mindspore 2.3.0rc1__cp37-cp37m-manylinux1_x86_64.whl → 2.3.0rc2__cp37-cp37m-manylinux1_x86_64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- mindspore/.commit_id +1 -1
- mindspore/__init__.py +1 -1
- mindspore/_akg/akg/utils/tbe_codegen_utils.py +13 -3
- mindspore/_c_dataengine.cpython-37m-x86_64-linux-gnu.so +0 -0
- mindspore/_c_expression.cpython-37m-x86_64-linux-gnu.so +0 -0
- mindspore/_checkparam.py +20 -0
- mindspore/_extends/parse/parser.py +1 -1
- mindspore/_extends/parse/standard_method.py +6 -5
- mindspore/_mindspore_offline_debug.cpython-37m-x86_64-linux-gnu.so +0 -0
- mindspore/amp.py +5 -5
- mindspore/bin/cache_admin +0 -0
- mindspore/bin/cache_server +0 -0
- mindspore/boost/boost_cell_wrapper.py +1 -1
- mindspore/boost/group_loss_scale_manager.py +1 -1
- mindspore/common/__init__.py +4 -2
- mindspore/common/_register_for_recompute.py +48 -0
- mindspore/common/_stub_tensor.py +1 -0
- mindspore/common/api.py +56 -4
- mindspore/common/dtype.py +5 -3
- mindspore/common/dump.py +2 -2
- mindspore/common/hook_handle.py +51 -4
- mindspore/common/initializer.py +1 -1
- mindspore/common/jit_config.py +17 -6
- mindspore/common/parameter.py +7 -2
- mindspore/common/recompute.py +247 -0
- mindspore/common/sparse_tensor.py +2 -2
- mindspore/common/symbol.py +1 -1
- mindspore/common/tensor.py +74 -36
- mindspore/communication/__init__.py +3 -3
- mindspore/communication/management.py +30 -30
- mindspore/context.py +28 -15
- mindspore/dataset/__init__.py +5 -5
- mindspore/dataset/audio/__init__.py +2 -2
- mindspore/dataset/audio/transforms.py +51 -51
- mindspore/dataset/callback/ds_callback.py +2 -2
- mindspore/dataset/engine/cache_client.py +1 -1
- mindspore/dataset/engine/datasets.py +3 -3
- mindspore/dataset/engine/datasets_audio.py +14 -14
- mindspore/dataset/engine/datasets_standard_format.py +3 -3
- mindspore/dataset/engine/datasets_text.py +38 -38
- mindspore/dataset/engine/datasets_user_defined.py +3 -3
- mindspore/dataset/engine/datasets_vision.py +68 -68
- mindspore/dataset/text/__init__.py +3 -3
- mindspore/dataset/text/transforms.py +26 -26
- mindspore/dataset/transforms/__init__.py +1 -1
- mindspore/dataset/vision/__init__.py +3 -3
- mindspore/dataset/vision/transforms.py +92 -92
- mindspore/dataset/vision/utils.py +1 -1
- mindspore/experimental/optim/adadelta.py +2 -2
- mindspore/experimental/optim/adagrad.py +2 -2
- mindspore/experimental/optim/adam.py +2 -2
- mindspore/experimental/optim/adamax.py +2 -2
- mindspore/experimental/optim/adamw.py +2 -2
- mindspore/experimental/optim/asgd.py +2 -2
- mindspore/experimental/optim/lr_scheduler.py +24 -20
- mindspore/experimental/optim/nadam.py +2 -2
- mindspore/experimental/optim/optimizer.py +1 -1
- mindspore/experimental/optim/radam.py +2 -2
- mindspore/experimental/optim/rmsprop.py +2 -2
- mindspore/experimental/optim/rprop.py +2 -2
- mindspore/experimental/optim/sgd.py +2 -2
- mindspore/hal/stream.py +2 -0
- mindspore/include/mindapi/base/types.h +5 -0
- mindspore/lib/libdnnl.so.2 +0 -0
- mindspore/lib/libmindspore.so +0 -0
- mindspore/lib/libmindspore_backend.so +0 -0
- mindspore/lib/libmindspore_common.so +0 -0
- mindspore/lib/libmindspore_core.so +0 -0
- mindspore/lib/libmindspore_glog.so.0 +0 -0
- mindspore/lib/libmindspore_gpr.so.15 +0 -0
- mindspore/lib/libmindspore_grpc++.so.1 +0 -0
- mindspore/lib/libmindspore_grpc.so.15 +0 -0
- mindspore/lib/libmindspore_shared_lib.so +0 -0
- mindspore/lib/libopencv_core.so.4.5 +0 -0
- mindspore/lib/libopencv_imgcodecs.so.4.5 +0 -0
- mindspore/lib/libopencv_imgproc.so.4.5 +0 -0
- mindspore/lib/plugin/ascend/custom_aicpu_ops/op_impl/cpu/aicpu_kernel/impl/libcust_cpu_kernels.so +0 -0
- mindspore/lib/plugin/ascend/custom_aicpu_ops/op_impl/cpu/config/cust_aicpu_kernel.json +6 -6
- mindspore/lib/plugin/ascend/custom_aicpu_ops/op_proto/libcust_op_proto.so +0 -0
- mindspore/lib/plugin/ascend/libdvpp_utils.so +0 -0
- mindspore/lib/plugin/ascend/libmindspore_cpu_kernels.so +0 -0
- mindspore/lib/plugin/gpu/libcuda_ops.so.10 +0 -0
- mindspore/lib/plugin/gpu/libcuda_ops.so.11 +0 -0
- mindspore/lib/plugin/gpu10.1/libnccl.so.2 +0 -0
- mindspore/lib/plugin/gpu11.1/libnccl.so.2 +0 -0
- mindspore/lib/plugin/gpu11.6/libnccl.so.2 +0 -0
- mindspore/lib/plugin/libmindspore_ascend.so.2 +0 -0
- mindspore/lib/plugin/libmindspore_gpu.so.10.1 +0 -0
- mindspore/lib/plugin/libmindspore_gpu.so.11.1 +0 -0
- mindspore/lib/plugin/libmindspore_gpu.so.11.6 +0 -0
- mindspore/log.py +2 -2
- mindspore/mint/__init__.py +457 -0
- mindspore/mint/nn/__init__.py +430 -0
- mindspore/mint/nn/functional.py +424 -0
- mindspore/mint/optim/__init__.py +24 -0
- mindspore/mint/optim/adamw.py +186 -0
- mindspore/multiprocessing/__init__.py +4 -0
- mindspore/nn/__init__.py +3 -0
- mindspore/nn/cell.py +51 -47
- mindspore/nn/extend/__init__.py +29 -0
- mindspore/nn/extend/basic.py +140 -0
- mindspore/nn/extend/embedding.py +143 -0
- mindspore/nn/extend/layer/__init__.py +27 -0
- mindspore/nn/extend/layer/normalization.py +107 -0
- mindspore/nn/extend/pooling.py +117 -0
- mindspore/nn/generator.py +297 -0
- mindspore/nn/layer/basic.py +109 -1
- mindspore/nn/layer/container.py +2 -2
- mindspore/nn/layer/conv.py +6 -6
- mindspore/nn/layer/embedding.py +1 -1
- mindspore/nn/layer/normalization.py +21 -43
- mindspore/nn/layer/padding.py +4 -0
- mindspore/nn/optim/ada_grad.py +2 -2
- mindspore/nn/optim/adadelta.py +1 -1
- mindspore/nn/optim/adafactor.py +1 -1
- mindspore/nn/optim/adam.py +7 -7
- mindspore/nn/optim/adamax.py +2 -2
- mindspore/nn/optim/adasum.py +2 -2
- mindspore/nn/optim/asgd.py +2 -2
- mindspore/nn/optim/ftrl.py +1 -1
- mindspore/nn/optim/lamb.py +3 -3
- mindspore/nn/optim/lars.py +1 -1
- mindspore/nn/optim/lazyadam.py +2 -2
- mindspore/nn/optim/momentum.py +2 -2
- mindspore/nn/optim/optimizer.py +2 -2
- mindspore/nn/optim/proximal_ada_grad.py +2 -2
