mindspore 2.4.0__cp310-cp310-macosx_11_0_arm64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of mindspore might be problematic. Click here for more details.
- mindspore/.commit_id +1 -0
- mindspore/__init__.py +53 -0
- mindspore/_c_dataengine.cpython-310-darwin.so +0 -0
- mindspore/_c_expression.cpython-310-darwin.so +0 -0
- mindspore/_c_mindrecord.cpython-310-darwin.so +0 -0
- mindspore/_check_jit_forbidden_api.py +106 -0
- mindspore/_checkparam.py +1419 -0
- mindspore/_extends/__init__.py +23 -0
- mindspore/_extends/builtin_operations.py +224 -0
- mindspore/_extends/graph_kernel/__init__.py +17 -0
- mindspore/_extends/graph_kernel/model/__init__.py +19 -0
- mindspore/_extends/graph_kernel/model/graph_parallel.py +311 -0
- mindspore/_extends/graph_kernel/model/graph_split.py +1348 -0
- mindspore/_extends/graph_kernel/model/model.py +553 -0
- mindspore/_extends/graph_kernel/model/model_builder.py +216 -0
- mindspore/_extends/graph_kernel/parallel_estimate.py +60 -0
- mindspore/_extends/graph_kernel/splitter.py +140 -0
- mindspore/_extends/graph_kernel/utils.py +28 -0
- mindspore/_extends/parallel_compile/__init__.py +19 -0
- mindspore/_extends/parallel_compile/akg_compiler/__init__.py +19 -0
- mindspore/_extends/parallel_compile/akg_compiler/akg_process.py +269 -0
- mindspore/_extends/parallel_compile/akg_compiler/build_tbe_kernel.py +529 -0
- mindspore/_extends/parallel_compile/akg_compiler/compiler.py +56 -0
- mindspore/_extends/parallel_compile/akg_compiler/gen_custom_op_files.py +96 -0
- mindspore/_extends/parallel_compile/akg_compiler/get_file_path.py +36 -0
- mindspore/_extends/parallel_compile/akg_compiler/tbe_topi.py +556 -0
- mindspore/_extends/parallel_compile/akg_compiler/util.py +159 -0
- mindspore/_extends/parse/__init__.py +49 -0
- mindspore/_extends/parse/compile_config.py +299 -0
- mindspore/_extends/parse/namespace.py +136 -0
- mindspore/_extends/parse/parser.py +1448 -0
- mindspore/_extends/parse/resources.py +213 -0
- mindspore/_extends/parse/standard_method.py +4475 -0
- mindspore/_extends/parse/trope.py +97 -0
- mindspore/_extends/pijit/__init__.py +23 -0
- mindspore/_extends/pijit/pijit_func_white_list.py +669 -0
- mindspore/_extends/remote/__init__.py +19 -0
- mindspore/_extends/remote/kernel_build_server.py +199 -0
- mindspore/_extends/remote/kernel_build_server_akg.py +55 -0
- mindspore/_extends/remote/kernel_build_server_akg_v2.py +55 -0
- mindspore/_extends/remote/kernel_build_server_ascend.py +75 -0
- mindspore/_extends/utils.py +68 -0
- mindspore/_install_custom.py +43 -0
- mindspore/_profiler.py +30 -0
- mindspore/amp.py +433 -0
- mindspore/boost/__init__.py +42 -0
- mindspore/boost/adasum.py +319 -0
- mindspore/boost/base.py +535 -0
- mindspore/boost/boost.py +400 -0
- mindspore/boost/boost_cell_wrapper.py +790 -0
- mindspore/boost/dim_reduce.py +323 -0
- mindspore/boost/grad_accumulation.py +79 -0
- mindspore/boost/grad_freeze.py +382 -0
- mindspore/boost/group_loss_scale_manager.py +166 -0
- mindspore/boost/less_batch_normalization.py +174 -0
- mindspore/common/__init__.py +86 -0
- mindspore/common/_auto_dynamic.py +68 -0
- mindspore/common/_decorator.py +50 -0
- mindspore/common/_jit_fallback_utils.py +110 -0
- mindspore/common/_monad.py +25 -0
- mindspore/common/_pijit_context.py +190 -0
- mindspore/common/_register_for_adapter.py +74 -0
- mindspore/common/_register_for_recompute.py +48 -0
- mindspore/common/_register_for_tensor.py +46 -0
- mindspore/common/_stub_tensor.py +210 -0
- mindspore/common/_tensor_overload.py +139 -0
- mindspore/common/_utils.py +122 -0
- mindspore/common/api.py +2064 -0
- mindspore/common/auto_dynamic_shape.py +507 -0
- mindspore/common/dtype.py +422 -0
- mindspore/common/dump.py +130 -0
- mindspore/common/file_system.py +48 -0
- mindspore/common/generator.py +254 -0
- mindspore/common/hook_handle.py +143 -0
- mindspore/common/initializer.py +880 -0
- mindspore/common/jit_config.py +98 -0
- mindspore/common/lazy_inline.py +240 -0
- mindspore/common/mindir_util.py +111 -0
- mindspore/common/mutable.py +234 -0
- mindspore/common/no_inline.py +54 -0
- mindspore/common/np_dtype.py +25 -0
- mindspore/common/parameter.py +1081 -0
- mindspore/common/recompute.py +292 -0
- mindspore/common/seed.py +260 -0
- mindspore/common/sparse_tensor.py +1175 -0
- mindspore/common/symbol.py +122 -0
- mindspore/common/tensor.py +5039 -0
- mindspore/communication/__init__.py +37 -0
- mindspore/communication/_comm_helper.py +501 -0
- mindspore/communication/_hccl_management.py +297 -0
- mindspore/communication/comm_func.py +1395 -0
- mindspore/communication/management.py +673 -0
- mindspore/config/op_info.config +533 -0
- mindspore/context.py +2077 -0
- mindspore/dataset/__init__.py +90 -0
- mindspore/dataset/audio/__init__.py +61 -0
- mindspore/dataset/audio/transforms.py +3690 -0
- mindspore/dataset/audio/utils.py +386 -0
- mindspore/dataset/audio/validators.py +1172 -0
- mindspore/dataset/callback/__init__.py +20 -0
- mindspore/dataset/callback/ds_callback.py +368 -0
- mindspore/dataset/callback/validators.py +32 -0
- mindspore/dataset/core/__init__.py +13 -0
- mindspore/dataset/core/config.py +1095 -0
- mindspore/dataset/core/datatypes.py +101 -0
- mindspore/dataset/core/py_util_helpers.py +65 -0
- mindspore/dataset/core/validator_helpers.py +781 -0
- mindspore/dataset/debug/__init__.py +21 -0
- mindspore/dataset/debug/debug_hook.py +97 -0
- mindspore/dataset/debug/pre_defined_hook.py +67 -0
- mindspore/dataset/engine/__init__.py +124 -0
- mindspore/dataset/engine/cache_admin.py +47 -0
- mindspore/dataset/engine/cache_client.py +129 -0
- mindspore/dataset/engine/datasets.py +4582 -0
- mindspore/dataset/engine/datasets_audio.py +911 -0
- mindspore/dataset/engine/datasets_standard_format.py +543 -0
- mindspore/dataset/engine/datasets_text.py +2161 -0
- mindspore/dataset/engine/datasets_user_defined.py +1184 -0
- mindspore/dataset/engine/datasets_vision.py +4816 -0
- mindspore/dataset/engine/iterators.py +371 -0
- mindspore/dataset/engine/obs/__init__.py +23 -0
- mindspore/dataset/engine/obs/config_loader.py +68 -0
- mindspore/dataset/engine/obs/obs_mindrecord_dataset.py +508 -0
- mindspore/dataset/engine/obs/util.py +482 -0
- mindspore/dataset/engine/offload.py +596 -0
- mindspore/dataset/engine/queue.py +304 -0
- mindspore/dataset/engine/samplers.py +895 -0
- mindspore/dataset/engine/serializer_deserializer.py +159 -0
- mindspore/dataset/engine/validators.py +2895 -0
- mindspore/dataset/text/__init__.py +51 -0
- mindspore/dataset/text/transforms.py +1703 -0
- mindspore/dataset/text/utils.py +715 -0
- mindspore/dataset/text/validators.py +642 -0
- mindspore/dataset/transforms/__init__.py +45 -0
- mindspore/dataset/transforms/c_transforms.py +638 -0
- mindspore/dataset/transforms/py_transforms.py +393 -0
- mindspore/dataset/transforms/py_transforms_util.py +255 -0
- mindspore/dataset/transforms/transforms.py +1260 -0
- mindspore/dataset/transforms/validators.py +410 -0
- mindspore/dataset/utils/__init__.py +19 -0
- mindspore/dataset/utils/browse_dataset.py +190 -0
- mindspore/dataset/utils/line_reader.py +126 -0
- mindspore/dataset/vision/__init__.py +65 -0
- mindspore/dataset/vision/c_transforms.py +2641 -0
- mindspore/dataset/vision/py_transforms.py +2120 -0
- mindspore/dataset/vision/py_transforms_util.py +1660 -0
- mindspore/dataset/vision/transforms.py +7295 -0
- mindspore/dataset/vision/utils.py +863 -0
- mindspore/dataset/vision/validators.py +1483 -0
- mindspore/default_config.py +2 -0
- mindspore/experimental/__init__.py +20 -0
- mindspore/experimental/es/__init__.py +22 -0
- mindspore/experimental/es/embedding_service.py +883 -0
- mindspore/experimental/es/embedding_service_layer.py +581 -0
- mindspore/experimental/llm_boost/__init__.py +21 -0
- mindspore/experimental/llm_boost/atb/__init__.py +23 -0
- mindspore/experimental/llm_boost/atb/boost_base.py +211 -0
- mindspore/experimental/llm_boost/atb/llama_boost.py +115 -0
- mindspore/experimental/llm_boost/atb/qwen_boost.py +101 -0
- mindspore/experimental/llm_boost/register.py +129 -0
- mindspore/experimental/llm_boost/utils.py +31 -0
- mindspore/experimental/map_parameter.py +309 -0
- mindspore/experimental/optim/__init__.py +40 -0
- mindspore/experimental/optim/adadelta.py +161 -0
- mindspore/experimental/optim/adagrad.py +168 -0
- mindspore/experimental/optim/adam.py +193 -0
- mindspore/experimental/optim/adamax.py +170 -0
- mindspore/experimental/optim/adamw.py +290 -0
- mindspore/experimental/optim/asgd.py +153 -0
- mindspore/experimental/optim/lr_scheduler.py +1371 -0
- mindspore/experimental/optim/nadam.py +157 -0
- mindspore/experimental/optim/optimizer.py +262 -0
- mindspore/experimental/optim/radam.py +194 -0
- mindspore/experimental/optim/rmsprop.py +154 -0
- mindspore/experimental/optim/rprop.py +164 -0
- mindspore/experimental/optim/sgd.py +156 -0
- mindspore/hal/__init__.py +40 -0
- mindspore/hal/_ascend.py +57 -0
- mindspore/hal/_base.py +57 -0
- mindspore/hal/_cpu.py +56 -0
- mindspore/hal/_gpu.py +57 -0
- mindspore/hal/contiguous_tensors_handle.py +175 -0
- mindspore/hal/device.py +356 -0
- mindspore/hal/event.py +179 -0
- mindspore/hal/memory.py +326 -0
- mindspore/hal/stream.py +357 -0
- mindspore/include/OWNERS +7 -0
- mindspore/include/api/allocator.h +97 -0
- mindspore/include/api/callback/callback.h +93 -0
- mindspore/include/api/callback/ckpt_saver.h +41 -0
- mindspore/include/api/callback/loss_monitor.h +33 -0
- mindspore/include/api/callback/lr_scheduler.h +51 -0
- mindspore/include/api/callback/time_monitor.h +34 -0
- mindspore/include/api/callback/train_accuracy.h +37 -0
- mindspore/include/api/cell.h +90 -0
- mindspore/include/api/cfg.h +82 -0
- mindspore/include/api/context.h +602 -0
- mindspore/include/api/data_type.h +47 -0
- mindspore/include/api/delegate.h +178 -0
- mindspore/include/api/delegate_api.h +75 -0
- mindspore/include/api/dual_abi_helper.h +208 -0
- mindspore/include/api/format.h +28 -0
- mindspore/include/api/graph.h +46 -0
- mindspore/include/api/kernel.h +58 -0
- mindspore/include/api/kernel_api.h +168 -0
- mindspore/include/api/metrics/accuracy.h +36 -0
- mindspore/include/api/metrics/metrics.h +41 -0
- mindspore/include/api/model.h +438 -0
- mindspore/include/api/model_group.h +91 -0
- mindspore/include/api/model_parallel_runner.h +168 -0
- mindspore/include/api/serialization.h +185 -0
- mindspore/include/api/status.h +192 -0
- mindspore/include/api/types.h +431 -0
- mindspore/include/api/visible.h +41 -0
- mindspore/include/c_api/context_c.h +179 -0
- mindspore/include/c_api/data_type_c.h +52 -0
- mindspore/include/c_api/format_c.h +46 -0
- mindspore/include/c_api/model_c.h +347 -0
- mindspore/include/c_api/status_c.h +79 -0
- mindspore/include/c_api/tensor_c.h +146 -0
- mindspore/include/c_api/types_c.h +67 -0
- mindspore/include/dataset/config.h +163 -0
- mindspore/include/dataset/constants.h +363 -0
- mindspore/include/dataset/execute.h +196 -0
- mindspore/include/dataset/text.h +1092 -0
- mindspore/include/dataset/transforms.h +638 -0
- mindspore/include/dataset/vision.h +2129 -0
- mindspore/include/dataset/vision_ascend.h +206 -0
- mindspore/include/dataset/vision_lite.h +625 -0
- mindspore/lib/libavcodec.59.dylib +0 -0
- mindspore/lib/libavdevice.59.dylib +0 -0
- mindspore/lib/libavfilter.8.dylib +0 -0
- mindspore/lib/libavformat.59.dylib +0 -0
- mindspore/lib/libavutil.57.dylib +0 -0
- mindspore/lib/libdnnl.2.dylib +0 -0
- mindspore/lib/libicudata.69.dylib +0 -0
- mindspore/lib/libicui18n.69.dylib +0 -0
- mindspore/lib/libicuuc.69.dylib +0 -0
- mindspore/lib/libmindspore_address_sorting.15.dylib +0 -0
- mindspore/lib/libmindspore_backend.dylib +0 -0
- mindspore/lib/libmindspore_common.dylib +0 -0
- mindspore/lib/libmindspore_core.dylib +0 -0
- mindspore/lib/libmindspore_glog.0.dylib +0 -0
- mindspore/lib/libmindspore_gpr.15.dylib +0 -0
- mindspore/lib/libmindspore_grpc++.1.dylib +0 -0
- mindspore/lib/libmindspore_grpc.15.dylib +0 -0
- mindspore/lib/libmindspore_np_dtype.dylib +0 -0
- mindspore/lib/libmindspore_ops.dylib +0 -0
- mindspore/lib/libmindspore_upb.15.dylib +0 -0
- mindspore/lib/libnnacl.dylib +0 -0
- mindspore/lib/libopencv_core.4.5.dylib +0 -0
- mindspore/lib/libopencv_imgcodecs.4.5.dylib +0 -0
- mindspore/lib/libopencv_imgproc.4.5.dylib +0 -0
- mindspore/lib/libps_cache.dylib +0 -0
- mindspore/lib/libswresample.4.dylib +0 -0
- mindspore/lib/libswscale.6.dylib +0 -0
- mindspore/lib/libtinyxml2.8.dylib +0 -0
- mindspore/log.py +633 -0
- mindspore/mindrecord/__init__.py +43 -0
- mindspore/mindrecord/common/__init__.py +17 -0
- mindspore/mindrecord/common/constant.py +20 -0
- mindspore/mindrecord/common/enums.py +44 -0
- mindspore/mindrecord/common/exceptions.py +311 -0
- mindspore/mindrecord/config.py +809 -0
- mindspore/mindrecord/filereader.py +174 -0
- mindspore/mindrecord/filewriter.py +722 -0
- mindspore/mindrecord/mindpage.py +210 -0
- mindspore/mindrecord/shardheader.py +141 -0
- mindspore/mindrecord/shardindexgenerator.py +74 -0
- mindspore/mindrecord/shardreader.py +117 -0
- mindspore/mindrecord/shardsegment.py +128 -0
- mindspore/mindrecord/shardutils.py +185 -0
- mindspore/mindrecord/shardwriter.py +237 -0
- mindspore/mindrecord/tools/__init__.py +17 -0
- mindspore/mindrecord/tools/cifar10.py +140 -0
- mindspore/mindrecord/tools/cifar100.py +153 -0
- mindspore/mindrecord/tools/cifar100_to_mr.py +185 -0
- mindspore/mindrecord/tools/cifar10_to_mr.py +177 -0
- mindspore/mindrecord/tools/csv_to_mr.py +200 -0
- mindspore/mindrecord/tools/imagenet_to_mr.py +206 -0
- mindspore/mindrecord/tools/mnist_to_mr.py +259 -0
- mindspore/mindrecord/tools/tfrecord_to_mr.py +360 -0
- mindspore/mint/__init__.py +1586 -0
- mindspore/mint/distributed/__init__.py +31 -0
- mindspore/mint/distributed/distributed.py +254 -0
- mindspore/mint/linalg/__init__.py +22 -0
- mindspore/mint/nn/__init__.py +757 -0
- mindspore/mint/nn/functional.py +679 -0
- mindspore/mint/nn/layer/__init__.py +39 -0
- mindspore/mint/nn/layer/activation.py +133 -0
- mindspore/mint/nn/layer/normalization.py +477 -0
- mindspore/mint/nn/layer/pooling.py +110 -0
- mindspore/mint/optim/__init__.py +24 -0
- mindspore/mint/optim/adamw.py +206 -0
- mindspore/mint/special/__init__.py +63 -0
- mindspore/multiprocessing/__init__.py +73 -0
- mindspore/nn/__init__.py +47 -0
- mindspore/nn/cell.py +2787 -0
- mindspore/nn/dynamic_lr.py +482 -0
- mindspore/nn/grad/__init__.py +21 -0
- mindspore/nn/grad/cell_grad.py +196 -0
- mindspore/nn/layer/__init__.py +63 -0
- mindspore/nn/layer/activation.py +1822 -0
- mindspore/nn/layer/basic.py +1629 -0
- mindspore/nn/layer/channel_shuffle.py +90 -0
- mindspore/nn/layer/combined.py +248 -0
- mindspore/nn/layer/container.py +734 -0
- mindspore/nn/layer/conv.py +1505 -0
- mindspore/nn/layer/dense.py +204 -0
- mindspore/nn/layer/embedding.py +869 -0
- mindspore/nn/layer/image.py +661 -0
- mindspore/nn/layer/math.py +1069 -0
- mindspore/nn/layer/normalization.py +1273 -0
- mindspore/nn/layer/padding.py +880 -0
- mindspore/nn/layer/pooling.py +2302 -0
- mindspore/nn/layer/rnn_cells.py +388 -0
- mindspore/nn/layer/rnns.py +849 -0
- mindspore/nn/layer/thor_layer.py +963 -0
- mindspore/nn/layer/timedistributed.py +155 -0
- mindspore/nn/layer/transformer.py +823 -0
- mindspore/nn/learning_rate_schedule.py +512 -0
- mindspore/nn/loss/__init__.py +36 -0
- mindspore/nn/loss/loss.py +2924 -0
- mindspore/nn/metrics.py +53 -0
- mindspore/nn/optim/__init__.py +45 -0
- mindspore/nn/optim/_dist_optimizer_registry.py +111 -0
- mindspore/nn/optim/ada_grad.py +217 -0
- mindspore/nn/optim/adadelta.py +206 -0
- mindspore/nn/optim/adafactor.py +448 -0
- mindspore/nn/optim/adam.py +1297 -0
- mindspore/nn/optim/adamax.py +220 -0
- mindspore/nn/optim/adasum.py +548 -0
- mindspore/nn/optim/asgd.py +216 -0
- mindspore/nn/optim/ftrl.py +401 -0
- mindspore/nn/optim/lamb.py +296 -0
- mindspore/nn/optim/lars.py +202 -0
- mindspore/nn/optim/lazyadam.py +533 -0
- mindspore/nn/optim/momentum.py +239 -0
- mindspore/nn/optim/optimizer.py +1034 -0
- mindspore/nn/optim/proximal_ada_grad.py +242 -0
- mindspore/nn/optim/rmsprop.py +264 -0
- mindspore/nn/optim/rprop.py +251 -0
- mindspore/nn/optim/sgd.py +237 -0
- mindspore/nn/optim/tft_wrapper.py +127 -0
- mindspore/nn/optim/thor.py +1310 -0
- mindspore/nn/probability/__init__.py +22 -0
- mindspore/nn/probability/bijector/__init__.py +35 -0
- mindspore/nn/probability/bijector/bijector.py +337 -0
- mindspore/nn/probability/bijector/exp.py +65 -0
- mindspore/nn/probability/bijector/gumbel_cdf.py +144 -0
- mindspore/nn/probability/bijector/invert.py +126 -0
- mindspore/nn/probability/bijector/power_transform.py +196 -0
- mindspore/nn/probability/bijector/scalar_affine.py +167 -0
- mindspore/nn/probability/bijector/softplus.py +189 -0
- mindspore/nn/probability/bnn_layers/__init__.py +29 -0
- mindspore/nn/probability/bnn_layers/_util.py +46 -0
- mindspore/nn/probability/bnn_layers/bnn_cell_wrapper.py +112 -0
- mindspore/nn/probability/bnn_layers/conv_variational.py +267 -0
- mindspore/nn/probability/bnn_layers/dense_variational.py +302 -0
- mindspore/nn/probability/bnn_layers/layer_distribution.py +123 -0
- mindspore/nn/probability/distribution/__init__.py +56 -0
- mindspore/nn/probability/distribution/_utils/__init__.py +34 -0
- mindspore/nn/probability/distribution/_utils/custom_ops.py +96 -0
- mindspore/nn/probability/distribution/_utils/utils.py +362 -0
- mindspore/nn/probability/distribution/bernoulli.py +334 -0
- mindspore/nn/probability/distribution/beta.py +391 -0
- mindspore/nn/probability/distribution/categorical.py +435 -0
- mindspore/nn/probability/distribution/cauchy.py +383 -0
- mindspore/nn/probability/distribution/distribution.py +827 -0
- mindspore/nn/probability/distribution/exponential.py +350 -0
- mindspore/nn/probability/distribution/gamma.py +391 -0
- mindspore/nn/probability/distribution/geometric.py +335 -0
- mindspore/nn/probability/distribution/gumbel.py +257 -0
- mindspore/nn/probability/distribution/half_normal.py +133 -0
- mindspore/nn/probability/distribution/laplace.py +128 -0
- mindspore/nn/probability/distribution/log_normal.py +272 -0
- mindspore/nn/probability/distribution/logistic.py +379 -0
- mindspore/nn/probability/distribution/normal.py +336 -0
- mindspore/nn/probability/distribution/poisson.py +288 -0
- mindspore/nn/probability/distribution/student_t.py +149 -0
- mindspore/nn/probability/distribution/transformed_distribution.py +235 -0
- mindspore/nn/probability/distribution/uniform.py +375 -0
- mindspore/nn/reinforcement/__init__.py +24 -0
- mindspore/nn/reinforcement/_batch_read_write.py +142 -0
- mindspore/nn/reinforcement/_tensors_queue.py +152 -0
- mindspore/nn/reinforcement/tensor_array.py +145 -0
- mindspore/nn/sparse/__init__.py +23 -0
- mindspore/nn/sparse/sparse.py +147 -0
- mindspore/nn/wrap/__init__.py +49 -0
- mindspore/nn/wrap/cell_wrapper.py +968 -0
- mindspore/nn/wrap/grad_reducer.py +608 -0
- mindspore/nn/wrap/loss_scale.py +694 -0
- mindspore/numpy/__init__.py +121 -0
- mindspore/numpy/array_creations.py +2731 -0
- mindspore/numpy/array_ops.py +2629 -0
- mindspore/numpy/dtypes.py +185 -0
- mindspore/numpy/fft.py +966 -0
- mindspore/numpy/logic_ops.py +936 -0
- mindspore/numpy/math_ops.py +5911 -0
- mindspore/numpy/utils.py +214 -0
- mindspore/numpy/utils_const.py +565 -0
- mindspore/ops/__init__.py +56 -0
- mindspore/ops/_constants.py +30 -0
- mindspore/ops/_grad_experimental/__init__.py +31 -0
- mindspore/ops/_grad_experimental/grad_array_ops.py +830 -0
- mindspore/ops/_grad_experimental/grad_base.py +143 -0
- mindspore/ops/_grad_experimental/grad_comm_ops.py +714 -0
- mindspore/ops/_grad_experimental/grad_debug_ops.py +31 -0
- mindspore/ops/_grad_experimental/grad_implementations.py +203 -0
- mindspore/ops/_grad_experimental/grad_inner_ops.py +79 -0
- mindspore/ops/_grad_experimental/grad_math_ops.py +802 -0
- mindspore/ops/_grad_experimental/grad_nn_ops.py +231 -0
- mindspore/ops/_grad_experimental/grad_quant_ops.py +238 -0
- mindspore/ops/_grad_experimental/grad_sparse.py +342 -0
- mindspore/ops/_grad_experimental/grad_sparse_ops.py +399 -0
- mindspore/ops/_grad_experimental/taylor_rule.py +220 -0
- mindspore/ops/_op_impl/__init__.py +23 -0
- mindspore/ops/_op_impl/_custom_op/__init__.py +39 -0
- mindspore/ops/_op_impl/_custom_op/_basic.py +158 -0
- mindspore/ops/_op_impl/_custom_op/batch_matmul_impl.py +279 -0
- mindspore/ops/_op_impl/_custom_op/batchnorm_fold.py +156 -0
- mindspore/ops/_op_impl/_custom_op/batchnorm_fold2.py +109 -0
- mindspore/ops/_op_impl/_custom_op/batchnorm_fold2_grad.py +125 -0
- mindspore/ops/_op_impl/_custom_op/batchnorm_fold2_grad_reduce.py +105 -0
- mindspore/ops/_op_impl/_custom_op/batchnorm_fold_grad.py +124 -0
- mindspore/ops/_op_impl/_custom_op/cholesky_trsm_impl.py +116 -0
- mindspore/ops/_op_impl/_custom_op/correction_mul.py +89 -0
- mindspore/ops/_op_impl/_custom_op/correction_mul_grad.py +196 -0
- mindspore/ops/_op_impl/_custom_op/dsd_back_impl.py +366 -0
- mindspore/ops/_op_impl/_custom_op/dsd_impl.py +162 -0
- mindspore/ops/_op_impl/_custom_op/fake_learned_scale_quant_perchannel.py +136 -0
- mindspore/ops/_op_impl/_custom_op/fake_learned_scale_quant_perchannel_grad.py +206 -0
- mindspore/ops/_op_impl/_custom_op/fake_learned_scale_quant_perchannel_grad_reduce.py +88 -0
- mindspore/ops/_op_impl/_custom_op/fake_learned_scale_quant_perlayer.py +128 -0
- mindspore/ops/_op_impl/_custom_op/fake_learned_scale_quant_perlayer_grad.py +199 -0
- mindspore/ops/_op_impl/_custom_op/fake_learned_scale_quant_perlayer_grad_reduce.py +88 -0
- mindspore/ops/_op_impl/_custom_op/fake_quant_perchannel.py +156 -0
- mindspore/ops/_op_impl/_custom_op/fake_quant_perchannel_grad.py +184 -0
- mindspore/ops/_op_impl/_custom_op/fake_quant_perlayer.py +143 -0
- mindspore/ops/_op_impl/_custom_op/fake_quant_perlayer_grad.py +169 -0
- mindspore/ops/_op_impl/_custom_op/fused_abs_max1_impl.py +548 -0
- mindspore/ops/_op_impl/_custom_op/img2col_impl.py +881 -0
- mindspore/ops/_op_impl/_custom_op/matmul_cube_dense_left_impl.py +278 -0
- mindspore/ops/_op_impl/_custom_op/matmul_cube_dense_right_impl.py +200 -0
- mindspore/ops/_op_impl/_custom_op/matmul_cube_fracz_left_cast_impl.py +334 -0
- mindspore/ops/_op_impl/_custom_op/matmul_cube_fracz_right_mul_impl.py +255 -0
- mindspore/ops/_op_impl/_custom_op/matmul_cube_impl.py +222 -0
- mindspore/ops/_op_impl/_custom_op/matmul_dds_grad_impl.py +644 -0
- mindspore/ops/_op_impl/_custom_op/matmul_dds_impl.py +488 -0
- mindspore/ops/_op_impl/_custom_op/matrix_combine_impl.py +87 -0
- mindspore/ops/_op_impl/_custom_op/minmax_update_perchannel.py +129 -0
- mindspore/ops/_op_impl/_custom_op/minmax_update_perlayer.py +121 -0
- mindspore/ops/_op_impl/_custom_op/transpose02314_impl.py +352 -0
- mindspore/ops/_op_impl/aicpu/__init__.py +441 -0
- mindspore/ops/_op_impl/aicpu/abs.py +36 -0
- mindspore/ops/_op_impl/aicpu/acos.py +32 -0
- mindspore/ops/_op_impl/aicpu/acos_grad.py +33 -0
- mindspore/ops/_op_impl/aicpu/acosh.py +34 -0
- mindspore/ops/_op_impl/aicpu/acosh_grad.py +35 -0
- mindspore/ops/_op_impl/aicpu/adaptive_avg_pool_2d.py +34 -0
- mindspore/ops/_op_impl/aicpu/adaptive_avg_pool_2d_grad.py +34 -0
- mindspore/ops/_op_impl/aicpu/adaptive_avg_pool_3d.py +39 -0
- mindspore/ops/_op_impl/aicpu/adaptive_avg_pool_3d_grad.py +39 -0
- mindspore/ops/_op_impl/aicpu/adaptive_max_pool_2d.py +37 -0
- mindspore/ops/_op_impl/aicpu/adaptive_max_pool_2d_grad.py +37 -0
- mindspore/ops/_op_impl/aicpu/adaptive_max_pool_3d.py +42 -0
- mindspore/ops/_op_impl/aicpu/adaptive_max_pool_3d_grad.py +152 -0
- mindspore/ops/_op_impl/aicpu/add.py +43 -0
- mindspore/ops/_op_impl/aicpu/add_n.py +41 -0
- mindspore/ops/_op_impl/aicpu/add_v2.py +40 -0
- mindspore/ops/_op_impl/aicpu/addcdiv.py +41 -0
- mindspore/ops/_op_impl/aicpu/addcmul.py +47 -0
- mindspore/ops/_op_impl/aicpu/adjust_contrastv2.py +32 -0
- mindspore/ops/_op_impl/aicpu/adjust_hue.py +31 -0
- mindspore/ops/_op_impl/aicpu/adjust_saturation.py +32 -0
- mindspore/ops/_op_impl/aicpu/affine_grid.py +33 -0
- mindspore/ops/_op_impl/aicpu/affine_grid_grad.py +35 -0
- mindspore/ops/_op_impl/aicpu/angle.py +31 -0
- mindspore/ops/_op_impl/aicpu/arg_max.py +75 -0
- mindspore/ops/_op_impl/aicpu/arg_min.py +75 -0
- mindspore/ops/_op_impl/aicpu/argmax_with_value.py +43 -0
- mindspore/ops/_op_impl/aicpu/argmin_with_value.py +43 -0
- mindspore/ops/_op_impl/aicpu/asin.py +32 -0
