289 -0
- mindspore/rewrite/parsers/constant_parser.py +104 -0
- mindspore/rewrite/parsers/container_parser.py +88 -0
- mindspore/rewrite/parsers/expr_parser.py +55 -0
- mindspore/rewrite/parsers/for_parser.py +61 -0
- mindspore/rewrite/parsers/function_def_parser.py +84 -0
- mindspore/rewrite/parsers/if_parser.py +85 -0
- mindspore/rewrite/parsers/module_parser.py +117 -0
- mindspore/rewrite/parsers/parser.py +43 -0
- mindspore/rewrite/parsers/parser_register.py +86 -0
- mindspore/rewrite/parsers/return_parser.py +37 -0
- mindspore/rewrite/parsers/while_parser.py +59 -0
- mindspore/rewrite/sparsify/__init__.py +0 -0
- mindspore/rewrite/sparsify/sparse_transformer.py +457 -0
- mindspore/rewrite/sparsify/sparsify.py +112 -0
- mindspore/rewrite/sparsify/utils.py +179 -0
- mindspore/rewrite/symbol_tree/__init__.py +20 -0
- mindspore/rewrite/symbol_tree/symbol_tree.py +1819 -0
- mindspore/rewrite/symbol_tree/symbol_tree_builder.py +76 -0
- mindspore/rewrite/symbol_tree/symbol_tree_dumper.py +142 -0
- mindspore/run_check/__init__.py +20 -0
- mindspore/run_check/_check_version.py +507 -0
- mindspore/run_check/run_check.py +66 -0
- mindspore/safeguard/__init__.py +18 -0
- mindspore/safeguard/rewrite_obfuscation.py +875 -0
- mindspore/scipy/__init__.py +18 -0
- mindspore/scipy/fft.py +264 -0
- mindspore/scipy/linalg.py +919 -0
- mindspore/scipy/ops.py +165 -0
- mindspore/scipy/ops_grad.py +115 -0
- mindspore/scipy/ops_wrapper.py +74 -0
- mindspore/scipy/optimize/__init__.py +20 -0
- mindspore/scipy/optimize/_bfgs.py +230 -0
- mindspore/scipy/optimize/_lagrange.py +201 -0
- mindspore/scipy/optimize/_lbfgs.py +146 -0
- mindspore/scipy/optimize/gradient_optimization_algorithm.py +168 -0
- mindspore/scipy/optimize/line_search.py +370 -0
- mindspore/scipy/optimize/linear_sum_assignment.py +78 -0
- mindspore/scipy/optimize/minimize.py +200 -0
- mindspore/scipy/utils.py +156 -0
- mindspore/scipy/utils_const.py +246 -0
- mindspore/train/__init__.py +48 -0
- mindspore/train/_utils.py +465 -0
- mindspore/train/amp.py +935 -0
- mindspore/train/anf_ir_pb2.py +1517 -0
- mindspore/train/callback/__init__.py +44 -0
- mindspore/train/callback/_backup_and_restore.py +117 -0
- mindspore/train/callback/_callback.py +613 -0
- mindspore/train/callback/_checkpoint.py +814 -0
- mindspore/train/callback/_cluster_monitor.py +201 -0
- mindspore/train/callback/_dataset_graph.py +150 -0
- mindspore/train/callback/_early_stop.py +239 -0
- mindspore/train/callback/_flops_collector.py +239 -0
- mindspore/train/callback/_history.py +92 -0
- mindspore/train/callback/_lambda_callback.py +80 -0
- mindspore/train/callback/_landscape.py +1049 -0
- mindspore/train/callback/_loss_monitor.py +107 -0
- mindspore/train/callback/_lr_scheduler_callback.py +76 -0
- mindspore/train/callback/_on_request_exit.py +298 -0
- mindspore/train/callback/_reduce_lr_on_plateau.py +226 -0
- mindspore/train/callback/_summary_collector.py +1184 -0
- mindspore/train/callback/_tft_register.py +352 -0
- mindspore/train/callback/_time_monitor.py +141 -0
- mindspore/train/checkpoint_pb2.py +233 -0
- mindspore/train/data_sink.py +219 -0
- mindspore/train/dataset_helper.py +692 -0
- mindspore/train/lineage_pb2.py +1260 -0
- mindspore/train/loss_scale_manager.py +213 -0
- mindspore/train/memory_profiling_pb2.py +298 -0
- mindspore/train/metrics/__init__.py +175 -0
- mindspore/train/metrics/accuracy.py +133 -0
- mindspore/train/metrics/auc.py +129 -0
- mindspore/train/metrics/bleu_score.py +170 -0
- mindspore/train/metrics/confusion_matrix.py +700 -0
- mindspore/train/metrics/cosine_similarity.py +109 -0
- mindspore/train/metrics/dice.py +116 -0
- mindspore/train/metrics/error.py +175 -0
- mindspore/train/metrics/fbeta.py +167 -0
- mindspore/train/metrics/hausdorff_distance.py +333 -0
- mindspore/train/metrics/loss.py +97 -0
- mindspore/train/metrics/mean_surface_distance.py +189 -0
- mindspore/train/metrics/metric.py +373 -0
- mindspore/train/metrics/occlusion_sensitivity.py +225 -0
- mindspore/train/metrics/perplexity.py +133 -0
- mindspore/train/metrics/precision.py +160 -0
- mindspore/train/metrics/recall.py +159 -0
- mindspore/train/metrics/roc.py +223 -0
- mindspore/train/metrics/root_mean_square_surface_distance.py +191 -0
- mindspore/train/metrics/topk.py +167 -0
- mindspore/train/mind_ir_pb2.py +1908 -0
- mindspore/train/model.py +2252 -0
- mindspore/train/node_strategy_pb2.py +653 -0
- mindspore/train/print_pb2.py +184 -0
- mindspore/train/profiling_parallel_pb2.py +151 -0
- mindspore/train/serialization.py +3325 -0
- mindspore/train/summary/__init__.py +23 -0
- mindspore/train/summary/_lineage_adapter.py +41 -0
- mindspore/train/summary/_summary_adapter.py +496 -0
- mindspore/train/summary/_writer_pool.py +207 -0
- mindspore/train/summary/enums.py +56 -0
- mindspore/train/summary/summary_record.py +581 -0
- mindspore/train/summary/writer.py +167 -0
- mindspore/train/summary_pb2.py +1165 -0
- mindspore/train/train_thor/__init__.py +20 -0
- mindspore/train/train_thor/convert_utils.py +268 -0
- mindspore/train/train_thor/dataset_helper.py +192 -0
- mindspore/train/train_thor/model_thor.py +257 -0
- mindspore/utils/__init__.py +21 -0
- mindspore/utils/utils.py +60 -0
- mindspore/version.py +1 -0
- mindspore-2.4.0.dist-info/METADATA +352 -0
- mindspore-2.4.0.dist-info/RECORD +1387 -0
- mindspore-2.4.0.dist-info/WHEEL +5 -0
- mindspore-2.4.0.dist-info/entry_points.txt +3 -0
- mindspore-2.4.0.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,963 @@
|
|
|
1
|
+
# Copyright 2021 Huawei Technologies Co., Ltd
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
# ============================================================================
|
|
15
|
+
"""layers for second order optimization"""
|
|
16
|
+
from __future__ import absolute_import
|
|
17
|
+
|
|
18
|
+
import numpy as np
|
|
19
|
+
|
|
20
|
+
import mindspore.common.dtype as mstype
|
|
21
|
+
import mindspore.log as logger
|
|
22
|
+
from mindspore.common.tensor import Tensor
|
|
23
|
+
from mindspore.common.initializer import initializer, Initializer
|
|
24
|
+
from mindspore.communication.management import get_group_size, get_rank
|
|
25
|
+
from mindspore.ops import operations as P
|
|
26
|
+
from mindspore.ops.operations._thor_ops import ThorIm2Col
|
|
27
|
+
from mindspore.common.parameter import Parameter
|
|
28
|
+
from mindspore import _checkparam as Validator
|
|
29
|
+
from mindspore._checkparam import twice
|
|
30
|
+
from mindspore import context
|
|
31
|
+
from mindspore.nn.cell import Cell
|
|
32
|
+
from mindspore.nn.layer.activation import get_activation
|
|
33
|
+
from mindspore.parallel._ps_context import _is_role_worker, _get_ps_context, \
|
|
34
|
+
_set_rank_id, _insert_hash_table_size, _set_cache_enable
|
|
35
|
+
from mindspore.parallel._utils import _get_parallel_mode, _get_full_batch
|
|
36
|
+
from mindspore.context import ParallelMode
|
|
37
|
+
from mindspore.ops import functional as F
|
|
38
|
+
from mindspore.nn.layer.basic import ClipByNorm
|
|
39
|
+
from mindspore.ops.primitive import constexpr
|
|
40
|
+
|
|
41
|
+
__all__ = ['DenseThor', 'Conv2dThor', 'EmbeddingThor', 'EmbeddingLookupThor']
|
|
42
|
+
|
|
43
|
+
|
|
44
|
+
class DenseThor(Cell):
|
|
45
|
+
r"""
|
|
46
|
+
The dense connected layer and saving the information needed for THOR.
|
|
47
|
+
|
|
48
|
+
Applies dense connected layer for the input and saves the information A and G in the dense connected layer
|
|
49
|
+
needed for THOR.