- mindspore/nn/optim/rmsprop.py +2 -2
- mindspore/nn/optim/rprop.py +2 -2
- mindspore/nn/optim/sgd.py +2 -2
- mindspore/nn/optim/thor.py +2 -2
- mindspore/nn/wrap/cell_wrapper.py +9 -9
- mindspore/nn/wrap/grad_reducer.py +5 -5
- mindspore/ops/_grad_experimental/grad_comm_ops.py +4 -2
- mindspore/ops/_vmap/vmap_grad_nn_ops.py +41 -2
- mindspore/ops/_vmap/vmap_math_ops.py +27 -8
- mindspore/ops/_vmap/vmap_nn_ops.py +66 -8
- mindspore/ops/auto_generate/cpp_create_prim_instance_helper.py +73 -1
- mindspore/ops/auto_generate/gen_arg_dtype_cast.py +12 -3
- mindspore/ops/auto_generate/gen_arg_handler.py +24 -0
- mindspore/ops/auto_generate/gen_extend_func.py +274 -0
- mindspore/ops/auto_generate/gen_ops_def.py +889 -22
- mindspore/ops/auto_generate/gen_ops_prim.py +3541 -253
- mindspore/ops/auto_generate/pyboost_inner_prim.py +282 -0
- mindspore/ops/composite/multitype_ops/_compile_utils.py +2 -1
- mindspore/ops/composite/multitype_ops/_constexpr_utils.py +9 -0
- mindspore/ops/extend/__init__.py +9 -1
- mindspore/ops/extend/array_func.py +134 -27
- mindspore/ops/extend/math_func.py +3 -3
- mindspore/ops/extend/nn_func.py +363 -2
- mindspore/ops/function/__init__.py +19 -2
- mindspore/ops/function/array_func.py +463 -439
- mindspore/ops/function/clip_func.py +7 -18
- mindspore/ops/function/grad/grad_func.py +5 -5
- mindspore/ops/function/linalg_func.py +4 -4
- mindspore/ops/function/math_func.py +260 -243
- mindspore/ops/function/nn_func.py +825 -62
- mindspore/ops/function/random_func.py +73 -4
- mindspore/ops/function/sparse_unary_func.py +1 -1
- mindspore/ops/function/vmap_func.py +1 -1
- mindspore/ops/functional.py +2 -2
- mindspore/ops/op_info_register.py +1 -31
- mindspore/ops/operations/__init__.py +2 -3
- mindspore/ops/operations/_grad_ops.py +2 -107
- mindspore/ops/operations/_inner_ops.py +5 -5
- mindspore/ops/operations/_sequence_ops.py +2 -2
- mindspore/ops/operations/array_ops.py +11 -233
- mindspore/ops/operations/comm_ops.py +32 -32
- mindspore/ops/operations/custom_ops.py +7 -89
- mindspore/ops/operations/manually_defined/ops_def.py +329 -4
- mindspore/ops/operations/math_ops.py +13 -163
- mindspore/ops/operations/nn_ops.py +9 -316
- mindspore/ops/operations/random_ops.py +1 -1
- mindspore/ops/operations/sparse_ops.py +3 -3
- mindspore/ops/primitive.py +2 -2
- mindspore/ops_generate/arg_dtype_cast.py +12 -3
- mindspore/ops_generate/arg_handler.py +24 -0
- mindspore/ops_generate/gen_ops_inner_prim.py +2 -0
- mindspore/ops_generate/gen_pyboost_func.py +13 -6
- mindspore/ops_generate/pyboost_utils.py +2 -17
- mindspore/parallel/__init__.py +3 -2
- mindspore/parallel/_auto_parallel_context.py +106 -1
- mindspore/parallel/_parallel_serialization.py +34 -2
- mindspore/parallel/_utils.py +16 -0
- mindspore/parallel/algo_parameter_config.py +4 -4
- mindspore/parallel/checkpoint_transform.py +249 -77
- mindspore/parallel/cluster/process_entity/_api.py +1 -1
- mindspore/parallel/parameter_broadcast.py +1 -1
- mindspore/parallel/shard.py +1 -1
- mindspore/profiler/parser/ascend_analysis/fwk_cann_parser.py +1 -0
- mindspore/profiler/parser/ascend_analysis/profiler_info_parser.py +17 -5
- mindspore/profiler/parser/ascend_msprof_exporter.py +3 -3
- mindspore/profiler/parser/ascend_msprof_generator.py +10 -3
- mindspore/profiler/parser/ascend_op_generator.py +26 -9
- mindspore/profiler/parser/ascend_timeline_generator.py +7 -4
- mindspore/profiler/parser/profiler_info.py +11 -1
- mindspore/profiler/profiling.py +13 -5
- mindspore/rewrite/api/node.py +12 -12
- mindspore/rewrite/api/symbol_tree.py +11 -11
- mindspore/run_check/_check_version.py +1 -1
- mindspore/safeguard/rewrite_obfuscation.py +2 -2
- mindspore/train/amp.py +4 -4
- mindspore/train/anf_ir_pb2.py +8 -2
- mindspore/train/callback/_backup_and_restore.py +2 -2
- mindspore/train/callback/_callback.py +4 -4
- mindspore/train/callback/_checkpoint.py +2 -2
- mindspore/train/callback/_early_stop.py +2 -2
- mindspore/train/callback/_landscape.py +4 -4
- mindspore/train/callback/_loss_monitor.py +2 -2
- mindspore/train/callback/_on_request_exit.py +2 -2
- mindspore/train/callback/_reduce_lr_on_plateau.py +2 -2
- mindspore/train/callback/_summary_collector.py +2 -2
- mindspore/train/callback/_time_monitor.py +2 -2
- mindspore/train/dataset_helper.py +8 -3
- mindspore/train/loss_scale_manager.py +2 -2
- mindspore/train/metrics/metric.py +3 -3
- mindspore/train/mind_ir_pb2.py +22 -17
- mindspore/train/model.py +15 -15
- mindspore/train/serialization.py +18 -18
- mindspore/train/summary/summary_record.py +7 -7
- mindspore/train/train_thor/convert_utils.py +3 -3
- mindspore/version.py +1 -1
- {mindspore-2.3.0rc1.dist-info → mindspore-2.3.0rc2.dist-info}/METADATA +1 -1
- {mindspore-2.3.0rc1.dist-info → mindspore-2.3.0rc2.dist-info}/RECORD +226 -212
- {mindspore-2.3.0rc1.dist-info → mindspore-2.3.0rc2.dist-info}/WHEEL +0 -0
- {mindspore-2.3.0rc1.dist-info → mindspore-2.3.0rc2.dist-info}/entry_points.txt +0 -0
- {mindspore-2.3.0rc1.dist-info → mindspore-2.3.0rc2.dist-info}/top_level.txt +0 -0
mindspore/nn/layer/conv.py
CHANGED
|
@@ -242,11 +242,11 @@ class Conv2d(_Conv):
|
|
|
242
242
|
distributions as well as constant ``'One'`` and ``'Zero'`` distributions are possible. Alias
|
|
243
243
|
``'xavier_uniform'`` , ``'he_uniform'`` , ``'ones'`` and ``'zeros'`` are acceptable. Uppercase and
|
|
244
244
|
lowercase are both acceptable. Refer to the values of
|
|
245
|
-
`Initializer <https://www.mindspore.cn/docs/en/
|
|
245
|
+
`Initializer <https://www.mindspore.cn/docs/en/master/api_python/mindspore.common.initializer.html>`_,
|
|
246
246
|
for more details. Default: ``None`` , weight will be initialized using ``'HeUniform'``.
|
|
247
247
|
bias_init (Union[Tensor, str, Initializer, numbers.Number], optional): Initialization method of bias parameter.