- mindspore/ops/_op_impl/aicpu/asin_grad.py +33 -0
- mindspore/ops/_op_impl/aicpu/asinh.py +34 -0
- mindspore/ops/_op_impl/aicpu/asinh_grad.py +35 -0
- mindspore/ops/_op_impl/aicpu/atanh.py +34 -0
- mindspore/ops/_op_impl/aicpu/avgpool_grad_v1.py +37 -0
- mindspore/ops/_op_impl/aicpu/avgpool_v1.py +36 -0
- mindspore/ops/_op_impl/aicpu/bartlett_window.py +36 -0
- mindspore/ops/_op_impl/aicpu/batch_matmul.py +43 -0
- mindspore/ops/_op_impl/aicpu/batch_norm_grad_grad.py +49 -0
- mindspore/ops/_op_impl/aicpu/bernoulli.py +48 -0
- mindspore/ops/_op_impl/aicpu/bessel_i0.py +31 -0
- mindspore/ops/_op_impl/aicpu/betainc.py +31 -0
- mindspore/ops/_op_impl/aicpu/bias_add.py +44 -0
- mindspore/ops/_op_impl/aicpu/bias_add_grad.py +42 -0
- mindspore/ops/_op_impl/aicpu/bincount.py +33 -0
- mindspore/ops/_op_impl/aicpu/blackman_window.py +36 -0
- mindspore/ops/_op_impl/aicpu/broadcast_to.py +58 -0
- mindspore/ops/_op_impl/aicpu/bucketize.py +34 -0
- mindspore/ops/_op_impl/aicpu/cache_swap_table.py +102 -0
- mindspore/ops/_op_impl/aicpu/cast.py +225 -0
- mindspore/ops/_op_impl/aicpu/cauchy.py +33 -0
- mindspore/ops/_op_impl/aicpu/channel_shuffle.py +40 -0
- mindspore/ops/_op_impl/aicpu/check_numerics.py +33 -0
- mindspore/ops/_op_impl/aicpu/cholesky.py +32 -0
- mindspore/ops/_op_impl/aicpu/cholesky_inverse.py +31 -0
- mindspore/ops/_op_impl/aicpu/cholesky_solve.py +33 -0
- mindspore/ops/_op_impl/aicpu/choleskygrad.py +32 -0
- mindspore/ops/_op_impl/aicpu/coalesce.py +37 -0
- mindspore/ops/_op_impl/aicpu/col2im.py +38 -0
- mindspore/ops/_op_impl/aicpu/combined_non_max_suppression.py +42 -0
- mindspore/ops/_op_impl/aicpu/compare_and_bitpack.py +37 -0
- mindspore/ops/_op_impl/aicpu/complex.py +32 -0
- mindspore/ops/_op_impl/aicpu/complex_abs.py +31 -0
- mindspore/ops/_op_impl/aicpu/compute_accidental_hits.py +44 -0
- mindspore/ops/_op_impl/aicpu/concat.py +57 -0
- mindspore/ops/_op_impl/aicpu/concat_offset.py +42 -0
- mindspore/ops/_op_impl/aicpu/concat_offset_v1.py +31 -0
- mindspore/ops/_op_impl/aicpu/conj.py +42 -0
- mindspore/ops/_op_impl/aicpu/conjugate_transpose.py +58 -0
- mindspore/ops/_op_impl/aicpu/cos.py +34 -0
- mindspore/ops/_op_impl/aicpu/cosh.py +34 -0
- mindspore/ops/_op_impl/aicpu/count_nonzero.py +43 -0
- mindspore/ops/_op_impl/aicpu/crop_and_resize.py +69 -0
- mindspore/ops/_op_impl/aicpu/crop_and_resize_grad_boxes.py +68 -0
- mindspore/ops/_op_impl/aicpu/crop_and_resize_grad_image.py +38 -0
- mindspore/ops/_op_impl/aicpu/cross.py +42 -0
- mindspore/ops/_op_impl/aicpu/csr_sparse_matrix_to_dense.py +48 -0
- mindspore/ops/_op_impl/aicpu/csr_sparse_matrix_to_sparse_tensor.py +51 -0
- mindspore/ops/_op_impl/aicpu/ctc_greedy_decoder.py +35 -0
- mindspore/ops/_op_impl/aicpu/ctc_loss_v2.py +43 -0
- mindspore/ops/_op_impl/aicpu/ctc_loss_v2_grad.py +45 -0
- mindspore/ops/_op_impl/aicpu/ctcloss.py +38 -0
- mindspore/ops/_op_impl/aicpu/cummax.py +41 -0
- mindspore/ops/_op_impl/aicpu/cumprod.py +58 -0
- mindspore/ops/_op_impl/aicpu/cumsum.py +58 -0
- mindspore/ops/_op_impl/aicpu/cumulative_logsumexp.py +36 -0
- mindspore/ops/_op_impl/aicpu/data_format_vec_permute.py +32 -0
- mindspore/ops/_op_impl/aicpu/deformable_offsets.py +38 -0
- mindspore/ops/_op_impl/aicpu/deformable_offsets_grad.py +43 -0
- mindspore/ops/_op_impl/aicpu/dense_to_csr_sparse_matrix.py +49 -0
- mindspore/ops/_op_impl/aicpu/dense_to_dense_set_operation.py +45 -0
- mindspore/ops/_op_impl/aicpu/dense_to_sparse_set_operation.py +48 -0
- mindspore/ops/_op_impl/aicpu/depth_to_space.py +44 -0
- mindspore/ops/_op_impl/aicpu/diag.py +36 -0
- mindspore/ops/_op_impl/aicpu/diag_part.py +36 -0
- mindspore/ops/_op_impl/aicpu/diagonal.py +35 -0
- mindspore/ops/_op_impl/aicpu/digamma.py +31 -0
- mindspore/ops/_op_impl/aicpu/div.py +41 -0
- mindspore/ops/_op_impl/aicpu/div_no_nan.py +35 -0
- mindspore/ops/_op_impl/aicpu/dropout2d.py +42 -0
- mindspore/ops/_op_impl/aicpu/dropout3d.py +42 -0
- mindspore/ops/_op_impl/aicpu/dropout_genmask.py +41 -0
- mindspore/ops/_op_impl/aicpu/dropout_genmask_v3.py +32 -0
- mindspore/ops/_op_impl/aicpu/dynamic_stitch.py +42 -0
- mindspore/ops/_op_impl/aicpu/edit_distance.py +56 -0
- mindspore/ops/_op_impl/aicpu/eig.py +35 -0
- mindspore/ops/_op_impl/aicpu/embedding_lookup.py +102 -0
- mindspore/ops/_op_impl/aicpu/end_of_sequence.py +30 -0
- mindspore/ops/_op_impl/aicpu/environ_create.py +28 -0
- mindspore/ops/_op_impl/aicpu/environ_destroy_all.py +28 -0
- mindspore/ops/_op_impl/aicpu/environ_get.py +41 -0
- mindspore/ops/_op_impl/aicpu/environ_set.py +40 -0
- mindspore/ops/_op_impl/aicpu/eps.py +32 -0
- mindspore/ops/_op_impl/aicpu/equal.py +41 -0
- mindspore/ops/_op_impl/aicpu/exp.py +37 -0
- mindspore/ops/_op_impl/aicpu/expand.py +45 -0
- mindspore/ops/_op_impl/aicpu/expand_dims.py +42 -0
- mindspore/ops/_op_impl/aicpu/expm1.py +34 -0
- mindspore/ops/_op_impl/aicpu/extract_glimpse.py +35 -0
- mindspore/ops/_op_impl/aicpu/eye.py +44 -0
- mindspore/ops/_op_impl/aicpu/fft_with_size.py +47 -0
- mindspore/ops/_op_impl/aicpu/fill_diagonal.py +39 -0
- mindspore/ops/_op_impl/aicpu/fill_v2.py +58 -0
- mindspore/ops/_op_impl/aicpu/flatten.py +43 -0
- mindspore/ops/_op_impl/aicpu/floor_div.py +38 -0
- mindspore/ops/_op_impl/aicpu/fmax.py +36 -0
- mindspore/ops/_op_impl/aicpu/fmin.py +37 -0
- mindspore/ops/_op_impl/aicpu/fractional_avg_pool.py +41 -0
- mindspore/ops/_op_impl/aicpu/fractional_avg_pool_grad.py +41 -0
- mindspore/ops/_op_impl/aicpu/fractional_max_pool.py +41 -0
- mindspore/ops/_op_impl/aicpu/fractional_max_pool3d_grad_with_fixed_ksize.py +43 -0
- mindspore/ops/_op_impl/aicpu/fractional_max_pool3d_with_fixed_ksize.py +65 -0
- mindspore/ops/_op_impl/aicpu/fractional_max_pool_grad.py +42 -0
- mindspore/ops/_op_impl/aicpu/fractional_max_pool_grad_with_fixed_ksize.py +42 -0
- mindspore/ops/_op_impl/aicpu/fractional_max_pool_with_fixed_ksize.py +49 -0
- mindspore/ops/_op_impl/aicpu/fse_decode.py +43 -0
- mindspore/ops/_op_impl/aicpu/fused_sparse_adam.py +46 -0
- mindspore/ops/_op_impl/aicpu/fused_sparse_ftrl.py +41 -0
- mindspore/ops/_op_impl/aicpu/fused_sparse_lazy_adam.py +46 -0
- mindspore/ops/_op_impl/aicpu/fused_sparse_proximal_adagrad.py +39 -0
- mindspore/ops/_op_impl/aicpu/gamma.py +38 -0
- mindspore/ops/_op_impl/aicpu/gather.py +46 -0
- mindspore/ops/_op_impl/aicpu/gather_d.py +79 -0
- mindspore/ops/_op_impl/aicpu/gather_d_grad_v2.py +79 -0
- mindspore/ops/_op_impl/aicpu/gather_grad.py +54 -0
- mindspore/ops/_op_impl/aicpu/gather_nd.py +56 -0
- mindspore/ops/_op_impl/aicpu/gcd.py +32 -0
- mindspore/ops/_op_impl/aicpu/generate_eod_mask.py +38 -0
- mindspore/ops/_op_impl/aicpu/geqrf.py +32 -0
- mindspore/ops/_op_impl/aicpu/get_next.py +39 -0
- mindspore/ops/_op_impl/aicpu/glu.py +33 -0
- mindspore/ops/_op_impl/aicpu/glu_grad.py +34 -0
- mindspore/ops/_op_impl/aicpu/greater.py +41 -0
- mindspore/ops/_op_impl/aicpu/greater_equal.py +41 -0
- mindspore/ops/_op_impl/aicpu/grid_sampler_2d.py +35 -0
- mindspore/ops/_op_impl/aicpu/grid_sampler_2d_grad.py +38 -0
- mindspore/ops/_op_impl/aicpu/grid_sampler_3d.py +34 -0
- mindspore/ops/_op_impl/aicpu/grid_sampler_3d_grad.py +38 -0
- mindspore/ops/_op_impl/aicpu/hamming_window.py +57 -0
- mindspore/ops/_op_impl/aicpu/hard_sigmoid.py +32 -0
- mindspore/ops/_op_impl/aicpu/hard_sigmoid_grad.py +33 -0
- mindspore/ops/_op_impl/aicpu/heaviside.py +40 -0
- mindspore/ops/_op_impl/aicpu/histogram.py +35 -0
- mindspore/ops/_op_impl/aicpu/hsv_to_rgb.py +32 -0
- mindspore/ops/_op_impl/aicpu/hypot.py +32 -0
- mindspore/ops/_op_impl/aicpu/identity.py +42 -0
- mindspore/ops/_op_impl/aicpu/identity_n.py +41 -0
- mindspore/ops/_op_impl/aicpu/igamma.py +30 -0
- mindspore/ops/_op_impl/aicpu/igammac.py +30 -0
- mindspore/ops/_op_impl/aicpu/igammagrada.py +30 -0
- mindspore/ops/_op_impl/aicpu/im2col.py +43 -0
- mindspore/ops/_op_impl/aicpu/imag.py +31 -0
- mindspore/ops/_op_impl/aicpu/index_fill.py +54 -0
- mindspore/ops/_op_impl/aicpu/index_put.py +50 -0
- mindspore/ops/_op_impl/aicpu/init_data_set_queue.py +27 -0
- mindspore/ops/_op_impl/aicpu/inplace_index_add.py +39 -0
- mindspore/ops/_op_impl/aicpu/instance_norm_v2.py +41 -0
- mindspore/ops/_op_impl/aicpu/instance_norm_v2_grad.py +44 -0
- mindspore/ops/_op_impl/aicpu/is_finite.py +40 -0
- mindspore/ops/_op_impl/aicpu/is_inf.py +31 -0
- mindspore/ops/_op_impl/aicpu/is_nan.py +31 -0
- mindspore/ops/_op_impl/aicpu/kldivloss.py +34 -0
- mindspore/ops/_op_impl/aicpu/kldivlossgrad.py +35 -0
- mindspore/ops/_op_impl/aicpu/layer_norm_grad_grad.py +47 -0
- mindspore/ops/_op_impl/aicpu/lcm.py +32 -0
- mindspore/ops/_op_impl/aicpu/left_shift.py +38 -0
- mindspore/ops/_op_impl/aicpu/less.py +41 -0
- mindspore/ops/_op_impl/aicpu/less_equal.py +41 -0
- mindspore/ops/_op_impl/aicpu/lgamma.py +33 -0
- mindspore/ops/_op_impl/aicpu/linear_sum_assignment.py +57 -0
- mindspore/ops/_op_impl/aicpu/linspace.py +33 -0
- mindspore/ops/_op_impl/aicpu/list_diff.py +50 -0
- mindspore/ops/_op_impl/aicpu/log.py +37 -0
- mindspore/ops/_op_impl/aicpu/log1p.py +34 -0
- mindspore/ops/_op_impl/aicpu/log_matrix_determinant.py +31 -0
- mindspore/ops/_op_impl/aicpu/log_normal_reverse.py +33 -0
- mindspore/ops/_op_impl/aicpu/log_uniform_candidate_sampler.py +37 -0
- mindspore/ops/_op_impl/aicpu/logical_xor.py +30 -0
- mindspore/ops/_op_impl/aicpu/logit.py +33 -0
- mindspore/ops/_op_impl/aicpu/logit_grad.py +34 -0
- mindspore/ops/_op_impl/aicpu/logspace.py +36 -0
- mindspore/ops/_op_impl/aicpu/lower_bound.py +47 -0
- mindspore/ops/_op_impl/aicpu/lstsq.py +34 -0
- mindspore/ops/_op_impl/aicpu/lu.py +39 -0
- mindspore/ops/_op_impl/aicpu/lu_solve.py +32 -0
- mindspore/ops/_op_impl/aicpu/lu_unpack.py +114 -0
- mindspore/ops/_op_impl/aicpu/lu_unpack_grad.py +49 -0
- mindspore/ops/_op_impl/aicpu/masked_fill.py +42 -0
- mindspore/ops/_op_impl/aicpu/masked_scatter.py +40 -0
- mindspore/ops/_op_impl/aicpu/masked_select.py +31 -0
- mindspore/ops/_op_impl/aicpu/masked_select_grad.py +35 -0
- mindspore/ops/_op_impl/aicpu/matmul.py +39 -0
- mindspore/ops/_op_impl/aicpu/matrix_band_part.py +59 -0
- mindspore/ops/_op_impl/aicpu/matrix_determinant.py +30 -0
- mindspore/ops/_op_impl/aicpu/matrix_diag_part_v3.py +54 -0
- mindspore/ops/_op_impl/aicpu/matrix_diag_v3.py +56 -0
- mindspore/ops/_op_impl/aicpu/matrix_exp.py +34 -0
- mindspore/ops/_op_impl/aicpu/matrix_inverse.py +31 -0
- mindspore/ops/_op_impl/aicpu/matrix_logarithm.py +31 -0
- mindspore/ops/_op_impl/aicpu/matrix_power.py +37 -0
- mindspore/ops/_op_impl/aicpu/matrix_set_diag_v3.py +54 -0
- mindspore/ops/_op_impl/aicpu/matrix_solve.py +35 -0
- mindspore/ops/_op_impl/aicpu/matrix_solve_ls.py +36 -0
- mindspore/ops/_op_impl/aicpu/matrix_triangular_solve.py +36 -0
- mindspore/ops/_op_impl/aicpu/max_pool3d_grad_with_argmax.py +60 -0
- mindspore/ops/_op_impl/aicpu/max_pool3d_with_argmax.py +59 -0
- mindspore/ops/_op_impl/aicpu/max_unpool2d.py +57 -0
- mindspore/ops/_op_impl/aicpu/max_unpool2d_grad.py +58 -0
- mindspore/ops/_op_impl/aicpu/max_unpool3d.py +57 -0
- mindspore/ops/_op_impl/aicpu/max_unpool3d_grad.py +58 -0
- mindspore/ops/_op_impl/aicpu/maximum_grad_grad.py +40 -0
- mindspore/ops/_op_impl/aicpu/maxpool_grad_v1.py +46 -0
- mindspore/ops/_op_impl/aicpu/maxpool_v1.py +42 -0
- mindspore/ops/_op_impl/aicpu/median.py +39 -0
- mindspore/ops/_op_impl/aicpu/median_grad.py +45 -0
- mindspore/ops/_op_impl/aicpu/meshgrid.py +41 -0
- mindspore/ops/_op_impl/aicpu/minimum_grad_grad.py +40 -0
- mindspore/ops/_op_impl/aicpu/mirror_pad.py +50 -0
- mindspore/ops/_op_impl/aicpu/mirror_pad_grad.py +48 -0
- mindspore/ops/_op_impl/aicpu/mul.py +43 -0
- mindspore/ops/_op_impl/aicpu/mul_no_nan.py +42 -0
- mindspore/ops/_op_impl/aicpu/multi_margin_loss.py +37 -0
- mindspore/ops/_op_impl/aicpu/multi_margin_loss_grad.py +41 -0
- mindspore/ops/_op_impl/aicpu/multilabel_margin_loss_grad.py +37 -0
- mindspore/ops/_op_impl/aicpu/multinomial.py +47 -0
- mindspore/ops/_op_impl/aicpu/multinomial_with_replacement.py +35 -0
- mindspore/ops/_op_impl/aicpu/mvlgamma.py +32 -0
- mindspore/ops/_op_impl/aicpu/mvlgamma_grad.py +33 -0
- mindspore/ops/_op_impl/aicpu/nan_to_num.py +34 -0
- mindspore/ops/_op_impl/aicpu/neg.py +36 -0
- mindspore/ops/_op_impl/aicpu/nextafter.py +32 -0
- mindspore/ops/_op_impl/aicpu/nllloss.py +38 -0
- mindspore/ops/_op_impl/aicpu/nllloss_grad.py +39 -0
- mindspore/ops/_op_impl/aicpu/no_repeat_ngram.py +34 -0
- mindspore/ops/_op_impl/aicpu/non_deterministic_ints.py +33 -0
- mindspore/ops/_op_impl/aicpu/non_max_suppression.py +36 -0
- mindspore/ops/_op_impl/aicpu/non_max_suppression_with_overlaps.py +35 -0
- mindspore/ops/_op_impl/aicpu/non_zero.py +43 -0
- mindspore/ops/_op_impl/aicpu/not_equal.py +39 -0
- mindspore/ops/_op_impl/aicpu/nth_element.py +39 -0
- mindspore/ops/_op_impl/aicpu/nuclear_norm.py +33 -0
- mindspore/ops/_op_impl/aicpu/one_hot.py +116 -0
- mindspore/ops/_op_impl/aicpu/ones_like.py +39 -0
- mindspore/ops/_op_impl/aicpu/orgqr.py +34 -0
- mindspore/ops/_op_impl/aicpu/pad_and_shift.py +33 -0
- mindspore/ops/_op_impl/aicpu/pad_v3.py +61 -0
- mindspore/ops/_op_impl/aicpu/pad_v3_grad.py +59 -0
- mindspore/ops/_op_impl/aicpu/padding.py +41 -0
- mindspore/ops/_op_impl/aicpu/parameterized_truncated_normal.py +54 -0
- mindspore/ops/_op_impl/aicpu/pdist_grad.py +33 -0
- mindspore/ops/_op_impl/aicpu/poisson.py +37 -0
- mindspore/ops/_op_impl/aicpu/polar.py +32 -0
- mindspore/ops/_op_impl/aicpu/polygamma.py +34 -0
- mindspore/ops/_op_impl/aicpu/pow.py +39 -0
- mindspore/ops/_op_impl/aicpu/print_tensor.py +39 -0
- mindspore/ops/_op_impl/aicpu/priority_replay_buffer.py +113 -0
- mindspore/ops/_op_impl/aicpu/qr.py +36 -0
- mindspore/ops/_op_impl/aicpu/quant_dtype_cast.py +40 -0
- mindspore/ops/_op_impl/aicpu/quantile.py +35 -0
- mindspore/ops/_op_impl/aicpu/ragged_range.py +49 -0
- mindspore/ops/_op_impl/aicpu/ragged_tensor_to_sparse.py +73 -0
- mindspore/ops/_op_impl/aicpu/ragged_tensor_to_tensor.py +74 -0
- mindspore/ops/_op_impl/aicpu/random_categorical.py +68 -0
- mindspore/ops/_op_impl/aicpu/random_choice_with_mask.py +36 -0
- mindspore/ops/_op_impl/aicpu/random_gamma.py +38 -0
- mindspore/ops/_op_impl/aicpu/random_poisson.py +134 -0
- mindspore/ops/_op_impl/aicpu/random_shuffle.py +47 -0
- mindspore/ops/_op_impl/aicpu/randperm.py +38 -0
- mindspore/ops/_op_impl/aicpu/randperm_v2.py +41 -0
- mindspore/ops/_op_impl/aicpu/range.py +36 -0
- mindspore/ops/_op_impl/aicpu/range_v2.py +35 -0
- mindspore/ops/_op_impl/aicpu/real.py +31 -0
- mindspore/ops/_op_impl/aicpu/real_div.py +40 -0
- mindspore/ops/_op_impl/aicpu/reciprocal.py +34 -0
- mindspore/ops/_op_impl/aicpu/reciprocal_grad.py +35 -0
- mindspore/ops/_op_impl/aicpu/reduce_mean.py +57 -0
- mindspore/ops/_op_impl/aicpu/reduce_prod.py +57 -0
- mindspore/ops/_op_impl/aicpu/reduce_sum.py +57 -0
- mindspore/ops/_op_impl/aicpu/relu_grad_v3.py +41 -0
- mindspore/ops/_op_impl/aicpu/relu_v3.py +38 -0
- mindspore/ops/_op_impl/aicpu/reservoir_replay_buffer.py +96 -0
- mindspore/ops/_op_impl/aicpu/reshape.py +42 -0
- mindspore/ops/_op_impl/aicpu/resize_area.py +40 -0
- mindspore/ops/_op_impl/aicpu/resize_bicubic.py +20 -0
- mindspore/ops/_op_impl/aicpu/resize_bicubic_grad.py +19 -0
- mindspore/ops/_op_impl/aicpu/resize_bilinear.py +32 -0
- mindspore/ops/_op_impl/aicpu/resize_bilinear_grad.py +32 -0
- mindspore/ops/_op_impl/aicpu/resize_nearest_neighbor_v2.py +36 -0
- mindspore/ops/_op_impl/aicpu/resize_nearest_neighbor_v2_grad.py +35 -0
- mindspore/ops/_op_impl/aicpu/resize_v2.py +68 -0
- mindspore/ops/_op_impl/aicpu/resize_v2_grad.py +68 -0
- mindspore/ops/_op_impl/aicpu/reverse_sequence.py +55 -0
- mindspore/ops/_op_impl/aicpu/reversev2.py +54 -0
- mindspore/ops/_op_impl/aicpu/rgb_to_hsv.py +32 -0
- mindspore/ops/_op_impl/aicpu/right_shift.py +38 -0
- mindspore/ops/_op_impl/aicpu/rnnt_loss.py +35 -0
- mindspore/ops/_op_impl/aicpu/round.py +34 -0
- mindspore/ops/_op_impl/aicpu/rsqrt.py +33 -0
- mindspore/ops/_op_impl/aicpu/rsqrt_grad.py +36 -0
- mindspore/ops/_op_impl/aicpu/sample_distorted_bounding_box_v2.py +49 -0
- mindspore/ops/_op_impl/aicpu/scale_and_translate.py +52 -0
- mindspore/ops/_op_impl/aicpu/scale_and_translate_grad.py +36 -0
- mindspore/ops/_op_impl/aicpu/scatter.py +79 -0
- mindspore/ops/_op_impl/aicpu/scatter_add_with_axis.py +53 -0
- mindspore/ops/_op_impl/aicpu/scatter_elements.py +39 -0
- mindspore/ops/_op_impl/aicpu/scatter_nd.py +59 -0
- mindspore/ops/_op_impl/aicpu/scatter_nd_max.py +54 -0
- mindspore/ops/_op_impl/aicpu/scatter_nd_min.py +54 -0
- mindspore/ops/_op_impl/aicpu/scatter_nd_update.py +59 -0
- mindspore/ops/_op_impl/aicpu/search_sorted.py +44 -0
- mindspore/ops/_op_impl/aicpu/segment_max.py +52 -0
- mindspore/ops/_op_impl/aicpu/segment_mean.py +56 -0
- mindspore/ops/_op_impl/aicpu/segment_min.py +52 -0
- mindspore/ops/_op_impl/aicpu/segment_prod.py +56 -0
- mindspore/ops/_op_impl/aicpu/segment_sum.py +56 -0
- mindspore/ops/_op_impl/aicpu/select.py +45 -0
- mindspore/ops/_op_impl/aicpu/self_adjoint_eig.py +34 -0
- mindspore/ops/_op_impl/aicpu/sequence_add.py +34 -0
- mindspore/ops/_op_impl/aicpu/sequence_add_offset.py +34 -0
- mindspore/ops/_op_impl/aicpu/sequence_addn.py +38 -0
- mindspore/ops/_op_impl/aicpu/sequence_concat.py +40 -0
- mindspore/ops/_op_impl/aicpu/sequence_stack.py +40 -0
- mindspore/ops/_op_impl/aicpu/set_size.py +38 -0
- mindspore/ops/_op_impl/aicpu/sign.py +36 -0
- mindspore/ops/_op_impl/aicpu/sin.py +34 -0
- mindspore/ops/_op_impl/aicpu/sinc.py +43 -0
- mindspore/ops/_op_impl/aicpu/sinh.py +34 -0
- mindspore/ops/_op_impl/aicpu/slice.py +59 -0
- mindspore/ops/_op_impl/aicpu/slice_grad.py +76 -0
- mindspore/ops/_op_impl/aicpu/smooth_l1_loss.py +35 -0
- mindspore/ops/_op_impl/aicpu/smooth_l1_loss_grad.py +37 -0
- mindspore/ops/_op_impl/aicpu/sort.py +39 -0
- mindspore/ops/_op_impl/aicpu/space_to_depth.py +44 -0
- mindspore/ops/_op_impl/aicpu/sparse_addmm.py +87 -0
- mindspore/ops/_op_impl/aicpu/sparse_apply_adagrad_da.py +80 -0
- mindspore/ops/_op_impl/aicpu/sparse_apply_centered_rms_prop.py +105 -0
- mindspore/ops/_op_impl/aicpu/sparse_apply_momentum.py +80 -0
- mindspore/ops/_op_impl/aicpu/sparse_apply_proximal_gradient_descent.py +79 -0
- mindspore/ops/_op_impl/aicpu/sparse_concat.py +59 -0
- mindspore/ops/_op_impl/aicpu/sparse_cross.py +42 -0
- mindspore/ops/_op_impl/aicpu/sparse_dense_cwise_add.py +58 -0
- mindspore/ops/_op_impl/aicpu/sparse_dense_cwise_div.py +58 -0
- mindspore/ops/_op_impl/aicpu/sparse_dense_cwise_mul.py +58 -0
- mindspore/ops/_op_impl/aicpu/sparse_fill_empty_rows.py +63 -0
- mindspore/ops/_op_impl/aicpu/sparse_fill_empty_rows_grad.py +45 -0
- mindspore/ops/_op_impl/aicpu/sparse_matrix_mat_mul.py +56 -0
- mindspore/ops/_op_impl/aicpu/sparse_matrix_nnz.py +81 -0
- mindspore/ops/_op_impl/aicpu/sparse_matrix_transpose.py +116 -0
- mindspore/ops/_op_impl/aicpu/sparse_reorder.py +56 -0
- mindspore/ops/_op_impl/aicpu/sparse_reshape.py +34 -0
- mindspore/ops/_op_impl/aicpu/sparse_segment_mean_grad.py +36 -0
- mindspore/ops/_op_impl/aicpu/sparse_segment_mean_with_num_segments.py +44 -0
- mindspore/ops/_op_impl/aicpu/sparse_segment_sqrt_n.py +43 -0
- mindspore/ops/_op_impl/aicpu/sparse_segment_sqrt_n_grad.py +38 -0
- mindspore/ops/_op_impl/aicpu/sparse_segment_sqrt_n_with_num_segments.py +44 -0
- mindspore/ops/_op_impl/aicpu/sparse_segment_sum.py +49 -0
- mindspore/ops/_op_impl/aicpu/sparse_segment_sum_with_num_segments.py +68 -0
- mindspore/ops/_op_impl/aicpu/sparse_slice.py +63 -0
- mindspore/ops/_op_impl/aicpu/sparse_slice_grad.py +61 -0
- mindspore/ops/_op_impl/aicpu/sparse_softmax.py +33 -0
- mindspore/ops/_op_impl/aicpu/sparse_softmax_cross_entropy_with_logits_v2.py +35 -0
- mindspore/ops/_op_impl/aicpu/sparse_sparse_maximum.py +53 -0
- mindspore/ops/_op_impl/aicpu/sparse_sparse_minimum.py +53 -0
- mindspore/ops/_op_impl/aicpu/sparse_tensor_dense_add.py +84 -0
- mindspore/ops/_op_impl/aicpu/sparse_tensor_dense_mat_mul.py +190 -0
- mindspore/ops/_op_impl/aicpu/sparse_tensor_to_csr_sparse_matrix.py +51 -0
- mindspore/ops/_op_impl/aicpu/sparse_to_dense_v2.py +73 -0
- mindspore/ops/_op_impl/aicpu/split.py +45 -0
- mindspore/ops/_op_impl/aicpu/sqrt.py +34 -0
- mindspore/ops/_op_impl/aicpu/sqrt_grad.py +35 -0
- mindspore/ops/_op_impl/aicpu/square.py +35 -0
- mindspore/ops/_op_impl/aicpu/squared_difference.py +37 -0
- mindspore/ops/_op_impl/aicpu/squeeze.py +42 -0
- mindspore/ops/_op_impl/aicpu/sspaddmm.py +97 -0
- mindspore/ops/_op_impl/aicpu/stack.py +45 -0
- mindspore/ops/_op_impl/aicpu/stack_push_pop.py +87 -0
- mindspore/ops/_op_impl/aicpu/standard_laplace.py +34 -0
- mindspore/ops/_op_impl/aicpu/standard_normal.py +34 -0
- mindspore/ops/_op_impl/aicpu/stateless_dropout_genmask.py +37 -0
- mindspore/ops/_op_impl/aicpu/stft.py +70 -0
- mindspore/ops/_op_impl/aicpu/strided_slice.py +43 -0
- mindspore/ops/_op_impl/aicpu/strided_slice_grad.py +50 -0
- mindspore/ops/_op_impl/aicpu/sub.py +41 -0
- mindspore/ops/_op_impl/aicpu/sub_and_filter.py +36 -0
- mindspore/ops/_op_impl/aicpu/tan.py +34 -0
- mindspore/ops/_op_impl/aicpu/tanh.py +34 -0
- mindspore/ops/_op_impl/aicpu/tanh_grad.py +35 -0
- mindspore/ops/_op_impl/aicpu/tensor_scatter_update.py +59 -0
- mindspore/ops/_op_impl/aicpu/tile.py +56 -0
- mindspore/ops/_op_impl/aicpu/topk.py +34 -0
- mindspore/ops/_op_impl/aicpu/trace.py +40 -0
- mindspore/ops/_op_impl/aicpu/tracegrad.py +41 -0
- mindspore/ops/_op_impl/aicpu/trans_data.py +35 -0
- mindspore/ops/_op_impl/aicpu/transpose.py +58 -0
- mindspore/ops/_op_impl/aicpu/tridiagonal_matmul.py +42 -0
- mindspore/ops/_op_impl/aicpu/tridiagonal_solve.py +35 -0
- mindspore/ops/_op_impl/aicpu/tril.py +42 -0
- mindspore/ops/_op_impl/aicpu/tril_indices.py +34 -0
- mindspore/ops/_op_impl/aicpu/triplet_margin_loss.py +62 -0
- mindspore/ops/_op_impl/aicpu/triu.py +43 -0
- mindspore/ops/_op_impl/aicpu/triu_indices.py +34 -0
- mindspore/ops/_op_impl/aicpu/truncated_normal.py +39 -0
- mindspore/ops/_op_impl/aicpu/uniform.py +36 -0
- mindspore/ops/_op_impl/aicpu/uniform_candidate_sampler.py +41 -0
- mindspore/ops/_op_impl/aicpu/uniform_int.py +36 -0
- mindspore/ops/_op_impl/aicpu/uniform_real.py +33 -0
- mindspore/ops/_op_impl/aicpu/unique.py +31 -0
- mindspore/ops/_op_impl/aicpu/unique_consecutive.py +47 -0
- mindspore/ops/_op_impl/aicpu/unique_with_pad.py +32 -0
- mindspore/ops/_op_impl/aicpu/unravel_index.py +32 -0
- mindspore/ops/_op_impl/aicpu/unsorted_segment_prod.py +53 -0
- mindspore/ops/_op_impl/aicpu/unsorted_segment_sum.py +57 -0
- mindspore/ops/_op_impl/aicpu/unstack.py +45 -0
- mindspore/ops/_op_impl/aicpu/update_cache.py +44 -0
- mindspore/ops/_op_impl/aicpu/upper_bound.py +47 -0
- mindspore/ops/_op_impl/aicpu/upsample_nearest_3d.py +42 -0
- mindspore/ops/_op_impl/aicpu/upsample_nearest_3d_grad.py +49 -0
- mindspore/ops/_op_impl/aicpu/upsample_trilinear_3d.py +40 -0
- mindspore/ops/_op_impl/aicpu/upsample_trilinear_3d_grad.py +50 -0
- mindspore/ops/_op_impl/aicpu/xdivy.py +35 -0
- mindspore/ops/_op_impl/aicpu/xlogy.py +33 -0
- mindspore/ops/_op_impl/aicpu/zeros_like.py +42 -0
- mindspore/ops/_op_impl/aicpu/zeta.py +31 -0
- mindspore/ops/_op_impl/akg/__init__.py +19 -0
- mindspore/ops/_op_impl/akg/ascend/__init__.py +48 -0
- mindspore/ops/_op_impl/akg/ascend/abs.py +35 -0
- mindspore/ops/_op_impl/akg/ascend/add.py +42 -0
- mindspore/ops/_op_impl/akg/ascend/add_n.py +37 -0
- mindspore/ops/_op_impl/akg/ascend/batchmatmul.py +33 -0
- mindspore/ops/_op_impl/akg/ascend/cast.py +46 -0
- mindspore/ops/_op_impl/akg/ascend/equal.py +35 -0
- mindspore/ops/_op_impl/akg/ascend/exp.py +35 -0
- mindspore/ops/_op_impl/akg/ascend/expand_dims.py +33 -0
- mindspore/ops/_op_impl/akg/ascend/greater.py +34 -0
- mindspore/ops/_op_impl/akg/ascend/greater_equal.py +35 -0
- mindspore/ops/_op_impl/akg/ascend/less.py +31 -0
- mindspore/ops/_op_impl/akg/ascend/less_equal.py +35 -0
- mindspore/ops/_op_impl/akg/ascend/load_im2col.py +33 -0
- mindspore/ops/_op_impl/akg/ascend/log.py +34 -0
- mindspore/ops/_op_impl/akg/ascend/maximum.py +36 -0
- mindspore/ops/_op_impl/akg/ascend/minimum.py +39 -0
- mindspore/ops/_op_impl/akg/ascend/mul.py +41 -0
- mindspore/ops/_op_impl/akg/ascend/neg.py +37 -0
- mindspore/ops/_op_impl/akg/ascend/pow.py +35 -0
- mindspore/ops/_op_impl/akg/ascend/prod_force_se_a.py +33 -0
- mindspore/ops/_op_impl/akg/ascend/real_div.py +36 -0
- mindspore/ops/_op_impl/akg/ascend/reciprocal.py +32 -0
- mindspore/ops/_op_impl/akg/ascend/reduce_max.py +32 -0