|
|
50
|
+
|
|
51
|
+
This layer implements the operation as:
|
|
52
|
+
|
|
53
|
+
.. math::
|
|
54
|
+
\text{outputs} = \text{activation}(\text{inputs} * \text{kernel} + \text{bias}),
|
|
55
|
+
|
|
56
|
+
where :math:`\text{activation}` is the activation function , :math:`\text{kernel}` is a weight matrix with the same
|
|
57
|
+
data type as the inputs created by the layer, and :math:`\text{bias}` is a bias vector
|
|
58
|
+
with the same data type as the inputs created by the layer (only if has_bias is ``True`` ).
|
|
59
|
+
|
|
60
|
+
Args:
|
|
61
|
+
in_channels (int): The number of the input channels.
|
|
62
|
+
out_channels (int): The number of the output channels.
|
|
63
|
+
weight_init (Union[Tensor, str, Initializer, numbers.Number]): The trainable weight_init parameter. The dtype
|
|
64
|
+
is same as `x`. The values of str refer to the function `initializer`. Default: ``'normal'`` .
|
|
65
|
+
bias_init (Union[Tensor, str, Initializer, numbers.Number]): The trainable bias_init parameter. The dtype is
|
|
66
|
+
same as `x`. The values of str refer to the function `initializer`. Default: ``'zeros'`` .
|
|
67
|
+
has_bias (bool): Specifies whether the layer uses a bias vector. Default: ``True`` .
|
|
68
|
+
activation (str): activate function applied to the output of the fully connected layer, eg. 'ReLU'.
|
|
69
|
+
Default: ``None`` .
|
|
70
|
+
|
|
71
|
+
Inputs:
|
|
72
|
+
- **x** (Tensor) - Tensor of shape :math:`(N, in\_channels)`.
|
|
73
|
+
|
|
74
|
+
Outputs:
|
|
75
|
+
Tensor of shape :math:`(N, out\_channels)`.
|
|
76
|
+
|
|
77
|
+
Raises:
|
|
78
|
+
ValueError: If the shape of `weight_init` or `bias_init` is incorrect.
|
|
79
|
+
|
|
80
|
+
Supported Platforms:
|
|
81
|
+
``Ascend`` ``GPU``
|
|
82
|
+
|
|
83
|
+
Examples:
|
|
84
|
+
>>> import mindspore as ms
|
|
85
|
+
>>> import numpy as np
|
|
86
|
+
>>> x = ms.Tensor(np.array([[1, 2, 3], [3, 4, 5]]), ms.float32)
|
|
87
|
+
>>> net = ms.nn.DenseThor(3, 4, weight_init="ones")
|
|
88
|
+
>>> output = net(x)
|
|
89
|
+
>>> print(output)
|
|
90
|
+
[[ 6. 6. 6. 6.]
|
|
91
|
+
[ 12. 12. 12. 12. ]]
|
|
92
|
+
"""
|
|
93
|
+
|
|
94
|
+
def __init__(self,
|
|
95
|
+
in_channels,
|
|
96
|
+
out_channels,
|
|
97
|
+
weight_init='normal',
|
|
98
|
+
bias_init='zeros',
|
|
99
|
+
has_bias=True,
|
|
100
|
+
activation=None):
|
|
101
|
+
"""Initialize DenseThor."""
|
|
102
|
+
super(DenseThor, self).__init__()
|
|
103
|
+
self.thor = True
|
|
104
|
+
self.in_channels = Validator.check_positive_int(in_channels, "in_channels", self.cls_name)
|
|
105
|
+
self.out_channels = Validator.check_positive_int(out_channels, "out_channels", self.cls_name)
|
|
106
|
+
self.has_bias = Validator.check_bool(has_bias, "has_bias", self.cls_name)
|
|
107
|
+
if isinstance(weight_init, Tensor):
|
|
108
|
+
if weight_init.dim() != 2 or weight_init.shape[0] != out_channels or \
|
|
109
|
+
weight_init.shape[1] != in_channels:
|
|
110
|
+
raise ValueError(f"For '{self.cls_name}', weight init shape error. The dim of 'weight_init' should "
|
|
111
|
+
f"be equal to 2, and the first dim must be equal to 'out_channels', and the "
|
|
112
|
+
f"second dim must be equal to 'in_channels'. But got 'weight_init': {weight_init}, "
|
|
113
|
+
f"'out_channels': {out_channels}, 'in_channels': {in_channels}.")
|
|
114
|
+
self.weight = Parameter(initializer(weight_init, [out_channels, in_channels]), name="weight")
|
|
115
|
+
self.bias = None
|
|
116
|
+
if self.has_bias:
|
|
117
|
+
if isinstance(bias_init, Tensor):
|
|
118
|
+
if bias_init.dim() != 1 or bias_init.shape[0] != out_channels:
|
|
119
|
+
raise ValueError(f"For '{self.cls_name}', bias init shape error. The dim of 'bias_init' should "
|
|
120
|
+
f"be equal to 1, and the first dim must be equal to 'out_channels'. But got "
|
|
121
|
+
f"'bias_init': {bias_init}, 'out_channels': {out_channels}.")
|
|
122
|
+
self.bias = Parameter(initializer(bias_init, [out_channels]), name="bias")
|
|
123
|
+
self.bias_add = P.BiasAdd()
|
|
124
|
+
|
|
125
|
+
self.matmul = P.MatMul(transpose_b=True)
|
|
126
|
+
self.activation = get_activation(activation)
|
|
127
|
+
self.activation_flag = self.activation is not None
|
|
128
|
+
|
|
129
|
+
self.matrix_a = Parameter(Tensor(np.eye(in_channels).astype(np.float32)),
|
|
130
|
+
name='matrix_a', requires_grad=False)
|
|
131
|
+
self.matrix_g = Parameter(Tensor(np.eye(out_channels).astype(np.float32)),
|
|
132
|
+
name="matrix_g", requires_grad=False)
|
|
133
|
+
self.shape = P.Shape()
|
|
134
|
+
self.reshape = P.Reshape()
|
|
135
|
+
self.transpose = P.Transpose()
|
|
136
|
+
self.mul = P.Mul()
|
|
137
|
+
self.is_ascend = True
|
|
138
|
+
self.split_dim = 128
|
|
139
|
+
if context.get_context("device_target") == "Ascend":
|
|
140
|
+
self._process_ascend_dense_thor(out_channels, in_channels)
|
|
141
|
+
else:
|
|
142
|
+
self.is_ascend = False
|
|
143
|
+
self.cube_matmul = P.MatMul(transpose_a=True)
|
|
144
|
+
self.getG = P.InsertGradientOf(self.save_gradient)
|
|
145
|
+
|
|
146
|
+
def _process_ascend_dense_thor(self, out_channels, in_channels):
|
|
147
|
+
"""process ascend dense thor"""
|
|
148
|
+
self.matmul = P.MatMul(transpose_b=True)
|
|
149
|
+
self.cube_matmul = P.CusMatMulCube(transpose_a=True)
|
|
150
|
+
self.cast = P.Cast()
|
|
151
|
+
self.is_nsp_layer = (out_channels == 2)
|
|
152
|
+
|
|
153
|
+
def save_gradient(self, dout):
|
|
154
|
+
"""
|
|
155
|
+
this function only for thor optimizer
|
|
156
|
+
save_gradient
|
|
157
|
+
"""
|
|
158
|
+
out = dout
|
|
159
|
+
if self.is_ascend:
|
|
160
|
+
if not self.is_nsp_layer:
|
|
161
|
+
shape = self.shape(dout)
|
|
162
|
+
normalizer = self.cast(shape[0], mstype.float32)
|
|
163
|
+
matrix_g = self.cube_matmul(dout, dout)
|
|
164
|
+
matrix_g = self.mul(matrix_g, 1.0 / normalizer)
|
|
165
|
+
self.matrix_g = matrix_g
|
|
166
|
+
else:
|
|
167
|
+
dout_shape = self.shape(dout)
|
|
168
|
+
normalizer = dout_shape[0]
|
|
169
|
+
matrix_g = self.cube_matmul(dout, dout)
|
|
170
|
+
matrix_g = self.mul(matrix_g, 1.0 / normalizer)
|
|
171
|
+
self.matrix_g = matrix_g
|
|
172
|
+
return out
|
|
173
|
+
|
|
174
|
+
def construct(self, x):
|
|
175
|
+
if self.thor:
|
|
176
|
+
if self.is_ascend:
|
|
177
|
+
inputs = self.cube_matmul(x, x)
|
|
178
|
+
shape = self.shape(x)
|
|
179
|
+
normalizer = self.cast(shape[0], mstype.float32)
|
|
180
|
+
matrix_a = self.mul(inputs, 1.0 / normalizer)
|
|
181
|
+
self.matrix_a = matrix_a
|
|
182
|
+
else:
|
|
183
|
+
inputs = self.cube_matmul(x, x)
|
|
184
|
+
inputs_shape = self.shape(inputs)
|
|
185
|
+
normalizer = inputs_shape[0]
|
|
186
|
+
matrix_a = self.mul(inputs, 1.0 / normalizer)
|
|
187
|
+
self.matrix_a = matrix_a
|
|
188
|
+
x = self.matmul(x, self.weight)
|
|
189
|
+
x = self.getG(x)
|
|
190
|
+
else:
|
|
191
|
+
x = self.matmul(x, self.weight)
|
|
192
|
+
if self.has_bias:
|
|
193
|
+
x = self.bias_add(x, self.bias)
|
|
194
|
+
if self.activation_flag:
|
|
195
|
+
x = self.activation(x)
|
|
196
|
+
# We use Depend to make 'self.matrix_g' as primal graph's weight parameter,
|
|
197
|
+
# for it's used in 'save_gradient' gradient procedure.
|
|
198
|
+
return F.depend(x, self.matrix_g)
|
|
199
|
+
|
|
200
|
+
def extend_repr(self):
|
|
201
|
+
s = 'input_channels={}, output_channels={}'.format(self.in_channels, self.out_channels)
|
|
202
|
+
if self.has_bias:
|
|
203
|
+
s += ', has_bias={}'.format(self.has_bias)
|
|
204
|
+
return s
|
|
205
|
+
|
|
206
|
+
|
|
207
|
+
class _ConvThor(Cell):
|
|
208
|
+
"""
|
|
209
|
+
Applies a N-D convolution over an input signal composed of multiple input planes.