|
|
248
248
|
Available initialization methods are the same as 'weight_init'. Refer to the values of
|
|
249
|
-
`Initializer <https://www.mindspore.cn/docs/en/
|
|
249
|
+
`Initializer <https://www.mindspore.cn/docs/en/master/api_python/mindspore.common.initializer.html>`_,
|
|
250
250
|
for more details. Default: ``None`` , bias will be initialized using ``'Uniform'`` .
|
|
251
251
|
data_format (str, optional): The optional value for data format, is ``'NHWC'`` or ``'NCHW'`` .
|
|
252
252
|
Default: ``'NCHW'`` . (NHWC is only supported in GPU now.)
|
|
@@ -458,11 +458,11 @@ class Conv1d(_Conv):
|
|
|
458
458
|
distributions as well as constant 'One' and 'Zero' distributions are possible. Alias ``'xavier_uniform'`` ,
|
|
459
459
|
``'he_uniform'`` , ``'ones'`` and ``'zeros'`` are acceptable. Uppercase and lowercase are both acceptable.
|
|
460
460
|
Refer to the values of
|
|
461
|
-
`Initializer <https://www.mindspore.cn/docs/en/
|
|
461
|
+
`Initializer <https://www.mindspore.cn/docs/en/master/api_python/mindspore.common.initializer.html>`_,
|
|
462
462
|
for more details. Default: ``None`` , weight will be initialized using ``'HeUniform'``.
|
|
463
463
|
bias_init (Union[Tensor, str, Initializer, numbers.Number], optional): Initialization method of bias parameter.
|
|
464
464
|
Available initialization methods are the same as 'weight_init'. Refer to the values of
|
|
465
|
-
`Initializer <https://www.mindspore.cn/docs/en/
|
|
465
|
+
`Initializer <https://www.mindspore.cn/docs/en/master/api_python/mindspore.common.initializer.html>`_,
|
|
466
466
|
for more details. Default: ``None`` , bias will be initialized using ``'Uniform'``.
|
|
467
467
|
dtype (:class:`mindspore.dtype`): Dtype of Parameters. Default: ``mstype.float32`` .
|
|
468
468
|
|
|
@@ -691,11 +691,11 @@ class Conv3d(_Conv):
|
|
|
691
691
|
distributions as well as constant ``'One'`` and ``'Zero'`` distributions are possible. Alias
|
|
692
692
|
``'xavier_uniform'`` , ``'he_uniform'`` , ``'ones'`` and ``'zeros'`` are acceptable. Uppercase and
|
|
693
693
|
lowercase are both acceptable. Refer to the values of
|
|
694
|
-
`Initializer <https://www.mindspore.cn/docs/en/
|
|
694
|
+
`Initializer <https://www.mindspore.cn/docs/en/master/api_python/mindspore.common.initializer.html>`_,
|
|
695
695
|
for more details. Default: ``None`` , weight will be initialized using ``'HeUniform'``.
|
|
696
696
|
bias_init (Union[Tensor, str, Initializer, numbers.Number], optional): Initialization method of bias parameter.
|
|
697
697
|
Available initialization methods are the same as 'weight_init'. Refer to the values of
|
|
698
|
-
`Initializer <https://www.mindspore.cn/docs/en/
|
|
698
|
+
`Initializer <https://www.mindspore.cn/docs/en/master/api_python/mindspore.common.initializer.html>`_,
|
|
699
699
|
for more details. Default: ``None`` , bias will be initialized using ``'Uniform'`` .
|
|
700
700
|
data_format (str, optional): The optional value for data format. Currently only support ``'NCDHW'`` .
|
|
701
701
|
dtype (:class:`mindspore.dtype`): Dtype of Parameters. Default: ``mstype.float32`` .
|
mindspore/nn/layer/embedding.py
CHANGED
|
@@ -66,7 +66,7 @@ class Embedding(Cell):
|
|
|
66
66
|
use_one_hot (bool): Specifies whether to apply one_hot encoding form. Default: ``False`` .
|
|
67
67
|
embedding_table (Union[Tensor, str, Initializer, numbers.Number]): Initializer for the embedding_table.
|
|
68
68
|
Refer to class `mindspore.common.initializer
|
|
69
|
-
<https://www.mindspore.cn/docs/en/
|
|
69
|
+
<https://www.mindspore.cn/docs/en/master/api_python/mindspore.common.initializer.html>`_
|
|
70
70
|
for the values of string when a string is specified. Default: ``'normal'`` .
|
|
71
71
|
dtype (:class:`mindspore.dtype`): Data type of `x`. Default: ``mstype.float32`` .
|
|
72
72
|
padding_idx (int, None): When the padding_idx encounters index, the output embedding vector of this index
|
|
@@ -21,7 +21,6 @@ import numbers
|
|
|
21
21
|
import hashlib
|
|
22
22
|
|
|
23
23
|
from mindspore.ops import operations as P
|
|
24
|
-
from mindspore.ops import functional as F
|
|
25
24
|
from mindspore.ops.operations import _inner_ops as inner
|
|
26
25
|
from mindspore.common.parameter import Parameter
|
|
27
26
|
from mindspore.common.initializer import initializer, Initializer
|
|
@@ -36,6 +35,7 @@ from mindspore.common import dtype as mstype
|
|
|
36
35
|
from mindspore.parallel._utils import _is_in_auto_parallel_mode
|
|
37
36
|
from mindspore.nn.cell import Cell
|
|
38
37
|
from mindspore import log as logger
|
|
38
|
+
from mindspore.ops import group_norm
|
|
39
39
|
|
|
40
40
|
__all__ = ['BatchNorm1d', 'BatchNorm2d', 'BatchNorm3d', 'LayerNorm', 'GroupNorm',
|
|
41
41
|
'SyncBatchNorm', 'InstanceNorm1d', 'InstanceNorm2d', 'InstanceNorm3d']
|
|
@@ -206,19 +206,19 @@ class BatchNorm1d(_BatchNorm):
|
|
|
206
206
|
Default: ``True`` .
|
|
207
207
|
gamma_init (Union[Tensor, str, Initializer, numbers.Number]): Initializer for the :math:`\gamma` weight.
|
|
208
208
|
The values of str refer to the function `mindspore.common.initializer
|
|
209
|
-
<https://www.mindspore.cn/docs/en/
|
|
209
|
+
<https://www.mindspore.cn/docs/en/master/api_python/mindspore.common.initializer.html>`_
|
|
210
210
|
including ``'zeros'`` , ``'ones'`` , etc. Default: ``'ones'`` .
|
|
211
211
|
beta_init (Union[Tensor, str, Initializer, numbers.Number]): Initializer for the :math:`\beta` weight.
|
|
212
212
|
The values of str refer to the function `mindspore.common.initializer
|
|
213
|
-
<https://www.mindspore.cn/docs/en/
|
|
213
|
+
<https://www.mindspore.cn/docs/en/master/api_python/mindspore.common.initializer.html>`_
|
|
214
214
|
including ``'zeros'`` , ``'ones'``, etc. Default: ``'zeros'`` .
|
|
215
215
|
moving_mean_init (Union[Tensor, str, Initializer, numbers.Number]): Initializer for the moving mean.
|
|
216
216
|
The values of str refer to the function `mindspore.common.initializer
|
|
217
|
-
<https://www.mindspore.cn/docs/en/
|
|
217
|
+
<https://www.mindspore.cn/docs/en/master/api_python/mindspore.common.initializer.html>`_
|
|
218
218
|
including ``'zeros'`` , ``'ones'`` , etc. Default: ``'zeros'`` .
|
|
219
219
|
moving_var_init (Union[Tensor, str, Initializer, numbers.Number]): Initializer for the moving variance.
|
|
220
220
|
The values of str refer to the function `mindspore.common.initializer
|
|
221
|
-
<https://www.mindspore.cn/docs/en/
|
|
221
|
+
<https://www.mindspore.cn/docs/en/master/api_python/mindspore.common.initializer.html>`_
|
|
222
222
|
including ``'zeros'`` , ``'ones'`` , etc. Default: ``'ones'`` .