- mindspore/ops/_op_impl/akg/ascend/reduce_min.py +32 -0
- mindspore/ops/_op_impl/akg/ascend/reduce_sum.py +37 -0
- mindspore/ops/_op_impl/akg/ascend/rsqrt.py +35 -0
- mindspore/ops/_op_impl/akg/ascend/select.py +37 -0
- mindspore/ops/_op_impl/akg/ascend/sqrt.py +35 -0
- mindspore/ops/_op_impl/akg/ascend/square.py +35 -0
- mindspore/ops/_op_impl/akg/ascend/sub.py +42 -0
- mindspore/ops/_op_impl/akg/cpu/__init__.py +23 -0
- mindspore/ops/_op_impl/akg/cpu/coo2csr.py +29 -0
- mindspore/ops/_op_impl/akg/cpu/csr2coo.py +29 -0
- mindspore/ops/_op_impl/akg/cpu/csr_gather.py +33 -0
- mindspore/ops/_op_impl/akg/cpu/csr_mm.py +34 -0
- mindspore/ops/_op_impl/akg/cpu/csr_mul.py +33 -0
- mindspore/ops/_op_impl/akg/cpu/csr_mv.py +33 -0
- mindspore/ops/_op_impl/akg/cpu/csr_reduce_sum.py +31 -0
- mindspore/ops/_op_impl/akg/gpu/__init__.py +24 -0
- mindspore/ops/_op_impl/akg/gpu/coo2csr.py +29 -0
- mindspore/ops/_op_impl/akg/gpu/csr2coo.py +29 -0
- mindspore/ops/_op_impl/akg/gpu/csr_div.py +36 -0
- mindspore/ops/_op_impl/akg/gpu/csr_gather.py +33 -0
- mindspore/ops/_op_impl/akg/gpu/csr_mm.py +37 -0
- mindspore/ops/_op_impl/akg/gpu/csr_mul.py +36 -0
- mindspore/ops/_op_impl/akg/gpu/csr_mv.py +36 -0
- mindspore/ops/_op_impl/akg/gpu/csr_reduce_sum.py +33 -0
- mindspore/ops/_op_impl/cpu/__init__.py +78 -0
- mindspore/ops/_op_impl/cpu/adam.py +49 -0
- mindspore/ops/_op_impl/cpu/adam_weight_decay.py +47 -0
- mindspore/ops/_op_impl/cpu/arg_max.py +30 -0
- mindspore/ops/_op_impl/cpu/arg_max_with_value.py +31 -0
- mindspore/ops/_op_impl/cpu/arg_min_with_value.py +31 -0
- mindspore/ops/_op_impl/cpu/buffer_append.py +28 -0
- mindspore/ops/_op_impl/cpu/buffer_get.py +28 -0
- mindspore/ops/_op_impl/cpu/buffer_sample.py +28 -0
- mindspore/ops/_op_impl/cpu/cast.py +171 -0
- mindspore/ops/_op_impl/cpu/concat_offset.py +38 -0
- mindspore/ops/_op_impl/cpu/conv2d.py +30 -0
- mindspore/ops/_op_impl/cpu/conv3d.py +30 -0
- mindspore/ops/_op_impl/cpu/div.py +32 -0
- mindspore/ops/_op_impl/cpu/dropout.py +31 -0
- mindspore/ops/_op_impl/cpu/dropout_grad.py +30 -0
- mindspore/ops/_op_impl/cpu/dynamic_shape.py +42 -0
- mindspore/ops/_op_impl/cpu/dynamic_stitch.py +41 -0
- mindspore/ops/_op_impl/cpu/equal_count.py +30 -0
- mindspore/ops/_op_impl/cpu/gather_d.py +49 -0
- mindspore/ops/_op_impl/cpu/gather_d_grad.py +38 -0
- mindspore/ops/_op_impl/cpu/gather_d_grad_v2.py +40 -0
- mindspore/ops/_op_impl/cpu/gather_v2.py +40 -0
- mindspore/ops/_op_impl/cpu/hsigmoid.py +33 -0
- mindspore/ops/_op_impl/cpu/hsigmoid_grad.py +34 -0
- mindspore/ops/_op_impl/cpu/hswish.py +32 -0
- mindspore/ops/_op_impl/cpu/hswish_grad.py +33 -0
- mindspore/ops/_op_impl/cpu/identity_n.py +40 -0
- mindspore/ops/_op_impl/cpu/is_finite.py +39 -0
- mindspore/ops/_op_impl/cpu/l2loss.py +30 -0
- mindspore/ops/_op_impl/cpu/layer_norm.py +36 -0
- mindspore/ops/_op_impl/cpu/layer_norm_grad.py +38 -0
- mindspore/ops/_op_impl/cpu/maximum.py +35 -0
- mindspore/ops/_op_impl/cpu/maximum_grad.py +47 -0
- mindspore/ops/_op_impl/cpu/minimum.py +40 -0
- mindspore/ops/_op_impl/cpu/minimum_grad.py +51 -0
- mindspore/ops/_op_impl/cpu/mirror_pad.py +36 -0
- mindspore/ops/_op_impl/cpu/mirror_pad_grad.py +36 -0
- mindspore/ops/_op_impl/cpu/mul.py +32 -0
- mindspore/ops/_op_impl/cpu/one_hot.py +31 -0
- mindspore/ops/_op_impl/cpu/pad.py +32 -0
- mindspore/ops/_op_impl/cpu/pow.py +32 -0
- mindspore/ops/_op_impl/cpu/priority_replay_buffer.py +42 -0
- mindspore/ops/_op_impl/cpu/pyexecute.py +29 -0
- mindspore/ops/_op_impl/cpu/pyfunc.py +29 -0
- mindspore/ops/_op_impl/cpu/range.py +34 -0
- mindspore/ops/_op_impl/cpu/real_div.py +33 -0
- mindspore/ops/_op_impl/cpu/reduce_all.py +29 -0
- mindspore/ops/_op_impl/cpu/reduce_any.py +29 -0
- mindspore/ops/_op_impl/cpu/reduce_max.py +32 -0
- mindspore/ops/_op_impl/cpu/reduce_mean.py +40 -0
- mindspore/ops/_op_impl/cpu/reduce_min.py +32 -0
- mindspore/ops/_op_impl/cpu/reduce_prod.py +40 -0
- mindspore/ops/_op_impl/cpu/reduce_std.py +31 -0
- mindspore/ops/_op_impl/cpu/reduce_sum.py +41 -0
- mindspore/ops/_op_impl/cpu/space_to_batch_nd.py +38 -0
- mindspore/ops/_op_impl/cpu/sparse_slice.py +62 -0
- mindspore/ops/_op_impl/cpu/sparse_slice_grad.py +60 -0
- mindspore/ops/_op_impl/cpu/split.py +34 -0
- mindspore/ops/_op_impl/cpu/sspaddmm.py +95 -0
- mindspore/ops/_op_impl/cpu/stack.py +38 -0
- mindspore/ops/_op_impl/cpu/sub.py +32 -0
- mindspore/ops/_op_impl/cpu/tensor_copy_slices.py +41 -0
- mindspore/ops/_op_impl/cpu/tile.py +37 -0
- mindspore/ops/_op_impl/cpu/top_k.py +31 -0
- mindspore/ops/_op_impl/cpu/transpose.py +39 -0
- mindspore/ops/_primitive_cache.py +90 -0
- mindspore/ops/_register_for_op.py +73 -0
- mindspore/ops/_utils/__init__.py +20 -0
- mindspore/ops/_utils/utils.py +147 -0
- mindspore/ops/_vmap/__init__.py +25 -0
- mindspore/ops/_vmap/vmap_array_ops.py +2149 -0
- mindspore/ops/_vmap/vmap_base.py +533 -0
- mindspore/ops/_vmap/vmap_convolution_ops.py +441 -0
- mindspore/ops/_vmap/vmap_debug_ops.py +50 -0
- mindspore/ops/_vmap/vmap_grad_math_ops.py +274 -0
- mindspore/ops/_vmap/vmap_grad_nn_ops.py +806 -0
- mindspore/ops/_vmap/vmap_image_ops.py +194 -0
- mindspore/ops/_vmap/vmap_math_ops.py +993 -0
- mindspore/ops/_vmap/vmap_nn_ops.py +2250 -0
- mindspore/ops/_vmap/vmap_other_ops.py +105 -0
- mindspore/ops/_vmap/vmap_random_ops.py +122 -0
- mindspore/ops/_vmap/vmap_sparse_ops.py +89 -0
- mindspore/ops/auto_generate/__init__.py +31 -0
- mindspore/ops/auto_generate/cpp_create_prim_instance_helper.py +309 -0
- mindspore/ops/auto_generate/gen_arg_dtype_cast.py +252 -0
- mindspore/ops/auto_generate/gen_arg_handler.py +197 -0
- mindspore/ops/auto_generate/gen_extend_func.py +1701 -0
- mindspore/ops/auto_generate/gen_ops_def.py +8482 -0
- mindspore/ops/auto_generate/gen_ops_prim.py +16704 -0
- mindspore/ops/auto_generate/pyboost_inner_prim.py +549 -0
- mindspore/ops/composite/__init__.py +71 -0
- mindspore/ops/composite/base.py +1318 -0
- mindspore/ops/composite/env_ops.py +41 -0
- mindspore/ops/composite/math_ops.py +125 -0
- mindspore/ops/composite/multitype_ops/__init__.py +77 -0
- mindspore/ops/composite/multitype_ops/_compile_utils.py +1459 -0
- mindspore/ops/composite/multitype_ops/_constexpr_utils.py +897 -0
- mindspore/ops/composite/multitype_ops/add_impl.py +606 -0
- mindspore/ops/composite/multitype_ops/bitwise_and_impl.py +56 -0
- mindspore/ops/composite/multitype_ops/bitwise_or_impl.py +56 -0
- mindspore/ops/composite/multitype_ops/bitwise_xor_impl.py +56 -0
- mindspore/ops/composite/multitype_ops/div_impl.py +189 -0
- mindspore/ops/composite/multitype_ops/equal_impl.py +335 -0
- mindspore/ops/composite/multitype_ops/floordiv_impl.py +88 -0
- mindspore/ops/composite/multitype_ops/getitem_impl.py +400 -0
- mindspore/ops/composite/multitype_ops/greater_equal_impl.py +109 -0
- mindspore/ops/composite/multitype_ops/greater_impl.py +110 -0
- mindspore/ops/composite/multitype_ops/in_impl.py +196 -0
- mindspore/ops/composite/multitype_ops/left_shift_impl.py +37 -0
- mindspore/ops/composite/multitype_ops/less_equal_impl.py +111 -0
- mindspore/ops/composite/multitype_ops/less_impl.py +112 -0
- mindspore/ops/composite/multitype_ops/logic_not_impl.py +113 -0
- mindspore/ops/composite/multitype_ops/logical_and_impl.py +60 -0
- mindspore/ops/composite/multitype_ops/logical_or_impl.py +61 -0
- mindspore/ops/composite/multitype_ops/mod_impl.py +86 -0
- mindspore/ops/composite/multitype_ops/mul_impl.py +294 -0
- mindspore/ops/composite/multitype_ops/negative_impl.py +79 -0
- mindspore/ops/composite/multitype_ops/not_equal_impl.py +290 -0
- mindspore/ops/composite/multitype_ops/not_in_impl.py +196 -0
- mindspore/ops/composite/multitype_ops/ones_like_impl.py +96 -0
- mindspore/ops/composite/multitype_ops/pow_impl.py +87 -0
- mindspore/ops/composite/multitype_ops/right_shift_impl.py +37 -0
- mindspore/ops/composite/multitype_ops/setitem_impl.py +884 -0
- mindspore/ops/composite/multitype_ops/sub_impl.py +116 -0
- mindspore/ops/composite/multitype_ops/uadd_impl.py +29 -0
- mindspore/ops/composite/multitype_ops/zeros_like_impl.py +228 -0
- mindspore/ops/deprecated.py +315 -0
- mindspore/ops/function/__init__.py +782 -0
- mindspore/ops/function/array_func.py +7226 -0
- mindspore/ops/function/clip_func.py +384 -0
- mindspore/ops/function/debug_func.py +181 -0
- mindspore/ops/function/fft_func.py +44 -0
- mindspore/ops/function/grad/__init__.py +34 -0
- mindspore/ops/function/grad/grad_func.py +1425 -0
- mindspore/ops/function/image_func.py +292 -0
- mindspore/ops/function/linalg_func.py +416 -0
- mindspore/ops/function/math_func.py +12228 -0
- mindspore/ops/function/nn_func.py +8609 -0
- mindspore/ops/function/other_func.py +115 -0
- mindspore/ops/function/parameter_func.py +134 -0
- mindspore/ops/function/random_func.py +1715 -0
- mindspore/ops/function/reshard_func.py +104 -0
- mindspore/ops/function/sparse_func.py +884 -0
- mindspore/ops/function/sparse_unary_func.py +2422 -0
- mindspore/ops/function/spectral_func.py +150 -0
- mindspore/ops/function/vmap_func.py +117 -0
- mindspore/ops/functional.py +464 -0
- mindspore/ops/op_info_register.py +1572 -0
- mindspore/ops/operations/__init__.py +722 -0
- mindspore/ops/operations/_csr_ops.py +403 -0
- mindspore/ops/operations/_custom_grad.py +181 -0
- mindspore/ops/operations/_embedding_cache_ops.py +307 -0
- mindspore/ops/operations/_grad_ops.py +2978 -0
- mindspore/ops/operations/_infer_ops.py +19 -0
- mindspore/ops/operations/_inner_ops.py +2544 -0
- mindspore/ops/operations/_map_tensor_ops.py +112 -0
- mindspore/ops/operations/_ms_kernel.py +601 -0
- mindspore/ops/operations/_ocr_ops.py +379 -0
- mindspore/ops/operations/_opaque_predicate_registry.py +41 -0
- mindspore/ops/operations/_pyfunc_registry.py +58 -0
- mindspore/ops/operations/_quant_ops.py +1844 -0
- mindspore/ops/operations/_rl_inner_ops.py +1231 -0
- mindspore/ops/operations/_scalar_ops.py +106 -0
- mindspore/ops/operations/_sequence_ops.py +1155 -0
- mindspore/ops/operations/_sparse_grad_ops.py +56 -0
- mindspore/ops/operations/_tensor_array.py +359 -0
- mindspore/ops/operations/_thor_ops.py +807 -0
- mindspore/ops/operations/array_ops.py +6124 -0
- mindspore/ops/operations/comm_ops.py +1985 -0
- mindspore/ops/operations/control_ops.py +127 -0
- mindspore/ops/operations/custom_ops.py +1129 -0
- mindspore/ops/operations/debug_ops.py +678 -0
- mindspore/ops/operations/image_ops.py +1041 -0
- mindspore/ops/operations/inner_ops.py +697 -0
- mindspore/ops/operations/linalg_ops.py +95 -0
- mindspore/ops/operations/manually_defined/__init__.py +24 -0
- mindspore/ops/operations/manually_defined/_inner.py +73 -0
- mindspore/ops/operations/manually_defined/ops_def.py +2271 -0
- mindspore/ops/operations/math_ops.py +5095 -0
- mindspore/ops/operations/nn_ops.py +9575 -0
- mindspore/ops/operations/other_ops.py +874 -0
- mindspore/ops/operations/random_ops.py +1288 -0
- mindspore/ops/operations/reshard_ops.py +53 -0
- mindspore/ops/operations/rl_ops.py +288 -0
- mindspore/ops/operations/sparse_ops.py +2753 -0
- mindspore/ops/operations/spectral_ops.py +111 -0
- mindspore/ops/primitive.py +1046 -0
- mindspore/ops/signature.py +54 -0
- mindspore/ops/vm_impl_registry.py +91 -0
- mindspore/ops_generate/__init__.py +27 -0
- mindspore/ops_generate/arg_dtype_cast.py +252 -0
- mindspore/ops_generate/arg_handler.py +197 -0
- mindspore/ops_generate/gen_aclnn_implement.py +263 -0
- mindspore/ops_generate/gen_constants.py +36 -0
- mindspore/ops_generate/gen_ops.py +1099 -0
- mindspore/ops_generate/gen_ops_inner_prim.py +131 -0
- mindspore/ops_generate/gen_pyboost_func.py +1052 -0
- mindspore/ops_generate/gen_utils.py +209 -0
- mindspore/ops_generate/op_proto.py +145 -0
- mindspore/ops_generate/pyboost_utils.py +367 -0
- mindspore/ops_generate/template.py +261 -0
- mindspore/parallel/__init__.py +30 -0
- mindspore/parallel/_auto_parallel_context.py +1486 -0
- mindspore/parallel/_cell_wrapper.py +174 -0
- mindspore/parallel/_cost_model_context.py +700 -0
- mindspore/parallel/_dp_allreduce_fusion.py +159 -0
- mindspore/parallel/_offload_context.py +275 -0
- mindspore/parallel/_parallel_serialization.py +561 -0
- mindspore/parallel/_ps_context.py +242 -0
- mindspore/parallel/_recovery_context.py +110 -0
- mindspore/parallel/_tensor.py +730 -0
- mindspore/parallel/_transformer/__init__.py +35 -0
- mindspore/parallel/_transformer/layers.py +765 -0
- mindspore/parallel/_transformer/loss.py +251 -0
- mindspore/parallel/_transformer/moe.py +693 -0
- mindspore/parallel/_transformer/op_parallel_config.py +222 -0
- mindspore/parallel/_transformer/transformer.py +3119 -0
- mindspore/parallel/_utils.py +612 -0
- mindspore/parallel/algo_parameter_config.py +400 -0
- mindspore/parallel/checkpoint_transform.py +650 -0
- mindspore/parallel/cluster/__init__.py +15 -0
- mindspore/parallel/cluster/process_entity/__init__.py +18 -0
- mindspore/parallel/cluster/process_entity/_api.py +352 -0
- mindspore/parallel/cluster/process_entity/_utils.py +101 -0
- mindspore/parallel/cluster/run.py +136 -0
- mindspore/parallel/mpi/__init__.py +14 -0
- mindspore/parallel/mpi/_mpi_config.py +116 -0
- mindspore/parallel/parameter_broadcast.py +151 -0
- mindspore/parallel/shard.py +481 -0
- mindspore/parallel/transform_safetensors.py +993 -0
- mindspore/profiler/__init__.py +28 -0
- mindspore/profiler/common/__init__.py +14 -0
- mindspore/profiler/common/constant.py +29 -0
- mindspore/profiler/common/exceptions/__init__.py +14 -0
- mindspore/profiler/common/exceptions/error_code.py +83 -0
- mindspore/profiler/common/exceptions/exceptions.py +286 -0
- mindspore/profiler/common/process_pool.py +41 -0
- mindspore/profiler/common/registry.py +47 -0
- mindspore/profiler/common/singleton.py +28 -0
- mindspore/profiler/common/struct_type.py +118 -0
- mindspore/profiler/common/util.py +472 -0
- mindspore/profiler/common/validator/__init__.py +14 -0
- mindspore/profiler/common/validator/validate_path.py +84 -0
- mindspore/profiler/dynamic_profiler.py +694 -0
- mindspore/profiler/envprofiling.py +254 -0
- mindspore/profiler/parser/__init__.py +14 -0
- mindspore/profiler/parser/aicpu_data_parser.py +272 -0
- mindspore/profiler/parser/ascend_analysis/__init__.py +14 -0
- mindspore/profiler/parser/ascend_analysis/constant.py +71 -0
- mindspore/profiler/parser/ascend_analysis/file_manager.py +180 -0
- mindspore/profiler/parser/ascend_analysis/function_event.py +185 -0
- mindspore/profiler/parser/ascend_analysis/fwk_cann_parser.py +136 -0
- mindspore/profiler/parser/ascend_analysis/fwk_file_parser.py +131 -0
- mindspore/profiler/parser/ascend_analysis/msprof_timeline_parser.py +104 -0
- mindspore/profiler/parser/ascend_analysis/path_manager.py +313 -0
- mindspore/profiler/parser/ascend_analysis/profiler_info_parser.py +123 -0
- mindspore/profiler/parser/ascend_analysis/tlv_decoder.py +86 -0
- mindspore/profiler/parser/ascend_analysis/trace_event_manager.py +75 -0
- mindspore/profiler/parser/ascend_cluster_generator.py +116 -0
- mindspore/profiler/parser/ascend_communicate_generator.py +314 -0
- mindspore/profiler/parser/ascend_flops_generator.py +116 -0
- mindspore/profiler/parser/ascend_fpbp_generator.py +82 -0
- mindspore/profiler/parser/ascend_hccl_generator.py +271 -0
- mindspore/profiler/parser/ascend_integrate_generator.py +42 -0
- mindspore/profiler/parser/ascend_memory_generator.py +185 -0
- mindspore/profiler/parser/ascend_msprof_exporter.py +282 -0
- mindspore/profiler/parser/ascend_msprof_generator.py +187 -0
- mindspore/profiler/parser/ascend_op_generator.py +334 -0
- mindspore/profiler/parser/ascend_steptrace_generator.py +94 -0
- mindspore/profiler/parser/ascend_timeline_generator.py +545 -0
- mindspore/profiler/parser/base_timeline_generator.py +483 -0
- mindspore/profiler/parser/container.py +229 -0
- mindspore/profiler/parser/cpu_gpu_timeline_generator.py +697 -0
- mindspore/profiler/parser/flops_parser.py +531 -0
- mindspore/profiler/parser/framework_enum.py +111 -0
- mindspore/profiler/parser/framework_parser.py +464 -0
- mindspore/profiler/parser/framework_struct.py +61 -0
- mindspore/profiler/parser/gpu_analysis/__init__.py +14 -0
- mindspore/profiler/parser/gpu_analysis/function_event.py +44 -0
- mindspore/profiler/parser/gpu_analysis/fwk_file_parser.py +89 -0
- mindspore/profiler/parser/gpu_analysis/profiler_info_parser.py +72 -0
- mindspore/profiler/parser/hccl_parser.py +573 -0
- mindspore/profiler/parser/hwts_log_parser.py +122 -0
- mindspore/profiler/parser/integrator.py +526 -0
- mindspore/profiler/parser/memory_usage_parser.py +277 -0
- mindspore/profiler/parser/minddata_analyzer.py +800 -0
- mindspore/profiler/parser/minddata_parser.py +186 -0
- mindspore/profiler/parser/minddata_pipeline_parser.py +299 -0
- mindspore/profiler/parser/op_intermediate_parser.py +149 -0
- mindspore/profiler/parser/optime_parser.py +250 -0
- mindspore/profiler/parser/profiler_info.py +213 -0
- mindspore/profiler/parser/step_trace_parser.py +666 -0
- mindspore/profiler/profiler.py +153 -0
- mindspore/profiler/profiling.py +1922 -0
- mindspore/rewrite/__init__.py +28 -0
- mindspore/rewrite/api/__init__.py +17 -0
- mindspore/rewrite/api/node.py +519 -0
- mindspore/rewrite/api/node_type.py +53 -0
- mindspore/rewrite/api/pattern_engine.py +490 -0
- mindspore/rewrite/api/scoped_value.py +181 -0
- mindspore/rewrite/api/symbol_tree.py +497 -0
- mindspore/rewrite/ast_helpers/__init__.py +25 -0
- mindspore/rewrite/ast_helpers/ast_converter.py +143 -0
- mindspore/rewrite/ast_helpers/ast_finder.py +404 -0
- mindspore/rewrite/ast_helpers/ast_flattener.py +268 -0
- mindspore/rewrite/ast_helpers/ast_modifier.py +605 -0
- mindspore/rewrite/ast_helpers/ast_replacer.py +79 -0
- mindspore/rewrite/common/__init__.py +19 -0
- mindspore/rewrite/common/config.py +24 -0
- mindspore/rewrite/common/error_log.py +39 -0
- mindspore/rewrite/common/event.py +28 -0
- mindspore/rewrite/common/namer.py +271 -0
- mindspore/rewrite/common/namespace.py +118 -0
- mindspore/rewrite/common/observable.py +44 -0
- mindspore/rewrite/common/observer.py +54 -0
- mindspore/rewrite/node/__init__.py +22 -0
- mindspore/rewrite/node/call_function.py +95 -0
- mindspore/rewrite/node/cell_container.py +139 -0
- mindspore/rewrite/node/control_flow.py +113 -0
- mindspore/rewrite/node/node.py +1428 -0
- mindspore/rewrite/node/node_manager.py +283 -0
- mindspore/rewrite/node/node_topological_manager.py +223 -0
- mindspore/rewrite/parsers/__init__.py +29 -0
- mindspore/rewrite/parsers/arguments_parser.py +63 -0
- mindspore/rewrite/parsers/assign_parser.py +852 -0
- mindspore/rewrite/parsers/attribute_parser.py +57 -0
- mindspore/rewrite/parsers/class_def_parser.py +289 -0
- mindspore/rewrite/parsers/constant_parser.py +104 -0
- mindspore/rewrite/parsers/container_parser.py +88 -0
- mindspore/rewrite/parsers/expr_parser.py +55 -0
- mindspore/rewrite/parsers/for_parser.py +61 -0
- mindspore/rewrite/parsers/function_def_parser.py +84 -0
- mindspore/rewrite/parsers/if_parser.py +85 -0
- mindspore/rewrite/parsers/module_parser.py +117 -0
- mindspore/rewrite/parsers/parser.py +43 -0
- mindspore/rewrite/parsers/parser_register.py +86 -0
- mindspore/rewrite/parsers/return_parser.py +37 -0
- mindspore/rewrite/parsers/while_parser.py +59 -0
- mindspore/rewrite/sparsify/__init__.py +0 -0
- mindspore/rewrite/sparsify/sparse_transformer.py +457 -0
- mindspore/rewrite/sparsify/sparsify.py +112 -0
- mindspore/rewrite/sparsify/utils.py +179 -0
- mindspore/rewrite/symbol_tree/__init__.py +20 -0
- mindspore/rewrite/symbol_tree/symbol_tree.py +1819 -0
- mindspore/rewrite/symbol_tree/symbol_tree_builder.py +76 -0
- mindspore/rewrite/symbol_tree/symbol_tree_dumper.py +142 -0
- mindspore/run_check/__init__.py +20 -0
- mindspore/run_check/_check_version.py +507 -0
- mindspore/run_check/run_check.py +66 -0
- mindspore/safeguard/__init__.py +18 -0
- mindspore/safeguard/rewrite_obfuscation.py +875 -0
- mindspore/scipy/__init__.py +18 -0
- mindspore/scipy/fft.py +264 -0
- mindspore/scipy/linalg.py +919 -0
- mindspore/scipy/ops.py +165 -0
- mindspore/scipy/ops_grad.py +115 -0
- mindspore/scipy/ops_wrapper.py +74 -0
- mindspore/scipy/optimize/__init__.py +20 -0
- mindspore/scipy/optimize/_bfgs.py +230 -0
- mindspore/scipy/optimize/_lagrange.py +201 -0
- mindspore/scipy/optimize/_lbfgs.py +146 -0
- mindspore/scipy/optimize/gradient_optimization_algorithm.py +168 -0
- mindspore/scipy/optimize/line_search.py +370 -0
- mindspore/scipy/optimize/linear_sum_assignment.py +78 -0
- mindspore/scipy/optimize/minimize.py +200 -0
- mindspore/scipy/utils.py +156 -0
- mindspore/scipy/utils_const.py +246 -0
- mindspore/train/__init__.py +48 -0
- mindspore/train/_utils.py +465 -0
- mindspore/train/amp.py +935 -0
- mindspore/train/anf_ir_pb2.py +1517 -0
- mindspore/train/callback/__init__.py +44 -0
- mindspore/train/callback/_backup_and_restore.py +117 -0
- mindspore/train/callback/_callback.py +613 -0
- mindspore/train/callback/_checkpoint.py +814 -0
- mindspore/train/callback/_cluster_monitor.py +201 -0
- mindspore/train/callback/_dataset_graph.py +150 -0
- mindspore/train/callback/_early_stop.py +239 -0
- mindspore/train/callback/_flops_collector.py +239 -0
- mindspore/train/callback/_history.py +92 -0
- mindspore/train/callback/_lambda_callback.py +80 -0
- mindspore/train/callback/_landscape.py +1049 -0
- mindspore/train/callback/_loss_monitor.py +107 -0
- mindspore/train/callback/_lr_scheduler_callback.py +76 -0
- mindspore/train/callback/_on_request_exit.py +298 -0
- mindspore/train/callback/_reduce_lr_on_plateau.py +226 -0
- mindspore/train/callback/_summary_collector.py +1184 -0
- mindspore/train/callback/_tft_register.py +352 -0
- mindspore/train/callback/_time_monitor.py +141 -0
- mindspore/train/checkpoint_pb2.py +233 -0
- mindspore/train/data_sink.py +219 -0
- mindspore/train/dataset_helper.py +692 -0
- mindspore/train/lineage_pb2.py +1260 -0
- mindspore/train/loss_scale_manager.py +213 -0
- mindspore/train/memory_profiling_pb2.py +298 -0
- mindspore/train/metrics/__init__.py +175 -0
- mindspore/train/metrics/accuracy.py +133 -0
- mindspore/train/metrics/auc.py +129 -0
- mindspore/train/metrics/bleu_score.py +170 -0
- mindspore/train/metrics/confusion_matrix.py +700 -0
- mindspore/train/metrics/cosine_similarity.py +109 -0
- mindspore/train/metrics/dice.py +116 -0
- mindspore/train/metrics/error.py +175 -0
- mindspore/train/metrics/fbeta.py +167 -0
- mindspore/train/metrics/hausdorff_distance.py +333 -0
- mindspore/train/metrics/loss.py +97 -0
- mindspore/train/metrics/mean_surface_distance.py +189 -0
- mindspore/train/metrics/metric.py +373 -0
- mindspore/train/metrics/occlusion_sensitivity.py +225 -0
- mindspore/train/metrics/perplexity.py +133 -0
- mindspore/train/metrics/precision.py +160 -0
- mindspore/train/metrics/recall.py +159 -0
- mindspore/train/metrics/roc.py +223 -0
- mindspore/train/metrics/root_mean_square_surface_distance.py +191 -0
- mindspore/train/metrics/topk.py +167 -0
- mindspore/train/mind_ir_pb2.py +1908 -0
- mindspore/train/model.py +2252 -0
- mindspore/train/node_strategy_pb2.py +653 -0
- mindspore/train/print_pb2.py +184 -0
- mindspore/train/profiling_parallel_pb2.py +151 -0
- mindspore/train/serialization.py +3325 -0
- mindspore/train/summary/__init__.py +23 -0
- mindspore/train/summary/_lineage_adapter.py +41 -0
- mindspore/train/summary/_summary_adapter.py +496 -0
- mindspore/train/summary/_writer_pool.py +207 -0
- mindspore/train/summary/enums.py +56 -0
- mindspore/train/summary/summary_record.py +581 -0
- mindspore/train/summary/writer.py +167 -0
- mindspore/train/summary_pb2.py +1165 -0
- mindspore/train/train_thor/__init__.py +20 -0
- mindspore/train/train_thor/convert_utils.py +268 -0
- mindspore/train/train_thor/dataset_helper.py +192 -0
- mindspore/train/train_thor/model_thor.py +257 -0
- mindspore/utils/__init__.py +21 -0
- mindspore/utils/utils.py +60 -0
- mindspore/version.py +1 -0
- mindspore-2.4.0.dist-info/METADATA +352 -0
- mindspore-2.4.0.dist-info/RECORD +1387 -0
- mindspore-2.4.0.dist-info/WHEEL +5 -0
- mindspore-2.4.0.dist-info/entry_points.txt +3 -0
- mindspore-2.4.0.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,2250 @@
|
|
|
1
|
+
# Copyright 2022-2023 Huawei Technologies Co., Ltd
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
# ============================================================================
|
|
15
|
+
|
|
16
|
+
# pylint: disable=unused-variable
|
|
17
|
+
"""nn_ops vmap impl."""