|
|
210
|
+
"""
|
|
211
|
+
|
|
212
|
+
def __init__(self, in_channels, out_channels, kernel_size, stride, pad_mode,
|
|
213
|
+
padding, dilation, group, has_bias, weight_init, bias_init, transposed=False):
|
|
214
|
+
"""Initialize _ConvThor."""
|
|
215
|
+
super(_ConvThor, self).__init__()
|
|
216
|
+
self.in_channels = Validator.check_positive_int(in_channels, "in_channels", self.cls_name)
|
|
217
|
+
self.out_channels = Validator.check_positive_int(out_channels, "out_channels", self.cls_name)
|
|
218
|
+
self.kernel_size = kernel_size
|
|
219
|
+
self.stride = stride
|
|
220
|
+
self.pad_mode = pad_mode
|
|
221
|
+
self.bias_init = bias_init
|
|
222
|
+
if isinstance(padding, tuple):
|
|
223
|
+
for pad in padding:
|
|
224
|
+
Validator.check_non_negative_int(pad, 'padding item', self.cls_name)
|
|
225
|
+
self.padding = padding
|
|
226
|
+
elif isinstance(padding, int):
|
|
227
|
+
Validator.check_non_negative_int(padding, 'padding', self.cls_name)
|
|
228
|
+
self.padding = padding
|
|
229
|
+
else:
|
|
230
|
+
raise TypeError(f"For '{self.cls_name}', the type of 'padding' must be int/tuple(int), but got "
|
|
231
|
+
f"{type(padding).__name__}.")
|
|
232
|
+
|
|
233
|
+
self.dilation = dilation
|
|
234
|
+
self.group = Validator.check_positive_int(group, "group", self.cls_name)
|
|
235
|
+
self.has_bias = has_bias
|
|
236
|
+
self.__validate_kernel_size(kernel_size)
|
|
237
|
+
self.__validate_stride(stride)
|
|
238
|
+
self.__validate_dilation(dilation)
|
|
239
|
+
if in_channels % group != 0:
|
|
240
|
+
raise ValueError(f"For '{self.cls_name}', the 'in_channels' must be divisible by 'group', but got "
|
|
241
|
+
f"'in_channels': {in_channels} and 'group': {group}.")
|
|
242
|
+
if out_channels % group != 0:
|
|
243
|
+
raise ValueError(f"For '{self.cls_name}', the 'out_channels' must be divisible by 'group', but got "
|
|
244
|
+
f"'out_channels': {out_channels} and 'group': {group}.")
|
|
245
|
+
if not transposed:
|
|
246
|
+
shape = [out_channels, in_channels // group, *kernel_size]
|
|
247
|
+
else:
|
|
248
|
+
shape = [in_channels, out_channels // group, *kernel_size]
|
|
249
|
+
self.weight = Parameter(initializer(weight_init, shape), name='weight')
|
|
250
|
+
|
|
251
|
+
if Validator.check_bool(has_bias, "has_bias", self.cls_name):
|
|
252
|
+
self.bias = Parameter(initializer(self.bias_init, [out_channels]), name='bias')
|
|
253
|
+
else:
|
|
254
|
+
if self.bias_init != 'zeros':
|
|
255
|
+
logger.warning("Value of 'has_bias' is False, value of 'bias_init' will be ignored.")
|
|
256
|
+
self.bias = None
|
|
257
|
+
|
|
258
|
+
def __validate_kernel_size(self, kernel_size):
|
|
259
|
+
"""validate kernel size."""
|
|
260
|
+
if (not isinstance(kernel_size[0], int)) or (not isinstance(kernel_size[1], int)) or \
|
|
261
|
+
isinstance(kernel_size[0], bool) or isinstance(kernel_size[1], bool) or \
|
|
262
|
+
kernel_size[0] < 1 or kernel_size[1] < 1:
|
|
263
|
+
raise ValueError(f"For '{self.cls_name}', all elements in 'kernel_size' must be int or tuple and "
|
|
264
|
+
f"equal to or greater than 1, but got 'kernel_size': {kernel_size}.")
|
|
265
|
+
|
|
266
|
+
def __validate_stride(self, stride):
|
|
267
|
+
"""validate stride."""
|
|
268
|
+
if (not isinstance(stride[0], int)) or (not isinstance(stride[1], int)) or \
|
|
269
|
+
isinstance(stride[0], bool) or isinstance(stride[1], bool) or stride[0] < 1 or stride[1] < 1:
|
|
270
|
+
raise ValueError(f"For '{self.cls_name}', all elements in 'stride' must be int or tuple and "
|
|
271
|
+
f"equal to or greater than 1, but got 'stride': {stride}.")
|
|
272
|
+
|
|
273
|
+
def __validate_dilation(self, dilation):
|
|
274
|
+
"""validate dilation."""
|
|
275
|
+
if (not isinstance(dilation[0], int)) or (not isinstance(dilation[1], int)) or \
|
|
276
|
+
isinstance(dilation[0], bool) or isinstance(dilation[1], bool) or dilation[0] < 1 or dilation[1] < 1:
|
|
277
|
+
raise ValueError(f"For '{self.cls_name}', all elements in 'dilation' must be int or tuple and "
|
|
278
|
+
f"equal to or greater than 1, but got 'dilation': {dilation}.")
|
|
279
|
+
|
|
280
|
+
|
|
281
|
+
class Conv2dThor(_ConvThor):
|
|
282
|
+
r"""
|
|
283
|
+
2D convolution layer and saving the information needed for THOR.
|
|
284
|
+
|
|
285
|
+
|
|
286
|
+
Applies a 2D convolution over an input tensor which is typically of shape :math:`(N, C_{in}, H_{in}, W_{in})`,
|
|
287
|
+
where :math:`N` is batch size, :math:`C_{in}` is channel number, and :math:`H_{in}, W_{in})` are height and width.
|
|
288
|
+
And saves the information A and G in the 2D convolution layer needed for THOR.
|
|
289
|
+
|
|
290
|
+
For each batch of shape :math:`(C_{in}, H_{in}, W_{in})`, the formula is defined as:
|
|
291
|
+
|
|
292
|
+
|
|
293
|
+
.. math::
|
|
294
|
+
|
|
295
|
+
out_j = \sum_{i=0}^{C_{in} - 1} ccor(W_{ij}, X_i) + b_j,
|
|
296
|
+
|
|
297
|
+
where :math:`ccor` is the cross-correlation operator, :math:`C_{in}` is the input channel number, :math:`j` ranges
|
|
298
|
+
from :math:`0` to :math:`C_{out} - 1`, :math:`W_{ij}` corresponds to the :math:`i`-th channel of the :math:`j`-th
|
|
299
|
+
filter and :math:`out_{j}` corresponds to the :math:`j`-th channel of the output. :math:`W_{ij}` is a slice
|
|
300
|
+
of kernel and it has shape :math:`(\text{ks_h}, \text{ks_w})`, where :math:`\text{ks_h}` and
|
|
301
|
+
:math:`\text{ks_w}` are the height and width of the convolution kernel. The full kernel has shape
|
|
302
|
+
:math:`(C_{out}, C_{in} // \text{group}, \text{ks_h}, \text{ks_w})`, where group is the group number
|
|
303
|
+
to split the input `x` in the channel dimension.
|
|
304
|
+
|
|
305
|
+
If the 'pad_mode' is set to be "valid", the output height and width will be
|
|
306
|
+
:math:`\left \lfloor{1 + \frac{H_{in} + 2 \times \text{padding} - \text{ks_h} -
|
|
307
|
+
(\text{ks_h} - 1) \times (\text{dilation} - 1) }{\text{stride}}} \right \rfloor` and
|
|
308
|
+
:math:`\left \lfloor{1 + \frac{W_{in} + 2 \times \text{padding} - \text{ks_w} -
|
|
309
|
+
(\text{ks_w} - 1) \times (\text{dilation} - 1) }{\text{stride}}} \right \rfloor` respectively.
|
|
310
|
+
|
|
311
|
+
Note:
|
|
312
|
+
For Ascend, the type of inputs should be subclass of Tensor[Float16], Tensor[Int8].
|
|
313
|
+
For GPU, the type of inputs should be subclass of Tensor[Float32].
|
|
314
|
+
|
|
315
|
+
Args:
|
|
316
|
+
in_channels (int): The number of the input channel :math:`C_{in}`.
|
|
317
|
+
out_channels (int): The number of the output channel :math:`C_{out}`.
|
|
318
|
+
kernel_size (Union[int, tuple[int]]): The data type is int or a tuple of 2 integers. Specifies the height
|
|
319
|
+
and width of the 2D convolution window. Single int means that the value is not only the height, but also
|
|
320
|
+
the width of the kernel. A tuple of 2 integers means the height and the width of the kernel respectively.