|
|
223
223
|
use_batch_statistics (bool): If ``true`` , use the mean value and variance value of current batch data. If
|
|
224
224
|
``false`` , use the mean value and variance value of specified value. If ``None`` , the training process
|
|
@@ -302,19 +302,19 @@ class BatchNorm2d(_BatchNorm):
|
|
|
302
302
|
Default: ``True`` .
|
|
303
303
|
gamma_init (Union[Tensor, str, Initializer, numbers.Number]): Initializer for the :math:`\gamma` weight.
|
|
304
304
|
The values of str refer to the function `mindspore.common.initializer
|
|
305
|
-
<https://www.mindspore.cn/docs/en/
|
|
305
|
+
<https://www.mindspore.cn/docs/en/master/api_python/mindspore.common.initializer.html>`_
|
|
306
306
|
including ``'zeros'`` , ``'ones'`` , etc. Default: ``'ones'`` .
|
|
307
307
|
beta_init (Union[Tensor, str, Initializer, numbers.Number]): Initializer for the :math:`\beta` weight.
|
|
308
308
|
The values of str refer to the function `mindspore.common.initializer
|
|
309
|
-
<https://www.mindspore.cn/docs/en/
|
|
309
|
+
<https://www.mindspore.cn/docs/en/master/api_python/mindspore.common.initializer.html>`_
|
|
310
310
|
including ``'zeros'`` , ``'ones'`` , etc. Default: ``'zeros'`` .
|
|
311
311
|
moving_mean_init (Union[Tensor, str, Initializer, numbers.Number]): Initializer for the moving mean.
|
|
312
312
|
The values of str refer to the function `mindspore.common.initializer
|
|
313
|
-
<https://www.mindspore.cn/docs/en/
|
|
313
|
+
<https://www.mindspore.cn/docs/en/master/api_python/mindspore.common.initializer.html>`_
|
|
314
314
|
including ``'zeros'`` , ``'ones'`` , etc. Default: ``'zeros'`` .
|
|
315
315
|
moving_var_init (Union[Tensor, str, Initializer, numbers.Number]): Initializer for the moving variance.
|
|
316
316
|
The values of str refer to the function `mindspore.common.initializer
|
|
317
|
-
<https://www.mindspore.cn/docs/en/
|
|
317
|
+
<https://www.mindspore.cn/docs/en/master/api_python/mindspore.common.initializer.html>`_
|
|
318
318
|
including ``'zeros'`` , ``'ones'`` , etc. Default: ``'ones'`` .
|
|
319
319
|
use_batch_statistics (bool): Default: ``None`` .
|
|
320
320
|
|
|
@@ -391,19 +391,19 @@ class BatchNorm3d(Cell):
|
|
|
391
391
|
affine (bool): A bool value. When set to ``True`` , gamma and beta can be learned. Default: ``True`` .
|
|
392
392
|
gamma_init (Union[Tensor, str, Initializer, numbers.Number]): Initializer for the gamma weight.
|
|
393
393
|
The values of str refer to the function `mindspore.common.initializer
|
|
394
|
-
<https://www.mindspore.cn/docs/en/
|
|
394
|
+
<https://www.mindspore.cn/docs/en/master/api_python/mindspore.common.initializer.html>`_
|
|
395
395
|
including ``'zeros'`` , ``'ones'`` , etc. Default: ``'ones'`` .
|
|
396
396
|
beta_init (Union[Tensor, str, Initializer, numbers.Number]): Initializer for the beta weight.
|
|
397
397
|
The values of str refer to the function `mindspore.common.initializer
|
|
398
|
-
<https://www.mindspore.cn/docs/en/
|
|
398
|
+
<https://www.mindspore.cn/docs/en/master/api_python/mindspore.common.initializer.html>`_
|
|
399
399
|
including ``'zeros'`` , ``'ones'`` , etc. Default: ``'zeros'`` .
|
|
400
400
|
moving_mean_init (Union[Tensor, str, Initializer, numbers.Number]): Initializer for the moving mean.
|
|
401
401
|
The values of str refer to the function `mindspore.common.initializer
|
|
402
|
-
<https://www.mindspore.cn/docs/en/
|
|
402
|
+
<https://www.mindspore.cn/docs/en/master/api_python/mindspore.common.initializer.html>`_
|
|
403
403
|
including ``'zeros'`` , ``'ones'`` , etc. Default: ``'zeros'`` .
|
|
404
404
|
moving_var_init (Union[Tensor, str, Initializer, numbers.Number]): Initializer for the moving variance.
|
|
405
405
|
The values of str refer to the function `mindspore.common.initializer
|
|
406
|
-
<https://www.mindspore.cn/docs/en/
|
|
406
|
+
<https://www.mindspore.cn/docs/en/master/api_python/mindspore.common.initializer.html>`_
|
|
407
407
|
including ``'zeros'`` , ``'ones'`` , etc. Default: ``'ones'`` .
|
|
408
408
|
use_batch_statistics (bool): If true, use the mean value and variance value of current batch data. If
|
|
409
409
|
``false``, use the mean value and variance value of specified value. If ``None`` , the training process
|
|
@@ -558,14 +558,14 @@ class SyncBatchNorm(_BatchNorm):
|
|
|
558
558
|
|
|
559
559
|
For the Ascend devices, users need to prepare the rank table, set rank_id and device_id.
|
|
560
560
|
Please see the `Ascend tutorial
|
|
561
|
-
<https://www.mindspore.cn/tutorials/experts/en/
|
|
561
|
+
<https://www.mindspore.cn/tutorials/experts/en/master/parallel/rank_table.html>`_
|
|
562
562
|
for more details.
|
|
563
563
|
|
|
564
564
|
For the GPU devices, users need to prepare the host file and mpi, please see the `mpirun Startup
|
|
565
|
-
<https://www.mindspore.cn/tutorials/experts/en/
|
|
565
|
+
<https://www.mindspore.cn/tutorials/experts/en/master/parallel/mpirun.html>`_ .
|
|
566
566
|
|
|
567
567
|
For the CPU device, users need to write a dynamic cluster startup script, please see the `Dynamic Cluster
|
|
568
|
-
Startup <https://www.mindspore.cn/tutorials/experts/en/
|
|
568
|
+
Startup <https://www.mindspore.cn/tutorials/experts/en/master/parallel/dynamic_cluster.html>`_ .
|
|
569
569
|
|
|
570
570
|
This example should be run with multiple devices.
|
|
571
571
|
|
|
@@ -1100,7 +1100,8 @@ class GroupNorm(Cell):
|
|
|
1100
1100
|
dtype (:class:`mindspore.dtype`): Dtype of Parameters. Default: ``mstype.float32`` .
|
|
1101
1101
|
|
|
1102
1102
|
Inputs:
|
|
1103
|
-
- **x** (Tensor) - The input feature with shape :math:`(N, C,
|
|
1103
|
+
- **x** (Tensor) - The input feature with shape :math:`(N, C, *)`, where :math:`*` means, any number of
|
|
1104
|
+
additional dimensions.
|
|
1104
1105
|
|
|
1105
1106
|
Outputs:
|
|
1106
1107
|
Tensor, the normalized and scaled offset tensor, has the same shape and data type as the `x`.