|
|
18
|
+
from __future__ import absolute_import
|
|
19
|
+
|
|
20
|
+
import mindspore
|
|
21
|
+
from mindspore.common import Tensor
|
|
22
|
+
from mindspore.ops import operations as P
|
|
23
|
+
from mindspore.ops.operations import _grad_ops as G
|
|
24
|
+
from mindspore.ops.operations import nn_ops as NN
|
|
25
|
+
from mindspore.ops import functional as F
|
|
26
|
+
from mindspore.ops import constexpr
|
|
27
|
+
from mindspore.ops.primitive import _primexpr
|
|
28
|
+
from mindspore.ops._vmap.vmap_base import vmap_rules_getters, vmap_general_preprocess, get_unop_vmap_rule, \
|
|
29
|
+
_bdim_at_any, _bdim_at_front, _bdim_at_back, _handle_broadcasting, get_unary_grad_vmap_rule, _raise_value_error, \
|
|
30
|
+
_vmap_clone_prim, _get_reduce_batch_axis
|
|
31
|
+
from mindspore.ops.primitive import Primitive
|
|
32
|
+
from mindspore.ops.auto_generate.gen_arg_handler import Format
|
|
33
|
+
from mindspore.ops.auto_generate import Embedding
|
|
34
|
+
from mindspore.ops.auto_generate import gen_arg_handler as handler
|
|
35
|
+
|
|
36
|
+
|
|
37
|
+
@vmap_rules_getters.register(P.ApplyAdaMax)
|
|
38
|
+
def get_apply_ada_max_rule(prim, axis_size):
|
|
39
|
+
"""VmapRule for `ApplyAdaMax` operation."""
|
|
40
|
+
if hasattr(prim, 'batch_rank'):
|
|
41
|
+
batch_rank = prim.batch_rank + 1
|
|
42
|
+
else:
|
|
43
|
+
batch_rank = 1
|
|
44
|
+
prim_name = prim.name
|
|
45
|
+
batch_prim = _vmap_clone_prim(prim)
|
|
46
|
+
batch_prim.add_prim_attr("batch_rank", batch_rank)
|
|
47
|
+
|
|
48
|
+
def vmap_rule(var_bdim, m_bdim, v_bdim, beta1_power_bdim, lr_bdim, beta1_bdim, beta2_bdim,
|
|
49
|
+
epsilon_bdim, grad_bdim, u_monad):
|
|
50
|
+
var, var_dim = var_bdim
|
|
51
|
+
m, m_dim = m_bdim
|
|
52
|
+
v, v_dim = v_bdim
|
|
53
|
+
lr, lr_dim = lr_bdim
|
|
54
|
+
beta1_power, beta1_power_dim = beta1_power_bdim
|
|
55
|
+
beta1, beta1_dim = beta1_bdim
|
|
56
|
+
beta2, beta2_dim = beta2_bdim
|
|
57
|
+
epsilon, epsilon_dim = epsilon_bdim
|
|
58
|
+
grad, grad_dim = grad_bdim
|
|
59
|
+
|
|
60
|
+
if var_dim is None:
|
|
61
|
+
if any(dim is not None for dim in [m_bdim, v_bdim, beta1_power_bdim, lr_bdim, beta1_bdim, beta2_bdim,
|
|
62
|
+
epsilon_bdim, grad_bdim]):
|
|
63
|
+
raise ValueError("The source axis of `var` is None, but the source "
|
|
64
|
+
"axis of `accum/lr/beta1/beta1_power/beta2/epsilon/grad` is not None. "
|
|
65
|
+
"The execution order of operator `{}` cannot be guaranteed.".format(prim_name))
|
|
66
|
+
var, m, v = prim(var, m, v, beta1_power, lr, beta1, beta2, epsilon, grad, u_monad)
|
|
67
|
+
return (var, None), (m, None), (v, None)
|
|
68
|
+
if var_dim != 0 or m_dim != var_dim or var_dim != v_dim:
|
|
69
|
+
raise ValueError("For `{}`, the source axis of `var` must be equal to `accum`, and not equal to 0, "
|
|
70
|
+
"but got the source axis of `var`: {}, `accum`: {}.".format(prim_name, var_dim, m_dim))
|
|
71
|
+
|
|
72
|
+
lr = _bdim_at_front(lr, lr_dim, axis_size)
|
|
73
|
+
beta1_power = _bdim_at_front(beta1_power, beta1_power_dim, axis_size)
|
|
74
|
+
beta1 = _bdim_at_front(beta1, beta1_dim, axis_size)
|
|
75
|
+
beta2 = _bdim_at_front(beta2, beta2_dim, axis_size)
|
|
76
|
+
epsilon = _bdim_at_front(epsilon, epsilon_dim, axis_size)
|
|
77
|
+
grad = _bdim_at_front(grad, grad_dim, axis_size)
|
|
78
|
+
var, m, v = batch_prim(var, m, v, beta1_power, lr, beta1, beta2, epsilon, grad, u_monad)
|
|
79
|
+
return (var, 0), (m, 0), (v, 0)
|
|
80
|
+
|
|
81
|
+
return vmap_rule
|
|
82
|
+
|
|
83
|
+
|
|
84
|
+
@vmap_rules_getters.register(P.ApplyAdadelta)
|
|
85
|
+
def get_apply_adadelta_rule(prim, axis_size):
|
|
86
|
+
"""VmapRule for `ApplyAdadelta` operation."""
|
|
87
|
+
if hasattr(prim, 'batch_rank'):
|
|
88
|
+
batch_rank = prim.batch_rank + 1
|
|
89
|
+
else:
|
|
90
|
+
batch_rank = 1
|
|
91
|
+
|
|
92
|
+
prim_name = prim.name
|
|
93
|
+
batch_prim = _vmap_clone_prim(prim)
|
|
94
|
+
batch_prim.add_prim_attr('batch_rank', batch_rank)
|
|
95
|
+
|
|
96
|
+
def vmap_rule(var_bdim, accum_bdim, accum_update_bdim, lr_bdim, rho_bdim, epsilon_bdim, grad_bdim, u_monad):
|
|
97
|
+
var, var_dim = var_bdim
|
|
98
|
+
accum, accum_dim = accum_bdim
|
|
99
|
+
accum_update, accum_update_dim = accum_update_bdim
|
|
100
|
+
lr, lr_dim = lr_bdim
|
|
101
|
+
rho, rho_dim = rho_bdim
|
|
102
|
+
epsilon, epsilon_dim = epsilon_bdim
|
|
103
|
+
grad, grad_dim = grad_bdim
|
|
104
|
+
|
|
105
|
+
if var_dim is None:
|
|
106
|
+
if any(dim is not None for dim in [accum, accum_dim, lr_dim, rho_dim, epsilon_dim, grad_dim]):
|
|
107
|
+
raise ValueError("The source axis of `var` is None, but the source "
|
|
108
|
+
"axis of `accum/accum_dim/lr/rho/epsilon/grad` is not None. The execution order of "
|
|
109
|
+
"operator `{}` cannot be guaranteed.".format(prim_name))
|
|
110
|
+
var, accum, accum_update = prim(var, accum, accum_update, lr, rho, epsilon, grad, u_monad)
|
|
111
|
+
return (var, None), (accum, None), (accum_update, None)
|
|
112
|
+
if var_dim != 0 or accum_dim != var_dim or accum_update_dim != var_dim:
|
|
113
|
+
raise ValueError(
|
|
114
|
+
"For `{}`, the source axis of `var` must be equal to `accum` and `accum_update`, and not equal to 0, "
|
|
115
|
+
"but got the source axis of `var`: {}, `accum`: {}, `accum_update`: {}.".format(
|
|
116
|
+
prim_name, var_dim, accum_dim, accum_update_dim))
|
|
117
|
+
|
|
118
|
+
lr = _bdim_at_front(lr, lr_dim, axis_size)
|
|
119
|
+
rho = _bdim_at_front(rho, rho_dim, axis_size)
|
|
120
|
+
epsilon = _bdim_at_front(epsilon, epsilon_dim, axis_size)
|
|
121
|
+
grad = _bdim_at_front(grad, grad_dim, axis_size)
|
|
122
|
+
|
|
123
|
+
var, accum, accum_update = batch_prim(var, accum, accum_update, lr, rho, epsilon, grad, u_monad)
|
|
124
|
+
return (var, 0), (accum, 0), (accum_update, 0)
|
|
125
|
+
|
|
126
|
+
return vmap_rule
|
|
127
|
+
|
|
128
|
+
|
|
129
|
+
@vmap_rules_getters.register(P.ApplyFtrl)
|
|
130
|
+
def get_apply_ftrl_rule(prim, axis_size):
|
|
131
|
+
"""VmapRule for `ApplyFtrl` operation"""
|
|
132
|
+
if hasattr(prim, "batch_rank"):
|
|
133
|
+
batch_rank = prim.batch_rank + 1
|
|
134
|
+
else:
|
|
135
|
+
batch_rank = 1
|
|
136
|
+
prim_name = prim.name
|
|
137
|
+
batch_prim = _vmap_clone_prim(prim)
|
|
138
|
+
batch_prim.add_prim_attr('batch_rank', batch_rank)
|
|
139
|
+
|
|
140
|
+
def vmap_rule(var_bdim, accum_bdim, linear_bdim, grad_bdim, lr_bdim, l1_bdim, l2_bdim, lr_power_bdim, u_monad):
|
|
141
|
+
var, var_dim = var_bdim
|
|
142
|
+
accum, accum_dim = accum_bdim
|
|
143
|
+
linear, linear_dim = linear_bdim
|
|
144
|
+
grad, grad_dim = grad_bdim
|
|
145
|
+
lr, lr_dim = lr_bdim
|
|
146
|
+
l1, l1_dim = l1_bdim
|
|
147
|
+
l2, l2_dim = l2_bdim
|
|
148
|
+
lr_power, lr_power_dim = lr_power_bdim
|
|
149
|
+
|
|
150
|
+
if var_dim is None:
|
|
151
|
+
if any(dim is not None for dim in [accum_dim, linear_dim, grad_dim, lr_dim, l1_dim, l2_dim, lr_power_dim]):
|
|
152
|
+
raise ValueError("The source axis of `var` is None, "
|
|
153
|
+
"but the source axis of `accum/linear/grad/lr/l1/l1/lr_power` is not None. "
|
|
154
|
+
"The execution order of operator `{}` cannot be guaranteed.".format(prim_name))
|
|
155
|
+
var = prim(var, accum, linear, grad, lr, l1, l2, lr_power, u_monad)
|
|
156
|
+
return var, None
|
|
157
|
+
if var_dim != 0 or accum_dim != var_dim or linear_dim != var_dim:
|
|
158
|
+
raise ValueError("For `{}`, the source axis of `var/accum/linear` must be 0, "
|
|
159
|
+
"but get `var`: {}, `accum`: {}, `linear`: {}.".format(prim_name, var_dim, accum_dim,
|
|
160
|
+
linear_dim))
|
|
161
|
+
grad = _bdim_at_front(grad, grad_dim, axis_size)
|
|
162
|
+
lr = _bdim_at_front(lr, lr_dim, axis_size)
|
|
163
|
+
l1 = _bdim_at_front(l1, l1_dim, axis_size)
|
|
164
|
+
l2 = _bdim_at_front(l2, l2_dim, axis_size)
|
|
165
|
+
lr_power = _bdim_at_front(lr_power, lr_power_dim, axis_size)
|
|
166
|
+
|
|
167
|
+
var = batch_prim(var, accum, linear, grad, lr, l1, l2, lr_power, u_monad)
|
|
168
|
+
return var, 0
|
|
169
|
+
|
|
170
|
+
return vmap_rule
|
|
171
|
+
|
|
172
|
+
|
|
173
|
+
@vmap_rules_getters.register(P.ApplyProximalAdagrad)
|
|
174
|
+
def get_apply_proximal_adagrad_rule(prim, axis_size):
|
|
175
|
+
"""VmapRule for `ApplyProximalAdagrad` operation."""
|
|
176
|
+
if hasattr(prim, 'batch_rank'):
|
|
177
|
+
batch_rank = prim.batch_rank + 1
|
|
178
|
+
else:
|
|
179
|
+
batch_rank = 1
|
|
180
|
+
|
|
181
|
+
prim_name = prim.name
|
|
182
|
+
batch_prim = _vmap_clone_prim(prim)
|
|
183
|
+
batch_prim.add_prim_attr('batch_rank', batch_rank)
|
|
184
|
+
|
|
185
|
+
def vmap_rule(var_bdim, accum_bdim, lr_bdim, l1_bdim, l2_bdim, grad_bdim, u_monad):
|
|
186
|
+
var, var_dim = var_bdim
|
|
187
|
+
accum, accum_dim = accum_bdim
|
|
188
|
+
lr, lr_dim = lr_bdim
|
|
189
|
+
l1, l1_dim = l1_bdim
|
|
190
|
+
l2, l2_dim = l2_bdim
|
|
191
|
+
grad, grad_dim = grad_bdim
|
|
192
|
+
|
|
193
|
+
if var_dim is None:
|
|
194
|
+
if any(dim is not None for dim in [accum_dim, lr_dim, l1_dim, l2_dim, grad_dim]):
|
|
195
|
+
raise ValueError("The source axis of `var` is None, but the source "
|
|
196
|
+
"axis of `accum/lr/l1/l2/grad` is not None. The execution order of "
|
|
197
|
+
"operator `{}` cannot be guaranteed.".format(prim_name))
|
|
198
|
+
var, accum = prim(var, accum, lr, l1, l2, grad, u_monad)
|
|
199
|
+
return (var, None), (accum, None)
|
|
200
|
+
|
|
201
|
+
if var_dim != 0 or accum_dim != var_dim:
|
|
202
|
+
raise ValueError("For `{}`, the source axis of `var` must be equal to `accum`, and not equal to 0, "
|
|
203
|
+
"but got the source axis of `var`: {}, `accum`: {}.".format(prim_name, var_dim, accum_dim))
|
|
204
|
+
|
|
205
|
+
lr = _bdim_at_front(lr, lr_dim, axis_size)
|
|
206
|
+
l1 = _bdim_at_front(l1, l1_dim, axis_size)
|
|
207
|
+
l2 = _bdim_at_front(l2, l2_dim, axis_size)
|
|
208
|
+
grad = _bdim_at_front(grad, grad_dim, axis_size)
|
|
209
|
+
|
|
210
|
+
var, accum = batch_prim(var, accum, lr, l1, l2, grad, u_monad)
|
|
211
|
+
return (var, 0), (accum, 0)
|
|
212
|
+
|
|
213
|
+
return vmap_rule
|
|
214
|
+
|
|
215
|
+
|
|
216
|
+
@vmap_rules_getters.register(P.ApplyGradientDescent)
|
|
217
|
+
def get_apply_gradient_descent_rule(prim, axis_size):
|
|
218
|
+
"""VmapRule for `ApplyGradientDescent` operation."""
|
|
219
|
+
if hasattr(prim, 'batch_rank'):
|
|
220
|
+
batch_rank = prim.batch_rank + 1
|
|
221
|
+
else:
|
|
222
|
+
batch_rank = 1
|
|
223
|
+
|
|
224
|
+
prim_name = prim.name
|
|
225
|
+
batch_prim = _vmap_clone_prim(prim)
|
|
226
|
+
batch_prim.add_prim_attr('batch_rank', batch_rank)
|
|
227
|
+
|
|
228
|
+
def vmap_rule(var_bdim, alpha_bdim, delta_bdim, u_monad):
|
|
229
|
+
var, var_dim = var_bdim
|
|
230
|
+
alpha, alpha_dim = alpha_bdim
|
|
231
|
+
delta, delta_dim = delta_bdim
|
|
232
|
+
|
|
233
|
+
if var_dim is None:
|
|
234
|
+
if any(dim is not None for dim in [alpha_dim, delta_dim]):
|
|
235
|
+
raise ValueError("The source axis of `var` is None, but the source "
|
|
236
|
+
"axis of `alpha/delta` is not None. The execution order of "
|
|
237
|
+
"operator `{}` cannot be guaranteed.".format(prim_name))
|
|
238
|
+
var = prim(var, alpha, delta, u_monad)
|
|
239
|
+
return var, None
|
|
240
|
+
|
|
241
|
+
if var_dim != 0:
|
|
242
|
+
raise ValueError("For `{}`, the source axis of `var` must not equal to 0, "
|
|
243
|
+
"but got the source axis of `var`: {}.".format(prim_name, var_dim))
|
|
244
|
+
|
|
245
|
+
alpha = _bdim_at_front(alpha, alpha_dim, axis_size)
|
|
246
|
+
delta = _bdim_at_front(delta, delta_dim, axis_size)
|
|
247
|
+
|
|
248
|
+
var = batch_prim(var, alpha, delta, u_monad)
|
|
249
|
+
return var, 0
|
|
250
|
+
|
|
251
|
+
return vmap_rule
|
|
252
|
+
|
|
253
|
+
|
|
254
|
+
@vmap_rules_getters.register(P.ApplyProximalGradientDescent)
|
|
255
|
+
def get_apply_proximal_gradient_descent_rule(prim, axis_size):
|
|
256
|
+
"""VmapRule for `ApplyProximalGradientDescent` operation."""
|
|
257
|
+
if hasattr(prim, 'batch_rank'):
|
|
258
|
+
batch_rank = prim.batch_rank + 1
|
|
259
|
+
else:
|
|
260
|
+
batch_rank = 1
|
|
261
|
+
|
|
262
|
+
prim_name = prim.name
|
|
263
|
+
batch_prim = _vmap_clone_prim(prim)
|
|
264
|
+
batch_prim.add_prim_attr('batch_rank', batch_rank)
|
|
265
|
+
|
|
266
|
+
def vmap_rule(var_bdim, alpha_bdim, l1_bdim, l2_bdim, delta_bdim, u_monad):
|
|
267
|
+
var, var_dim = var_bdim
|
|
268
|
+
alpha, alpha_dim = alpha_bdim
|
|
269
|
+
l1, l1_dim = l1_bdim
|
|
270
|
+
l2, l2_dim = l2_bdim
|
|
271
|
+
delta, delta_dim = delta_bdim
|
|
272
|
+
|
|
273
|
+
if var_dim is None:
|
|
274
|
+
if any(dim is not None for dim in [alpha_dim, l1_dim, l2_dim, delta_dim]):
|
|
275
|
+
raise ValueError("The source axis of `var` is None, but the source "
|
|
276
|
+
"axis of `alpha/l1/l2/delta` is not None. The execution order of "
|
|
277
|
+
"operator `{}` cannot be guaranteed.".format(prim_name))
|
|
278
|
+
var = prim(var, alpha, l1, l2, delta, u_monad)
|
|
279
|
+
return var, None
|
|
280
|
+
|
|
281
|
+
if var_dim != 0:
|
|
282
|
+
raise ValueError("For `{}`, the source axis of `var` must not equal to 0, "
|
|
283
|
+
"but got the source axis of `var`: {}.".format(prim_name, var_dim))
|
|
284
|
+
|
|
285
|
+
alpha = _bdim_at_front(alpha, alpha_dim, axis_size)
|
|
286
|
+
l1 = _bdim_at_front(l1, l1_dim, axis_size)
|
|
287
|
+
l2 = _bdim_at_front(l2, l2_dim, axis_size)
|
|
288
|
+
delta = _bdim_at_front(delta, delta_dim, axis_size)
|
|
289
|
+
|
|
290
|
+
var = batch_prim(var, alpha, l1, l2, delta, u_monad)
|
|
291
|
+
return var, 0
|
|
292
|
+
|
|
293
|
+
return vmap_rule
|
|
294
|
+
|
|
295
|
+
|
|
296
|
+
@vmap_rules_getters.register(NN.BCEWithLogitsLoss)
|
|
297
|
+
def get_bce_with_logits_loss_vamp_rule(prim, axis_size):
|
|
298
|
+
"""VmapRule for 'BCEWithLogitsLoss' ."""
|
|
299
|
+
|
|
300
|
+
if isinstance(prim, str):
|
|
301
|
+
prim = Primitive(prim)
|
|
302
|
+
prim_name = prim.name
|
|
303
|
+
bce_logits_with_loss_op = NN.BCEWithLogitsLoss('none')
|
|
304
|
+
|
|
305
|
+
def vmap_rule(logits_bdim, label_bdim, weight_bdim, pos_weight_bdim, reduction_bdim):
|
|
306
|
+
is_all_none, result = vmap_general_preprocess(prim, logits_bdim, label_bdim, weight_bdim, pos_weight_bdim,
|
|
307
|
+
reduction_bdim)
|
|
308
|
+
if is_all_none:
|
|
309
|
+
return result
|
|
310
|
+
logits, logits_dim = logits_bdim
|
|
311
|
+
label, label_dim = label_bdim
|
|
312
|
+
weight, weight_dim = weight_bdim
|
|
313
|
+
pos_weight, pos_weight_dim = pos_weight_bdim
|
|
314
|
+
prim_reduction, _ = reduction_bdim
|
|
315
|
+
logits_rank = F.rank(logits)
|
|
316
|
+
label_rank = F.rank(label)
|
|
317
|
+
weight_rank = F.rank(weight)
|
|
318
|
+
pos_weight_rank = F.rank(pos_weight)
|
|
319
|
+
max_rank = max(logits_rank, label_rank)
|
|
320
|
+
max_rank = max(max_rank, weight_rank)
|
|
321
|
+
max_rank = max(max_rank, pos_weight_rank)
|
|
322
|
+
reduce_indexes = None
|
|
323
|
+
# If rank is larger than 1, we need to reduce result when reduction != 'none'
|
|
324
|
+
if max_rank > 1:
|
|
325
|
+
reduce_indexes = tuple(range(1, max_rank))
|
|
326
|
+
logits_dim_ok = logits_dim == label_dim and logits_dim == weight_dim and logits_dim == pos_weight_dim
|
|
327
|
+
shape = F.shape(logits)
|
|
328
|
+
shape_ok = shape == F.shape(label) and shape == F.shape(weight) and shape == F.shape(pos_weight)
|
|
329
|
+
if logits_dim_ok and shape_ok:
|
|
330
|
+
if prim_reduction == handler.str_to_enum("BCEWithLogitsLoss", "reduction", 'none'):
|
|
331
|
+
output = prim(logits, label, weight, pos_weight, prim_reduction)
|
|
332
|
+
elif prim_reduction == handler.str_to_enum("BCEWithLogitsLoss", "reduction", 'mean'):
|
|
333
|
+
out = bce_logits_with_loss_op(logits, label, weight, pos_weight)
|
|
334
|
+
output = P.ReduceMean()(out, reduce_indexes)
|
|
335
|
+
elif prim_reduction == handler.str_to_enum("BCEWithLogitsLoss", "reduction", 'sum'):
|
|
336
|
+
out = bce_logits_with_loss_op(logits, label, weight, pos_weight)
|
|
337
|
+
output = P.ReduceSum()(out, reduce_indexes)
|
|
338
|
+
else:
|
|
339
|
+
raise RuntimeError("For {} vmap, the attribute of reduction must in "
|
|
340
|
+
"('none', 'mean', 'sum'), but got {}."
