mindspore 2.3.0__cp39-cp39-win_amd64.whl → 2.4.1__cp39-cp39-win_amd64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of mindspore might be problematic. Click here for more details.
- mindspore/.commit_id +1 -1
- mindspore/__init__.py +3 -1
- mindspore/_c_dataengine.cp39-win_amd64.pyd +0 -0
- mindspore/_c_expression.cp39-win_amd64.pyd +0 -0
- mindspore/_c_mindrecord.cp39-win_amd64.pyd +0 -0
- mindspore/_checkparam.py +50 -9
- mindspore/_extends/parse/compile_config.py +41 -0
- mindspore/_extends/parse/parser.py +9 -7
- mindspore/_extends/parse/standard_method.py +52 -14
- mindspore/_extends/pijit/pijit_func_white_list.py +350 -24
- mindspore/amp.py +24 -10
- mindspore/avcodec-59.dll +0 -0
- mindspore/avdevice-59.dll +0 -0
- mindspore/avfilter-8.dll +0 -0
- mindspore/avformat-59.dll +0 -0
- mindspore/avutil-57.dll +0 -0
- mindspore/common/__init__.py +6 -4
- mindspore/common/_pijit_context.py +190 -0
- mindspore/common/_register_for_tensor.py +2 -1
- mindspore/common/_tensor_overload.py +139 -0
- mindspore/common/api.py +102 -87
- mindspore/common/dump.py +5 -6
- mindspore/common/generator.py +1 -7
- mindspore/common/hook_handle.py +14 -26
- mindspore/common/initializer.py +51 -15
- mindspore/common/mindir_util.py +2 -2
- mindspore/common/parameter.py +62 -15
- mindspore/common/recompute.py +39 -9
- mindspore/common/sparse_tensor.py +7 -3
- mindspore/common/tensor.py +183 -37
- mindspore/communication/__init__.py +1 -1
- mindspore/communication/_comm_helper.py +38 -3
- mindspore/communication/comm_func.py +315 -60
- mindspore/communication/management.py +14 -14
- mindspore/context.py +132 -22
- mindspore/dataset/__init__.py +1 -1
- mindspore/dataset/audio/__init__.py +1 -1
- mindspore/dataset/core/config.py +7 -0
- mindspore/dataset/core/validator_helpers.py +7 -0
- mindspore/dataset/engine/cache_client.py +1 -1
- mindspore/dataset/engine/datasets.py +72 -44
- mindspore/dataset/engine/datasets_audio.py +7 -7
- mindspore/dataset/engine/datasets_standard_format.py +53 -3
- mindspore/dataset/engine/datasets_text.py +20 -20
- mindspore/dataset/engine/datasets_user_defined.py +174 -104
- mindspore/dataset/engine/datasets_vision.py +33 -33
- mindspore/dataset/engine/iterators.py +29 -0
- mindspore/dataset/engine/obs/util.py +7 -0
- mindspore/dataset/engine/queue.py +114 -60
- mindspore/dataset/engine/serializer_deserializer.py +2 -2
- mindspore/dataset/engine/validators.py +34 -14
- mindspore/dataset/text/__init__.py +1 -4
- mindspore/dataset/transforms/__init__.py +0 -3
- mindspore/dataset/utils/line_reader.py +2 -0
- mindspore/dataset/vision/__init__.py +1 -4
- mindspore/dataset/vision/utils.py +1 -1
- mindspore/dataset/vision/validators.py +2 -1
- mindspore/dnnl.dll +0 -0
- mindspore/{nn/extend → experimental/es}/__init__.py +4 -11
- mindspore/experimental/es/embedding_service.py +883 -0
- mindspore/{nn/layer → experimental/es}/embedding_service_layer.py +218 -30
- mindspore/experimental/llm_boost/__init__.py +21 -0
- mindspore/{nn/extend/layer → experimental/llm_boost/atb}/__init__.py +4 -8
- mindspore/experimental/llm_boost/atb/boost_base.py +211 -0
- mindspore/experimental/llm_boost/atb/llama_boost.py +115 -0
- mindspore/experimental/llm_boost/atb/qwen_boost.py +101 -0
- mindspore/experimental/llm_boost/register.py +129 -0
- mindspore/experimental/llm_boost/utils.py +31 -0
- mindspore/experimental/optim/adamw.py +85 -0
- mindspore/experimental/optim/optimizer.py +3 -0
- mindspore/hal/__init__.py +3 -3
- mindspore/hal/contiguous_tensors_handle.py +175 -0