|
|
@@ -1145,34 +1146,13 @@ class GroupNorm(Cell):
|
|
|
1145
1146
|
self.affine = validator.check_bool(affine, arg_name="affine", prim_name=self.cls_name)
|
|
1146
1147
|
|
|
1147
1148
|
self.gamma = Parameter(initializer(
|
|
1148
|
-
gamma_init, num_channels, dtype=dtype), name="gamma", requires_grad=affine)
|
|
1149
|
+
gamma_init, self.num_channels, dtype=dtype), name="gamma", requires_grad=affine)
|
|
1149
1150
|
self.beta = Parameter(initializer(
|
|
1150
|
-
beta_init, num_channels, dtype=dtype), name="beta", requires_grad=affine)
|
|
1151
|
-
self.reduce_mean = P.ReduceMean(keep_dims=True)
|
|
1152
|
-
self.reduce_sum = P.ReduceSum(keep_dims=True)
|
|
1153
|
-
self.shape = F.shape
|
|
1154
|
-
self.reshape = F.reshape
|
|
1155
|
-
self.square = F.square
|
|
1156
|
-
self.sqrt = P.Sqrt()
|
|
1151
|
+
beta_init, self.num_channels, dtype=dtype), name="beta", requires_grad=affine)
|
|
1157
1152
|
|
|
1158
1153
|
def _cal_output(self, x):
|
|
1159
1154
|
"""calculate groupnorm output"""
|
|
1160
|
-
|
|
1161
|
-
self._channel_check(channel, self.num_channels, self.cls_name)
|
|
1162
|
-
x = F.reshape(x, (batch, self.num_groups, -1))
|
|
1163
|
-
mean = self.reduce_mean(x, 2)
|
|
1164
|
-
var = F.div(self.reduce_sum(F.square(F.sub(x, mean)), 2), (channel * height * width / self.num_groups))
|
|
1165
|
-
std = self.sqrt(var + self.eps)
|
|
1166
|
-
x = F.div(F.sub(x, mean), std)
|
|
1167
|
-
x = F.reshape(x, (batch, channel, height, width))
|
|
1168
|
-
output = F.add(x * F.reshape(self.gamma, (-1, 1, 1)), F.reshape(self.beta, (-1, 1, 1)))
|
|
1169
|
-
return output
|
|
1170
|
-
|
|
1171
|
-
@staticmethod
|
|
1172
|
-
@_primexpr
|
|
1173
|
-
def _check_input_dim(shape, cls_name):
|
|
1174
|
-
dim = len(shape)
|
|
1175
|
-
_check_dim(dim, 4, cls_name)
|
|
1155
|
+
return group_norm(x, self.num_groups, self.gamma, self.beta, self.eps)
|
|
1176
1156
|
|
|
1177
1157
|
@staticmethod
|
|
1178
1158
|
@_primexpr
|
|
@@ -1193,7 +1173,5 @@ class GroupNorm(Cell):
|
|
|
1193
1173
|
return 'num_groups={}, num_channels={}'.format(self.num_groups, self.num_channels)
|
|
1194
1174
|
|
|
1195
1175
|
def construct(self, x):
|
|
1196
|
-
self._check_input_dim(F.shape(x), self.cls_name)
|
|
1197
|
-
self._check_dtype(x.dtype, [mstype.float16, mstype.float32], self.cls_name)
|
|
1198
1176
|
output = self._cal_output(x)
|
|
1199
1177
|
return output
|
mindspore/nn/layer/padding.py
CHANGED
|
@@ -630,6 +630,10 @@ class ZeroPad2d(_ConstantPadNd):
|
|
|
630
630
|
The remaining dimensions of the output are consistent with those of the input.
|
|
631
631
|
Only support non-negative value while running in Ascend.
|
|
632
632
|
|
|
633
|
+
Inputs:
|
|
634
|
+
- **x** (Tensor) - shape is :math:`(N, *)`, where :math:`*` means, any number of additional dimensions.
|
|
635
|
+
It is not supported that the size of dimensions is greater than 5 while running in Ascend.
|
|
636
|
+
|
|
633
637
|
Returns:
|
|
634
638
|
Tensor, the tensor after padding.
|
|
635
639
|
|
mindspore/nn/optim/ada_grad.py
CHANGED
|
@@ -126,7 +126,7 @@ class Adagrad(Optimizer):
|
|
|
126
126
|
|
|
127
127
|
- LearningRateSchedule: Learning rate is dynamic. During training, the optimizer calls the instance of
|
|
128
128
|
`LearningRateSchedule
|
|
129
|
-
<https://www.mindspore.cn/docs/en/
|
|
129
|
+
<https://www.mindspore.cn/docs/en/master/api_python/mindspore.nn.html#learningrateschedule-class>`_
|
|
130
130
|
with step as the input to get the learning rate of current step.
|
|
131
131
|
|
|
132
132
|
update_slots (bool): Whether the :math:`h` will be updated. Default: ``True`` .
|
|
@@ -168,7 +168,7 @@ class Adagrad(Optimizer):
|
|
|
168
168
|
>>> import mindspore.nn as nn
|
|
169
169
|
>>>
|
|
170
170
|
>>> # Define the network structure of LeNet5. Refer to
|
|
171
|
-
>>> # https://gitee.com/mindspore/docs/blob/
|
|
171
|
+
>>> # https://gitee.com/mindspore/docs/blob/master/docs/mindspore/code/lenet.py
|
|
172
172
|
>>> net = LeNet5()
|
|
173
173
|
>>> #1) All parameters use the same learning rate and weight decay
|
|
174
174
|
>>> optim = nn.Adagrad(params=net.trainable_params())
|
mindspore/nn/optim/adadelta.py
CHANGED
|
@@ -106,7 +106,7 @@ class Adadelta(Optimizer):
|
|
|
106
106
|
|
|
107
107
|
- LearningRateSchedule: Learning rate is dynamic. During training, the optimizer calls the instance of
|
|
108
108
|
`LearningRateSchedule
|
|
109
|
-
<https://www.mindspore.cn/docs/en/
|
|
109
|
+
<https://www.mindspore.cn/docs/en/master/api_python/mindspore.nn.html#learningrateschedule-class>`_
|
|
110
110
|
with step as the input to get the learning rate of current step.
|
|
111
111
|
|
|
112
112
|
rho (float): Decay rate, must be in range [0.0, 1.0]. Default: ``0.9`` .
|
mindspore/nn/optim/adafactor.py
CHANGED
|
@@ -264,7 +264,7 @@ class AdaFactor(Optimizer):
|
|
|
264
264
|
>>> from mindspore import nn
|
|
265
265
|
>>>
|
|
266
266
|
>>> # Define the network structure of LeNet5. Refer to
|
|
267
|
-
>>> # https://gitee.com/mindspore/docs/blob/
|
|
267
|
+
>>> # https://gitee.com/mindspore/docs/blob/master/docs/mindspore/code/lenet.py
|
|
268
268
|
>>> net = LeNet5()
|
|
269
269
|
>>> #1) Parameters use the default learning rate with None and weight decay with 0.
|
|
270
270
|
>>> optim = nn.AdaFactor(params=net.trainable_params())
|
mindspore/nn/optim/adam.py
CHANGED
|
@@ -579,7 +579,7 @@ class Adam(Optimizer):
|
|
|
579
579
|
|
|
580
580
|
- LearningRateSchedule: Learning rate is dynamic. During training, the optimizer calls the instance of
|
|
581
581
|
`LearningRateSchedule
|
|
582
|
-
<https://www.mindspore.cn/docs/en/
|
|
582
|
+
<https://www.mindspore.cn/docs/en/master/api_python/mindspore.nn.html#learningrateschedule-class>`_
|
|
583
583
|
with step as the input to get the learning rate of current step.
|
|
584
584
|
|
|
585
585
|
beta1 (float): The exponential decay rate for the 1st moment estimations. Should be in range (0.0, 1.0).
|
|
@@ -652,7 +652,7 @@ class Adam(Optimizer):
|
|
|
652
652
|
>>> from mindspore import nn
|
|
653
653
|
>>>
|
|
654
654
|
>>> # Define the network structure of LeNet5. Refer to
|
|
655
|
-
>>> # https://gitee.com/mindspore/docs/blob/
|
|
655
|
+
>>> # https://gitee.com/mindspore/docs/blob/master/docs/mindspore/code/lenet.py
|
|
656
656
|
>>> net = LeNet5()
|
|
657
657
|
>>> #1) All parameters use the same learning rate and weight decay
|
|
658
658
|
>>> optim = nn.Adam(params=net.trainable_params())
|
|
@@ -906,7 +906,7 @@ class AdamWeightDecay(Optimizer):
|
|
|
906
906
|
There is usually no connection between a optimizer and mixed precision. But when `FixedLossScaleManager` is used
|
|
907
907
|
and `drop_overflow_update` in `FixedLossScaleManager` is set to False, optimizer needs to set the 'loss_scale'.