|
|
341
|
+
.format(prim_name, prim_reduction))
|
|
342
|
+
return output, logits_dim
|
|
343
|
+
|
|
344
|
+
logits = _bdim_at_front(logits, logits_dim, axis_size)
|
|
345
|
+
label = _bdim_at_front(label, label_dim, axis_size)
|
|
346
|
+
weight = _bdim_at_front(weight, weight_dim, axis_size)
|
|
347
|
+
pos_weight = _bdim_at_front(pos_weight, pos_weight_dim, axis_size)
|
|
348
|
+
logits_shape = F.shape(logits)
|
|
349
|
+
weight_shape = F.shape(weight)
|
|
350
|
+
pos_weight_shape = F.shape(pos_weight)
|
|
351
|
+
weight = _handle_broadcasting(weight, weight_shape, logits_shape)
|
|
352
|
+
pos_weight = _handle_broadcasting(pos_weight, pos_weight_shape, logits_shape)
|
|
353
|
+
if prim_reduction == handler.str_to_enum("BCEWithLogitsLoss", "reduction", 'none'):
|
|
354
|
+
output = prim(logits, label, weight, pos_weight, prim_reduction)
|
|
355
|
+
elif prim_reduction == handler.str_to_enum("BCEWithLogitsLoss", "reduction", 'mean'):
|
|
356
|
+
out = bce_logits_with_loss_op(logits, label, weight, pos_weight)
|
|
357
|
+
output = P.ReduceMean()(out, reduce_indexes)
|
|
358
|
+
elif prim_reduction == handler.str_to_enum("BCEWithLogitsLoss", "reduction", 'sum'):
|
|
359
|
+
out = bce_logits_with_loss_op(logits, label, weight, pos_weight)
|
|
360
|
+
output = P.ReduceSum()(out, reduce_indexes)
|
|
361
|
+
else:
|
|
362
|
+
raise RuntimeError("For {} vmap, the attribute of reduction must in "
|
|
363
|
+
"('none', 'mean', 'sum'), but got {}."
|
|
364
|
+
.format(prim_name, prim_reduction))
|
|
365
|
+
return output, 0
|
|
366
|
+
|
|
367
|
+
return vmap_rule
|
|
368
|
+
|
|
369
|
+
|
|
370
|
+
@vmap_rules_getters.register(P.BiasAdd)
|
|
371
|
+
def get_bias_add_vmap_rule(prim, axis_size):
|
|
372
|
+
"""VmapRule for `BiasAdd` operation."""
|
|
373
|
+
add_op = P.Add()
|
|
374
|
+
|
|
375
|
+
@constexpr
|
|
376
|
+
def get_channal_pos_in_x(d_format, n_dims):
|
|
377
|
+
if d_format == Format.NHWC:
|
|
378
|
+
return n_dims
|
|
379
|
+
return 2
|
|
380
|
+
|
|
381
|
+
@_primexpr
|
|
382
|
+
def get_bias_dst_shape(x_shape, n_dims, d_format, has_b_dim: bool):
|
|
383
|
+
pos = get_channal_pos_in_x(d_format, n_dims)
|
|
384
|
+
|
|
385
|
+
bias_shape = []
|
|
386
|
+
for i in range(n_dims):
|
|
387
|
+
if i != pos:
|
|
388
|
+
bias_shape.append(1)
|
|
389
|
+
else:
|
|
390
|
+
bias_shape.append(x_shape[i])
|
|
391
|
+
|
|
392
|
+
if has_b_dim:
|
|
393
|
+
bias_shape[0] = axis_size
|
|
394
|
+
|
|
395
|
+
return tuple(bias_shape)
|
|
396
|
+
|
|
397
|
+
def vmap_rule(x_bdim, bias_bdim, data_format_bdim):
|
|
398
|
+
is_all_none, result = vmap_general_preprocess(prim, x_bdim, bias_bdim, data_format_bdim)
|
|
399
|
+
if is_all_none:
|
|
400
|
+
return result
|
|
401
|
+
|
|
402
|
+
x, x_dim = x_bdim
|
|
403
|
+
b, b_dim = bias_bdim
|
|
404
|
+
data_format_data, _ = data_format_bdim
|
|
405
|
+
|
|
406
|
+
x = _bdim_at_front(x, x_dim, axis_size)
|
|
407
|
+
has_b_dim = False
|
|
408
|
+
if b_dim is not None:
|
|
409
|
+
b = _bdim_at_front(b, b_dim, axis_size)
|
|
410
|
+
has_b_dim = True
|
|
411
|
+
|
|
412
|
+
x_shape = x.shape
|
|
413
|
+
n_dims = len(x_shape)
|
|
414
|
+
b_shape = get_bias_dst_shape(x_shape, n_dims, data_format_data, has_b_dim)
|
|
415
|
+
|
|
416
|
+
b = b.reshape(b_shape)
|
|
417
|
+
result = add_op(x, b)
|
|
418
|
+
|
|
419
|
+
return (result, 0)
|
|
420
|
+
|
|
421
|
+
return vmap_rule
|
|
422
|
+
|
|
423
|
+
|
|
424
|
+
@vmap_rules_getters.register(G.BiasAddGrad)
|
|
425
|
+
def get_bias_add_grad_vmap_rule(prim, axis_size):
|
|
426
|
+
"""VmapRule for `BiasAddGrad` operation."""
|
|
427
|
+
@constexpr
|
|
428
|
+
def get_channal_pos(d_format, x_rank):
|
|
429
|
+
if d_format == Format.NHWC:
|
|
430
|
+
return x_rank
|
|
431
|
+
return 2
|
|
432
|
+
|
|
433
|
+
@_primexpr
|
|
434
|
+
def get_axis_for_reduce(x_shape_rank, data_format):
|
|
435
|
+
channal_pos = get_channal_pos(data_format, x_shape_rank)
|
|
436
|
+
axis_list = ()
|
|
437
|
+
for i in range(1, x_shape_rank):
|
|
438
|
+
if channal_pos == i:
|
|
439
|
+
continue
|
|
440
|
+
axis_list += (i,)
|
|
441
|
+
|
|
442
|
+
return axis_list
|
|
443
|
+
|
|
444
|
+
def vmap_rule(x_bdim, data_format_bdim):
|
|
445
|
+
is_all_none, result = vmap_general_preprocess(prim, x_bdim, data_format_bdim)
|
|
446
|
+
if is_all_none:
|
|
447
|
+
return result
|
|
448
|
+
|
|
449
|
+
x, x_dim = x_bdim
|
|
450
|
+
data_format_data, _ = data_format_bdim
|
|
451
|
+
x = _bdim_at_front(x, x_dim, axis_size)
|
|
452
|
+
x_shape_rank = len(x.shape)
|
|
453
|
+
|
|
454
|
+
axis_for_reduce = get_axis_for_reduce(x_shape_rank, data_format_data)
|
|
455
|
+
|
|
456
|
+
result = x.sum(axis=axis_for_reduce)
|
|
457
|
+
return (result, 0)
|
|
458
|
+
|
|
459
|
+
return vmap_rule
|
|
460
|
+
|
|
461
|
+
|
|
462
|
+
@vmap_rules_getters.register(P.Dropout)
|
|
463
|
+
@vmap_rules_getters.register(P.Dropout2D)
|
|
464
|
+
@vmap_rules_getters.register(P.Dropout3D)
|
|
465
|
+
def get_dropout_nd_vmap_rule(prim, axis_size):
|
|
466
|
+
"""VmapRule for 'DropoutND' operation."""
|
|
467
|
+
prim_name = prim.name
|
|
468
|
+
dropout_nd_dim = 4
|
|
469
|
+
if prim_name == "Dropout3D":
|
|
470
|
+
dropout_nd_dim = 5
|
|
471
|
+
|
|
472
|
+
def vmap_rule(x_bdim):
|
|
473
|
+
is_all_none, result = vmap_general_preprocess(prim, x_bdim)
|
|
474
|
+
if is_all_none:
|
|
475
|
+
return result
|
|
476
|
+
|
|
477
|
+
x, x_dim = x_bdim
|
|
478
|
+
x = _bdim_at_front(x, x_dim, axis_size)
|
|
479
|
+
x_ndim = F.rank(x)
|
|
480
|
+
if x_ndim > dropout_nd_dim:
|
|
481
|
+
x_ori_shape = F.shape(x)
|
|
482
|
+
x = F.reshape(x, (-1,) + x_ori_shape[2:x_ndim])
|
|
483
|
+
output, mask = prim(x)
|
|
484
|
+
output = F.reshape(output, x_ori_shape)
|
|
485
|
+
mask = F.reshape(mask, x_ori_shape)
|
|
486
|
+
else:
|
|
487
|
+
output, mask = prim(x)
|
|
488
|
+
|
|
489
|
+
return (output, 0), (mask, 0)
|
|
490
|
+
|
|
491
|
+
return vmap_rule
|
|
492
|
+
|
|
493
|
+
|
|
494
|
+
@vmap_rules_getters.register(P.InTopK)
|
|
495
|
+
def get_in_top_k_vmap_rule(prim, axis_size):
|
|
496
|
+
"""VmapRule for `InTopK`."""
|
|
497
|
+
|
|
498
|
+
def vmap_rule(x1_bdim, x2_bdim):
|
|
499
|
+
is_all_none, result = vmap_general_preprocess(prim, x1_bdim, x2_bdim)
|
|
500
|
+
if is_all_none:
|
|
501
|
+
return result
|
|
502
|
+
|
|
503
|
+
x1, x1_dim = x1_bdim
|
|
504
|
+
x2, x2_dim = x2_bdim
|
|
505
|
+
x1 = _bdim_at_front(x1, x1_dim, axis_size)
|
|
506
|
+
x2 = _bdim_at_front(x2, x2_dim, axis_size)
|
|
507
|
+
x1_shape = F.shape(x1)
|
|
508
|
+
x2_shape = F.shape(x2)
|
|
509
|
+
x1 = F.reshape(x1, (-1, x1_shape[-1]))
|
|
510
|
+
x2 = F.reshape(x2, (-1,))
|
|
511
|
+
output = prim(x1, x2)
|
|
512
|
+
output = F.reshape(output, x2_shape)
|
|
513
|
+
return output, 0
|
|
514
|
+
|
|
515
|
+
return vmap_rule
|
|
516
|
+
|
|
517
|
+
|
|
518
|
+
@vmap_rules_getters.register(G.FastGeLUGrad)
|
|
519
|
+
@vmap_rules_getters.register(G.HSwishGrad)
|
|
520
|
+
def get_common_activation_grad_vmap_rule(prim, axis_size):
|
|
521
|
+
"""VmapRule for common activation grad operation."""
|
|
522
|
+
prim_name = prim.name
|
|
523
|
+
|
|
524
|
+
def vmap_rule(x_bdim, dy_bdim):
|
|
525
|
+
x, x_dim = x_bdim
|
|
526
|
+
dy, dy_dim = dy_bdim
|
|
527
|
+
x_shape = F.shape(x)
|
|
528
|
+
dy_shape = F.shape(dy)
|
|
529
|
+
if x_dim == dy_dim and x_shape == dy_shape:
|
|
530
|
+
out = prim(x, dy)
|
|
531
|
+
return out, x_dim
|
|
532
|
+
|
|
533
|
+
if F.rank(x):
|
|
534
|
+
x = _bdim_at_front(x, x_dim, 1)
|
|
535
|
+
if F.rank(dy):
|
|
536
|
+
dy = _bdim_at_front(dy, dy_dim, 1)
|
|
537
|
+
x_shape = F.shape(x)
|
|
538
|
+
dy_shape = F.shape(dy)
|
|
539
|
+
if x_shape != dy_shape:
|
|
540
|
+
raise RuntimeError("For {} vmap, input x shape is supposed to be the same as input dy shape "
|
|
541
|
+
"after batch transforming, but got x_shape {}, dy_shape {}"
|
|
542
|
+
.format(prim_name, x_shape, dy_shape))
|
|
543
|
+
out = prim(x, dy)
|
|
544
|
+
return out, 0
|
|
545
|
+
|
|
546
|
+
return vmap_rule
|
|
547
|
+
|
|
548
|
+
|
|
549
|
+
@vmap_rules_getters.register("SoftShrink")
|
|
550
|
+
def get_softshrink_vmap_rule(prim, axis_size):
|
|
551
|
+
"""VmapRule for `SoftShrink`."""
|
|
552
|
+
def vmap_rule(x_bdim, lambd_bdim):
|
|
553
|
+
var, dim = x_bdim
|
|
554
|
+
lambd, _ = lambd_bdim
|
|
555
|
+
out = prim(var, lambd)
|
|
556
|
+
return out, dim
|
|
557
|
+
|
|
558
|
+
return vmap_rule
|
|
559
|
+
|
|
560
|
+
|
|
561
|
+
@vmap_rules_getters.register("SoftShrinkGrad")
|
|
562
|
+
def get_softshrink_grad_vmap_rule(prim, axis_size):
|
|
563
|
+
"""VmapRule for `SoftShrinkGrad`."""
|
|
564
|
+
prim_name = prim.name
|
|
565
|
+
|
|
566
|
+
def vmap_rule(dy_bdim, x_bdim, lambd_bdim):
|
|
567
|
+
x, x_dim = x_bdim
|
|
568
|
+
lambd, _ = lambd_bdim
|
|
569
|
+
dy, dy_dim = dy_bdim
|
|
570
|
+
x_shape = F.shape(x)
|
|
571
|
+
dy_shape = F.shape(dy)
|
|
572
|
+
if x_dim == dy_dim and x_shape == dy_shape:
|
|
573
|
+
out = prim(dy, x, lambd)
|
|
574
|
+
return out, x_dim
|
|
575
|
+
|
|
576
|
+
if F.rank(x):
|
|
577
|
+
x = _bdim_at_front(x, x_dim, 1)
|
|
578
|
+
if F.rank(dy):
|
|
579
|
+
dy = _bdim_at_front(dy, dy_dim, 1)
|
|
580
|
+
x_shape = F.shape(x)
|
|
581
|
+
dy_shape = F.shape(dy)
|
|
582
|
+
if x_shape != dy_shape:
|
|
583
|
+
raise RuntimeError("For {} vmap, input x shape is supposed to be the same as input dy shape "
|
|
584
|
+
"after batch transforming, but got x_shape {}, dy_shape {}"
|
|
585
|
+
.format(prim_name, x_shape, dy_shape))
|
|
586
|
+
out = prim(dy, x, lambd)
|
|
587
|
+
return out, 0
|
|
588
|
+
|
|
589
|
+
return vmap_rule
|
|
590
|
+
|
|
591
|
+
|
|
592
|
+
@vmap_rules_getters.register("HShrink")
|
|
593
|
+
def get_hshrink_vmap_rule(prim, axis_size):
|
|
594
|
+
"""VmapRule for `HShrink`."""
|
|
595
|
+
def vmap_rule(x_bdim, lambd_bdim):
|
|
596
|
+
var, dim = x_bdim
|
|
597
|
+
lambd, _ = lambd_bdim
|
|
598
|
+
out = prim(var, lambd)
|
|
599
|
+
return out, dim
|
|
600
|
+
|
|
601
|
+
return vmap_rule
|
|
602
|
+
|
|
603
|
+
|
|
604
|
+
@vmap_rules_getters.register("HShrinkGrad")
|
|
605
|
+
def get_hshrink_grad_vmap_rule(prim, axis_size):
|
|
606
|
+
"""VmapRule for `HShrinkGrad`."""
|
|
607
|
+
prim_name = prim.name
|
|
608
|
+
|
|
609
|
+
def vmap_rule(dy_bdim, x_bdim, lambd_bdim):
|
|
610
|
+
x, x_dim = x_bdim
|
|
611
|
+
lambd, _ = lambd_bdim
|
|
612
|
+
dy, dy_dim = dy_bdim
|
|
613
|
+
x_shape = F.shape(x)
|
|
614
|
+
dy_shape = F.shape(dy)
|
|
615
|
+
if x_dim == dy_dim and x_shape == dy_shape:
|
|
616
|
+
out = prim(dy, x, lambd)
|
|
617
|
+
return out, x_dim
|
|
618
|
+
|
|
619
|
+
if F.rank(x):
|
|
620
|
+
x = _bdim_at_front(x, x_dim, 1)
|
|
621
|
+
if F.rank(dy):
|
|
622
|
+
dy = _bdim_at_front(dy, dy_dim, 1)
|
|
623
|
+
x_shape = F.shape(x)
|
|
624
|
+
dy_shape = F.shape(dy)
|
|
625
|
+
if x_shape != dy_shape:
|
|
626
|
+
raise RuntimeError("For {} vmap, input x shape is supposed to be the same as input dy shape "
|
|
627
|
+
"after batch transforming, but got x_shape {}, dy_shape {}"
|
|
628
|
+
.format(prim_name, x_shape, dy_shape))
|
|
629
|
+
out = prim(dy, x, lambd)
|
|
630
|
+
return out, 0
|
|
631
|
+
|
|
632
|
+
return vmap_rule
|
|
633
|
+
|
|
634
|
+
|
|
635
|
+
@vmap_rules_getters.register(P.Pad)
|
|
636
|
+
def get_pad_vmap_rule(prim, axis_size):
|
|
637
|
+
"""VmapRule for `Pad`"""
|
|
638
|
+
paddings = prim.paddings
|
|
639
|
+
|
|
640
|
+
@constexpr
|
|
641
|
+
def _get_paddings(cur_paddings, x_dim):
|
|
642
|
+
"""get paddings."""
|
|
643
|
+
new_paddings = list(cur_paddings)
|
|
644
|
+
new_paddings.insert(x_dim, (0, 0))
|
|
645
|
+
return tuple(new_paddings)
|
|
646
|
+
|
|
647
|
+
def vmap_rule(x_bdim):
|
|
648
|
+
x, x_dim = x_bdim
|
|
649
|
+
if x_dim is None:
|
|
650
|
+
# case1: batch not exists
|
|
651
|
+
out = prim(x)
|
|
652
|
+
else:
|
|
653
|
+
# case2: batch exists
|
|
654
|
+
new_paddings = _get_paddings(paddings, x_dim)
|
|
655
|
+
op = P.Pad(new_paddings)
|
|
656
|
+
out = op(x)
|
|
657
|
+
return out, x_dim
|
|
658
|
+
|
|
659
|
+
return vmap_rule
|
|
660
|
+
|
|
661
|
+
|
|
662
|
+
@vmap_rules_getters.register(NN.Pdist)
|
|
663
|
+
def get_pdist_vmap_rule(prim, axis_size):
|
|
664
|
+
"""VmapRule for `Pdist`"""
|
|
665
|
+
if isinstance(prim, str):
|
|
666
|
+
prim = Primitive(prim)
|
|
667
|
+
prim.add_prim_attr('p', 2.0)
|
|
668
|
+
|
|
669
|
+
def vmap_rule(x_bdim):
|
|
670
|
+
is_all_none, result = vmap_general_preprocess(prim, x_bdim)
|
|
671
|
+
if is_all_none:
|
|
672
|
+
return result
|
|
673
|
+
x, x_dim = x_bdim
|
|
674
|
+
x = _bdim_at_front(x, x_dim, axis_size)
|
|
675
|
+
out = prim(x)
|
|
676
|
+
return out, 0
|
|
677
|
+
|
|
678
|
+
return vmap_rule
|
|
679
|
+
|
|
680
|
+
|
|
681
|
+
@vmap_rules_getters.register(NN.DeformableOffsets)
|
|
682
|
+
def get_matmul_vmap_rule(prim, axis_size):
|
|
683
|
+
"""VmapRule for `DeformableOffsets` operation."""
|
|
684
|
+
nchw_size = 4
|
|
685
|
+
chw_size = 3
|
|
686
|
+
chw_reverse_index = -chw_size
|
|
687
|
+
|
|
688
|
+
def vmap_rule(x_bdim, offsets_bdim):
|
|
689
|
+
is_all_none, result = vmap_general_preprocess(prim, x_bdim, offsets_bdim)
|
|
690
|
+
if is_all_none:
|
|
691
|
+
return result
|
|
692
|
+
|
|
693
|
+
x, x_dim = x_bdim
|
|
694
|
+
offsets, offsets_dim = offsets_bdim
|
|
695
|
+
x = _bdim_at_front(x, x_dim, axis_size)
|
|
696
|
+
x_ndim = F.rank(x)
|
|
697
|
+
x_origin_shape = F.shape(x)
|
|
698
|
+
|
|
699
|
+
offsets = _bdim_at_front(offsets, offsets_dim, axis_size)
|
|
700
|
+
offsets_ndim = F.rank(offsets)
|
|
701
|
+
offsets_origin_shape = F.shape(offsets)
|
|
702
|
+
|
|
703
|
+
batch_origin_shape = x_origin_shape
|
|
704
|
+
if x_ndim > nchw_size:
|
|
705
|
+
x = F.reshape(x, (-1,) + x_origin_shape[chw_reverse_index:])
|
|
706
|
+
if offsets_ndim > nchw_size:
|
|
707
|
+
offsets = F.reshape(offsets, (-1,) + offsets_origin_shape[chw_reverse_index:])
|
|
708
|
+
batch_origin_shape = offsets_origin_shape
|
|
709
|
+
|
|
710
|
+
out = prim(x, offsets)
|
|
711
|
+
out_shape = F.shape(out)
|
|
712
|
+
out = F.reshape(out, batch_origin_shape[:(nchw_size + 1 - chw_size)] + out_shape[chw_reverse_index:])
|
|
713
|
+
return out, 0
|
|
714
|
+
|
|
715
|
+
return vmap_rule
|
|
716
|
+
|
|
717
|
+
|
|
718
|
+
@vmap_rules_getters.register("Softmax")
|
|
719
|
+
def get_softmax_vmap_rule(prim, axis_size):
|
|
720
|
+
"""VmapRule for `Softmax`"""
|
|
721
|
+
|
|
722
|
+
def vmap_rule(x_bdim, axis_bdim):
|
|
723
|
+
is_all_none, result = vmap_general_preprocess(prim, x_bdim, axis_bdim)
|
|
724
|
+
if is_all_none:
|
|
725
|
+
return result
|
|
726
|
+
x, x_dim = x_bdim
|
|
727
|
+
axis, _ = axis_bdim
|
|
728
|
+
x_ndim = F.rank(x)
|
|
729
|
+
if not F.isconstant(axis) or not F.isconstant(x_ndim):
|
|
730
|
+
raise ValueError
|
|
731
|
+
batch_axis = _get_reduce_batch_axis(axis, x_dim, x_ndim)
|
|
732
|
+
out = prim(x, batch_axis)
|
|
733
|
+
return out, x_dim
|
|
734
|
+
|
|
735
|
+
return vmap_rule
|
|
736
|
+
|
|
737
|
+
|
|
738
|
+
@vmap_rules_getters.register(P.AdaptiveAvgPool2D)
|
|
739
|
+
def get_adaptive_avgpool2d_vmap_rule(prim, axis_size):
|
|
740
|
+
"""VmapRule for `AdaptiveAvgPool2D` operation."""
|
|
741
|
+
chw_reverse_index = -3
|
|
742
|
+
hw_reverse_index = -2
|
|
743
|
+
|
|
744
|
+
def vmap_rule(input_bdim):
|
|
745
|
+
is_all_none, result = vmap_general_preprocess(prim, input_bdim)
|
|
746
|
+
if is_all_none:
|
|
747
|
+
return result
|
|
748
|
+
|
|
749
|
+
input_x, x_dim = input_bdim
|
|
750
|
+
input_x = _bdim_at_front(input_x, x_dim, axis_size)
|
|
751
|
+
x_shape = F.shape(input_x)
|
|
752
|
+
input_shape = (-1,) + x_shape[chw_reverse_index:]
|
|
753
|
+
input_x = F.reshape(input_x, input_shape)
|
|
754
|
+
out = prim(input_x)
|
|
755
|
+
out_shape = F.shape(out)
|
|
756
|
+
real_out_shape = x_shape[:hw_reverse_index] + out_shape[hw_reverse_index:]
|
|
757
|
+
out = F.reshape(out, real_out_shape)
|
|
758
|
+
return out, 0
|
|
759
|
+
|
|
760
|
+
return vmap_rule
|
|
761
|
+
|
|
762
|
+
|
|
763
|
+
@vmap_rules_getters.register(NN.AdaptiveAvgPool3D)
|
|
764
|
+
def get_adaptive_avgpool3d_vmap_rule(prim, axis_size):
|
|
765
|
+
"""VmapRule for `AdaptiveAvgPool3D` operation."""
|
|
766
|
+
dhw_reverse_index = -3
|
|
767
|
+
max_dims = 5
|
|
768
|
+
|
|
769
|
+
def vmap_rule(x_bdim):
|
|
770
|
+
is_all_none, result = vmap_general_preprocess(prim, x_bdim)
|
|
771
|
+
if is_all_none:
|
|
772
|
+
return result
|
|
773
|
+
|
|
774
|
+
x, x_dim = x_bdim
|
|
775
|
+
x = _bdim_at_front(x, x_dim, axis_size)
|
|
776
|
+
if F.rank(x) == max_dims:
|
|
777
|
+
out = prim(x)
|
|
778
|
+
return out, 0
|
|
779
|
+
|
|
780
|
+
x_shape = F.shape(x)
|
|
781
|
+
shape = (-1,) + x_shape[dhw_reverse_index:]
|
|
782
|
+
x = F.reshape(x, shape)
|
|
783
|
+
out = prim(x)
|
|
784
|
+
out_shape = F.shape(out)
|
|
785
|
+
real_out_shape = x_shape[:dhw_reverse_index] + out_shape[dhw_reverse_index:]
|
|
786
|
+
out = F.reshape(out, real_out_shape)
|
|
787
|
+
return out, 0
|
|
788
|
+
|
|
789
|
+
return vmap_rule
|
|
790
|
+
|
|
791
|
+
|
|
792
|
+
@vmap_rules_getters.register("AvgPool")
|
|
793
|
+
def get_avgpool_vmap_rule(prim, axis_size):
|
|
794
|
+
"""VmapRule for `AvgPool`."""
|
|
795
|
+
chw_reverse_index = -3
|
|
796
|
+
|
|
797
|
+
def vmap_rule(x_bdim, kernel_size_bdim, strides_bdim, pad_mode_bdim, data_format_bdim):
|
|
798
|
+
is_all_none, result = vmap_general_preprocess(prim, x_bdim, kernel_size_bdim, strides_bdim, pad_mode_bdim,
|
|
799
|
+
data_format_bdim)
|
|
800
|
+
if is_all_none:
|
|
801
|
+
return result
|
|
802
|
+
|
|
803
|
+
x, x_dim = x_bdim
|
|
804
|
+
kernel_size, _ = kernel_size_bdim
|
|
805
|
+
strides, _ = strides_bdim
|
|
806
|
+
pad_mode, _ = pad_mode_bdim
|
|
807
|
+
data_format, _ = data_format_bdim
|
|
808
|
+
x = _bdim_at_front(x, x_dim, axis_size)
|
|
809
|
+
x_shape = F.shape(x)
|
|
810
|
+
input_shape = (-1,) + x_shape[chw_reverse_index:]
|
|
811
|
+
x = F.reshape(x, input_shape)
|
|
812
|
+
out = prim(x, kernel_size, strides, pad_mode, data_format)
|
|
813
|
+
out_shape = F.shape(out)
|
|
814
|
+
real_out_shape = x_shape[:chw_reverse_index] + out_shape[chw_reverse_index:]
|
|
815
|
+
out = F.reshape(out, real_out_shape)
|
|
816
|
+
return out, 0
|
|
817
|
+
|
|
818
|
+
return vmap_rule
|
|
819
|
+
|
|
820
|
+
|
|
821
|
+
@vmap_rules_getters.register(NN.AdaptiveMaxPool3D)
|
|
822
|
+
def get_adaptive_max_pool3d_vmap_rule(prim, axis_size):
|
|
823
|
+
"""VmapRule for `AdaptiveMaxPool3D`."""
|
|
824
|
+
dhw_reverse_index = -3
|
|
825
|
+
max_dims = 5
|
|
826
|
+
|
|
827
|
+
@constexpr
|
|
828
|
+
def convert_shape_to_tensor(shape):
|
|
829
|
+
return Tensor(shape, dtype=mindspore.int32)
|
|
830
|
+
|
|
831
|
+
def vmap_rule(x_bdim, out_size_bdim):
|
|
832
|
+
is_all_none, result = vmap_general_preprocess(prim, x_bdim, out_size_bdim)
|
|
833
|
+
if is_all_none:
|
|
834
|
+
return result
|
|
835
|
+
|
|
836
|
+
x, x_dim = x_bdim
|
|
837
|
+
out_size, out_size_dim = out_size_bdim
|
|
838
|
+
x = _bdim_at_front(x, x_dim, axis_size)
|
|
839
|
+
if out_size_dim is not None:
|
|
840
|
+
_raise_value_error("The source axis of `output_size` in `AdaptiveMaxPool3D` must be None, "
|
|
841
|
+
"but got {}.".format(out_size_dim))
|
|
842
|
+
if F.rank(x) == max_dims:
|
|
843
|
+
out, indices = prim(x, out_size)
|
|
844
|
+
return (out, 0), (indices, 0)
|
|
845
|
+
|
|
846
|
+
x_shape = F.shape(x)
|
|
847
|
+
shape = (-1,) + x_shape[dhw_reverse_index:]
|
|
848
|
+
x = F.reshape(x, shape)
|
|
849
|
+
out, indices = prim(x, out_size)
|
|
850
|
+
# AdaptiveMaxPool3D is a dynamic op, the 'shape' of reshape should be a tensor
|
|
851
|
+
front_shape = convert_shape_to_tensor(x_shape[:dhw_reverse_index])
|
|
852
|
+
output_shape = F.concat((front_shape, out_size))
|
|
853
|
+
out = F.reshape(out, output_shape)
|
|
854
|
+
indices = F.reshape(indices, output_shape)
|
|
855
|
+
return (out, 0), (indices, 0)
|
|
856
|
+
|
|
857
|
+
return vmap_rule
|
|
858
|
+
|
|
859
|
+
|
|
860
|
+
@vmap_rules_getters.register(NN.InstanceNorm)
|
|
861
|
+
def get_instance_norm_rule(prim, axis_size):
|
|
862
|
+
"""VmapRule for `InstanceNorm` operation."""