|
|
321
|
+
stride (Union[int, tuple[int]]): The distance of kernel moving, an int number represents the height and width
|
|
322
|
+
of movement, or a tuple of two int numbers that represent height and width of movement, respectively.
|
|
323
|
+
Default: ``1`` .
|
|
324
|
+
pad_mode (str): Specifies padding mode. The optional values are
|
|
325
|
+
``"same"`` , ``"valid"`` , ``"pad"`` . Default: ``"same"`` .
|
|
326
|
+
|
|
327
|
+
- ``"same"``: Adopts the way of completion. The shape of the output will be the same as
|
|
328
|
+
the `x`. The total number of padding will be calculated in horizontal and vertical
|
|
329
|
+
directions and evenly distributed to top and bottom, left and right if possible. Otherwise, the
|
|
330
|
+
last extra padding will be done from the bottom and the right side. If this mode is set, `padding`
|
|
331
|
+
must be 0.
|
|
332
|
+
|
|
333
|
+
- ``"valid"``: Adopts the way of discarding. The possible largest height and width of output will be
|
|
334
|
+
returned without padding. Extra pixels will be discarded. If this mode is set, `padding` must be 0.
|
|
335
|
+
|
|
336
|
+
- ``"pad"``: Implicit paddings on both sides of the input `x`. The number of `padding` will be padded to
|
|
337
|
+
the input Tensor borders. `padding` must be greater than or equal to 0.
|
|
338
|
+
|
|
339
|
+
padding (Union[int, tuple[int]]): Implicit paddings on both sides of the input `x`. If `padding` is an integer,
|
|
340
|
+
the paddings of top, bottom, left and right are the same, equal to padding. If `padding` is a tuple
|
|
341
|
+
with four integers, the paddings of top, bottom, left and right will be equal to padding[0],
|
|
342
|
+
padding[1], padding[2], and padding[3] accordingly. Default: ``0`` .
|
|
343
|
+
dilation (Union[int, tuple[int]]): The data type is int or a tuple of 2 integers. Specifies the dilation rate
|
|
344
|
+
to use for dilated convolution. If set to be :math:`k > 1`, there will
|
|
345
|
+
be :math:`k - 1` pixels skipped for each sampling location. Its value must
|
|
346
|
+
be greater or equal to 1 and bounded by the height and width of the input `x`.
|
|
347
|
+
Default: ``1`` .
|
|
348
|
+
group (int): Splits filter into groups, `in_ channels` and `out_channels` must be
|
|
349
|
+
divisible by the number of groups. If the group is equal to `in_channels` and `out_channels`,
|
|
350
|
+
this 2D convolution layer also can be called 2D depthwise convolution layer. Default: ``1`` .
|
|
351
|
+
has_bias (bool): Specifies whether the layer uses a bias vector. Default: ``False`` .
|
|
352
|
+
weight_init (Union[Tensor, str, Initializer, numbers.Number]): Initializes the convolution kernel.
|
|
353
|
+
It can be a Tensor, a string, an Initializer or a number. When a string is specified,
|
|
354
|
+
values from ``'TruncatedNormal'`` , ``'Normal'`` , ``'Uniform'`` , ``'HeUniform'`` and ``'XavierUniform'``
|
|
355
|
+
distributions as well as constant ``'One'`` and ``'Zero'`` distributions are possible. Alias
|
|
356
|
+
``'xavier_uniform'`` , ``'he_uniform'`` , ``'ones'`` and ``'zeros'`` are acceptable. Uppercase and
|
|
357
|
+
lowercase are both acceptable. Refer to the values of Initializer for more details. Default: ``'normal'`` .
|
|
358
|
+
bias_init (Union[Tensor, str, Initializer, numbers.Number]): Initializes the bias vector. Possible
|
|
359
|
+
Initializer and string are the same as 'weight_init'. Refer to the values of
|
|
360
|
+
Initializer for more details. Default: ``'zeros'`` .
|
|
361
|
+
|
|
362
|
+
Inputs:
|
|
363
|
+
- **x** (Tensor) - Tensor of shape :math:`(N, C_{in}, H_{in}, W_{in})`.
|
|
364
|
+
|
|
365
|
+
Outputs:
|
|
366
|
+
Tensor of shape :math:`(N, C_{out}, H_{out}, W_{out})`.
|
|
367
|
+
|
|
368
|
+
Supported Platforms:
|
|
369
|
+
``Ascend`` ``GPU``
|
|
370
|
+
|
|
371
|
+
Examples:
|
|
372
|
+
>>> import mindspore as ms
|
|
373
|
+
>>> import numpy as np
|
|
374
|
+
>>> net = ms.nn.Conv2dThor(120, 240, 4, has_bias=False, weight_init='normal')
|
|
375
|
+
>>> # for Ascend
|
|
376
|
+
>>> x = ms.Tensor(np.ones([1, 120, 1024, 640]), ms.float16)
|
|
377
|
+
>>> print(net(x).shape)
|
|
378
|
+
(1, 240, 1024, 640)
|
|
379
|
+
"""
|
|
380
|
+
|
|
381
|
+
def __init__(self, in_channels, out_channels, kernel_size, stride=1,
|
|
382
|
+
pad_mode='same', padding=0, dilation=1, group=1, has_bias=False,
|
|
383
|
+
weight_init='normal', bias_init='zeros'):
|
|
384
|
+
"""Initialize Conv2dThor."""
|
|
385
|
+
kernel_size = twice(kernel_size)
|
|
386
|
+
stride = twice(stride)
|
|
387
|
+
self._dilation = dilation
|
|
388
|
+
dilation = twice(dilation)
|
|
389
|
+
super(Conv2dThor, self).__init__(in_channels, out_channels, kernel_size,
|
|
390
|
+
stride, pad_mode, padding, dilation, group, has_bias, weight_init, bias_init)
|
|
391
|
+
self.conv2d = P.Conv2D(out_channel=self.out_channels, kernel_size=self.kernel_size,
|
|
392
|
+
mode=1, pad_mode=self.pad_mode, pad=self.padding,
|
|
393
|
+
stride=self.stride, dilation=self.dilation, group=self.group)
|
|
394
|
+
self._init_depthwise_conv2d(weight_init)
|
|
395
|
+
self.bias_add = P.BiasAdd()
|
|
396
|
+
self.thor = True
|
|
397
|
+
self.hw = kernel_size[0] * kernel_size[1]
|
|
398
|
+
self.matrix_a_dim = self.in_channels * self.kernel_size[0] * self.kernel_size[1]
|
|
399
|
+
self.matrix_g_dim = self.out_channels
|
|
400
|
+
self.shape = P.Shape()
|
|
401
|
+
self.reshape = P.Reshape()
|
|
402
|
+
self.mul = P.Mul()
|
|
403
|
+
self.cast = P.Cast()
|
|
404
|
+
self.a_normalizer = Parameter(initializer(1, [1], mstype.float32), name="a_normalizer", requires_grad=False)
|
|
405
|
+
self.g_normalizer = Parameter(initializer(1, [1], mstype.float32), name="g_normalizer", requires_grad=False)
|
|
406
|
+
self.is_ascend = True
|
|
407
|
+
if context.get_context("device_target") == "Ascend":
|
|
408
|
+
self._process_ascend_conv2d_thor(kernel_size, stride)
|
|
409
|
+
else:
|
|
410
|
+
self.is_ascend = False
|
|
411
|
+
self.img2col = ThorIm2Col(kernel_size=kernel_size, stride=stride, pad_mode="same")
|
|
412
|
+
self.matmul = P.MatMul(transpose_b=True)
|
|
413
|
+
self.reduce_mean = P.ReduceMean(keep_dims=False)
|
|
414
|
+
self.matrix_a_cov = Parameter(Tensor(np.zeros([self.matrix_a_dim, self.matrix_a_dim]).astype(np.float32)),
|
|
415
|
+
name='matrix_a', requires_grad=False)
|
|
416
|
+
self.matrix_g_cov = Parameter(Tensor(np.zeros([self.matrix_g_dim, self.matrix_g_dim]).astype(np.float32)),
|
|
417
|
+
name='matrix_g', requires_grad=False)
|
|
418
|
+
self.getG = P.InsertGradientOf(self.save_gradient)
|
|
419
|
+
|
|
420
|
+
def _process_ascend_conv2d_thor(self, kernel_size, stride):
|
|
421
|
+
"""process ascend conv2d thor"""
|
|
422
|
+
ksizes = (1, kernel_size[0], kernel_size[1], 1)
|
|
423
|
+
strides = (1, stride[0], stride[1], 1)
|
|
424
|
+
ksizes_tbe = (kernel_size[0], kernel_size[1])
|
|
425
|
+
self.img2col = P.CusImg2Col(ksizes=ksizes, strides=strides)
|
|
426
|
+
self.transpose = P.Transpose()
|
|
427
|
+
self.reshape = P.Reshape()
|
|
428
|
+
self.cube_matmul = P.CusMatMulCube(transpose_a=True)
|
|
429
|
+
self.diag_block_dim = 128
|
|
430
|
+
self.matrix_a_cov = Parameter(Tensor(np.eye(self.matrix_a_dim).astype(np.float32)),
|
|
431
|
+
name='matrix_a', requires_grad=False)
|
|
432
|
+
self.matrix_g_cov = Parameter(Tensor(np.eye(self.matrix_g_dim).astype(np.float32)),