|
|
908
908
|
As this optimizer has no argument of `loss_scale`, so `loss_scale` needs to be processed by other means, refer
|
|
909
|
-
document `LossScale <https://www.mindspore.cn/tutorials/en/
|
|
909
|
+
document `LossScale <https://www.mindspore.cn/tutorials/en/master/advanced/mixed_precision.html>`_ to
|
|
910
910
|
process `loss_scale` correctly.
|
|
911
911
|
|
|
912
912
|
If parameters are not grouped, the `weight_decay` in optimizer will be applied on the network parameters without
|
|
@@ -950,7 +950,7 @@ class AdamWeightDecay(Optimizer):
|
|
|
950
950
|
|
|
951
951
|
- LearningRateSchedule: Learning rate is dynamic. During training, the optimizer calls the instance of
|
|
952
952
|
`LearningRateSchedule
|
|
953
|
-
<https://www.mindspore.cn/docs/en/
|
|
953
|
+
<https://www.mindspore.cn/docs/en/master/api_python/mindspore.nn.html#learningrateschedule-class>`_
|
|
954
954
|
with step as the input to get the learning rate of current step.
|
|
955
955
|
|
|
956
956
|
beta1 (float): The exponential decay rate for the 1st moment estimations. Default: ``0.9`` .
|
|
@@ -992,7 +992,7 @@ class AdamWeightDecay(Optimizer):
|
|
|
992
992
|
>>> from mindspore import nn
|
|
993
993
|
>>>
|
|
994
994
|
>>> # Define the network structure of LeNet5. Refer to
|
|
995
|
-
>>> # https://gitee.com/mindspore/docs/blob/
|
|
995
|
+
>>> # https://gitee.com/mindspore/docs/blob/master/docs/mindspore/code/lenet.py
|
|
996
996
|
>>> net = LeNet5()
|
|
997
997
|
>>> #1) All parameters use the same learning rate and weight decay
|
|
998
998
|
>>> optim = nn.AdamWeightDecay(params=net.trainable_params())
|
|
@@ -1150,7 +1150,7 @@ class AdamOffload(Optimizer):
|
|
|
1150
1150
|
|
|
1151
1151
|
- LearningRateSchedule: Learning rate is dynamic. During training, the optimizer calls the instance of
|
|
1152
1152
|
`LearningRateSchedule
|
|
1153
|
-
<https://www.mindspore.cn/docs/en/
|
|
1153
|
+
<https://www.mindspore.cn/docs/en/master/api_python/mindspore.nn.html#learningrateschedule-class>`_
|
|
1154
1154
|
with step as the input to get the learning rate of current step.
|
|
1155
1155
|
|
|
1156
1156
|
beta1 (float): The exponential decay rate for the 1st moment estimations. Should be in range (0.0, 1.0).
|
|
@@ -1205,7 +1205,7 @@ class AdamOffload(Optimizer):
|
|
|
1205
1205
|
>>> from mindspore import nn
|
|
1206
1206
|
>>>
|
|
1207
1207
|
>>> # Define the network structure of LeNet5. Refer to
|
|
1208
|
-
>>> # https://gitee.com/mindspore/docs/blob/
|
|
1208
|
+
>>> # https://gitee.com/mindspore/docs/blob/master/docs/mindspore/code/lenet.py
|
|
1209
1209
|
>>> net = LeNet5()
|
|
1210
1210
|
>>> #1) All parameters use the same learning rate and weight decay
|
|
1211
1211
|
>>> optim = nn.AdamOffload(params=net.trainable_params())
|
mindspore/nn/optim/adamax.py
CHANGED
|
@@ -115,7 +115,7 @@ class AdaMax(Optimizer):
|
|
|
115
115
|
|
|
116
116
|
- LearningRateSchedule: Learning rate is dynamic. During training, the optimizer calls the instance of
|
|
117
117
|
`LearningRateSchedule
|
|
118
|
-
<https://www.mindspore.cn/docs/en/
|
|
118
|
+
<https://www.mindspore.cn/docs/en/master/api_python/mindspore.nn.html#learningrateschedule-class>`_
|
|
119
119
|
with step as the input to get the learning rate of current step.
|
|
120
120
|
|
|
121
121
|
beta1 (float): The exponential decay rate for the 1st moment estimations. Should be in range (0.0, 1.0).
|
|
@@ -163,7 +163,7 @@ class AdaMax(Optimizer):
|
|
|
163
163
|
>>> from mindspore import nn
|
|
164
164
|
>>>
|
|
165
165
|
>>> # Define the network structure of LeNet5. Refer to
|
|
166
|
-
>>> # https://gitee.com/mindspore/docs/blob/
|
|
166
|
+
>>> # https://gitee.com/mindspore/docs/blob/master/docs/mindspore/code/lenet.py
|
|
167
167
|
>>> net = LeNet5()
|
|
168
168
|
>>> #1) All parameters use the same learning rate and weight decay
|
|
169
169
|
>>> optim = nn.AdaMax(params=net.trainable_params())
|
mindspore/nn/optim/adasum.py
CHANGED
|
@@ -445,7 +445,7 @@ class AdaSumByGradWrapCell(Cell):
|
|
|
445
445
|
>>> import mindspore as ms
|
|
446
446
|
>>> from mindspore import nn
|
|
447
447
|
>>> # Define the network structure of LeNet5. Refer to
|
|
448
|
-
>>> # https://gitee.com/mindspore/docs/blob/
|
|
448
|
+
>>> # https://gitee.com/mindspore/docs/blob/master/docs/mindspore/code/lenet.py
|
|
449
449
|
>>> net = LeNet5()
|
|
450
450
|
>>> optim = nn.AdaSumByGradWrapCell(nn.Momentum(params=net.trainable_params(), learning_rate=0.1, momentum=0.9))
|
|
451
451
|
>>> loss = nn.SoftmaxCrossEntropyWithLogits()
|
|
@@ -514,7 +514,7 @@ class AdaSumByDeltaWeightWrapCell(Cell):
|
|
|
514
514
|
>>> import mindspore as ms
|
|
515
515
|
>>> from mindspore import nn
|
|
516
516
|
>>> # Define the network structure of LeNet5. Refer to
|
|
517
|
-
>>> # https://gitee.com/mindspore/docs/blob/
|
|
517
|
+
>>> # https://gitee.com/mindspore/docs/blob/master/docs/mindspore/code/lenet.py
|
|
518
518
|
>>> net = LeNet5()
|
|
519
519
|
>>> optim = nn.AdaSumByDeltaWeightWrapCell(nn.Momentum(params=net.trainable_params(),
|
|
520
520
|
... learning_rate=0.1, momentum=0.9))
|
mindspore/nn/optim/asgd.py
CHANGED
|
@@ -94,7 +94,7 @@ class ASGD(Optimizer):
|
|
|
94
94
|
|
|
95
95
|
- LearningRateSchedule: Learning rate is dynamic. During training, the optimizer calls the instance of
|
|
96
96
|
`LearningRateSchedule
|
|
97
|
-
<https://www.mindspore.cn/docs/en/
|
|
97
|
+
<https://www.mindspore.cn/docs/en/master/api_python/mindspore.nn.html#learningrateschedule-class>`_
|
|
98
98
|
with step as the input to get the learning rate of current step.
|
|
99
99
|
|
|
100
100
|
lambd (float): The decay term. Default: ``1e-4`` .