|
|
863
|
+
if hasattr(prim, 'batch_rank'):
|
|
864
|
+
batch_rank = prim.batch_rank + 1
|
|
865
|
+
else:
|
|
866
|
+
batch_rank = 1
|
|
867
|
+
|
|
868
|
+
prim_name = prim.name
|
|
869
|
+
batch_prim = _vmap_clone_prim(prim)
|
|
870
|
+
batch_prim.add_prim_attr('batch_rank', batch_rank)
|
|
871
|
+
|
|
872
|
+
def vmap_rule(input_x_bdim, gamma_bdim, beta_bdim, mean_bdim, variance_bdim, u_monad):
|
|
873
|
+
input_x, input_x_dim = input_x_bdim
|
|
874
|
+
gamma, gamma_dim = gamma_bdim
|
|
875
|
+
beta, beta_dim = beta_bdim
|
|
876
|
+
mean, mean_dim = mean_bdim
|
|
877
|
+
variance, variance_dim = variance_bdim
|
|
878
|
+
if gamma_dim is None:
|
|
879
|
+
if any(dim is not None for dim in [input_x_dim, beta_dim, mean_dim, variance_dim]):
|
|
880
|
+
raise ValueError("The source axis of `gamma` is None, but the source "
|
|
881
|
+
"axis of `input_x/beta/mean/variance` is not None. The execution order of "
|
|
882
|
+
"operator `{}` cannot be guaranteed.".format(prim_name))
|
|
883
|
+
output_x, updated_moving_mean, updated_moving_variance = prim(input_x, gamma, beta, mean, variance, u_monad)
|
|
884
|
+
return (output_x, None), (updated_moving_mean, None), (updated_moving_variance, None)
|
|
885
|
+
|
|
886
|
+
precondition = gamma_dim != 0 or beta_dim != gamma_dim or mean_dim != gamma_dim or variance_dim != gamma_dim
|
|
887
|
+
if precondition:
|
|
888
|
+
# pylint: disable=too-many-format-args
|
|
889
|
+
raise ValueError(
|
|
890
|
+
"For `{}`, the source axis of `var` must be equal to `accum` and `accum_update`, and not equal to 0, "
|
|
891
|
+
"but got the source axis of `var`: {}, `accum`: {}, `accum_update`: {}.".format(
|
|
892
|
+
prim_name, gamma_dim, beta_dim, mean_dim, variance_dim))
|
|
893
|
+
input_x = _bdim_at_front(input_x, input_x_dim, axis_size)
|
|
894
|
+
output_x, updated_moving_mean, updated_moving_variance = batch_prim(input_x, gamma, beta, mean, variance,
|
|
895
|
+
u_monad)
|
|
896
|
+
return (output_x, 0), (updated_moving_mean, 0), (updated_moving_variance, 0)
|
|
897
|
+
|
|
898
|
+
return vmap_rule
|
|
899
|
+
|
|
900
|
+
|
|
901
|
+
@vmap_rules_getters.register(P.KLDivLoss)
|
|
902
|
+
def get_kl_div_loss_vmap_rule(prim, axis_size):
|
|
903
|
+
"""VmapRule for `KLDivLoss` operation."""
|
|
904
|
+
if isinstance(prim, str):
|
|
905
|
+
prim = Primitive(prim)
|
|
906
|
+
|
|
907
|
+
prim_reduction = prim.reduction
|
|
908
|
+
if prim_reduction == "mean":
|
|
909
|
+
kl_div_loss_op = P.KLDivLoss("none")
|
|
910
|
+
reduce_op = P.ReduceMean()
|
|
911
|
+
elif prim_reduction == "sum":
|
|
912
|
+
kl_div_loss_op = P.KLDivLoss("none")
|
|
913
|
+
reduce_op = P.ReduceSum()
|
|
914
|
+
elif prim_reduction == "batchmean":
|
|
915
|
+
kl_div_loss_op = P.KLDivLoss("none")
|
|
916
|
+
reduce_op = P.ReduceSum()
|
|
917
|
+
factor_op = P.Div()
|
|
918
|
+
|
|
919
|
+
def vmap_rule(x_bdim, target_bdim):
|
|
920
|
+
is_all_none, result = vmap_general_preprocess(prim, x_bdim, target_bdim)
|
|
921
|
+
if is_all_none:
|
|
922
|
+
return result
|
|
923
|
+
|
|
924
|
+
x, x_dim = x_bdim
|
|
925
|
+
target, target_dim = target_bdim
|
|
926
|
+
x_ndim = F.rank(x)
|
|
927
|
+
target_ndim = F.rank(target)
|
|
928
|
+
max_rank = max(x_ndim, target_ndim)
|
|
929
|
+
x = _bdim_at_front(x, x_dim, axis_size)
|
|
930
|
+
target = _bdim_at_front(target, target_dim, axis_size)
|
|
931
|
+
reduce_indexes = None
|
|
932
|
+
factor = 1
|
|
933
|
+
# if rank is larger than 1, we need to reduce result when reduction != 'none'
|
|
934
|
+
if max_rank > 1:
|
|
935
|
+
reduce_indexes = tuple(range(1, max_rank))
|
|
936
|
+
factor = F.shape(x)[1]
|
|
937
|
+
|
|
938
|
+
# elementwise style when reduction='none', otherwise reduce style
|
|
939
|
+
if prim_reduction == "none":
|
|
940
|
+
out = prim(x, target)
|
|
941
|
+
elif prim_reduction in ("mean", "sum"):
|
|
942
|
+
out = kl_div_loss_op(x, target)
|
|
943
|
+
if reduce_indexes is not None:
|
|
944
|
+
out = reduce_op(out, reduce_indexes)
|
|
945
|
+
elif prim_reduction == "batchmean":
|
|
946
|
+
out = kl_div_loss_op(x, target)
|
|
947
|
+
if reduce_indexes is not None:
|
|
948
|
+
out = reduce_op(out, reduce_indexes)
|
|
949
|
+
out = factor_op(out, factor)
|
|
950
|
+
else:
|
|
951
|
+
raise RuntimeError("For KLDivLoss vmap, reduction should be one of "
|
|
952
|
+
"['none', 'mean', 'batchmean', 'sum'], but got '{}'".format(prim_reduction))
|
|
953
|
+
return out, 0
|
|
954
|
+
|
|
955
|
+
return vmap_rule
|
|
956
|
+
|
|
957
|
+
|
|
958
|
+
@vmap_rules_getters.register(G.KLDivLossGrad)
|
|
959
|
+
def get_kl_div_loss_grad_vmap_rule(prim, axis_size):
|
|
960
|
+
"""VmapRule for `KLDivLossGrad`."""
|
|
961
|
+
if isinstance(prim, str):
|
|
962
|
+
prim = Primitive(prim)
|
|
963
|
+
reduction = "mean"
|
|
964
|
+
else:
|
|
965
|
+
reduction = prim.reduction
|
|
966
|
+
|
|
967
|
+
kldivloss_grad = G.KLDivLossGrad(reduction=reduction)
|
|
968
|
+
|
|
969
|
+
def vmap_rule(dy_bdim, x_bdim, target_bdim):
|
|
970
|
+
is_all_none, result = vmap_general_preprocess(prim, dy_bdim, x_bdim, target_bdim)
|
|
971
|
+
if is_all_none:
|
|
972
|
+
return result
|
|
973
|
+
|
|
974
|
+
dy, dy_dim = dy_bdim
|
|
975
|
+
x, x_dim = x_bdim
|
|
976
|
+
target, target_dim = target_bdim
|
|
977
|
+
dy = _bdim_at_front(dy, dy_dim, axis_size)
|
|
978
|
+
x = _bdim_at_front(x, x_dim, axis_size)
|
|
979
|
+
target = _bdim_at_front(target, target_dim, axis_size)
|
|
980
|
+
|
|
981
|
+
out = kldivloss_grad(dy, x, target)
|
|
982
|
+
return out, 0
|
|
983
|
+
|
|
984
|
+
return vmap_rule
|
|
985
|
+
|
|
986
|
+
|
|
987
|
+
@vmap_rules_getters.register(P.SmoothL1Loss)
|
|
988
|
+
def get_smooth_l1_loss_vmap_rule(prim, axis_size):
|
|
989
|
+
"""VmapRule for `SmoothL1Loss` operation."""
|
|
990
|
+
if isinstance(prim, str):
|
|
991
|
+
prim = Primitive(prim)
|
|
992
|
+
prim_beta = 1.0
|
|
993
|
+
prim_reduction = 'none'
|
|
994
|
+
else:
|
|
995
|
+
prim_reduction = prim.reduction
|
|
996
|
+
prim_beta = prim.beta
|
|
997
|
+
|
|
998
|
+
smooth_l1_loss_op = P.SmoothL1Loss(prim_beta, 'none')
|
|
999
|
+
if prim_reduction == 'mean':
|
|
1000
|
+
reduce_op = P.ReduceMean()
|
|
1001
|
+
elif prim_reduction == "sum":
|
|
1002
|
+
reduce_op = P.ReduceSum()
|
|
1003
|
+
|
|
1004
|
+
def vmap_rule(x_bdim, target_bdim):
|
|
1005
|
+
is_all_none, result = vmap_general_preprocess(
|
|
1006
|
+
prim, x_bdim, target_bdim)
|
|
1007
|
+
if is_all_none:
|
|
1008
|
+
return result
|
|
1009
|
+
|
|
1010
|
+
x, x_dim = x_bdim
|
|
1011
|
+
target, target_dim = target_bdim
|
|
1012
|
+
x_ndim = F.rank(x)
|
|
1013
|
+
target_ndim = F.rank(target)
|
|
1014
|
+
max_rank = max(x_ndim, target_ndim)
|
|
1015
|
+
x = _bdim_at_front(x, x_dim, axis_size)
|
|
1016
|
+
target = _bdim_at_front(target, target_dim, axis_size)
|
|
1017
|
+
reduce_indexes = None
|
|
1018
|
+
# if rank is larger than 1, we need to reduce result when reduction != 'none'
|
|
1019
|
+
if max_rank > 1:
|
|
1020
|
+
reduce_indexes = tuple(range(1, max_rank))
|
|
1021
|
+
|
|
1022
|
+
# elementwise style when reduction='none', otherwise reduce style
|
|
1023
|
+
if prim_reduction == "none":
|
|
1024
|
+
out = prim(x, target)
|
|
1025
|
+
elif prim_reduction in ("mean", "sum"):
|
|
1026
|
+
out = smooth_l1_loss_op(x, target)
|
|
1027
|
+
if reduce_indexes is not None:
|
|
1028
|
+
out = reduce_op(out, reduce_indexes)
|
|
1029
|
+
else:
|
|
1030
|
+
raise RuntimeError("For SmoothL1Loss vmap, reduction should be one of "
|
|
1031
|
+
"['none', 'mean', 'sum'], but got '{}'".format(prim_reduction))
|
|
1032
|
+
return out, 0
|
|
1033
|
+
|
|
1034
|
+
return vmap_rule
|
|
1035
|
+
|
|
1036
|
+
|
|
1037
|
+
@vmap_rules_getters.register(G.SmoothL1LossGrad)
|
|
1038
|
+
def get_smooth_l1_loss_grad_vmap_rule(prim, axis_size):
|
|
1039
|
+
"""VmapRule for `SmoothL1LossGrad`."""
|
|
1040
|
+
if isinstance(prim, str):
|
|
1041
|
+
prim = Primitive(prim)
|
|
1042
|
+
reduction = "none"
|
|
1043
|
+
beta = 1.0
|
|
1044
|
+
else:
|
|
1045
|
+
reduction = prim.reduction
|
|
1046
|
+
beta = prim.beta
|
|
1047
|
+
smooth_l1_loss_grad = G.SmoothL1LossGrad(beta, reduction)
|
|
1048
|
+
|
|
1049
|
+
def vmap_rule(x_bdim, target_bdim, dy_bdim):
|
|
1050
|
+
is_all_none, result = vmap_general_preprocess(
|
|
1051
|
+
prim, dy_bdim, x_bdim, target_bdim)
|
|
1052
|
+
if is_all_none:
|
|
1053
|
+
return result
|
|
1054
|
+
|
|
1055
|
+
dy, dy_dim = dy_bdim
|
|
1056
|
+
x, x_dim = x_bdim
|
|
1057
|
+
target, target_dim = target_bdim
|
|
1058
|
+
dy = _bdim_at_front(dy, dy_dim, axis_size)
|
|
1059
|
+
x = _bdim_at_front(x, x_dim, axis_size)
|
|
1060
|
+
target = _bdim_at_front(target, target_dim, axis_size)
|
|
1061
|
+
|
|
1062
|
+
out = smooth_l1_loss_grad(x, target, dy)
|
|
1063
|
+
return out, 0
|
|
1064
|
+
|
|
1065
|
+
return vmap_rule
|
|
1066
|
+
|
|
1067
|
+
|
|
1068
|
+
@vmap_rules_getters.register(P.nn_ops.LogSoftmax)
|
|
1069
|
+
def get_log_softmax_vmap_rule(prim_func, axis_size):
|
|
1070
|
+
"""VmapRule for 'LogSoftmax' operation."""
|
|
1071
|
+
def vmap_rule(x_bdim, axis_bdim):
|
|
1072
|
+
is_all_none, result = vmap_general_preprocess(prim_func, x_bdim, axis_bdim)
|
|
1073
|
+
if is_all_none:
|
|
1074
|
+
return result
|
|
1075
|
+
x, x_dim = x_bdim
|
|
1076
|
+
axis, _ = axis_bdim
|
|
1077
|
+
x_ndim = F.rank(x) - 1
|
|
1078
|
+
|
|
1079
|
+
batch_axis = axis + x_ndim if axis < 0 else axis
|
|
1080
|
+
batch_axis = batch_axis if batch_axis < x_dim else batch_axis + 1
|
|
1081
|
+
|
|
1082
|
+
out = F.log_softmax(x, batch_axis)
|
|
1083
|
+
return out, x_dim
|
|
1084
|
+
|
|
1085
|
+
return vmap_rule
|
|
1086
|
+
|
|
1087
|
+
|
|
1088
|
+
@vmap_rules_getters.register(P.RandomCategorical)
|
|
1089
|
+
def get_random_categorical_vmap_rule(prim, axis_size):
|
|
1090
|
+
"""VmapRule for `RandomCategorical` operation."""
|
|
1091
|
+
|
|
1092
|
+
default_dim = 2
|
|
1093
|
+
|
|
1094
|
+
def vmap_rule(logits_bdim, num_sample_bdim, seed_bdim):
|
|
1095
|
+
is_all_none, result = vmap_general_preprocess(prim, logits_bdim, num_sample_bdim, seed_bdim)
|
|
1096
|
+
if is_all_none:
|
|
1097
|
+
return result
|
|
1098
|
+
logits, logits_dim = logits_bdim
|
|
1099
|
+
num_sample, num_sample_dim = num_sample_bdim
|
|
1100
|
+
seed, seed_dim = seed_bdim
|
|
1101
|
+
if num_sample_dim is not None or seed_dim is not None:
|
|
1102
|
+
raise RuntimeError("For RandomCategorical vmap, num_sample and seed should be None.")
|
|
1103
|
+
# Move axis to first dim
|
|
1104
|
+
logits = _bdim_at_front(logits, logits_dim, axis_size)
|
|
1105
|
+
x_ndim = F.rank(logits)
|
|
1106
|
+
if x_ndim > default_dim:
|
|
1107
|
+
x_ori_shape = F.shape(logits)
|
|
1108
|
+
logits = F.reshape(logits, (-1, x_ori_shape[-1]))
|
|
1109
|
+
dx = prim(logits, num_sample, seed)
|
|
1110
|
+
new_output_shape = (x_ori_shape[0], x_ori_shape[1], num_sample)
|
|
1111
|
+
dx = F.reshape(dx, new_output_shape)
|
|
1112
|
+
else:
|
|
1113
|
+
dx = prim(logits, num_sample, seed)
|
|
1114
|
+
return dx, 0
|
|
1115
|
+
|
|
1116
|
+
return vmap_rule
|
|
1117
|
+
|
|
1118
|
+
|
|
1119
|
+
@vmap_rules_getters.register(NN.LRN)
|
|
1120
|
+
def get_lrn_vmap_rule(prim, axis_size):
|
|
1121
|
+
"""VmapRule for `LRN` operation."""
|
|
1122
|
+
lrn_default_dim = 4
|
|
1123
|
+
lrn_pre_remain_dim = 3
|
|
1124
|
+
|
|
1125
|
+
def vmap_rule(x_bdim):
|
|
1126
|
+
is_all_none, result = vmap_general_preprocess(prim, x_bdim)
|
|
1127
|
+
if is_all_none:
|
|
1128
|
+
return result
|
|
1129
|
+
input_x, input_x_dim = x_bdim
|
|
1130
|
+
# Move axis to last dim
|
|
1131
|
+
x = _bdim_at_back(input_x, input_x_dim, axis_size)
|
|
1132
|
+
x_ndim = F.rank(x)
|
|
1133
|
+
if x_ndim > lrn_default_dim:
|
|
1134
|
+
x_ori_shape = F.shape(x)
|
|
1135
|
+
x = F.reshape(x, x_ori_shape[:lrn_pre_remain_dim] + (-1,))
|
|
1136
|
+
out = prim(x)
|
|
1137
|
+
out = F.reshape(out, x_ori_shape)
|
|
1138
|
+
else:
|
|
1139
|
+
out = prim(x)
|
|
1140
|
+
return out, x_ndim - 1
|
|
1141
|
+
|
|
1142
|
+
return vmap_rule
|
|
1143
|
+
|
|
1144
|
+
|
|
1145
|
+
@vmap_rules_getters.register(NN.PadV3)
|
|
1146
|
+
def get_pad_v3_vmap_rule(prim, axis_size):
|
|
1147
|
+
"""VmapRule for `PadV3` operation."""
|
|
1148
|
+
pad_pair = 2
|
|
1149
|
+
input_max_dim = 4
|
|
1150
|
+
mode = prim.mode
|
|
1151
|
+
|
|
1152
|
+
def vmap_rule(*params_bdim):
|
|
1153
|
+
is_all_none, result = vmap_general_preprocess(
|
|
1154
|
+
prim, params_bdim)
|
|
1155
|
+
if is_all_none:
|
|
1156
|
+
return result
|
|
1157
|
+
if len(params_bdim) < 2:
|
|
1158
|
+
_raise_value_error("The input params in `PadV3` must >= 2, "
|
|
1159
|
+
"but got {}.".format(len(params_bdim)))
|
|
1160
|
+
input_x, input_x_dim = params_bdim[0]
|
|
1161
|
+
paddings, paddings_dim = params_bdim[1]
|
|
1162
|
+
values = None
|
|
1163
|
+
out = None
|
|
1164
|
+
x = _bdim_at_front(input_x, input_x_dim, axis_size)
|
|
1165
|
+
if paddings_dim is not None:
|
|
1166
|
+
_raise_value_error("The source axis of `paddings` in `PadV3` must be None, "
|
|
1167
|
+
"but got {}.".format(paddings_dim))
|
|
1168
|
+
if mode == "constant":
|
|
1169
|
+
if len(params_bdim) != 3:
|
|
1170
|
+
_raise_value_error("The input params in `PadV3` of constant mode must be 3, "
|
|
1171
|
+
"but got {}.".format(len(params_bdim)))
|
|
1172
|
+
values, values_dim = params_bdim[2]
|
|
1173
|
+
if values_dim is not None:
|
|
1174
|
+
_raise_value_error("The source axis of `values_dim` in `PadV3` must be None, "
|
|
1175
|
+
"but got {}.".format(values_dim))
|
|
1176
|
+
if isinstance(paddings, Tensor):
|
|
1177
|
+
pad_dim = F.shape(paddings)[0] / pad_pair
|
|
1178
|
+
else:
|
|
1179
|
+
pad_dim = len(paddings) / pad_pair
|
|
1180
|
+
x_ndim = F.rank(x)
|
|
1181
|
+
# pylint: disable=chained-comparison
|
|
1182
|
+
if pad_dim < x_ndim and x_ndim < input_max_dim:
|
|
1183
|
+
if mode == "constant":
|
|
1184
|
+
out = prim(x, paddings, values)
|
|
1185
|
+
else:
|
|
1186
|
+
out = prim(x, paddings)
|
|
1187
|
+
elif x_ndim >= input_max_dim:
|
|
1188
|
+
# reshape to 4 dims
|
|
1189
|
+
x_shape = F.shape(x)
|
|
1190
|
+
diff_dim = x_ndim - input_max_dim
|
|
1191
|
+
first_shape = 1
|
|
1192
|
+
for i in range(diff_dim + 1):
|
|
1193
|
+
first_shape *= x_shape[i]
|
|
1194
|
+
input_shape = (first_shape,) + x_shape[(-input_max_dim + 1):]
|
|
1195
|
+
x = F.reshape(x, input_shape)
|
|
1196
|
+
if mode == "constant":
|
|
1197
|
+
out = prim(x, paddings, values)
|
|
1198
|
+
else:
|
|
1199
|
+
out = prim(x, paddings)
|
|
1200
|
+
out_shape = F.shape(out)
|
|
1201
|
+
real_out_shape = x_shape[:diff_dim + 1] + out_shape[1:]
|
|
1202
|
+
out = F.reshape(out, real_out_shape)
|
|
1203
|
+
else:
|
|
1204
|
+
_raise_value_error("The dim of `input_x` in `PadV3` must be bigger than {}, "
|
|
1205
|
+
"but got {}.".format(pad_dim, x_ndim))
|
|
1206
|
+
return out, 0
|
|
1207
|
+
|
|
1208
|
+
return vmap_rule
|
|
1209
|
+
|
|
1210
|
+
|
|
1211
|
+
@vmap_rules_getters.register(NN.MirrorPad)
|
|
1212
|
+
def get_mirror_pad_vmap_rule(prim, axis_size):
|
|
1213
|
+
"""VmapRule for `MirrorPad` operation."""
|
|
1214
|
+
input_max_dim = 4
|
|
1215
|
+
|
|
1216
|
+
def vmap_rule(*params_bdim):
|
|
1217
|
+
is_all_none, result = vmap_general_preprocess(prim, params_bdim)
|
|
1218
|
+
if is_all_none:
|
|
1219
|
+
return result
|
|
1220
|
+
if len(params_bdim) < 2:
|
|
1221
|
+
_raise_value_error("The input params in `{}` must >= 2, but got {}.".format(prim.name, len(params_bdim)))
|
|
1222
|
+
input_x, input_x_dim = params_bdim[0]
|
|
1223
|
+
paddings, paddings_dim = params_bdim[1]
|
|
1224
|
+
|
|
1225
|
+
out = None
|
|
1226
|
+
x = _bdim_at_front(input_x, input_x_dim, axis_size)
|
|
1227
|
+
if paddings_dim is not None:
|
|
1228
|
+
_raise_value_error(
|
|
1229
|
+
"The source axis of `paddings` in `{}` must be None, but got {}.".format(prim.name, paddings_dim))
|
|
1230
|
+
pad_dim = F.shape(paddings)[0]
|
|
1231
|
+
x_ndim = F.rank(x)
|
|
1232
|
+
|
|
1233
|
+
if pad_dim == x_ndim and x_ndim <= input_max_dim:
|
|
1234
|
+
out = prim(x, paddings)
|
|
1235
|
+
elif x_ndim > input_max_dim:
|
|
1236
|
+
# reshape to 4 dims
|
|
1237
|
+
x_shape = F.shape(x)
|
|
1238
|
+
diff_dim = x_ndim - input_max_dim
|
|
1239
|
+
first_shape = 1
|
|
1240
|
+
for i in range(diff_dim + 1):
|
|
1241
|
+
first_shape *= x_shape[i]
|
|
1242
|
+
input_shape = (first_shape,) + x_shape[(-input_max_dim + 1):]
|
|
1243
|
+
x = F.reshape(x, input_shape)
|
|
1244
|
+
out = prim(x, paddings)
|
|
1245
|
+
out_shape = F.shape(out)
|
|
1246
|
+
real_out_shape = x_shape[:diff_dim + 1] + out_shape[1:]
|
|
1247
|
+
out = F.reshape(out, real_out_shape)
|
|
1248
|
+
else:
|
|
1249
|
+
_raise_value_error("The dim of `input_x` in `{}` must be bigger than {}, "
|
|
1250
|
+
"but got {}.".format(prim.name, pad_dim, x_ndim))
|
|
1251
|
+
return out, 0
|
|
1252
|
+
|
|
1253
|
+
return vmap_rule
|
|
1254
|
+
|
|
1255
|
+
|
|
1256
|
+
@vmap_rules_getters.register(G.LRNGrad)
|
|
1257
|
+
def get_lrn_grad_vmap_rule(prim, axis_size):
|
|
1258
|
+
"""VmapRule for `LRNGrad` operation."""
|
|
1259
|
+
lrn_default_dim = 4
|
|
1260
|
+
lrn_pre_remain_dim = 3
|
|
1261
|
+
|
|
1262
|
+
def vmap_rule(dout_bdim, x_bdim, out_bdim):
|
|
1263
|
+
is_all_none, result = vmap_general_preprocess(prim, dout_bdim, x_bdim, out_bdim)
|
|
1264
|
+
if is_all_none:
|
|
1265
|
+
return result
|
|
1266
|
+
x, x_dim = x_bdim
|
|
1267
|
+
dy, dy_dim = dout_bdim
|
|
1268
|
+
y, y_dim = out_bdim
|
|
1269
|
+
# Move axis to last dim
|
|
1270
|
+
x = _bdim_at_back(x, x_dim, axis_size)
|
|
1271
|
+
dy = _bdim_at_back(dy, dy_dim, axis_size)
|
|
1272
|
+
y = _bdim_at_back(y, y_dim, axis_size)
|
|
1273
|
+
x_ndim = F.rank(x)
|
|
1274
|
+
if x_ndim > lrn_default_dim:
|
|
1275
|
+
x_ori_shape = F.shape(x)
|
|
1276
|
+
dy_ori_shape = F.shape(dy)
|
|
1277
|
+
y_ori_shape = F.shape(y)
|
|
1278
|
+
x = F.reshape(x, x_ori_shape[:lrn_pre_remain_dim] + (-1,))
|
|
1279
|
+
dy = F.reshape(dy, dy_ori_shape[:lrn_pre_remain_dim] + (-1,))
|
|
1280
|
+
y = F.reshape(y, y_ori_shape[:lrn_pre_remain_dim] + (-1,))
|
|
1281
|
+
dx = prim(dy, x, y)
|
|
1282
|
+
dx = F.reshape(dx, x_ori_shape)
|
|
1283
|
+
else:
|
|
1284
|
+
dx = prim(dy, x, y)
|
|
1285
|
+
return dx, x_ndim - 1
|
|
1286
|
+
|
|
1287
|
+
return vmap_rule
|
|
1288
|
+
|
|
1289
|
+
|
|
1290
|
+
@vmap_rules_getters.register(P.BatchNorm)
|
|
1291
|
+
def get_batchnorm_vmap_rule(prim, axis_size):
|
|
1292
|
+
"""VmapRule for `BatchNorm` operation."""
|
|
1293
|
+
bn_min_dim = 3
|
|
1294
|
+
bn_max_dim = 5
|
|
1295
|
+
prim_name = "BatchNorm"
|
|
1296
|
+
NCHW = Format.NCHW
|
|
1297
|
+
|
|
1298
|
+
def vmap_rule(*inputs):
|
|
1299
|
+
is_all_none, result = vmap_general_preprocess(prim, *inputs)
|
|
1300
|
+
if is_all_none:
|
|
1301
|
+
return result
|
|
1302
|
+
input_x, input_x_dim = inputs[0]
|
|
1303
|
+
scale, scale_dim = inputs[1]
|
|
1304
|
+
offset, offset_dim = inputs[2]
|
|
1305
|
+
mean, mean_dim = inputs[3]
|
|
1306
|
+
var, var_dim = inputs[4]
|
|
1307
|
+
is_training, _ = inputs[5]
|
|
1308
|
+
epsilon, _ = inputs[6]
|
|
1309
|
+
momentum, _ = inputs[7]
|
|
1310
|
+
data_format, _ = inputs[8]
|
|
1311
|
+
if is_training:
|
|
1312
|
+
raise ValueError("Operator {} does not support Vmap during training, since the input `scale, offset, mean, "
|
|
1313
|
+
"var of BatchNorm are parameters when is_training = true. If multiple batches of input "
|
|
1314
|
+
"data share the same parameters, please stack batches to the N dimension manually."