|
|
433
|
+
name='matrix_g', requires_grad=False)
|
|
434
|
+
self.slice = P.Slice()
|
|
435
|
+
self.im2col = P.NewIm2Col(ksizes=ksizes_tbe, strides=stride[0], padding_mode="SAME")
|
|
436
|
+
|
|
437
|
+
def _init_depthwise_conv2d(self, weight_init):
|
|
438
|
+
"""Initialize depthwise conv2d op"""
|
|
439
|
+
if context.get_context("device_target") == "Ascend" and self.group > 1:
|
|
440
|
+
self.dilation = self._dilation
|
|
441
|
+
Validator.check_int('group', self.group, self.in_channels, Validator.EQ, self.cls_name)
|
|
442
|
+
Validator.check_int('group', self.group, self.out_channels, Validator.EQ, self.cls_name)
|
|
443
|
+
self.conv2d = P.DepthwiseConv2dNative(channel_multiplier=1,
|
|
444
|
+
kernel_size=self.kernel_size,
|
|
445
|
+
pad_mode=self.pad_mode,
|
|
446
|
+
pad=self.padding,
|
|
447
|
+
stride=self.stride,
|
|
448
|
+
dilation=self.dilation)
|
|
449
|
+
weight_shape = [1, self.in_channels, *self.kernel_size]
|
|
450
|
+
self.weight_init = weight_init
|
|
451
|
+
if isinstance(weight_init, Tensor):
|
|
452
|
+
self.weight_init = weight_init.swapaxes(0, 1)
|
|
453
|
+
if isinstance(weight_init, Initializer):
|
|
454
|
+
self.weight_init.shape = weight_shape
|
|
455
|
+
self.weight = Parameter(initializer(self.weight_init, weight_shape), name='weight')
|
|
456
|
+
|
|
457
|
+
def save_gradient(self, dout):
|
|
458
|
+
"""save_gradient"""
|
|
459
|
+
out = dout
|
|
460
|
+
if self.is_ascend:
|
|
461
|
+
dout_shape = self.shape(dout)
|
|
462
|
+
dout = self.transpose(dout, (0, 2, 3, 1))
|
|
463
|
+
dout = self.reshape(dout, (-1, dout_shape[1]))
|
|
464
|
+
dout_shape = self.shape(dout)
|
|
465
|
+
normalizer = dout_shape[0]
|
|
466
|
+
matrix_g = self.cube_matmul(dout, dout)
|
|
467
|
+
normalizer = self.cast(normalizer, mstype.float32)
|
|
468
|
+
matrix_g = self.mul(matrix_g, 1.0 / normalizer)
|
|
469
|
+
self.g_normalizer = self.reshape(Tensor(normalizer), (1,))
|
|
470
|
+
self.matrix_g_cov = matrix_g
|
|
471
|
+
else:
|
|
472
|
+
dout = self.reduce_mean(dout, 0)
|
|
473
|
+
dout_shape = self.shape(dout)
|
|
474
|
+
dout = self.reshape(dout, (dout_shape[0], -1))
|
|
475
|
+
dout_shape = self.shape(dout)
|
|
476
|
+
normalizer = dout_shape[1]
|
|
477
|
+
dout = self.cast(dout, mstype.float32)
|
|
478
|
+
matrix_g = self.matmul(dout, dout)
|
|
479
|
+
matrix_g = self.mul(matrix_g, 1.0 / normalizer)
|
|
480
|
+
self.g_normalizer = self.reshape(Tensor(normalizer), (1,))
|
|
481
|
+
self.matrix_g_cov = matrix_g
|
|
482
|
+
return out
|
|
483
|
+
|
|
484
|
+
def construct(self, x):
|
|
485
|
+
if self.thor:
|
|
486
|
+
if self.is_ascend:
|
|
487
|
+
matrix_a = self.im2col(x)
|
|
488
|
+
matrix_a_shape = self.shape(matrix_a)
|
|
489
|
+
y = matrix_a_shape[3]
|
|
490
|
+
matrix_a = self.reshape(matrix_a, (-1, y))
|
|
491
|
+
matrix_a_shape = self.shape(matrix_a)
|
|
492
|
+
normalizer = matrix_a_shape[0]
|
|
493
|
+
matrix_a = self.cube_matmul(matrix_a, matrix_a)
|
|
494
|
+
normalizer = self.cast(normalizer, mstype.float32)
|
|
495
|
+
matrix_a = self.mul(matrix_a, 1.0 / normalizer)
|
|
496
|
+
self.a_normalizer = self.reshape(Tensor(normalizer), (1,))
|
|
497
|
+
self.matrix_a_cov = matrix_a
|
|
498
|
+
weight = self.cast(self.weight, mstype.float16)
|
|
499
|
+
output = self.conv2d(x, weight)
|
|
500
|
+
output = self.getG(output)
|
|
501
|
+
else:
|
|
502
|
+
matrix_a = self.img2col(x)
|
|
503
|
+
matrix_a_shape = self.shape(matrix_a)
|
|
504
|
+
matrix_a = self.reshape(matrix_a, (matrix_a_shape[0] * matrix_a_shape[1] * matrix_a_shape[2],
|
|
505
|
+
matrix_a_shape[3], -1))
|
|
506
|
+
matrix_a = self.reduce_mean(matrix_a, 1)
|
|
507
|
+
matrix_a_shape = self.shape(matrix_a)
|
|
508
|
+
normalizer = matrix_a_shape[1]
|
|
509
|
+
matrix_a = self.cast(matrix_a, mstype.float32)
|
|
510
|
+
matrix_a = self.matmul(matrix_a, matrix_a)
|
|
511
|
+
matrix_a = self.mul(matrix_a, 1.0 / normalizer)
|
|
512
|
+
self.a_normalizer = self.reshape(Tensor(normalizer), (1,))
|
|
513
|
+
self.matrix_a_cov = matrix_a
|
|
514
|
+
output = self.conv2d(x, self.weight)
|
|
515
|
+
output = self.getG(output)
|
|
516
|
+
else:
|
|
517
|
+
if self.is_ascend:
|
|
518
|
+
weight = self.cast(self.weight, mstype.float16)
|
|
519
|
+
output = self.conv2d(x, weight)
|
|
520
|
+
else:
|
|
521
|
+
output = self.conv2d(x, self.weight)
|
|
522
|
+
if self.has_bias:
|
|
523
|
+
if self.is_ascend:
|
|
524
|
+
bias = self.cast(self.bias, mstype.float16)
|
|
525
|
+
output = self.bias_add(output, bias)
|
|
526
|
+
else:
|
|
527
|
+
output = self.bias_add(output, self.bias)
|
|
528
|
+
return output
|
|
529
|
+
|
|
530
|
+
def extend_repr(self):
|
|
531
|
+
s = 'input_channels={}, output_channels={}, kernel_size={}, stride={}, ' \
|
|
532
|
+
'pad_mode={}, padding={}, dilation={}, group={}, has_bias={}, ' \
|
|
533
|
+
'bias_init={}'.format(self.in_channels, self.out_channels, self.kernel_size,
|
|
534
|
+
self.stride, self.pad_mode, self.padding, self.dilation,
|
|
535
|
+
self.group, self.has_bias, self.bias_init)
|
|
536
|
+
return s
|
|
537
|
+
|
|
538
|
+
|
|
539
|
+
class EmbeddingThor(Cell):
|
|
540
|
+
r"""
|
|
541
|
+
A simple lookup table that stores embeddings of a fixed dictionary and size
|
|
542
|
+
and saving the information needed for THOR.
|
|
543
|
+
|
|
544
|
+
This module is often used to store word embeddings and retrieve them using
|
|
545
|
+
indices. The input to the module is a list of indices, and the output is
|
|
546
|
+
the corresponding word embeddings. And saves the information A and G in the dense connected layer
|
|
547
|
+
needed for THOR.
|
|
548
|
+
|
|
549
|
+
Note:
|
|
550
|
+
When 'use_one_hot' is set to True, the type of the input `x` must be mindspore.int32.
|
|
551
|
+
|
|
552
|
+
Args:
|
|
553
|
+
vocab_size (int): The size of the dictionary of embeddings.
|
|
554
|
+
embedding_size (int): The size of each embedding vector.
|
|
555
|
+
use_one_hot (bool): Specifies whether to apply one_hot encoding form. Default: ``False`` .
|
|
556
|
+
embedding_table (Union[Tensor, str, Initializer, numbers.Number]): Initializes the embedding_table.
|
|
557
|
+
Refer to class `initializer` for the values of string when a string is specified. Default: ``'normal'`` .
|
|
558
|
+
dtype (:class:`mindspore.dtype`): Data type of input `x`. Default: ``mindspore.float32`` .
|
|
559
|
+
padding_idx (int, None): When the padding_idx encounters index, the output embedding vector of this index
|
|
560
|
+
will be initialized to zero. Default: ``None`` . The feature is inactivated.
|
|
561
|
+
Inputs:
|
|
562
|
+
- **x** (Tensor) - Tensor of input shape :math:`(\text{batch_size}, \text{x_length})`. The elements of
|
|
563
|
+
the Tensor must be integer and not larger than vocab_size. Otherwise the corresponding embedding vector will
|
|
564
|
+
be zero.
|
|
565
|
+
|
|
566
|
+
Outputs:
|
|
567
|
+
Tensor of output shape :math:`(\text{batch_size}, \text{x_length}, \text{embedding_size})`.
|
|
568
|
+
|
|
569
|
+
Supported Platforms:
|
|
570
|
+
``Ascend`` ``GPU``
|
|
571
|
+
|
|
572
|
+
Examples:
|
|
573
|
+
>>> import mindspore as ms
|
|
574
|
+
>>> import numpy as np
|
|
575
|
+
>>> net = ms.nn.EmbeddingThor(20000, 768, True)
|
|
576
|
+
>>> x = ms.Tensor(np.ones([8, 128]), ms.int32)
|
|
577
|
+
>>>
|
|
578
|
+
>>> # Maps the input word IDs to word embedding.