|
|
@@ -130,7 +130,7 @@ class ASGD(Optimizer):
|
|
|
130
130
|
>>> from mindspore import nn
|
|
131
131
|
>>>
|
|
132
132
|
>>> # Define the network structure of LeNet5. Refer to
|
|
133
|
-
>>> # https://gitee.com/mindspore/docs/blob/
|
|
133
|
+
>>> # https://gitee.com/mindspore/docs/blob/master/docs/mindspore/code/lenet.py
|
|
134
134
|
>>> net = LeNet5()
|
|
135
135
|
>>> #1) All parameters use the same learning rate and weight decay
|
|
136
136
|
>>> optim = nn.ASGD(params=net.trainable_params())
|
mindspore/nn/optim/ftrl.py
CHANGED
|
@@ -275,7 +275,7 @@ class FTRL(Optimizer):
|
|
|
275
275
|
>>> from mindspore import nn
|
|
276
276
|
>>>
|
|
277
277
|
>>> # Define the network structure of LeNet5. Refer to
|
|
278
|
-
>>> # https://gitee.com/mindspore/docs/blob/
|
|
278
|
+
>>> # https://gitee.com/mindspore/docs/blob/master/docs/mindspore/code/lenet.py
|
|
279
279
|
>>> net = LeNet5()
|
|
280
280
|
>>> #1) All parameters use the same learning rate and weight decay
|
|
281
281
|
>>> optim = nn.FTRL(params=net.trainable_params())
|
mindspore/nn/optim/lamb.py
CHANGED
|
@@ -132,7 +132,7 @@ class Lamb(Optimizer):
|
|
|
132
132
|
There is usually no connection between a optimizer and mixed precision. But when `FixedLossScaleManager` is used
|
|
133
133
|
and `drop_overflow_update` in `FixedLossScaleManager` is set to False, optimizer needs to set the 'loss_scale'.
|
|
134
134
|
As this optimizer has no argument of `loss_scale`, so `loss_scale` needs to be processed by other means. Refer
|
|
135
|
-
document `LossScale <https://www.mindspore.cn/tutorials/en/
|
|
135
|
+
document `LossScale <https://www.mindspore.cn/tutorials/en/master/advanced/mixed_precision.html>`_ to
|
|
136
136
|
process `loss_scale` correctly.
|
|
137
137
|
|
|
138
138
|
If parameters are not grouped, the `weight_decay` in optimizer will be applied on the network parameters without
|
|
@@ -184,7 +184,7 @@ class Lamb(Optimizer):
|
|
|
184
184
|
|
|
185
185
|
- LearningRateSchedule: Learning rate is dynamic. During training, the optimizer calls the instance of
|
|
186
186
|
`LearningRateSchedule
|
|
187
|
-
<https://www.mindspore.cn/docs/en/
|
|
187
|
+
<https://www.mindspore.cn/docs/en/master/api_python/mindspore.nn.html#learningrateschedule-class>`_
|
|
188
188
|
with step as the input to get the learning rate of current step.
|
|
189
189
|
|
|
190
190
|
beta1 (float): The exponential decay rate for the 1st moment estimations. Default: ``0.9`` .
|
|
@@ -226,7 +226,7 @@ class Lamb(Optimizer):
|
|
|
226
226
|
>>> from mindspore import nn
|
|
227
227
|
>>>
|
|
228
228
|
>>> # Define the network structure of LeNet5. Refer to
|
|
229
|
-
>>> # https://gitee.com/mindspore/docs/blob/
|
|
229
|
+
>>> # https://gitee.com/mindspore/docs/blob/master/docs/mindspore/code/lenet.py
|
|
230
230
|
>>> net = LeNet5()
|
|
231
231
|
>>> #1) All parameters use the same learning rate and weight decay
|
|
232
232
|
>>> optim = nn.Lamb(params=net.trainable_params(), learning_rate=0.1)
|
mindspore/nn/optim/lars.py
CHANGED
|
@@ -109,7 +109,7 @@ class LARS(Optimizer):
|
|
|
109
109
|
>>> from mindspore import nn
|
|
110
110
|
>>>
|
|
111
111
|
>>> # Define the network structure of LeNet5. Refer to
|
|
112
|
-
>>> # https://gitee.com/mindspore/docs/blob/
|
|
112
|
+
>>> # https://gitee.com/mindspore/docs/blob/master/docs/mindspore/code/lenet.py
|
|
113
113
|
>>> net = LeNet5()
|
|
114
114
|
>>> loss = nn.SoftmaxCrossEntropyWithLogits()
|
|
115
115
|
>>> opt = nn.Momentum(net.trainable_params(), 0.1, 0.9)
|
mindspore/nn/optim/lazyadam.py
CHANGED
|
@@ -334,7 +334,7 @@ class LazyAdam(Optimizer):
|
|
|
334
334
|
|
|
335
335
|
- LearningRateSchedule: Learning rate is dynamic. During training, the optimizer calls the instance of
|
|
336
336
|
`LearningRateSchedule
|
|
337
|
-
<https://www.mindspore.cn/docs/en/
|
|
337
|
+
<https://www.mindspore.cn/docs/en/master/api_python/mindspore.nn.html#learningrateschedule-class>`_
|
|
338
338
|
with step as the input to get the learning rate of current step.
|
|
339
339
|
|
|
340
340
|
beta1 (float): The exponential decay rate for the 1st moment estimations. Should be in range (0.0, 1.0).
|
|
@@ -390,7 +390,7 @@ class LazyAdam(Optimizer):
|
|
|
390
390
|
>>> from mindspore import nn
|
|
391
391
|
>>>
|
|
392
392
|
>>> # Define the network structure of LeNet5. Refer to
|
|
393
|
-
>>> # https://gitee.com/mindspore/docs/blob/
|
|
393
|
+
>>> # https://gitee.com/mindspore/docs/blob/master/docs/mindspore/code/lenet.py
|
|
394
394
|
>>> net = LeNet5()
|
|
395
395
|
>>> #1) All parameters use the same learning rate and weight decay
|
|
396
396
|
>>> optim = nn.LazyAdam(params=net.trainable_params())
|
mindspore/nn/optim/momentum.py
CHANGED
|
@@ -116,7 +116,7 @@ class Momentum(Optimizer):
|
|
|
116
116
|
|
|
117
117
|
- LearningRateSchedule: Learning rate is dynamic. During training, the optimizer calls the instance of
|
|
118
118
|
`LearningRateSchedule
|
|
119
|
-
<https://www.mindspore.cn/docs/en/
|
|
119
|
+
<https://www.mindspore.cn/docs/en/master/api_python/mindspore.nn.html#learningrateschedule-class>`_
|
|
120
120
|
with step as the input to get the learning rate of current step.
|
|
121
121
|
|
|
122
122
|
momentum (float): Hyperparameter of type float, means momentum for the moving average.
|
|
@@ -161,7 +161,7 @@ class Momentum(Optimizer):
|
|
|
161
161
|
>>> from mindspore import nn
|
|
162
162
|
>>>
|
|
163
163
|
>>> # Define the network structure of LeNet5. Refer to
|
|
164
|
-
>>> # https://gitee.com/mindspore/docs/blob/
|
|
164
|
+
>>> # https://gitee.com/mindspore/docs/blob/master/docs/mindspore/code/lenet.py
|
|
165
165
|
>>> net = LeNet5()
|
|
166
166
|
>>> #1) All parameters use the same learning rate and weight decay
|
|
167
167
|
>>> optim = nn.Momentum(params=net.trainable_params(), learning_rate=0.1, momentum=0.9)
|
mindspore/nn/optim/optimizer.py
CHANGED
|
@@ -96,7 +96,7 @@ class Optimizer(Cell):
|
|
|
96
96
|
|
|
97
97
|
- LearningRateSchedule: Learning rate is dynamic. During training, the optimizer calls the instance of
|
|
98
98
|
`LearningRateSchedule
|
|
99
|
-
<https://www.mindspore.cn/docs/en/
|
|
99
|
+
<https://www.mindspore.cn/docs/en/master/api_python/mindspore.nn.html#learningrateschedule-class>`_
|
|
100
100
|
with step as the input to get the learning rate
|
|
101
101
|
of current step.