|
|
1315
|
+
.format(prim_name))
|
|
1316
|
+
x_ndim = F.rank(input_x)
|
|
1317
|
+
if x_ndim < bn_min_dim or x_ndim > bn_max_dim:
|
|
1318
|
+
raise ValueError("The dim of `input_x` in `{}` must be larger than {} and less than {}, "
|
|
1319
|
+
"but got {}.".format(prim_name, bn_min_dim - 1, bn_max_dim + 1, x_ndim))
|
|
1320
|
+
# Move input_x axis to the dim front of C
|
|
1321
|
+
out_axis = 1 if data_format == NCHW else x_ndim - 2
|
|
1322
|
+
input_x = _bdim_at_any(input_x, input_x_dim, out_axis, axis_size)
|
|
1323
|
+
scale = _bdim_at_front(scale, scale_dim, axis_size)
|
|
1324
|
+
offset = _bdim_at_front(offset, offset_dim, axis_size)
|
|
1325
|
+
mean = _bdim_at_front(mean, mean_dim, axis_size)
|
|
1326
|
+
var = _bdim_at_front(var, var_dim, axis_size)
|
|
1327
|
+
x_shape = input_x.shape
|
|
1328
|
+
other_shape = scale.shape
|
|
1329
|
+
vmap_shape = (x_shape[0], -1,) + x_shape[3:] if data_format == NCHW else x_shape[:-2] + (-1,)
|
|
1330
|
+
input_x = F.reshape(input_x, vmap_shape)
|
|
1331
|
+
scale = scale.flatten()
|
|
1332
|
+
offset = offset.flatten()
|
|
1333
|
+
mean = mean.flatten()
|
|
1334
|
+
var = var.flatten()
|
|
1335
|
+
out, batch_mean, batch_var, rsv_1, rsv_2 =\
|
|
1336
|
+
prim(input_x, scale, offset, mean, var, is_training, epsilon, momentum, data_format)
|
|
1337
|
+
out = F.reshape(out, x_shape)
|
|
1338
|
+
batch_mean = F.reshape(batch_mean, other_shape)
|
|
1339
|
+
batch_var = F.reshape(batch_var, other_shape)
|
|
1340
|
+
rsv_1 = F.reshape(rsv_1, other_shape)
|
|
1341
|
+
rsv_2 = F.reshape(rsv_2, other_shape)
|
|
1342
|
+
return (out, out_axis), (batch_mean, 0), (batch_var, 0), (rsv_1, 0), (rsv_2, 0)
|
|
1343
|
+
|
|
1344
|
+
return vmap_rule
|
|
1345
|
+
|
|
1346
|
+
|
|
1347
|
+
@vmap_rules_getters.register(P.ApplyAdamWithAmsgrad)
|
|
1348
|
+
def get_apply_adam_with_amsgrad_rule(prim, axis_size):
|
|
1349
|
+
"""VmapRule for `ApplyAdamWithAmsgrad` operation"""
|
|
1350
|
+
if hasattr(prim, "batch_rank"):
|
|
1351
|
+
batch_rank = prim.batch_rank + 1
|
|
1352
|
+
else:
|
|
1353
|
+
batch_rank = 1
|
|
1354
|
+
prim_name = prim.name
|
|
1355
|
+
batch_prim = _vmap_clone_prim(prim)
|
|
1356
|
+
batch_prim.add_prim_attr("batch_rank", batch_rank)
|
|
1357
|
+
|
|
1358
|
+
def vmap_rule(var_bdim, m_bdim, v_bdim, vhat_bdim, beta1_power_bdim, beta2_power_bdim, lr_bdim, grad_bdim, u_monad):
|
|
1359
|
+
var, var_dim = var_bdim
|
|
1360
|
+
m, m_dim = m_bdim
|
|
1361
|
+
v, v_dim = v_bdim
|
|
1362
|
+
vhat, vhat_dim = vhat_bdim
|
|
1363
|
+
beta1_power, beta1_power_dim = beta1_power_bdim
|
|
1364
|
+
beta2_power, beta2_power_dim = beta2_power_bdim
|
|
1365
|
+
lr, lr_dim = lr_bdim
|
|
1366
|
+
grad, grad_dim = grad_bdim
|
|
1367
|
+
|
|
1368
|
+
if var_dim is None:
|
|
1369
|
+
if any(dim is not None for dim in [m_dim, v_dim, vhat_dim, beta1_power_dim,
|
|
1370
|
+
beta2_power_dim, lr_dim, grad_dim]):
|
|
1371
|
+
raise ValueError("The source axis of `var` is None, "
|
|
1372
|
+
"but the source axis of `m/v/vhat/beta1_power/beta2_power/lr/grad` is not None. "
|
|
1373
|
+
"The execution of operator `{}` cannot be guaranteed.".format(prim_name))
|
|
1374
|
+
out_var, out_m, out_v, out_vhat = prim(var, m, v, vhat, beta1_power, beta2_power, lr, grad, u_monad)
|
|
1375
|
+
return (out_var, None), (out_m, None), (out_v, None), (out_vhat, None)
|
|
1376
|
+
|
|
1377
|
+
if any(dim != 0 for dim in [var_dim, m_dim, v_dim, vhat_dim]):
|
|
1378
|
+
raise ValueError("For `{}`, the source axis of `var/m/v/vhat` must be 0, "
|
|
1379
|
+
"but get `var`: {}, `m`: {}, `v`: {}, `vhat`: {}".format(prim_name, var_dim,
|
|
1380
|
+
m_dim, v_dim, vhat_dim))
|
|
1381
|
+
|
|
1382
|
+
beta1_power = _bdim_at_front(beta1_power, beta1_power_dim, axis_size)
|
|
1383
|
+
beta2_power = _bdim_at_front(beta2_power, beta2_power_dim, axis_size)
|
|
1384
|
+
lr = _bdim_at_front(lr, lr_dim, axis_size)
|
|
1385
|
+
grad = _bdim_at_front(grad, grad_dim, axis_size)
|
|
1386
|
+
|
|
1387
|
+
out_var, out_m, out_v, out_vhat = batch_prim(var, m, v, vhat, beta1_power, beta2_power, lr, grad, u_monad)
|
|
1388
|
+
return (out_var, 0), (out_m, 0), (out_v, 0), (out_vhat, 0)
|
|
1389
|
+
|
|
1390
|
+
return vmap_rule
|
|
1391
|
+
|
|
1392
|
+
|
|
1393
|
+
@vmap_rules_getters.register(P.ApplyAdamWithAmsgradV2)
|
|
1394
|
+
def get_apply_adam_with_amsgrad_v2_rule(prim, axis_size):
|
|
1395
|
+
"""VmapRule for `ApplyAdamWithAmsgradV2` operation"""
|
|
1396
|
+
if hasattr(prim, "batch_rank"):
|
|
1397
|
+
batch_rank = prim.batch_rank + 1
|
|
1398
|
+
else:
|
|
1399
|
+
batch_rank = 1
|
|
1400
|
+
prim_name = prim.name
|
|
1401
|
+
batch_prim = _vmap_clone_prim(prim)
|
|
1402
|
+
batch_prim.add_prim_attr("batch_rank", batch_rank)
|
|
1403
|
+
|
|
1404
|
+
def vmap_rule(var_bdim, m_bdim, v_bdim, vhat_bdim, beta1_power_bdim, beta2_power_bdim, lr_bdim, beta1_bdim,
|
|
1405
|
+
beta2_bdim, epsilon_bdim, grad_bdim, u_monad):
|
|
1406
|
+
var, var_dim = var_bdim
|
|
1407
|
+
m, m_dim = m_bdim
|
|
1408
|
+
v, v_dim = v_bdim
|
|
1409
|
+
vhat, vhat_dim = vhat_bdim
|
|
1410
|
+
beta1_power, beta1_power_dim = beta1_power_bdim
|
|
1411
|
+
beta2_power, beta2_power_dim = beta2_power_bdim
|
|
1412
|
+
lr, lr_dim = lr_bdim
|
|
1413
|
+
beta1, beta1_dim = beta1_bdim
|
|
1414
|
+
beta2, beta2_dim = beta2_bdim
|
|
1415
|
+
epsilon, epsilon_dim = epsilon_bdim
|
|
1416
|
+
grad, grad_dim = grad_bdim
|
|
1417
|
+
|
|
1418
|
+
if var_dim is None:
|
|
1419
|
+
if any(dim is not None for dim in [m_dim, v_dim, vhat_dim, beta1_power_dim,
|
|
1420
|
+
beta2_power_dim, lr_dim, beta1_dim, beta2_dim, grad_dim]):
|
|
1421
|
+
raise ValueError("The source axis of `var` is None, "
|
|
1422
|
+
"but the source axis of `m/v/vhat/beta1_power/beta2_power/lr/beta1/beta2/grad` is not "
|
|
1423
|
+
"None. The execution of operator `{}` cannot be guaranteed.".format(prim_name))
|
|
1424
|
+
out_var, out_m, out_v, out_vhat = prim(var, m, v, vhat, beta1_power, beta2_power, lr, beta1, beta2, epsilon,
|
|
1425
|
+
grad, u_monad)
|
|
1426
|
+
return (out_var, None), (out_m, None), (out_v, None), (out_vhat, None)
|
|
1427
|
+
|
|
1428
|
+
if any(dim != 0 for dim in [var_dim, m_dim, v_dim, vhat_dim]):
|
|
1429
|
+
raise ValueError("For `{}`, the source axis of `var/m/v/vhat` must be 0, "
|
|
1430
|
+
"but get `var`: {}, `m`: {}, `v`: {}, `vhat`: {}".format(prim_name, var_dim,
|
|
1431
|
+
m_dim, v_dim, vhat_dim))
|
|
1432
|
+
|
|
1433
|
+
beta1_power = _bdim_at_front(beta1_power, beta1_power_dim, axis_size)
|
|
1434
|
+
beta2_power = _bdim_at_front(beta2_power, beta2_power_dim, axis_size)
|
|
1435
|
+
lr = _bdim_at_front(lr, lr_dim, axis_size)
|
|
1436
|
+
beta1 = _bdim_at_front(beta1, beta1_dim, axis_size)
|
|
1437
|
+
beta2 = _bdim_at_front(beta2, beta2_dim, axis_size)
|
|
1438
|
+
epsilon = _bdim_at_front(epsilon, epsilon_dim, axis_size)
|
|
1439
|
+
grad = _bdim_at_front(grad, grad_dim, axis_size)
|
|
1440
|
+
|
|
1441
|
+
out_var, out_m, out_v, out_vhat = batch_prim(var, m, v, vhat, beta1_power, beta2_power, lr, beta1, beta2,
|
|
1442
|
+
epsilon, grad, u_monad)
|
|
1443
|
+
return (out_var, 0), (out_m, 0), (out_v, 0), (out_vhat, 0)
|
|
1444
|
+
|
|
1445
|
+
return vmap_rule
|
|
1446
|
+
|
|
1447
|
+
|
|
1448
|
+
@vmap_rules_getters.register(P.Adam)
|
|
1449
|
+
def get_adam_rule(prim, axis_size):
|
|
1450
|
+
"""VmapRule for `Adam` operation"""
|
|
1451
|
+
if hasattr(prim, "batch_rank"):
|
|
1452
|
+
batch_rank = prim.batch_rank + 1
|
|
1453
|
+
else:
|
|
1454
|
+
batch_rank = 1
|
|
1455
|
+
prim_name = prim.name
|
|
1456
|
+
batch_prim = _vmap_clone_prim(prim)
|
|
1457
|
+
batch_prim.add_prim_attr("batch_rank", batch_rank)
|
|
1458
|
+
|
|
1459
|
+
def vmap_rule(var_bdim, m_bdim, v_bdim, beta1_power_bdim, beta2_power_bdim, lr_bdim, beta1_bdim,
|
|
1460
|
+
beta2_bdim, epsilon_bdim, grad_bdim, u_monad):
|
|
1461
|
+
var, var_dim = var_bdim
|
|
1462
|
+
m, m_dim = m_bdim
|
|
1463
|
+
v, v_dim = v_bdim
|
|
1464
|
+
beta1_power, beta1_power_dim = beta1_power_bdim
|
|
1465
|
+
beta2_power, beta2_power_dim = beta2_power_bdim
|
|
1466
|
+
lr, lr_dim = lr_bdim
|
|
1467
|
+
beta1, beta1_dim = beta1_bdim
|
|
1468
|
+
beta2, beta2_dim = beta2_bdim
|
|
1469
|
+
epsilon, epsilon_dim = epsilon_bdim
|
|
1470
|
+
grad, grad_dim = grad_bdim
|
|
1471
|
+
|
|
1472
|
+
all_dim = [m_dim, v_dim, beta1_power_dim, beta2_power_dim, lr_dim, beta1_dim, beta2_dim, epsilon_dim, grad_dim]
|
|
1473
|
+
if var_dim is None:
|
|
1474
|
+
if any(dim is not None for dim in all_dim):
|
|
1475
|
+
raise ValueError("The source axis of `var` is None, "
|
|
1476
|
+
"but the source axis of `m/v/vhat/beta1_power/beta2_power/lr/beta1/beta2/epsilon grad"
|
|
1477
|
+
" is not None. The execution of operator `{}` cannot be guaranteed.".format(prim_name))
|
|
1478
|
+
out_var, out_m, out_v = prim(
|
|
1479
|
+
var, m, v, beta1_power, beta2_power, lr, beta1, beta2, epsilon, grad, u_monad)
|
|
1480
|
+
return ((out_var, None), (out_m, None), (out_v, None))
|
|
1481
|
+
|
|
1482
|
+
if any(dim != 0 for dim in [var_dim, m_dim, v_dim]):
|
|
1483
|
+
raise ValueError("For `{}`, the source axis of `var/m/v` must be 0, "
|
|
1484
|
+
"but get `var`: {}, `m`: {}, `v`: {}".format(prim_name, var_dim,
|
|
1485
|
+
m_dim, v_dim))
|
|
1486
|
+
|
|
1487
|
+
beta1_power = _bdim_at_front(beta1_power, beta1_power_dim, axis_size)
|
|
1488
|
+
beta2_power = _bdim_at_front(beta2_power, beta2_power_dim, axis_size)
|
|
1489
|
+
lr = _bdim_at_front(lr, lr_dim, axis_size)
|
|
1490
|
+
beta1 = _bdim_at_front(beta1, beta1_dim, axis_size)
|
|
1491
|
+
beta2 = _bdim_at_front(beta2, beta2_dim, axis_size)
|
|
1492
|
+
epsilon = _bdim_at_front(epsilon, epsilon_dim, axis_size)
|
|
1493
|
+
grad = _bdim_at_front(grad, grad_dim, axis_size)
|
|
1494
|
+
|
|
1495
|
+
out_var, out_m, out_v = batch_prim(
|
|
1496
|
+
var, m, v, beta1_power, beta2_power, lr, beta1, beta2, epsilon, grad, u_monad)
|
|
1497
|
+
return ((out_var, 0), (out_m, 0), (out_v, 0))
|
|
1498
|
+
|
|
1499
|
+
return vmap_rule
|
|
1500
|
+
|
|
1501
|
+
|
|
1502
|
+
@vmap_rules_getters.register(P.ApplyPowerSign)
|
|
1503
|
+
def get_apply_power_sign_rule(prim, axis_size):
|
|
1504
|
+
"""VmapRule for `ApplyPowerSign` operation."""
|
|
1505
|
+
if hasattr(prim, 'batch_rank'):
|
|
1506
|
+
batch_rank = prim.batch_rank + 1
|
|
1507
|
+
else:
|
|
1508
|
+
batch_rank = 1
|
|
1509
|
+
|
|
1510
|
+
prim_name = prim.name
|
|
1511
|
+
batch_prim = _vmap_clone_prim(prim)
|
|
1512
|
+
batch_prim.add_prim_attr("batch_rank", batch_rank)
|
|
1513
|
+
|
|
1514
|
+
def vmap_rule(var_bdim, m_bdim, lr_bdim, logbase_bdim, sign_decay_bdim, beta_bdim, grad_bdim, u_monad):
|
|
1515
|
+
var, var_dim = var_bdim
|
|
1516
|
+
m, m_dim = m_bdim
|
|
1517
|
+
lr, lr_dim = lr_bdim
|
|
1518
|
+
logbase, logbase_dim = logbase_bdim
|
|
1519
|
+
sign_decay, sign_decay_dim = sign_decay_bdim
|
|
1520
|
+
beta, beta_dim = beta_bdim
|
|
1521
|
+
grad, grad_dim = grad_bdim
|
|
1522
|
+
|
|
1523
|
+
if var_dim is None:
|
|
1524
|
+
if any(dim is not None for dim in [m_bdim, lr_bdim, logbase_bdim, sign_decay_bdim, beta_bdim, grad_bdim]):
|
|
1525
|
+
raise ValueError("The source axis of `var` is None, but the source "
|
|
1526
|
+
"axis of `m/lr/logbase/sign_decay/beta/grad` is not None. The execution order of "
|
|
1527
|
+
"operator `{}` cannot be guaranteed.".format(prim_name))
|
|
1528
|
+
var, m = prim(var, m, lr, logbase, sign_decay, beta, grad, u_monad)
|
|
1529
|
+
return (var, None), (m, None)
|
|
1530
|
+
if var_dim != 0 or m_dim != var_dim:
|
|
1531
|
+
raise ValueError("For `{}`, the source axis of `var` must be equal to `m`, and not equal to 0, "
|
|
1532
|
+
"but got the source axis of `var`: {}, `m`: {}.".format(prim_name, var_dim, m_dim))
|
|
1533
|
+
|
|
1534
|
+
lr = _bdim_at_front(lr, lr_dim, axis_size)
|
|
1535
|
+
logbase = _bdim_at_front(logbase, logbase_dim, axis_size)
|
|
1536
|
+
sign_decay = _bdim_at_front(sign_decay, sign_decay_dim, axis_size)
|
|
1537
|
+
beta = _bdim_at_front(beta, beta_dim, axis_size)
|
|
1538
|
+
grad = _bdim_at_front(grad, grad_dim, axis_size)
|
|
1539
|
+
var, m = batch_prim(var, m, lr, logbase, sign_decay, beta, grad, u_monad)
|
|
1540
|
+
return (var, 0), (m, 0)
|
|
1541
|
+
|
|
1542
|
+
return vmap_rule
|
|
1543
|
+
|
|
1544
|
+
|
|
1545
|
+
@vmap_rules_getters.register(P.ApplyAdagradV2)
|
|
1546
|
+
def get_apply_adagrad_v2_vmap_rule(prim, axis_size):
|
|
1547
|
+
"""VmapRule for `ApplyAdagradV2` operation."""
|
|
1548
|
+
if hasattr(prim, 'batch_rank'):
|
|
1549
|
+
batch_rank = prim.batch_rank + 1
|
|
1550
|
+
else:
|
|
1551
|
+
batch_rank = 1
|
|
1552
|
+
|
|
1553
|
+
batch_prim = _vmap_clone_prim(prim)
|
|
1554
|
+
batch_prim.add_prim_attr('batch_rank', batch_rank)
|
|
1555
|
+
prim_name = prim.name
|
|
1556
|
+
|
|
1557
|
+
def vmap_rule(var_bdim, accum_bdim, lr_bdim, grad_bdim, u_monad):
|
|
1558
|
+
var, var_dim = var_bdim
|
|
1559
|
+
accum, accum_dim = accum_bdim
|
|
1560
|
+
lr, lr_dim = lr_bdim
|
|
1561
|
+
grad, grad_dim = grad_bdim
|
|
1562
|
+
|
|
1563
|
+
if var_dim is None:
|
|
1564
|
+
if any(dim is not None for dim in
|
|
1565
|
+
[accum_bdim, lr_dim, grad_bdim]):
|
|
1566
|
+
raise ValueError("The source axis of 'var' is None, but the source "
|
|
1567
|
+
"axis of 'accum/lr/grad'"
|
|
1568
|
+
" is not None. The execution order of "
|
|
1569
|
+
"operator '{}' cannot be guaranteed.".format(prim_name))
|
|
1570
|
+
var, accum = prim(var, accum, lr, grad, u_monad)
|
|
1571
|
+
return (var, None), (accum, None)
|
|
1572
|
+
if var_dim != 0 or var_dim != accum_dim:
|
|
1573
|
+
raise ValueError(
|
|
1574
|
+
f"For '{prim_name}', the source axis of 'var' must be equal to 'accum_dim' "
|
|
1575
|
+
f"and not equal to 0, but got the source axis of 'var': {var_dim}, "
|
|
1576
|
+
f"'accum_dim': {accum_dim}")
|
|
1577
|
+
|
|
1578
|
+
lr = _bdim_at_front(lr, lr_dim, axis_size)
|
|
1579
|
+
grad = _bdim_at_front(grad, grad_dim, axis_size)
|
|
1580
|
+
|
|
1581
|
+
var, accum = batch_prim(var, accum, lr, grad, u_monad)
|
|
1582
|
+
return (var, 0), (accum, 0)
|
|
1583
|
+
|
|
1584
|
+
return vmap_rule
|
|
1585
|
+
|
|
1586
|
+
|
|
1587
|
+
@vmap_rules_getters.register(P.ApplyAdagradDA)
|
|
1588
|
+
def get_apply_adagrad_da_vmap_rule(prim, axis_size):
|
|
1589
|
+
"""VmapRule for `ApplyAdagradDA` operation."""
|
|
1590
|
+
if hasattr(prim, 'batch_rank'):
|
|
1591
|
+
batch_rank = prim.batch_rank + 1
|
|
1592
|
+
else:
|
|
1593
|
+
batch_rank = 1
|
|
1594
|
+
|
|
1595
|
+
attr = prim.init_attrs
|
|
1596
|
+
batch_prim = P.ApplyAdagradDA(**attr)
|
|
1597
|
+
batch_prim.add_prim_attr('batch_rank', batch_rank)
|
|
1598
|
+
prim_name = prim.name
|
|
1599
|
+
|
|
1600
|
+
def vmap_rule(var_bdim, gradient_accumulator_bdim, gradient_squared_accumulator_bdim, grad_bdim, lr_bdim, l1_bdim,
|
|
1601
|
+
l2_bdim, global_step_bdim, u_monad):
|
|
1602
|
+
var, var_dim = var_bdim
|
|
1603
|
+
gradient_accumulator, gradient_accumulator_dim = gradient_accumulator_bdim
|
|
1604
|
+
gradient_squared_accumulator, gradient_squared_accumulator_dim = gradient_squared_accumulator_bdim
|
|
1605
|
+
grad, grad_dim = grad_bdim
|
|
1606
|
+
lr, lr_dim = lr_bdim
|
|
1607
|
+
l1, l1_dim = l1_bdim
|
|
1608
|
+
l2, l2_dim = l2_bdim
|
|
1609
|
+
global_step, global_step_dim = global_step_bdim
|
|
1610
|
+
|
|
1611
|
+
if var_dim is None:
|
|
1612
|
+
if any(dim is not None for dim in
|
|
1613
|
+
[gradient_accumulator_bdim, gradient_squared_accumulator_bdim, grad_bdim, lr_bdim, l1_bdim, l2_bdim,
|
|
1614
|
+
global_step_bdim]):
|
|
1615
|
+
raise ValueError("The source axis of 'var' is None, but the source "
|
|
1616
|
+
"axis of 'gradient_accumulator/gradient_squared_accumulator/grad/lr/l1/l2/global_step'"
|
|
1617
|
+
" is not None. The execution order of "
|
|
1618
|
+
"operator '{}' cannot be guaranteed.".format(prim_name))
|
|
1619
|
+
var, gradient_accumulator, gradient_squared_accumulator = prim(var, gradient_accumulator,
|
|
1620
|
+
gradient_squared_accumulator, grad, lr, l1,
|
|
1621
|
+
l2,
|
|
1622
|
+
global_step,
|
|
1623
|
+
u_monad) # Low dimensional operator
|
|
1624
|
+
return (var, None), (gradient_accumulator, None), (gradient_squared_accumulator, None)
|
|
1625
|
+
if var_dim != 0 or var_dim != gradient_accumulator_dim or var_dim != gradient_squared_accumulator_dim:
|
|
1626
|
+
raise ValueError(
|
|
1627
|
+
f"For '{prim_name}', the source axis of 'var' must be equal to 'gradient_accumulator_dim' "
|
|
1628
|
+
f"and 'gradient_squared_accumulator_dim' and not equal to 0, "
|
|
1629
|
+
f"but got the source axis of 'var': {var_dim}, "
|
|
1630
|
+
f"'gradient_accumulator_dim': {gradient_accumulator_dim}, "
|
|
1631
|
+
f"'gradient_squared_accumulator_dim': {gradient_squared_accumulator_dim}")
|
|
1632
|
+
|
|
1633
|
+
grad = _bdim_at_front(grad, grad_dim, axis_size)
|
|
1634
|
+
lr = _bdim_at_front(lr, lr_dim, axis_size)
|
|
1635
|
+
l1 = _bdim_at_front(l1, l1_dim, axis_size)
|
|
1636
|
+
l2 = _bdim_at_front(l2, l2_dim, axis_size)
|
|
1637
|
+
global_step = _bdim_at_front(global_step, global_step_dim, axis_size)
|
|
1638
|
+
|
|
1639
|
+
var = batch_prim(var, gradient_accumulator,
|
|
1640
|
+
gradient_squared_accumulator, grad, lr, l1,
|
|
1641
|
+
l2,
|
|
1642
|
+
global_step,
|
|
1643
|
+
u_monad) # High dimensional operator;
|
|
1644
|
+
return (var, 0)
|
|
1645
|
+
|
|
1646
|
+
return vmap_rule
|
|
1647
|
+
|
|
1648
|
+
|
|
1649
|
+
@vmap_rules_getters.register(NN.AdaptiveMaxPool2D)
|
|
1650
|
+
def get_adaptive_max_pool_2d_vmap_rule(prim, axis_size):
|
|
1651
|
+
"""VmapRule for `AdaptiveMaxPool2D`."""
|
|
1652
|
+
nchw_index = 4
|
|
1653
|
+
chw_reverse_index = -3
|
|
1654
|
+
hw_size = 2
|
|
1655
|
+
output_size = prim.output_size
|
|
1656
|
+
|
|
1657
|
+
@_primexpr
|
|
1658
|
+
def get_output_shape(x_ori_shape, output_size):
|
|
1659
|
+
if isinstance(output_size, tuple):
|
|
1660
|
+
h_out, w_out = output_size
|
|
1661
|
+
else:
|
|
1662
|
+
h_out = output_size
|
|
1663
|
+
w_out = output_size
|
|
1664
|
+
|
|
1665
|
+
rank = len(x_ori_shape)
|
|
1666
|
+
output_shape = x_ori_shape[:rank - hw_size]
|
|
1667
|
+
if h_out is None or h_out == -1:
|
|
1668
|
+
output_shape += (x_ori_shape[-2],)
|
|
1669
|
+
else:
|
|
1670
|
+
output_shape += (h_out,)
|
|
1671
|
+
|
|
1672
|
+
if w_out is None or w_out == -1:
|
|
1673
|
+
output_shape += (x_ori_shape[-1],)
|
|
1674
|
+
else:
|
|
1675
|
+
output_shape += (w_out,)
|
|
1676
|
+
return output_shape
|
|
1677
|
+
|
|
1678
|
+
def vmap_rule(input_x_bdim):
|
|
1679
|
+
is_all_none, result = vmap_general_preprocess(prim, input_x_bdim)
|
|
1680
|
+
if is_all_none:
|
|
1681
|
+
return result
|
|
1682
|
+
|
|
1683
|
+
input_x, input_x_dim = input_x_bdim
|
|
1684
|
+
x = _bdim_at_front(input_x, input_x_dim, axis_size)
|
|
1685
|
+
x_ndim = F.rank(x)
|
|
1686
|
+
|
|
1687
|
+
if x_ndim > nchw_index:
|
|
1688
|
+
# for the case of NCHW
|
|
1689
|
+
x_ori_shape = F.shape(x)
|
|
1690
|
+
x = F.reshape(x, (-1,) + x_ori_shape[chw_reverse_index:])
|
|
1691
|
+
output_shape = get_output_shape(x_ori_shape, output_size)
|
|
1692
|
+
out, indices = prim(x)
|
|
1693
|
+
out = F.reshape(out, output_shape)
|
|
1694
|
+
indices = F.reshape(indices, output_shape)
|
|
1695
|
+
return (out, 0), (indices, 0)
|
|
1696
|
+
|
|
1697
|
+
# for the case of CHW
|
|
1698
|
+
out, indices = prim(x)
|
|
1699
|
+
return (out, 0), (indices, 0)
|
|
1700
|
+
|
|
1701
|
+
return vmap_rule
|
|
1702
|
+
|
|
1703
|
+
|
|
1704
|
+
@vmap_rules_getters.register(NN.MaxPool3DWithArgmax)
|
|
1705
|
+
def get_max_pool3d_with_argmax_vmap_rule(prim, axis_size):
|
|
1706
|
+
"""VmapRule for `MaxPool3DWithArgmax`."""
|
|
1707
|
+
cdhw_reverse_index = -4
|
|
1708
|
+
|
|
1709
|
+
def vmap_rule(x_bdim):
|
|
1710
|
+
is_all_none, result = vmap_general_preprocess(prim, x_bdim)
|
|
1711
|
+
if is_all_none:
|
|
1712
|
+
return result
|
|
1713
|
+
|
|
1714
|
+
x, x_dim = x_bdim
|
|
1715
|
+
x = _bdim_at_front(x, x_dim, axis_size)
|
|
1716
|
+
x_shape = F.shape(x)
|
|
1717
|
+
input_shape = (-1,) + x_shape[cdhw_reverse_index:]
|
|
1718
|
+
x = F.reshape(x, input_shape)
|
|
1719
|
+
out, indices = prim(x)
|
|
1720
|
+
out_shape = F.shape(out)
|
|
1721
|
+
return_shape = x_shape[:cdhw_reverse_index] + out_shape[cdhw_reverse_index:]
|
|
1722
|
+
out = F.reshape(out, return_shape)
|
|
1723
|
+
indices = F.reshape(indices, return_shape)
|
|
1724
|
+
return (out, 0), (indices, 0)
|
|
1725
|
+
|
|
1726
|
+
return vmap_rule
|
|
1727
|
+
|
|
1728
|
+
|
|
1729
|
+
@vmap_rules_getters.register(P.ApplyRMSProp)
|
|
1730
|
+
def get_rmsprop_vmap_rule(prim, axis_size):
|
|
1731
|
+
"""VmapRule for `ApplyRMSProp` operation."""
|
|
1732
|
+
if hasattr(prim, 'batch_rank'):
|
|
1733
|
+
batch_rank = prim.batch_rank + 1
|
|
1734
|
+
else:
|
|
1735
|
+
batch_rank = 1
|
|
1736
|
+
|
|
1737
|
+
batch_prim = _vmap_clone_prim(prim)
|
|
1738
|
+
batch_prim.add_prim_attr('batch_rank', batch_rank)
|
|
1739
|
+
prim_name = prim.name
|
|
1740
|
+
|
|
1741
|
+
def vmap_rule(var_bdim, mean_square_bdim, moment_bdim, lr_bdim, grad_bdim, decay_bdim, momentum_bdim,
|
|
1742
|
+
epsilon_bdim, u_monad):
|
|
1743
|
+
var, var_dim = var_bdim
|
|
1744
|
+
mean_square, mean_square_dim = mean_square_bdim
|
|
1745
|
+
moment, moment_dim = moment_bdim
|
|
1746
|
+
grad, grad_dim = grad_bdim
|
|
1747
|
+
lr, lr_dim = lr_bdim
|
|
1748
|
+
decay, decay_dim = decay_bdim
|
|
1749
|
+
momentum, momentum_dim = momentum_bdim
|
|
1750
|
+
epsilon, epsilon_dim = epsilon_bdim
|
|
1751
|
+
|
|
1752
|
+
if var_dim is None:
|
|
1753
|
+
if any(dim is not None for dim in
|
|
1754
|
+
[mean_square_dim, moment_dim, grad_dim, lr_dim, decay_dim, momentum_dim, epsilon_dim]):
|
|
1755
|
+
raise ValueError("The source axis of 'var' is None, but the source "
|
|
1756
|
+
"axis of 'mean_square/moment/lr/grad/decay/momentum/epsilon'"
|
|
1757
|
+
" is not None. The execution order of "
|
|
1758
|
+
"operator '{}' cannot be guaranteed.".format(prim_name))
|
|
1759
|
+
|
|
1760
|
+
res = prim(var, mean_square, moment, lr, grad, decay, momentum, epsilon,
|
|
1761
|
+
u_monad) # low dimensional operator;
|
|
1762
|
+
return (res, None)
|
|
1763
|
+
precondition = var_dim != 0 or var_dim != mean_square_dim or var_dim != moment_dim or var_dim != grad_dim
|
|
1764
|
+
if precondition:
|
|
1765
|
+
raise ValueError(
|
|
1766
|
+
f"For '{prim_name}', the source axis of 'var' must be equal to 'mean_square_dim' "
|
|
1767
|
+
f"and 'moment_dim' and 'grad_dim' and not equal to 0, "
|
|
1768
|
+
f"but got the source axis of 'var': {var_dim}, "
|
|
1769
|
+
f"'mean_square_dim': {mean_square_dim}, "
|
|
1770
|
+
f"'moment_dim': {moment_dim},"
|
|
1771
|
+
f"'gradient_dim':{grad_dim}.")
|
|
1772
|
+
|
|
1773
|
+
mean_square = _bdim_at_front(mean_square, mean_square_dim, axis_size)
|
|
1774
|
+
moment = _bdim_at_front(moment, moment_dim, axis_size)
|
|
1775
|
+
grad = _bdim_at_front(grad, grad_dim, axis_size)
|
|
1776
|
+
lr = _bdim_at_front(lr, lr_dim, axis_size)
|
|
1777
|
+
|
|
1778
|
+
res = batch_prim(var, mean_square, moment, lr, grad, decay, momentum, epsilon,
|
|
1779
|
+
u_monad) # High dimensional operator;
|
|
1780
|
+
|
|
1781
|
+
return res, 0
|
|
1782
|
+
|
|
1783
|
+
return vmap_rule
|
|
1784
|
+
|
|
1785
|
+
|
|
1786
|
+
@vmap_rules_getters.register(P.ApplyCenteredRMSProp)
|
|
1787
|
+
def get_apply_centered_rmsprop_vmap_rule(prim, axis_size):
|
|
1788
|
+
"""VmapRule for `ApplyCenteredRMSProp` operation."""