- mindspore/hal/stream.py +18 -0
- mindspore/include/api/model_group.h +13 -1
- mindspore/include/api/types.h +10 -10
- mindspore/include/dataset/config.h +2 -2
- mindspore/include/dataset/constants.h +2 -2
- mindspore/include/dataset/execute.h +2 -2
- mindspore/include/dataset/vision.h +4 -0
- mindspore/jpeg62.dll +0 -0
- mindspore/log.py +1 -1
- mindspore/mindrecord/filewriter.py +68 -51
- mindspore/mindspore_backend.dll +0 -0
- mindspore/mindspore_common.dll +0 -0
- mindspore/mindspore_core.dll +0 -0
- mindspore/mindspore_glog.dll +0 -0
- mindspore/mindspore_np_dtype.dll +0 -0
- mindspore/mindspore_ops.dll +0 -0
- mindspore/mint/__init__.py +983 -46
- mindspore/mint/distributed/__init__.py +31 -0
- mindspore/mint/distributed/distributed.py +254 -0
- mindspore/mint/nn/__init__.py +268 -23
- mindspore/mint/nn/functional.py +125 -19
- mindspore/mint/nn/layer/__init__.py +39 -0
- mindspore/mint/nn/layer/activation.py +133 -0
- mindspore/mint/nn/layer/normalization.py +477 -0
- mindspore/mint/nn/layer/pooling.py +110 -0
- mindspore/mint/optim/adamw.py +26 -13
- mindspore/mint/special/__init__.py +63 -0
- mindspore/multiprocessing/__init__.py +2 -1
- mindspore/nn/__init__.py +0 -1
- mindspore/nn/cell.py +276 -96
- mindspore/nn/layer/activation.py +211 -44
- mindspore/nn/layer/basic.py +137 -10
- mindspore/nn/layer/embedding.py +137 -2
- mindspore/nn/layer/normalization.py +101 -5
- mindspore/nn/layer/padding.py +34 -48
- mindspore/nn/layer/pooling.py +161 -7
- mindspore/nn/layer/transformer.py +3 -3
- mindspore/nn/loss/__init__.py +2 -2
- mindspore/nn/loss/loss.py +84 -6
- mindspore/nn/optim/__init__.py +2 -1
- mindspore/nn/optim/adadelta.py +1 -1
- mindspore/nn/optim/adam.py +1 -1
- mindspore/nn/optim/lamb.py +1 -1
- mindspore/nn/optim/tft_wrapper.py +124 -0
- mindspore/nn/wrap/cell_wrapper.py +12 -23
- mindspore/nn/wrap/grad_reducer.py +5 -5
- mindspore/nn/wrap/loss_scale.py +17 -3
- mindspore/numpy/__init__.py +1 -1
- mindspore/numpy/array_creations.py +65 -68
- mindspore/numpy/array_ops.py +64 -60
- mindspore/numpy/fft.py +610 -75
- mindspore/numpy/logic_ops.py +11 -10
- mindspore/numpy/math_ops.py +85 -84
- mindspore/numpy/utils_const.py +4 -4
- mindspore/opencv_core452.dll +0 -0
- mindspore/opencv_imgcodecs452.dll +0 -0
- mindspore/opencv_imgproc452.dll +0 -0
- mindspore/ops/__init__.py +6 -4
- mindspore/ops/_grad_experimental/grad_array_ops.py +0 -11
- mindspore/ops/_grad_experimental/grad_comm_ops.py +67 -4
- mindspore/ops/_grad_experimental/grad_math_ops.py +0 -22
- mindspore/ops/_vmap/vmap_array_ops.py +2 -4
- mindspore/ops/_vmap/vmap_math_ops.py +17 -1
- mindspore/ops/_vmap/vmap_nn_ops.py +43 -2
- mindspore/ops/auto_generate/cpp_create_prim_instance_helper.py +91 -7
- mindspore/ops/auto_generate/gen_arg_dtype_cast.py +2 -0
- mindspore/ops/auto_generate/gen_extend_func.py +767 -13
- mindspore/ops/auto_generate/gen_ops_def.py +2452 -364
- mindspore/ops/auto_generate/gen_ops_prim.py +5442 -1756
- mindspore/ops/auto_generate/pyboost_inner_prim.py +176 -56
- mindspore/ops/composite/base.py +85 -48
- mindspore/ops/composite/multitype_ops/_compile_utils.py +1 -0
- mindspore/ops/composite/multitype_ops/not_in_impl.py +2 -2
- mindspore/ops/function/__init__.py +22 -0
- mindspore/ops/function/array_func.py +492 -153
- mindspore/ops/function/debug_func.py +113 -1
- mindspore/ops/function/fft_func.py +15 -2
- mindspore/ops/function/grad/grad_func.py +3 -2
- mindspore/ops/function/math_func.py +564 -207
- mindspore/ops/function/nn_func.py +817 -383