|
|
579
|
+
>>> output = net(x)
|
|
580
|
+
>>> output.shape
|
|
581
|
+
(8, 128, 768)
|
|
582
|
+
"""
|
|
583
|
+
|
|
584
|
+
def __init__(self, vocab_size, embedding_size, use_one_hot=False, embedding_table='normal',
|
|
585
|
+
dtype=mstype.float32, padding_idx=None):
|
|
586
|
+
"""Initialize EmbeddingThor."""
|
|
587
|
+
super(EmbeddingThor, self).__init__()
|
|
588
|
+
self.vocab_size = Validator.check_value_type('vocab_size', vocab_size, [int], self.cls_name)
|
|
589
|
+
self.embedding_size = Validator.check_value_type('embedding_size', embedding_size, [int], self.cls_name)
|
|
590
|
+
Validator.check_value_type('use_one_hot', use_one_hot, [bool], self.cls_name)
|
|
591
|
+
Validator.check_subclass("dtype", dtype, mstype.number_type, self.cls_name)
|
|
592
|
+
self.use_one_hot = use_one_hot
|
|
593
|
+
self.dtype = dtype
|
|
594
|
+
self.init_tensor = initializer(embedding_table, [vocab_size, embedding_size])
|
|
595
|
+
self.padding_idx = padding_idx
|
|
596
|
+
if padding_idx is not None:
|
|
597
|
+
self.padding_idx = Validator.check_int_range(padding_idx, 0, vocab_size, Validator.INC_BOTH,
|
|
598
|
+
"padding_idx", self.cls_name)
|
|
599
|
+
self.init_tensor[self.padding_idx] = 0
|
|
600
|
+
self.embedding_table = Parameter(self.init_tensor, name='embedding_table')
|
|
601
|
+
self.expand = P.ExpandDims()
|
|
602
|
+
self.reshape_flat = P.Reshape()
|
|
603
|
+
self.shp_flat = (-1,)
|
|
604
|
+
self.gather = P.Gather()
|
|
605
|
+
self.one_hot = P.OneHot()
|
|
606
|
+
self.on_value = Tensor(1.0, self.dtype)
|
|
607
|
+
self.off_value = Tensor(0.0, self.dtype)
|
|
608
|
+
self.array_mul = P.MatMul()
|
|
609
|
+
self.reshape = P.Reshape()
|
|
610
|
+
self.get_shp = P.Shape()
|
|
611
|
+
self.thor = True
|
|
612
|
+
self.matrix_a = Parameter(Tensor(np.zeros([vocab_size]).astype(np.float32)),
|
|
613
|
+
name='matrix_a', requires_grad=False)
|
|
614
|
+
self.matrix_g = Parameter(Tensor(np.zeros([embedding_size, embedding_size]).astype(np.float32)),
|
|
615
|
+
name="matrix_g", requires_grad=False)
|
|
616
|
+
self.reduce_sum = P.ReduceSum(keep_dims=False)
|
|
617
|
+
self.getG = P.InsertGradientOf(self.save_gradient)
|
|
618
|
+
self.cast = P.Cast()
|
|
619
|
+
if context.get_context("device_target") == "Ascend":
|
|
620
|
+
self.cube_matmul = P.CusMatMulCube(transpose_a=True)
|
|
621
|
+
else:
|
|
622
|
+
self.cube_matmul = P.MatMul(transpose_a=True)
|
|
623
|
+
self.mul = P.Mul()
|
|
624
|
+
|
|
625
|
+
def save_gradient(self, dout):
|
|
626
|
+
"""
|
|
627
|
+
this function only for thor optimizer
|
|
628
|
+
save_gradient
|
|
629
|
+
"""
|
|
630
|
+
out = dout
|
|
631
|
+
shape = self.get_shp(dout)
|
|
632
|
+
normalizer = self.cast(shape[0], mstype.float32)
|
|
633
|
+
matrix_g = self.cube_matmul(dout, dout)
|
|
634
|
+
matrix_g = self.mul(matrix_g, 1.0 / normalizer)
|
|
635
|
+
self.matrix_g = matrix_g
|
|
636
|
+
return out
|
|
637
|
+
|
|
638
|
+
def construct(self, ids):
|
|
639
|
+
extended_ids = self.expand(ids, -1)
|
|
640
|
+
out_shape = self.get_shp(ids) + (self.embedding_size,)
|
|
641
|
+
flat_ids = self.reshape_flat(extended_ids, self.shp_flat)
|
|
642
|
+
|
|
643
|
+
if self.use_one_hot:
|
|
644
|
+
one_hot_ids = self.one_hot(flat_ids, self.vocab_size, self.on_value, self.off_value)
|
|
645
|
+
output_for_reshape = self.array_mul(one_hot_ids, self.embedding_table)
|
|
646
|
+
else:
|
|
647
|
+
if self.thor:
|
|
648
|
+
one_hot_ids = self.one_hot(flat_ids, self.vocab_size, self.on_value, self.off_value)
|
|
649
|
+
matrix_a = self.reduce_sum(one_hot_ids, 0)
|
|
650
|
+
self.matrix_a = matrix_a
|
|
651
|
+
output_for_reshape = self.gather(self.embedding_table, flat_ids, 0)
|
|
652
|
+
output_for_reshape = self.getG(output_for_reshape)
|
|
653
|
+
else:
|
|
654
|
+
output_for_reshape = self.gather(self.embedding_table, flat_ids, 0)
|
|
655
|
+
|
|
656
|
+
output = self.reshape(output_for_reshape, out_shape)
|
|
657
|
+
# We use Depend to make 'self.matrix_g' as primal graph's weight parameter,
|
|
658
|
+
# for it's used in 'save_gradient' gradient procedure.
|
|
659
|
+
return F.depend(output, self.matrix_g)
|
|
660
|
+
|
|
661
|
+
def extend_repr(self):
|
|
662
|
+
s = 'vocab_size={}, embedding_size={}, use_one_hot={}, embedding_table={}, dtype={}, padding_idx={}'.format(
|
|
663
|
+
self.vocab_size, self.embedding_size, self.use_one_hot, self.embedding_table, self.dtype, self.padding_idx)
|
|
664
|
+
return s
|
|
665
|
+
|
|
666
|
+
|
|
667
|
+
@constexpr
|
|
668
|
+
def _make_axis_range(start, end):
|
|
669
|
+
axis = tuple(range(start, end))
|
|
670
|
+
return axis
|
|
671
|
+
|
|
672
|
+
|
|
673
|
+
class EmbeddingLookupThor(Cell):
|
|
674
|
+
r"""
|
|
675
|
+
Returns a slice of the input tensor based on the specified indices
|
|
676
|
+
and saving the information needed for THOR.
|
|
677
|
+
|
|
678
|
+
This module has the same function as EmbeddingLookup, but additionally saves the information A and G in the
|
|
679
|
+
embeddinglookup layer needed for THOR.
|
|
680
|
+
|
|
681
|
+
|
|
682
|
+
Args:
|
|
683
|
+
vocab_size (int): The size of the dictionary of embeddings.
|
|
684
|
+
embedding_size (int): The size of each embedding vector.
|
|
685
|
+
param_init (Union[Tensor, str, Initializer, numbers.Number]): Initializer for the embedding_table.
|
|
686
|
+
Refer to class `initializer` for the values of string when a string is specified.
|
|
687
|
+
Default: ``'normal'`` .
|
|
688
|
+
target (str): Specifies the target where the op is executed. The value must in
|
|
689
|
+
[ ``'DEVICE'`` , ``'CPU'`` ]. Default: ``'CPU'`` .
|
|
690
|
+
slice_mode (str): The slicing way in semi_auto_parallel/auto_parallel. The value must get through
|
|
691
|
+
nn.EmbeddingLookup. Default: nn.EmbeddingLookup.BATCH_SLICE.
|
|
692
|
+
manual_shapes (tuple): The accompaniment array in field slice mode.
|
|
693
|
+
max_norm (Union[float, None]): A maximum clipping value. The data type must be float16, float32 or None.
|
|
694
|
+
Default: ``None`` .
|
|
695
|
+
sparse (bool): Using sparse mode. When 'target' is set to 'CPU', 'sparse' has to be ``true`` .
|
|
696
|
+
Default: ``True`` .
|
|
697
|
+
vocab_cache_size (int): Cache size of the dictionary of embeddings. Default: ``0`` . It is valid only in
|
|
698
|
+
'DEVICE' target. And the moment parameter of corresponding optimizer will also be set to the cache size.
|
|
699
|
+
In addition, it should be noted that it will cost the 'DEVICE' memory, so suggests setting a reasonable
|
|
700
|
+
value to avoid insufficient memory.
|
|
701
|
+
|
|
702
|
+
Inputs:
|
|
703
|
+
- **input_indices** (Tensor) - The shape of tensor is :math:`(y_1, y_2, ..., y_S)`.
|
|
704
|
+
|
|
705
|
+
Outputs:
|
|
706
|
+
Tensor, the shape of tensor is :math:`(z_1, z_2, ..., z_N)`.
|
|
707
|
+
|
|
708
|
+
Raises:
|
|
709
|
+
ValueError: If `target` is neither 'CPU' nor 'DEVICE'.