|
|
102
102
|
|
|
@@ -774,7 +774,7 @@ class Optimizer(Cell):
|
|
|
774
774
|
Examples:
|
|
775
775
|
>>> from mindspore import nn
|
|
776
776
|
>>> # Define the network structure of LeNet5. Refer to
|
|
777
|
-
>>> # https://gitee.com/mindspore/docs/blob/
|
|
777
|
+
>>> # https://gitee.com/mindspore/docs/blob/master/docs/mindspore/code/lenet.py
|
|
778
778
|
>>> net = LeNet5()
|
|
779
779
|
>>> conv_params = list(filter(lambda x: 'conv' in x.name, net.trainable_params()))
|
|
780
780
|
>>> no_conv_params = list(filter(lambda x: 'conv' not in x.name, net.trainable_params()))
|
|
@@ -122,7 +122,7 @@ class ProximalAdagrad(Optimizer):
|
|
|
122
122
|
|
|
123
123
|
- LearningRateSchedule: Learning rate is dynamic. During training, the optimizer calls the instance of
|
|
124
124
|
`LearningRateSchedule
|
|
125
|
-
<https://www.mindspore.cn/docs/en/
|
|
125
|
+
<https://www.mindspore.cn/docs/en/master/api_python/mindspore.nn.html#learningrateschedule-class>`_
|
|
126
126
|
with step as the input to get the learning rate of the current step.
|
|
127
127
|
|
|
128
128
|
l1 (float): l1 regularization strength, must be greater than or equal to zero. Default: ``0.0`` .
|
|
@@ -165,7 +165,7 @@ class ProximalAdagrad(Optimizer):
|
|
|
165
165
|
>>> from mindspore import nn
|
|
166
166
|
>>>
|
|
167
167
|
>>> # Define the network structure of LeNet5. Refer to
|
|
168
|
-
>>> # https://gitee.com/mindspore/docs/blob/
|
|
168
|
+
>>> # https://gitee.com/mindspore/docs/blob/master/docs/mindspore/code/lenet.py
|
|
169
169
|
>>> net = LeNet5()
|
|
170
170
|
>>> #1) All parameters use the same learning rate and weight decay
|
|
171
171
|
>>> optim = nn.ProximalAdagrad(params=net.trainable_params())
|
mindspore/nn/optim/rmsprop.py
CHANGED
|
@@ -137,7 +137,7 @@ class RMSProp(Optimizer):
|
|
|
137
137
|
|
|
138
138
|
- LearningRateSchedule: Learning rate is dynamic. During training, the optimizer calls the instance of
|
|
139
139
|
`LearningRateSchedule
|
|
140
|
-
<https://www.mindspore.cn/docs/en/
|
|
140
|
+
<https://www.mindspore.cn/docs/en/master/api_python/mindspore.nn.html#learningrateschedule-class>`_
|
|
141
141
|
with step as the input to get the learning rate of the current step.
|
|
142
142
|
|
|
143
143
|
decay (float): Decay rate. Should be equal to or greater than 0. Default: ``0.9`` .
|
|
@@ -186,7 +186,7 @@ class RMSProp(Optimizer):
|
|
|
186
186
|
>>> from mindspore import nn
|
|
187
187
|
>>>
|
|
188
188
|
>>> # Define the network structure of LeNet5. Refer to
|
|
189
|
-
>>> # https://gitee.com/mindspore/docs/blob/
|
|
189
|
+
>>> # https://gitee.com/mindspore/docs/blob/master/docs/mindspore/code/lenet.py
|
|
190
190
|
>>> net = LeNet5()
|
|
191
191
|
>>> #1) All parameters use the same learning rate and weight decay
|
|
192
192
|
>>> optim = nn.RMSProp(params=net.trainable_params(), learning_rate=0.1)
|
mindspore/nn/optim/rprop.py
CHANGED
|
@@ -96,7 +96,7 @@ class Rprop(Optimizer):
|
|
|
96
96
|
|
|
97
97
|
- LearningRateSchedule: Learning rate is dynamic. During training, the optimizer calls the instance of
|
|
98
98
|
`LearningRateSchedule
|
|
99
|
-
<https://www.mindspore.cn/docs/en/
|
|
99
|
+
<https://www.mindspore.cn/docs/en/master/api_python/mindspore.nn.html#learningrateschedule-class>`_
|
|
100
100
|
with step as the input to get the learning rate of current step.
|
|
101
101
|
|
|
102
102
|
etas (tuple[float, float]): The factor of multiplicative increasing or
|
|
@@ -137,7 +137,7 @@ class Rprop(Optimizer):
|
|
|
137
137
|
>>> from mindspore import nn
|
|
138
138
|
>>>
|
|
139
139
|
>>> # Define the network structure of LeNet5. Refer to
|
|
140
|
-
>>> # https://gitee.com/mindspore/docs/blob/
|
|
140
|
+
>>> # https://gitee.com/mindspore/docs/blob/master/docs/mindspore/code/lenet.py
|
|
141
141
|
>>> net = LeNet5()
|
|
142
142
|
>>> #1) All parameters use the same learning rate and weight decay
|
|
143
143
|
>>> optim = nn.Rprop(params=net.trainable_params())
|
mindspore/nn/optim/sgd.py
CHANGED
|
@@ -103,7 +103,7 @@ class SGD(Optimizer):
|
|
|
103
103
|
|
|
104
104
|
- LearningRateSchedule: Learning rate is dynamic. During training, the optimizer calls the instance of
|
|
105
105
|
`LearningRateSchedule
|
|
106
|
-
<https://www.mindspore.cn/docs/en/
|
|
106
|
+
<https://www.mindspore.cn/docs/en/master/api_python/mindspore.nn.html#learningrateschedule-class>`_
|
|
107
107
|
with step as the input to get the learning rate of current step.
|
|
108
108
|
|
|
109
109
|
momentum (float): A floating point value the momentum. must be at least 0.0. Default: ``0.0`` .
|
|
@@ -134,7 +134,7 @@ class SGD(Optimizer):
|
|
|
134
134
|
>>> from mindspore import nn
|
|
135
135
|
>>>
|
|
136
136
|
>>> # Define the network structure of LeNet5. Refer to
|
|
137
|
-
>>> # https://gitee.com/mindspore/docs/blob/
|
|
137
|
+
>>> # https://gitee.com/mindspore/docs/blob/master/docs/mindspore/code/lenet.py
|
|
138
138
|
>>> net = LeNet5()
|
|
139
139
|
>>> #1) All parameters use the same learning rate and weight decay
|
|
140
140
|
>>> optim = nn.SGD(params=net.trainable_params())
|
mindspore/nn/optim/thor.py
CHANGED
|
@@ -339,10 +339,10 @@ def thor(net, learning_rate, damping, momentum, weight_decay=0.0, loss_scale=1.0
|
|
|
339
339
|
>>> from mindspore import Tensor
|
|
340
340
|
>>>
|
|
341
341
|
>>> # Define the network structure of LeNet5. Refer to
|
|
342
|
-
>>> # https://gitee.com/mindspore/docs/blob/
|
|
342
|
+
>>> # https://gitee.com/mindspore/docs/blob/master/docs/mindspore/code/lenet.py
|
|
343
343
|
>>> net = LeNet5()
|
|
344
344
|
>>> # Create the dataset taking MNIST as an example. Refer to
|
|
345
|
-
>>> # https://gitee.com/mindspore/docs/blob/
|
|
345
|
+
>>> # https://gitee.com/mindspore/docs/blob/master/docs/mindspore/code/mnist.py
|
|
346
346
|
>>> dataset = create_dataset()
|
|
347
347
|
>>> temp = Tensor([4e-4, 1e-4, 1e-5, 1e-5], mstype.float32)
|
|
348
348
|
>>> optim = nn.thor(net, learning_rate=temp, damping=temp, momentum=0.9, loss_scale=128, frequency=4)
|