- mindspore/ops/function/other_func.py +3 -2
- mindspore/ops/function/random_func.py +402 -12
- mindspore/ops/function/reshard_func.py +13 -11
- mindspore/ops/function/sparse_unary_func.py +1 -1
- mindspore/ops/function/vmap_func.py +3 -2
- mindspore/ops/functional.py +24 -14
- mindspore/ops/op_info_register.py +3 -3
- mindspore/ops/operations/__init__.py +7 -2
- mindspore/ops/operations/_grad_ops.py +2 -76
- mindspore/ops/operations/_infer_ops.py +1 -1
- mindspore/ops/operations/_inner_ops.py +71 -94
- mindspore/ops/operations/array_ops.py +14 -146
- mindspore/ops/operations/comm_ops.py +63 -53
- mindspore/ops/operations/custom_ops.py +83 -19
- mindspore/ops/operations/debug_ops.py +42 -10
- mindspore/ops/operations/manually_defined/_inner.py +12 -0
- mindspore/ops/operations/manually_defined/ops_def.py +273 -20
- mindspore/ops/operations/math_ops.py +12 -223
- mindspore/ops/operations/nn_ops.py +20 -114
- mindspore/ops/operations/other_ops.py +7 -4
- mindspore/ops/operations/random_ops.py +46 -1
- mindspore/ops/primitive.py +18 -6
- mindspore/ops_generate/arg_dtype_cast.py +2 -0
- mindspore/ops_generate/gen_aclnn_implement.py +11 -11
- mindspore/ops_generate/gen_constants.py +36 -0
- mindspore/ops_generate/gen_ops.py +67 -52
- mindspore/ops_generate/gen_ops_inner_prim.py +1 -1
- mindspore/ops_generate/gen_pyboost_func.py +131 -47
- mindspore/ops_generate/op_proto.py +10 -3
- mindspore/ops_generate/pyboost_utils.py +14 -1
- mindspore/ops_generate/template.py +43 -21
- mindspore/parallel/__init__.py +3 -1
- mindspore/parallel/_auto_parallel_context.py +31 -9
- mindspore/parallel/_cell_wrapper.py +85 -0
- mindspore/parallel/_parallel_serialization.py +47 -19
- mindspore/parallel/_tensor.py +127 -13
- mindspore/parallel/_utils.py +53 -22
- mindspore/parallel/algo_parameter_config.py +5 -5
- mindspore/parallel/checkpoint_transform.py +46 -39
- mindspore/parallel/cluster/process_entity/__init__.py +1 -1
- mindspore/parallel/cluster/process_entity/_api.py +31 -23
- mindspore/parallel/cluster/process_entity/_utils.py +2 -27
- mindspore/parallel/parameter_broadcast.py +3 -4
- mindspore/parallel/shard.py +162 -31
- mindspore/parallel/transform_safetensors.py +1146 -0
- mindspore/profiler/__init__.py +2 -1
- mindspore/profiler/common/constant.py +29 -0
- mindspore/profiler/common/registry.py +47 -0
- mindspore/profiler/common/util.py +28 -0
- mindspore/profiler/dynamic_profiler.py +694 -0
- mindspore/profiler/envprofiling.py +17 -19
- mindspore/profiler/parser/ascend_analysis/constant.py +18 -0
- mindspore/profiler/parser/ascend_analysis/file_manager.py +25 -4
- mindspore/profiler/parser/ascend_analysis/function_event.py +43 -19
- mindspore/profiler/parser/ascend_analysis/fwk_cann_parser.py +31 -26
- mindspore/profiler/parser/ascend_analysis/fwk_file_parser.py +56 -10
- mindspore/profiler/parser/ascend_analysis/msprof_timeline_parser.py +55 -8
- mindspore/profiler/parser/ascend_analysis/path_manager.py +313 -0
- mindspore/profiler/parser/ascend_analysis/profiler_info_parser.py +27 -20
- mindspore/profiler/parser/ascend_analysis/trace_event_manager.py +9 -2
- mindspore/profiler/parser/ascend_msprof_exporter.py +5 -4
- mindspore/profiler/parser/ascend_timeline_generator.py +27 -25
- mindspore/profiler/parser/base_timeline_generator.py +19 -25
- mindspore/profiler/parser/cpu_gpu_timeline_generator.py +25 -12
- mindspore/profiler/parser/framework_parser.py +1 -391
- mindspore/profiler/parser/gpu_analysis/__init__.py +14 -0
- mindspore/profiler/parser/gpu_analysis/function_event.py +44 -0