|
|
710
|
+
ValueError: If `slice_mode` is not one of 'batch_slice' or 'field_slice' or
|
|
711
|
+
'table_row_slice' or 'table_column_slice'.
|
|
712
|
+
ValueError: If `sparse` is False and `target` is 'CPU'.
|
|
713
|
+
ValueError: If `slice_mode` is 'field_slice' and `manual_shapes` is None.
|
|
714
|
+
TypeError: If `vocab_size` or `embedding_size` or `vocab_cache_size` is not an int.
|
|
715
|
+
TypeError: If `sparse` is not a bool or `manual_shapes` is not a tuple.
|
|
716
|
+
ValueError: If `vocab_size` or `embedding_size` is less than 1.
|
|
717
|
+
ValueError: If `vocab_cache_size` is less than 0.
|
|
718
|
+
|
|
719
|
+
|
|
720
|
+
Supported Platforms:
|
|
721
|
+
``Ascend``
|
|
722
|
+
|
|
723
|
+
Examples:
|
|
724
|
+
>>> import mindspore as ms
|
|
725
|
+
>>> import numpy as np
|
|
726
|
+
>>> input_indices = ms.Tensor(np.array([[1, 0], [3, 2]]), ms.int32)
|
|
727
|
+
>>> result = ms.nn.EmbeddingLookup(4,2)(input_indices)
|
|
728
|
+
>>> print(result.shape)
|
|
729
|
+
(2, 2, 2)
|
|
730
|
+
"""
|
|
731
|
+
BATCH_SLICE = "batch_slice"
|
|
732
|
+
FIELD_SLICE = "field_slice"
|
|
733
|
+
TABLE_ROW_SLICE = "table_row_slice"
|
|
734
|
+
TABLE_COLUMN_SLICE = "table_column_slice"
|
|
735
|
+
|
|
736
|
+
def __init__(self, vocab_size, embedding_size, param_init='normal',
|
|
737
|
+
target='CPU', slice_mode='batch_slice', manual_shapes=None,
|
|
738
|
+
max_norm=None, sparse=True, vocab_cache_size=0):
|
|
739
|
+
super(EmbeddingLookupThor, self).__init__()
|
|
740
|
+
Validator.check_value_type('sparse', sparse, [bool], self.cls_name)
|
|
741
|
+
self.vocab_size = Validator.check_positive_int(vocab_size, 'vocab_size', self.cls_name)
|
|
742
|
+
self.vocab_cache_size = Validator.check_non_negative_int(vocab_cache_size, 'vocab_cache_size', self.cls_name)
|
|
743
|
+
self.target = target
|
|
744
|
+
self.sparse = sparse
|
|
745
|
+
self.cache_enable = self.vocab_cache_size > 0
|
|
746
|
+
self.forward_unique = False
|
|
747
|
+
self.dtype = mstype.float16
|
|
748
|
+
if target not in ('CPU', 'DEVICE'):
|
|
749
|
+
raise ValueError(f"For '{self.cls_name}', the 'target' must be one of values in ('CPU', 'DEVICE'), "
|
|
750
|
+
f"but got {target}.")
|
|
751
|
+
if not sparse and target == 'CPU':
|
|
752
|
+
raise ValueError(f"For '{self.cls_name}', embedding_lookup must be sparse when 'target' is CPU, but got "
|
|
753
|
+
f"'sparse': {sparse}, 'target': {target}.")
|
|
754
|
+
if sparse:
|
|
755
|
+
self.gatherv2 = P.SparseGatherV2()
|
|
756
|
+
else:
|
|
757
|
+
self.gatherv2 = P.Gather()
|
|
758
|
+
self.embeddinglookup = P.EmbeddingLookup().set_device('CPU')
|
|
759
|
+
enable_ps = _get_ps_context("enable_ps")
|
|
760
|
+
if enable_ps:
|
|
761
|
+
self._process_vocab_cache(slice_mode)
|
|
762
|
+
self.embedding_size = Validator.check_positive_int(embedding_size, 'embedding_size', self.cls_name)
|
|
763
|
+
self.embedding_table = Parameter(initializer(param_init, [self.vocab_size, self.embedding_size],
|
|
764
|
+
mstype.float16), name='embedding_table')
|
|
765
|
+
parallel_mode = _get_parallel_mode()
|
|
766
|
+
is_auto_parallel = parallel_mode in (ParallelMode.SEMI_AUTO_PARALLEL, ParallelMode.AUTO_PARALLEL)
|
|
767
|
+
self.gather_revert = P.Gather()
|
|
768
|
+
self.reshape_first = P.Reshape()
|
|
769
|
+
self.reshape = P.Reshape()
|
|
770
|
+
self.unique = P.Unique()
|
|
771
|
+
self.shape = P.Shape()
|
|
772
|
+
if is_auto_parallel:
|
|
773
|
+
self.unique = P.Unique().shard(((1,),))
|
|
774
|
+
if self.cache_enable and enable_ps:
|
|
775
|
+
self._set_voacb_cache_enable_for_ps(vocab_cache_size, embedding_size, vocab_size)
|
|
776
|
+
if is_auto_parallel:
|
|
777
|
+
self.unique.add_prim_attr('cache_enable', True)
|
|
778
|
+
indices_shape_size = 2
|
|
779
|
+
if slice_mode == "field_slice" and is_auto_parallel:
|
|
780
|
+
if not manual_shapes:
|
|
781
|
+
raise ValueError(f"For '{self.cls_name}', the 'manual_shapes' should not be none "
|
|
782
|
+
f"when 'slice_mode' is 'field_slice'.")
|
|
783
|
+
if not isinstance(manual_shapes, tuple):
|
|
784
|
+
raise TypeError(f"For '{self.cls_name}', the type of 'manual_shapes' must be tuple(int), but got "
|
|
785
|
+
f"type {type(manual_shapes).__name__}.")
|
|
786
|
+
for dim in manual_shapes:
|
|
787
|
+
Validator.check_positive_int(dim, 'manual shape dim', self.cls_name)
|
|
788
|
+
self.gatherv2.add_prim_attr("manual_split", manual_shapes)
|
|
789
|
+
self.embeddinglookup.add_prim_attr("manual_split", manual_shapes)
|
|
790
|
+
self.gatherv2.shard(((get_group_size(), 1), (1, get_group_size())))
|
|
791
|
+
self.embeddinglookup.shard(((get_group_size(), 1), (1, get_group_size())))
|
|
792
|
+
elif slice_mode == "table_row_slice" and is_auto_parallel:
|
|
793
|
+
full_batch = _get_full_batch()
|
|
794
|
+
if (target == 'DEVICE' and not full_batch) or (self.cache_enable and enable_ps and sparse):
|
|
795
|
+
indices_shape_size = 1
|
|
796
|
+
self.gather_revert.shard(((1, 1), (get_group_size(),)))
|
|
797
|
+
self.forward_unique = True
|
|
798
|
+
indices_strategy = (1,) * indices_shape_size
|
|
799
|
+
self.gatherv2.shard(((get_group_size(), 1), indices_strategy))
|
|
800
|
+
self.embeddinglookup.shard(((get_group_size(), 1), indices_strategy))
|
|
801
|
+
elif slice_mode == "table_column_slice" and is_auto_parallel:
|
|
802
|
+
if target == 'DEVICE':
|
|
803
|
+
indices_shape_size = 1
|
|
804
|
+
self.gather_revert.shard(((1, get_group_size()), (1,)))
|
|
805
|
+
self.forward_unique = True
|
|
806
|
+
indices_strategy = (1,) * indices_shape_size
|
|
807
|
+
self.gatherv2.shard(((1, get_group_size()), indices_strategy))
|
|
808
|
+
self.embeddinglookup.shard(((1, get_group_size()), indices_strategy))
|
|
809
|
+
elif slice_mode == "batch_slice" and is_auto_parallel:
|
|
810
|
+
indices_strategy = [get_group_size()]
|
|
811
|
+
indices_strategy.extend([1] * (indices_shape_size - 1))
|
|
812
|
+
indices_strategy = tuple(indices_strategy)
|
|
813
|
+
self.gatherv2.shard(((1, 1), indices_strategy))
|
|
814
|
+
self.embeddinglookup.shard(((1, 1), indices_strategy))
|
|
815
|
+
else:
|
|
816
|
+
if is_auto_parallel:
|
|
817
|
+
raise ValueError(f"For '{self.cls_name}', the 'slice_mode' must be one of values in "
|
|
818
|
+
f"['field_slice', 'table_row_slice', 'table_column_slice', 'batch_slice'], "
|
|
819
|
+
f"but got 'slice_mode': {slice_mode}")
|
|
820
|
+
if self.cache_enable and not enable_ps:
|
|
821
|
+
if parallel_mode != ParallelMode.STAND_ALONE:
|
|
822
|
+
raise ValueError(f"For '{self.cls_name}', the 'parallel_mode' must be equal to "
|
|
823
|
+
f"'ParallelMode.STAND_ALONE', but got {parallel_mode}.")