|
|
1789
|
+
if hasattr(prim, 'batch_rank'):
|
|
1790
|
+
batch_rank = prim.batch_rank + 1
|
|
1791
|
+
else:
|
|
1792
|
+
batch_rank = 1
|
|
1793
|
+
prim_name = prim.name
|
|
1794
|
+
batch_prim = _vmap_clone_prim(prim)
|
|
1795
|
+
batch_prim.add_prim_attr("batch_rank", batch_rank)
|
|
1796
|
+
|
|
1797
|
+
def vmap_rule(var_bdim, mean_grad_bdim, mean_square_bdim, mom_bdim, grad_bdim, lr_bdim, rho_bdim,
|
|
1798
|
+
momentum_bdim, eps_bdim, u_monad):
|
|
1799
|
+
var, var_dim = var_bdim
|
|
1800
|
+
mean_grad, mean_grad_dim = mean_grad_bdim
|
|
1801
|
+
mean_square, mean_square_dim = mean_square_bdim
|
|
1802
|
+
mom, mom_dim = mom_bdim
|
|
1803
|
+
grad, grad_dim = grad_bdim
|
|
1804
|
+
lr, lr_dim = lr_bdim
|
|
1805
|
+
rho, rho_dim = rho_bdim
|
|
1806
|
+
momentum, momentum_dim = momentum_bdim
|
|
1807
|
+
eps, eps_dim = eps_bdim
|
|
1808
|
+
|
|
1809
|
+
if var_dim is None:
|
|
1810
|
+
if any(dim is not None for dim in
|
|
1811
|
+
[mean_grad_dim, mean_square_dim, mom_dim, grad_dim, lr_dim, rho_dim,
|
|
1812
|
+
momentum_dim, eps_dim]):
|
|
1813
|
+
raise ValueError("The source axis of 'var' is None, but the source "
|
|
1814
|
+
"axis of 'mean_gradient/mean_square/mom/grad/lr/rho/momentum/eps'"
|
|
1815
|
+
" is not None. The execution order of "
|
|
1816
|
+
"operator '{}' cannot be guaranteed.".format(prim_name))
|
|
1817
|
+
var = prim(var, mean_grad, mean_square,
|
|
1818
|
+
mom, grad, lr, rho, momentum, eps, u_monad)
|
|
1819
|
+
return (var, None)
|
|
1820
|
+
precondition = var_dim != 0 or var_dim != mean_grad_dim or var_dim != mean_square_dim or var_dim != mom_dim
|
|
1821
|
+
if precondition:
|
|
1822
|
+
raise ValueError(
|
|
1823
|
+
f"For '{prim_name}', the source axis of 'var' must be equal to 'mean_grad_dim' "
|
|
1824
|
+
f"and 'mean_square_dim' and 'mom_dim' and not equal to 0, "
|
|
1825
|
+
f"but got the source axis of 'var': {var_dim}, "
|
|
1826
|
+
f"'mean_grad_dim': {mean_grad_dim}, "
|
|
1827
|
+
f"'mean_square_dim': {mean_square_dim},"
|
|
1828
|
+
f"'mom_dim': {mom_dim}.")
|
|
1829
|
+
|
|
1830
|
+
grad = _bdim_at_front(grad, grad_dim, axis_size)
|
|
1831
|
+
lr = _bdim_at_front(lr, lr_dim, axis_size)
|
|
1832
|
+
rho = _bdim_at_front(rho, rho_dim, axis_size)
|
|
1833
|
+
momentum = _bdim_at_front(momentum, momentum_dim, axis_size)
|
|
1834
|
+
eps = _bdim_at_front(eps, eps_dim, axis_size)
|
|
1835
|
+
|
|
1836
|
+
var = batch_prim(var, mean_grad, mean_square,
|
|
1837
|
+
mom, grad, lr, rho, momentum, eps, u_monad)
|
|
1838
|
+
return var, 0
|
|
1839
|
+
|
|
1840
|
+
return vmap_rule
|
|
1841
|
+
|
|
1842
|
+
|
|
1843
|
+
@vmap_rules_getters.register(P.MaxPool)
|
|
1844
|
+
@vmap_rules_getters.register(P.MaxPoolWithArgmax)
|
|
1845
|
+
@vmap_rules_getters.register(P.MaxPoolWithArgmaxV2)
|
|
1846
|
+
def get_max_pool_vmap_rule(prim, axis_size):
|
|
1847
|
+
"""VmapRule for `MaxPool` operation."""
|
|
1848
|
+
if isinstance(prim, str):
|
|
1849
|
+
prim = Primitive(prim)
|
|
1850
|
+
|
|
1851
|
+
prim_name = prim.name
|
|
1852
|
+
|
|
1853
|
+
@_primexpr
|
|
1854
|
+
def get_original_shape(x_shape, out_shape):
|
|
1855
|
+
h_new = out_shape[2]
|
|
1856
|
+
w_new = out_shape[3]
|
|
1857
|
+
original_shape = x_shape[:3] + (h_new,) + (w_new,)
|
|
1858
|
+
return original_shape
|
|
1859
|
+
|
|
1860
|
+
def vmap_rule(x_bdim):
|
|
1861
|
+
is_all_none, result = vmap_general_preprocess(prim, x_bdim)
|
|
1862
|
+
if is_all_none:
|
|
1863
|
+
return result
|
|
1864
|
+
x, x_dim = x_bdim
|
|
1865
|
+
x = _bdim_at_front(x, x_dim, axis_size)
|
|
1866
|
+
x_shape = x.shape
|
|
1867
|
+
x_new_shape = (-1,) + x_shape[2:]
|
|
1868
|
+
x = x.reshape(x_new_shape)
|
|
1869
|
+
if prim_name == "MaxPool":
|
|
1870
|
+
out = prim(x)
|
|
1871
|
+
out_shape = out.shape
|
|
1872
|
+
original_shape = get_original_shape(x_shape, out_shape)
|
|
1873
|
+
out = out.reshape(original_shape)
|
|
1874
|
+
return out, 0
|
|
1875
|
+
out, indices = prim(x)
|
|
1876
|
+
out_shape = out.shape
|
|
1877
|
+
original_shape = get_original_shape(x_shape, out_shape)
|
|
1878
|
+
out = out.reshape(original_shape)
|
|
1879
|
+
indices = indices.reshape(original_shape)
|
|
1880
|
+
return (out, 0), (indices, 0)
|
|
1881
|
+
|
|
1882
|
+
return vmap_rule
|
|
1883
|
+
|
|
1884
|
+
|
|
1885
|
+
@vmap_rules_getters.register("LayerNorm")
|
|
1886
|
+
def get_layernorm_vmap_rule(prim, axis_size):
|
|
1887
|
+
"""VmapRule for `LayerNorm` operation."""
|
|
1888
|
+
|
|
1889
|
+
def process_attr_axis(prim_attr_axis):
|
|
1890
|
+
if prim_attr_axis < 0:
|
|
1891
|
+
return prim_attr_axis
|
|
1892
|
+
return prim_attr_axis + 1
|
|
1893
|
+
|
|
1894
|
+
@_primexpr
|
|
1895
|
+
def get_logical_shape(var_shape):
|
|
1896
|
+
return var_shape[1:]
|
|
1897
|
+
|
|
1898
|
+
def vmap_rule(x_bdim, gamma_bdim, beta_bdim, begin_norm_axis_bdim, begin_params_axis_bdim, epsilon_bdim):
|
|
1899
|
+
is_all_none, result = vmap_general_preprocess(prim, x_bdim, gamma_bdim, beta_bdim, begin_norm_axis_bdim,
|
|
1900
|
+
begin_params_axis_bdim, epsilon_bdim)
|
|
1901
|
+
if is_all_none:
|
|
1902
|
+
return result
|
|
1903
|
+
|
|
1904
|
+
x, x_dim = x_bdim
|
|
1905
|
+
g, g_dim = gamma_bdim
|
|
1906
|
+
b, b_dim = beta_bdim
|
|
1907
|
+
begin_norm_axis, _ = begin_norm_axis_bdim
|
|
1908
|
+
begin_params_axis, _ = begin_params_axis_bdim
|
|
1909
|
+
epsilon, _ = epsilon_bdim
|
|
1910
|
+
|
|
1911
|
+
begin_norm_axis = process_attr_axis(begin_norm_axis)
|
|
1912
|
+
begin_params_axis = process_attr_axis(begin_params_axis)
|
|
1913
|
+
|
|
1914
|
+
x = _bdim_at_front(x, x_dim, axis_size)
|
|
1915
|
+
|
|
1916
|
+
if g_dim is None and b_dim is None:
|
|
1917
|
+
output, mean, var = prim(x, g, b, begin_norm_axis, begin_params_axis, epsilon)
|
|
1918
|
+
return (output, 0), (mean, 0), (var, 0)
|
|
1919
|
+
|
|
1920
|
+
g = _bdim_at_front(g, g_dim, axis_size)
|
|
1921
|
+
b = _bdim_at_front(b, b_dim, axis_size)
|
|
1922
|
+
g_logical_shape = get_logical_shape(F.shape(g))
|
|
1923
|
+
b_logical_shape = get_logical_shape(F.shape(b))
|
|
1924
|
+
|
|
1925
|
+
ones_like_g = F.ones(g_logical_shape, F.dtype(g))
|
|
1926
|
+
zeros_like_b = F.zeros(b_logical_shape, F.dtype(b))
|
|
1927
|
+
output_tmp, mean, var = prim(x, ones_like_g, zeros_like_b, begin_norm_axis, begin_params_axis, epsilon)
|
|
1928
|
+
|
|
1929
|
+
x_shape = F.shape(x)
|
|
1930
|
+
g_shape = F.shape(g)
|
|
1931
|
+
b_shape = F.shape(b)
|
|
1932
|
+
g = _handle_broadcasting(g, g_shape, x_shape)
|
|
1933
|
+
b = _handle_broadcasting(b, b_shape, x_shape)
|
|
1934
|
+
output = F.add(F.mul(output_tmp, g), b)
|
|
1935
|
+
|
|
1936
|
+
return (output, 0), (mean, 0), (var, 0)
|
|
1937
|
+
|
|
1938
|
+
return vmap_rule
|
|
1939
|
+
|
|
1940
|
+
|
|
1941
|
+
@vmap_rules_getters.register(NN.GridSampler2D)
|
|
1942
|
+
@vmap_rules_getters.register(NN.GridSampler3D)
|
|
1943
|
+
def get_grid_sampler_vmap_rule(prim, axis_size):
|
|
1944
|
+
"""VmapRule for `GridSampler2D` and `GridSampler3D`."""
|
|
1945
|
+
prim_name = prim.name
|
|
1946
|
+
if prim_name == "GridSampler2D":
|
|
1947
|
+
non_batch_dim_index = -3
|
|
1948
|
+
elif prim_name == "GridSampler3D":
|
|
1949
|
+
non_batch_dim_index = -4
|
|
1950
|
+
else:
|
|
1951
|
+
_raise_value_error(
|
|
1952
|
+
"The prim name must be `GridSampler2D` or `GridSampler3D`, but got {}.".format(prim_name))
|
|
1953
|
+
|
|
1954
|
+
def vmap_rule(input_x_bdim, grid_bdim, interpolation_mode_bdim, padding_mode_bdim, align_corners_bdim):
|
|
1955
|
+
is_all_none, result = vmap_general_preprocess(
|
|
1956
|
+
prim, input_x_bdim, grid_bdim, interpolation_mode_bdim, padding_mode_bdim, align_corners_bdim)
|
|
1957
|
+
if is_all_none:
|
|
1958
|
+
return result
|
|
1959
|
+
|
|
1960
|
+
input_x, input_x_dim = input_x_bdim
|
|
1961
|
+
grid, grid_dim = grid_bdim
|
|
1962
|
+
interpolation_mode, _ = interpolation_mode_bdim
|
|
1963
|
+
padding_mode, _ = padding_mode_bdim
|
|
1964
|
+
align_corners, _ = align_corners_bdim
|
|
1965
|
+
|
|
1966
|
+
input_x = _bdim_at_front(input_x, input_x_dim, axis_size)
|
|
1967
|
+
input_x_shape = F.shape(input_x)
|
|
1968
|
+
input_x = F.reshape(input_x, (-1,) + input_x_shape[non_batch_dim_index:])
|
|
1969
|
+
|
|
1970
|
+
grid = _bdim_at_front(grid, grid_dim, axis_size)
|
|
1971
|
+
grid_shape = F.shape(grid)
|
|
1972
|
+
grid = F.reshape(grid, (-1,) + grid_shape[non_batch_dim_index:])
|
|
1973
|
+
|
|
1974
|
+
out = prim(input_x, grid, interpolation_mode, padding_mode, align_corners)
|
|
1975
|
+
out_shape = F.shape(out)
|
|
1976
|
+
return_shape = input_x_shape[:non_batch_dim_index] + out_shape[non_batch_dim_index:]
|
|
1977
|
+
out = F.reshape(out, return_shape)
|
|
1978
|
+
return out, 0
|
|
1979
|
+
|
|
1980
|
+
return vmap_rule
|
|
1981
|
+
|
|
1982
|
+
|
|
1983
|
+
@vmap_rules_getters.register(NN.UpsampleNearest1D)
|
|
1984
|
+
@vmap_rules_getters.register(NN.UpsampleNearest2D)
|
|
1985
|
+
@vmap_rules_getters.register(NN.UpsampleNearest3D)
|
|
1986
|
+
def get_upsample_nearest_3d_vmap_rule(prim, axis_size):
|
|
1987
|
+
"""VmapRule for `UpsampleNearest1D`, `UpsampleNearest2D` and `UpsampleNearest3D`."""
|
|
1988
|
+
prim_name = prim.name
|
|
1989
|
+
if prim_name == "UpsampleNearest1D":
|
|
1990
|
+
reverse_index = -2
|
|
1991
|
+
elif prim_name == "UpsampleNearest2D":
|
|
1992
|
+
reverse_index = -3
|
|
1993
|
+
else:
|
|
1994
|
+
reverse_index = -4
|
|
1995
|
+
|
|
1996
|
+
def vmap_rule(x_bdim, size_bdim, scales_bdim):
|
|
1997
|
+
is_all_none, result = vmap_general_preprocess(prim, x_bdim, size_bdim,
|
|
1998
|
+
scales_bdim)
|
|
1999
|
+
if is_all_none:
|
|
2000
|
+
return result
|
|
2001
|
+
|
|
2002
|
+
x, x_dim = x_bdim
|
|
2003
|
+
x = _bdim_at_front(x, x_dim, axis_size)
|
|
2004
|
+
size, size_dim = size_bdim
|
|
2005
|
+
scales, scales_dim = scales_bdim
|
|
2006
|
+
if size_dim is not None or scales_dim is not None:
|
|
2007
|
+
_raise_value_error(
|
|
2008
|
+
"For {0}, the source axis of `output_size` and `scales` must be None,"
|
|
2009
|
+
" but got {1} and {2}.".format(prim_name, size_dim, scales_dim))
|
|
2010
|
+
|
|
2011
|
+
x_shape = F.shape(x)
|
|
2012
|
+
input_shape = (-1,) + x_shape[reverse_index:]
|
|
2013
|
+
x = F.reshape(x, input_shape)
|
|
2014
|
+
out = prim(x, size, scales)
|
|
2015
|
+
out_shape = F.shape(out)
|
|
2016
|
+
return_shape = x_shape[:reverse_index] + out_shape[reverse_index:]
|
|
2017
|
+
out = F.reshape(out, return_shape)
|
|
2018
|
+
return out, 0
|
|
2019
|
+
|
|
2020
|
+
return vmap_rule
|
|
2021
|
+
|
|
2022
|
+
|
|
2023
|
+
@vmap_rules_getters.register(NN.UpsampleLinear1D)
|
|
2024
|
+
@vmap_rules_getters.register(NN.UpsampleBilinear2D)
|
|
2025
|
+
@vmap_rules_getters.register(NN.UpsampleTrilinear3D)
|
|
2026
|
+
def get_upsample_linear_vmap_rule(prim, axis_size):
|
|
2027
|
+
"""VmapRule for `UpsampleLinear1D`, `UpsampleBilinear2D` and `UpsampleTrilinear3D`."""
|
|
2028
|
+
prim_name = prim.name
|
|
2029
|
+
if prim_name == "UpsampleLinear1D":
|
|
2030
|
+
reverse_index = -2
|
|
2031
|
+
elif prim_name == "UpsampleBilinear2D":
|
|
2032
|
+
reverse_index = -3
|
|
2033
|
+
else:
|
|
2034
|
+
reverse_index = -4
|
|
2035
|
+
|
|
2036
|
+
def vmap_rule(x_bdim, size_bdim, scales_bdim, align_corners_bdim):
|
|
2037
|
+
is_all_none, result = vmap_general_preprocess(prim, x_bdim, size_bdim,
|
|
2038
|
+
scales_bdim, align_corners_bdim)
|
|
2039
|
+
if is_all_none:
|
|
2040
|
+
return result
|
|
2041
|
+
|
|
2042
|
+
x, x_dim = x_bdim
|
|
2043
|
+
x = _bdim_at_front(x, x_dim, axis_size)
|
|
2044
|
+
size, size_dim = size_bdim
|
|
2045
|
+
scales, scales_dim = scales_bdim
|
|
2046
|
+
align_corners, align_corners_dim = align_corners_bdim
|
|
2047
|
+
if size_dim is not None or scales_dim is not None or align_corners_dim is not None:
|
|
2048
|
+
_raise_value_error(
|
|
2049
|
+
"For {0}, the source axis of `output_size`, `scales` and `align_corners`must"
|
|
2050
|
+
"be None, but got {1} and {2}.".format(prim_name, size_dim, scales_dim))
|
|
2051
|
+
|
|
2052
|
+
x_shape = F.shape(x)
|
|
2053
|
+
input_shape = (-1,) + x_shape[reverse_index:]
|
|
2054
|
+
x = F.reshape(x, input_shape)
|
|
2055
|
+
out = prim(x, size, scales, align_corners)
|
|
2056
|
+
out_shape = F.shape(out)
|
|
2057
|
+
return_shape = x_shape[:reverse_index] + out_shape[reverse_index:]
|
|
2058
|
+
out = F.reshape(out, return_shape)
|
|
2059
|
+
return out, 0
|
|
2060
|
+
|
|
2061
|
+
return vmap_rule
|
|
2062
|
+
|
|
2063
|
+
|
|
2064
|
+
@vmap_rules_getters.register(NN.SparseApplyAdagrad)
|
|
2065
|
+
@vmap_rules_getters.register(NN.SparseApplyAdagradV2)
|
|
2066
|
+
def get_sparse_apply_adagrad_vmap_rule(prim, axis_size):
|
|
2067
|
+
"""VmapRule for `SparseApplyAdagrad`."""
|
|
2068
|
+
if hasattr(prim, 'batch_rank'):
|
|
2069
|
+
batch_rank = prim.batch_rank + 1
|
|
2070
|
+
else:
|
|
2071
|
+
batch_rank = 1
|
|
2072
|
+
|
|
2073
|
+
prim_name = prim.name
|
|
2074
|
+
batch_prim = _vmap_clone_prim(prim)
|
|
2075
|
+
batch_prim.add_prim_attr('batch_rank', batch_rank)
|
|
2076
|
+
|
|
2077
|
+
def vmap_rule(var_bdim, accum_bdim, grad_bdim, indices_bdim, u_monad):
|
|
2078
|
+
var, var_dim = var_bdim
|
|
2079
|
+
accum, accum_dim = accum_bdim
|
|
2080
|
+
grad, grad_dim = grad_bdim
|
|
2081
|
+
indices, indices_dim = indices_bdim
|
|
2082
|
+
if var_dim is None:
|
|
2083
|
+
if any(dim is not None for dim in [accum_dim, grad_dim, indices_dim]):
|
|
2084
|
+
ValueError("The source axis of `var` is None, but the source "
|
|
2085
|
+
"axis of `accum/grad/indices` is not None. The execution order of "
|
|
2086
|
+
"operator `{}` cannot be guaranteed.".format(prim_name))
|
|
2087
|
+
var, accum = prim(var, accum, grad, indices, u_monad)
|
|
2088
|
+
return (var, None), (accum, None)
|
|
2089
|
+
if var_dim != 0 or accum_dim != var_dim:
|
|
2090
|
+
ValueError("For `{}`, the source axis of `var` must be equal to `accum`, and not equal to 0, "
|
|
2091
|
+
"but got the source axis of `var`: {}, `accum`: {}.".format(prim_name, var_dim, accum_dim))
|
|
2092
|
+
|
|
2093
|
+
grad = _bdim_at_front(grad, grad_dim, axis_size)
|
|
2094
|
+
indices = _bdim_at_front(indices, indices_dim, axis_size)
|
|
2095
|
+
|
|
2096
|
+
var, accum = batch_prim(var, accum, grad, indices, u_monad)
|
|
2097
|
+
return (var, 0), (accum, 0)
|
|
2098
|
+
|
|
2099
|
+
return vmap_rule
|
|
2100
|
+
|
|
2101
|
+
|
|
2102
|
+
@vmap_rules_getters.register(NN.SparseApplyFtrl)
|
|
2103
|
+
def get_sparse_apply_ftrl_vmap_rule(prim, axis_size):
|
|
2104
|
+
"""VmapRule for `SparseApplyFtrl`."""
|
|
2105
|
+
if hasattr(prim, 'batch_rank'):
|
|
2106
|
+
batch_rank = prim.batch_rank + 1
|
|
2107
|
+
else:
|
|
2108
|
+
batch_rank = 1
|
|
2109
|
+
|
|
2110
|
+
prim_name = prim.name
|
|
2111
|
+
batch_prim = _vmap_clone_prim(prim)
|
|
2112
|
+
batch_prim.add_prim_attr('batch_rank', batch_rank)
|
|
2113
|
+
|
|
2114
|
+
def vmap_rule(var_bdim, accum_bdim, linear_bdim, grad_bdim, indices_bdim, u_monad):
|
|
2115
|
+
var, var_dim = var_bdim
|
|
2116
|
+
accum, accum_dim = accum_bdim
|
|
2117
|
+
linear, linear_dim = linear_bdim
|
|
2118
|
+
grad, grad_dim = grad_bdim
|
|
2119
|
+
indices, indices_dim = indices_bdim
|
|
2120
|
+
if var_dim is None:
|
|
2121
|
+
if any(dim is not None for dim in [accum_dim, linear_dim, grad_dim, indices_dim]):
|
|
2122
|
+
ValueError("The source axis of `var` is None, but the source "
|
|
2123
|
+
"axis of `accum/linear/grad/indices` is not None. The execution order of "
|
|
2124
|
+
"operator `{}` cannot be guaranteed.".format(prim_name))
|
|
2125
|
+
var, accum, linear = prim(var, accum, linear, grad, indices, u_monad)
|
|
2126
|
+
return (var, None), (accum, None), (linear, None)
|
|
2127
|
+
if var_dim != 0 or accum_dim != var_dim or linear_dim != var_dim:
|
|
2128
|
+
ValueError("For `{}`, the source axis of `var`, `accum` and `linear` must be equal, and "
|
|
2129
|
+
"not equal to 0, but got the source axis of `var`: {}, `accum`: {}, "
|
|
2130
|
+
"`linear`:{}.".format(prim_name, var_dim, accum_dim, linear_dim))
|
|
2131
|
+
|
|
2132
|
+
grad = _bdim_at_front(grad, grad_dim, axis_size)
|
|
2133
|
+
indices = _bdim_at_front(indices, indices_dim, axis_size)
|
|
2134
|
+
|
|
2135
|
+
var, accum, linear = batch_prim(var, accum, linear, grad, indices, u_monad)
|
|
2136
|
+
return (var, 0), (accum, 0), (linear, 0)
|
|
2137
|
+
|
|
2138
|
+
return vmap_rule
|
|
2139
|
+
|
|
2140
|
+
|
|
2141
|
+
@vmap_rules_getters.register(P.Dense)
|
|
2142
|
+
def get_dense_vmap_rule(prim, axis_size):
|
|
2143
|
+
"""VmapRule for `Dense` operation."""
|
|
2144
|
+
if isinstance(prim, str):
|
|
2145
|
+
prim = Primitive(prim)
|
|
2146
|
+
|
|
2147
|
+
batch_matmul = P.BatchMatMul(transpose_b=True)
|
|
2148
|
+
|
|
2149
|
+
@_primexpr
|
|
2150
|
+
def get_start_mid_end(x_shape):
|
|
2151
|
+
start = x_shape[0]
|
|
2152
|
+
mid = 1
|
|
2153
|
+
for shp in x_shape[1:-1]:
|
|
2154
|
+
mid *= shp
|
|
2155
|
+
end = x_shape[-1]
|
|
2156
|
+
return start, mid, end
|
|
2157
|
+
|
|
2158
|
+
def vmap_rule(x_bdim, w_bdim, b_bdim):
|
|
2159
|
+
is_all_none, result = vmap_general_preprocess(prim, x_bdim, w_bdim, b_bdim)
|
|
2160
|
+
if is_all_none:
|
|
2161
|
+
return result
|
|
2162
|
+
|
|
2163
|
+
x, x_dim = x_bdim
|
|
2164
|
+
w, w_dim = w_bdim
|
|
2165
|
+
b, b_dim = b_bdim
|
|
2166
|
+
x = _bdim_at_front(x, x_dim, axis_size)
|
|
2167
|
+
w = _bdim_at_front(w, w_dim, axis_size)
|
|
2168
|
+
if b is not None:
|
|
2169
|
+
b = _bdim_at_front(b, b_dim, axis_size)
|
|
2170
|
+
|
|
2171
|
+
x_shape = x.shape
|
|
2172
|
+
start, mid, end = get_start_mid_end(x_shape)
|
|
2173
|
+
|
|
2174
|
+
x = x.reshape(start, mid, end)
|
|
2175
|
+
|
|
2176
|
+
out = batch_matmul(x, w)
|
|
2177
|
+
out_shape = tuple(x_shape[:-1]) + (out.shape[-1],)
|
|
2178
|
+
out = out.reshape(out_shape)
|
|
2179
|
+
|
|
2180
|
+
if b is not None:
|
|
2181
|
+
b_shape = b.shape
|
|
2182
|
+
b_shape = (start,) + (1,) * (len(out_shape) - 2) + (b_shape[-1],)
|
|
2183
|
+
b = b.reshape(b_shape)
|
|
2184
|
+
|
|
2185
|
+
out = out + b
|
|
2186
|
+
|
|
2187
|
+
return out, 0
|
|
2188
|
+
|
|
2189
|
+
return vmap_rule
|
|
2190
|
+
|
|
2191
|
+
|
|
2192
|
+
@vmap_rules_getters.register(P.CeLU)
|
|
2193
|
+
def get_logit_vmap_rule(prim, axis_size):
|
|
2194
|
+
"""VmapRule for `CeLU` operation"""
|
|
2195
|
+
|
|
2196
|
+
def vmap_rule(x_bdim, alpha_bdim):
|
|
2197
|
+
x_data, x_dim = x_bdim
|
|
2198
|
+
alpha_data, _ = alpha_bdim
|
|
2199
|
+
out = F.celu(x_data, alpha_data)
|
|
2200
|
+
return out, x_dim
|
|
2201
|
+
|
|
2202
|
+
return vmap_rule
|
|
2203
|
+
|
|
2204
|
+
|
|
2205
|
+
@vmap_rules_getters.register(P.Elu)
|
|
2206
|
+
def get_elu_vmap_rule(prim, axis_size):
|
|
2207
|
+
"""VmapRule for Elu operations."""
|
|
2208
|
+
if isinstance(prim, str):
|
|
2209
|
+
prim = Primitive(prim)
|
|
2210
|
+
|
|
2211
|
+
def vmap_rule(x_bdim, alpha_bdim):
|
|
2212
|
+
var, dim = x_bdim
|
|
2213
|
+
alpha, alpha_dim = alpha_bdim
|
|
2214
|
+
|
|
2215
|
+
if alpha_dim is not None:
|
|
2216
|
+
_raise_value_error("The source alpha of `alpha` in ELu must be None, but got {}.".format(alpha_dim))
|
|
2217
|
+
|
|
2218
|
+
out = prim(var, alpha)
|
|
2219
|
+
return out, dim
|
|
2220
|
+
|
|
2221
|
+
return vmap_rule
|
|
2222
|
+
|
|
2223
|
+
|
|
2224
|
+
@vmap_rules_getters.register(Embedding)
|
|
2225
|
+
def get_embedding_vmap_rule(prim, axis_size):
|
|
2226
|
+
"""VmapRule for Embedding operations."""
|
|
2227
|
+
if isinstance(prim, str):
|
|
2228
|
+
prim_name = prim
|
|
2229
|
+
else:
|
|
2230
|
+
prim_name = prim.name
|
|
2231
|
+
raise RuntimeError(f"THe {prim_name} does not support vmap.")
|
|
2232
|
+
|
|
2233
|
+
|
|
2234
|
+
# Unary vmap
|
|
2235
|
+
get_unop_vmap_rule = vmap_rules_getters.register(P.ReLU)(get_unop_vmap_rule)
|
|
2236
|
+
get_unop_vmap_rule = vmap_rules_getters.register(P.ReLU6)(get_unop_vmap_rule)
|
|
2237
|
+
get_unop_vmap_rule = vmap_rules_getters.register(P.SeLU)(get_unop_vmap_rule)
|
|
2238
|
+
get_unop_vmap_rule = vmap_rules_getters.register(P.HSigmoid)(get_unop_vmap_rule)
|
|
2239
|
+
get_unop_vmap_rule = vmap_rules_getters.register(P.Softplus)(get_unop_vmap_rule)
|
|
2240
|
+
get_unop_vmap_rule = vmap_rules_getters.register(P.Softsign)(get_unop_vmap_rule)
|
|
2241
|
+
get_unop_vmap_rule = vmap_rules_getters.register(P.GeLU)(get_unop_vmap_rule)
|
|
2242
|
+
get_unop_vmap_rule = vmap_rules_getters.register(P.FastGeLU)(get_unop_vmap_rule)
|
|
2243
|
+
get_unop_vmap_rule = vmap_rules_getters.register(P.HSwish)(get_unop_vmap_rule)
|
|
2244
|
+
get_unop_vmap_rule = vmap_rules_getters.register(P.Tanh)(get_unop_vmap_rule)
|
|
2245
|
+
# UnaryGrad vmap
|
|
2246
|
+
get_unary_grad_vmap_rule = vmap_rules_getters.register(G.TanhGrad)(get_unary_grad_vmap_rule)
|
|
2247
|
+
get_unary_grad_vmap_rule = vmap_rules_getters.register(G.SoftplusGrad)(get_unary_grad_vmap_rule)
|
|
2248
|
+
get_unary_grad_vmap_rule = vmap_rules_getters.register('ReluGrad')(get_unary_grad_vmap_rule)
|
|
2249
|
+
get_unary_grad_vmap_rule = vmap_rules_getters.register('ReLU6Grad')(get_unary_grad_vmap_rule)
|
|
2250
|
+
get_unary_grad_vmap_rule = vmap_rules_getters.register('RsqrtGrad')(get_unary_grad_vmap_rule)
|