- mindspore/profiler/parser/gpu_analysis/fwk_file_parser.py +89 -0
- mindspore/profiler/parser/gpu_analysis/profiler_info_parser.py +72 -0
- mindspore/profiler/parser/memory_usage_parser.py +0 -154
- mindspore/profiler/parser/profiler_info.py +78 -6
- mindspore/profiler/profiler.py +153 -0
- mindspore/profiler/profiling.py +285 -413
- mindspore/rewrite/__init__.py +1 -2
- mindspore/rewrite/common/namespace.py +4 -4
- mindspore/rewrite/symbol_tree/symbol_tree.py +3 -3
- mindspore/run_check/_check_version.py +39 -104
- mindspore/safeguard/rewrite_obfuscation.py +591 -247
- mindspore/swresample-4.dll +0 -0
- mindspore/swscale-6.dll +0 -0
- mindspore/tinyxml2.dll +0 -0
- mindspore/train/__init__.py +4 -3
- mindspore/train/_utils.py +105 -19
- mindspore/train/amp.py +171 -53
- mindspore/train/callback/__init__.py +2 -2
- mindspore/train/callback/_callback.py +4 -4
- mindspore/train/callback/_checkpoint.py +97 -31
- mindspore/train/callback/_cluster_monitor.py +1 -1
- mindspore/train/callback/_flops_collector.py +1 -0
- mindspore/train/callback/_loss_monitor.py +3 -3
- mindspore/train/callback/_on_request_exit.py +145 -31
- mindspore/train/callback/_summary_collector.py +5 -5
- mindspore/train/callback/_tft_register.py +375 -0
- mindspore/train/dataset_helper.py +15 -3
- mindspore/train/metrics/metric.py +3 -3
- mindspore/train/metrics/roc.py +4 -4
- mindspore/train/mind_ir_pb2.py +44 -39
- mindspore/train/model.py +154 -58
- mindspore/train/serialization.py +342 -128
- mindspore/turbojpeg.dll +0 -0
- mindspore/utils/__init__.py +21 -0
- mindspore/utils/utils.py +60 -0
- mindspore/version.py +1 -1
- {mindspore-2.3.0.dist-info → mindspore-2.4.1.dist-info}/METADATA +13 -7
- {mindspore-2.3.0.dist-info → mindspore-2.4.1.dist-info}/RECORD +260 -254
- {mindspore-2.3.0.dist-info → mindspore-2.4.1.dist-info}/WHEEL +1 -1
- mindspore/include/c_api/ms/abstract.h +0 -67
- mindspore/include/c_api/ms/attribute.h +0 -197
- mindspore/include/c_api/ms/base/handle_types.h +0 -43
- mindspore/include/c_api/ms/base/macros.h +0 -32
- mindspore/include/c_api/ms/base/status.h +0 -33
- mindspore/include/c_api/ms/base/types.h +0 -283
- mindspore/include/c_api/ms/context.h +0 -102
- mindspore/include/c_api/ms/graph.h +0 -160
- mindspore/include/c_api/ms/node.h +0 -606
- mindspore/include/c_api/ms/tensor.h +0 -161
- mindspore/include/c_api/ms/value.h +0 -84
- mindspore/mindspore_shared_lib.dll +0 -0
- mindspore/nn/extend/basic.py +0 -140
- mindspore/nn/extend/embedding.py +0 -143
- mindspore/nn/extend/layer/normalization.py +0 -109
- mindspore/nn/extend/pooling.py +0 -117
- mindspore/nn/layer/embedding_service.py +0 -531
- mindspore/ops/_op_impl/aicpu/strided_slice_v2.py +0 -93
- mindspore/ops/_op_impl/aicpu/strided_slice_v2_grad.py +0 -66
- mindspore/ops/extend/__init__.py +0 -53
- mindspore/ops/extend/array_func.py +0 -218
- mindspore/ops/extend/math_func.py +0 -76
- mindspore/ops/extend/nn_func.py +0 -308
- mindspore/ops/silent_check.py +0 -162
- mindspore/profiler/parser/msadvisor_analyzer.py +0 -82
- mindspore/profiler/parser/msadvisor_parser.py +0 -240
- mindspore/train/callback/_mindio_ttp.py +0 -443
- {mindspore-2.3.0.dist-info → mindspore-2.4.1.dist-info}/entry_points.txt +0 -0
- {mindspore-2.3.0.dist-info → mindspore-2.4.1.dist-info}/top_level.txt +0 -0
mindspore/numpy/logic_ops.py
CHANGED
|
@@ -467,9 +467,9 @@ def isclose(a, b, rtol=1e-05, atol=1e-08, equal_nan=False):
|
|
|
467
467
|
Args:
|
|
468
468
|
a (Union[Tensor, list, tuple]): Input first tensor to compare.