|
|
824
|
+
self._set_cache_enable()
|
|
825
|
+
self.embedding_table.unique = self.forward_unique
|
|
826
|
+
self.max_norm = max_norm
|
|
827
|
+
if self.max_norm is not None:
|
|
828
|
+
self.max_norm = Validator.check_positive_float(self.max_norm, 'max_norm', self.cls_name)
|
|
829
|
+
self.max_norm = Tensor(self.max_norm, dtype=mstype.float16)
|
|
830
|
+
|
|
831
|
+
self.thor = True
|
|
832
|
+
self.matrix_a = Parameter(Tensor(np.zeros([vocab_size]).astype(np.float32)),
|
|
833
|
+
name='matrix_a', requires_grad=False)
|
|
834
|
+
self.matrix_g = Parameter(Tensor(np.zeros([embedding_size, embedding_size]).astype(np.float32)),
|
|
835
|
+
name="matrix_g", requires_grad=False)
|
|
836
|
+
self.reduce_sum = P.ReduceSum(keep_dims=False)
|
|
837
|
+
self.getG = P.InsertGradientOf(self.save_gradient)
|
|
838
|
+
self.cast = P.Cast()
|
|
839
|
+
self.cube_matmul = P.MatMul(transpose_a=True)
|
|
840
|
+
self.mul = P.Mul()
|
|
841
|
+
self.on_value = Tensor(1.0, self.dtype)
|
|
842
|
+
self.off_value = Tensor(0.0, self.dtype)
|
|
843
|
+
self.one_hot = P.OneHot()
|
|
844
|
+
|
|
845
|
+
|
|
846
|
+
def save_gradient(self, dout):
|
|
847
|
+
"""
|
|
848
|
+
this function only for thor optimizer
|
|
849
|
+
save_gradient
|
|
850
|
+
"""
|
|
851
|
+
out = dout
|
|
852
|
+
shape = self.shape(dout)
|
|
853
|
+
normalizer = self.cast(shape[0], mstype.float16)
|
|
854
|
+
dout = self.reshape(dout, (-1, self.embedding_size))
|
|
855
|
+
matrix_g = self.cube_matmul(dout, dout)
|
|
856
|
+
matrix_g = self.mul(matrix_g, 1.0 / normalizer)
|
|
857
|
+
matrix_g = self.cast(matrix_g, mstype.float16)
|
|
858
|
+
self.matrix_g = matrix_g
|
|
859
|
+
return out
|
|
860
|
+
|
|
861
|
+
def _set_cache_enable(self):
|
|
862
|
+
"""EmbeddingLookup cache check for not ps env, which is only support 'ascend'."""
|
|
863
|
+
if self.target != 'DEVICE':
|
|
864
|
+
raise ValueError(f"For '{self.cls_name}', the configuration of 'vocab_cache_size' is valid "
|
|
865
|
+
f"only when 'target' is 'DEVICE', but got 'target': {self.target}.")
|
|
866
|
+
if not self.sparse:
|
|
867
|
+
raise ValueError(f"For '{self.cls_name}', the configuration of 'vocab_cache_size' is valid "
|
|
868
|
+
f"only when 'sparse' is true, but got 'sparse': {self.sparse}.")
|
|
869
|
+
if context.get_context("device_target") != 'Ascend':
|
|
870
|
+
raise ValueError(f"For '{self.cls_name}', the configuration of 'vocab_cache_size' is valid "
|
|
871
|
+
f"only when 'device_target' is 'Ascend', but got {context.get_context('device_target')}.")
|
|
872
|
+
|
|
873
|
+
logger.info("EmbeddingLookup cache enable takes effect.")
|
|
874
|
+
self.forward_unique = True
|
|
875
|
+
self.unique = P.Unique().set_device('CPU')
|
|
876
|
+
self.unique.add_prim_attr('cache_enable', True)
|
|
877
|
+
self.embedding_table.cache_enable = self.cache_enable
|
|
878
|
+
self.embedding_table.cache_shape = (self.vocab_cache_size, self.embedding_size)
|
|
879
|
+
self.reshape_first = P.Reshape().set_device('CPU')
|
|
880
|
+
|
|
881
|
+
def _process_vocab_cache(self, slice_mode):
|
|
882
|
+
"""PS embeddingLookup cache check and process."""
|
|
883
|
+
self.cache_enable = False
|
|
884
|
+
if self.vocab_cache_size > 0:
|
|
885
|
+
if self.target == 'CPU':
|
|
886
|
+
logger.warning("The configuration of 'vocab_cache_size' is valid only in 'DEVICE' target, "
|
|
887
|
+
"current target is CPU, so it will be ignored.")
|
|
888
|
+
return
|
|
889
|
+
enable_ps = _get_ps_context("enable_ps")
|
|
890
|
+
if not enable_ps:
|
|
891
|
+
logger.warning(
|
|
892
|
+
"The configuration of 'vocab_cache_size' is valid only in parameter server trainning "
|
|
893
|
+
"mode, current mode is not parameter server trainning mode, so it will be ignored.")
|
|
894
|
+
return
|
|
895
|
+
parallel_mode = _get_parallel_mode()
|
|
896
|
+
is_auto_parallel = parallel_mode in (ParallelMode.SEMI_AUTO_PARALLEL, ParallelMode.AUTO_PARALLEL)
|
|
897
|
+
if is_auto_parallel:
|
|
898
|
+
rank_size = get_group_size()
|
|
899
|
+
rank_id = get_rank()
|
|
900
|
+
full_batch = _get_full_batch()
|
|
901
|
+
if rank_size > 1 and not (full_batch and slice_mode == "table_row_slice"):
|
|
902
|
+
raise ValueError(f"For '{self.cls_name}', the embeddingLookup cache of parameter server parallel "
|
|
903
|
+
f"only be used in 'full_batch' and 'table_row_slice' parallel strategy, but got "
|
|
904
|
+
f"'full_batch': {full_batch}, 'slice_mode': {slice_mode}.")
|
|
905
|
+
self.vocab_cache_size = self.vocab_cache_size * rank_size
|
|
906
|
+
_set_rank_id(rank_id)
|
|
907
|
+
self.cache_enable = True
|
|
908
|
+
if _is_role_worker():
|
|
909
|
+
self.vocab_size = self.vocab_cache_size
|
|
910
|
+
|
|
911
|
+
def _set_voacb_cache_enable_for_ps(self, vocab_cache_size, embedding_size, vocab_size):
|
|
912
|
+
"""PS embeddingLookup cache enable set."""
|
|
913
|
+
self.embedding_table.cache_enable = True
|
|
914
|
+
self.embedding_table.is_param_ps = True
|
|
915
|
+
_set_cache_enable(True)
|
|
916
|
+
if self.sparse:
|
|
917
|
+
self.forward_unique = True
|
|
918
|
+
if _is_role_worker():
|
|
919
|
+
_insert_hash_table_size(self.embedding_table.name, vocab_cache_size, embedding_size, vocab_size)
|
|
920
|
+
|
|
921
|
+
def construct(self, indices):
|
|
922
|
+
if self.target == "CPU":
|
|
923
|
+
out = self.embeddinglookup(self.embedding_table, indices, 0)
|
|
924
|
+
else:
|
|
925
|
+
if self.thor:
|
|
926
|
+
if self.forward_unique:
|
|
927
|
+
shp = self.shape(indices) + (self.embedding_size,)
|
|
928
|
+
indices_flatten = self.reshape_first(indices, (-1,))
|
|
929
|
+
unique_id, unique_idx = self.unique(indices_flatten)
|
|
930
|
+
one_hot_ids = self.one_hot(indices_flatten, self.vocab_size, self.on_value, self.off_value)
|
|
931
|
+
matrix_a = self.reduce_sum(one_hot_ids, 0)
|
|
932
|
+
matrix_a = self.cast(matrix_a, mstype.float16)
|
|
933
|
+
self.matrix_a = matrix_a
|
|
934
|
+
weight_unique = self.gatherv2(self.embedding_table, unique_id, 0)
|
|
935
|
+
out = self.getG(weight_unique)
|
|
936
|
+
weight_flatten = self.gather_revert(weight_unique, unique_idx, 0)
|
|
937
|
+
out = self.reshape(weight_flatten, shp)
|
|
938
|
+
|
|
939
|
+
else:
|
|
940
|
+
indices_flatten = self.reshape_first(indices, (-1,))
|
|
941
|
+
one_hot_ids = self.one_hot(indices_flatten, self.vocab_size, self.on_value, self.off_value)
|
|
942
|
+
matrix_a = self.reduce_sum(one_hot_ids, 0)
|
|
943
|
+
matrix_a = self.cast(matrix_a, mstype.float16)
|
|
944
|
+
self.matrix_a = matrix_a
|
|
945
|
+
out = self.gatherv2(self.embedding_table, indices, 0)
|
|
946
|
+
out = self.getG(out)
|
|
947
|
+
else:
|
|
948
|
+
if self.forward_unique:
|
|
949
|
+
shp = self.shape(indices) + (self.embedding_size,)
|
|
950
|
+
indices_flatten = self.reshape_first(indices, (-1,))
|
|
951
|
+
unique_id, unique_idx = self.unique(indices_flatten)
|
|
952
|
+
weight_unique = self.gatherv2(self.embedding_table, unique_id, 0)
|
|
953
|
+
weight_flatten = self.gather_revert(weight_unique, unique_idx, 0)
|
|
954
|
+
out = self.reshape(weight_flatten, shp)
|
|
955
|
+
else:
|
|
956
|
+
out = self.gatherv2(self.embedding_table, indices, 0)
|
|
957
|
+
if self.max_norm is not None:
|
|
958
|
+
axis = _make_axis_range(F.rank(indices), F.rank(out))
|
|
959
|
+
clip_by_norm = ClipByNorm(axis)
|
|
960
|
+
out = clip_by_norm(out, self.max_norm)
|
|
961
|
+
# We use Depend to make 'self.matrix_g' as primal graph's weight parameter,
|
|
962
|
+
# for it's used in 'save_gradient' gradient procedure.
|
|
963
|
+
return F.depend(out, self.matrix_g)
|