|
|
469
469
|
b (Union[Tensor, list, tuple]): Input second tensor to compare.
|
|
470
|
-
rtol (numbers.Number): The relative tolerance parameter (see Note).
|
|
471
|
-
atol (numbers.Number): The absolute tolerance parameter (see Note).
|
|
472
|
-
equal_nan (bool): Whether to compare ``NaN`` as equal. If True, ``NaN`` in
|
|
470
|
+
rtol (numbers.Number, optional): The relative tolerance parameter (see Note). Default: ``1e-05`` .
|
|
471
|
+
atol (numbers.Number, optional): The absolute tolerance parameter (see Note). Default: ``1e-08`` .
|
|
472
|
+
equal_nan (bool, optional): Whether to compare ``NaN`` as equal. If True, ``NaN`` in
|
|
473
473
|
`a` will be considered equal to ``NaN`` in `b` in the output tensor.
|
|
474
474
|
Default: ``False`` .
|
|
475
475
|
|
|
@@ -635,7 +635,7 @@ def logical_or(x1, x2, dtype=None):
|
|
|
635
635
|
output Tensor.
|
|
636
636
|
|
|
637
637
|
Returns:
|
|
638
|
-
Tensor or scalar,
|
|
638
|
+
Tensor or scalar, logical OR operation of `x1` and `x2`. Typically of type
|
|
639
639
|
bool, unless ``dtype=object`` is passed. This is a scalar if both `x1` and `x2` are
|
|
640
640
|
scalars.
|
|
641
641
|
|
|
@@ -704,7 +704,7 @@ def logical_xor(x1, x2, dtype=None):
|
|
|
704
704
|
|
|
705
705
|
Returns:
|
|
706
706
|
Tensor or scalar.
|
|
707
|
-
Boolean result of the logical
|
|
707
|
+
Boolean result of the logical XOR operation applied to the elements of `x1` and `x2`;
|
|
708
708
|
the shape is determined by broadcasting. This is a scalar if both `x1` and `x2` are scalars.
|
|
709
709
|
|
|
710
710
|
Supported Platforms:
|
|
@@ -733,12 +733,12 @@ def array_equal(a1, a2, equal_nan=False):
|
|
|
733
733
|
In mindspore, a bool tensor is returned instead, since in Graph mode, the
|
|
734
734
|
value cannot be traced and computed at compile time.
|
|
735
735
|
|
|
736
|
-
Since on Ascend,
|
|
737
|
-
|
|
736
|
+
Since on Ascend, ``nan`` is treated differently, currently the argument
|
|
737
|
+
``equal_nan`` is not supported on Ascend.
|
|
738
738
|
|
|
739
739
|
Args:
|
|
740
740
|
a1/a2 (Union[int, float, bool, list, tuple, Tensor]): Input arrays.
|
|
741
|
-
equal_nan (bool): Whether to compare NaN's as equal. Default: ``False`` .
|
|
741
|
+
equal_nan (bool, optional): Whether to compare NaN's as equal. Default: ``False`` .
|
|
742
742
|
|
|
743
743
|
Returns:
|
|
744
744
|
Scalar bool tensor, value is `True` if inputs are equal, `False` otherwise.
|
|
@@ -869,7 +869,7 @@ def sometrue(a, axis=None, keepdims=False):
|
|
|
869
869
|
|
|
870
870
|
Raises:
|
|
871
871
|
TypeError: If input is not array_like or `axis` is not int or tuple of integers or
|
|
872
|
-
`keepdims` is not
|
|
872
|
+
`keepdims` is not bool.
|
|
873
873
|
ValueError: If any axis is out of range or duplicate axes exist.
|
|
874
874
|
|
|
875
875
|
Supported Platforms:
|
|
@@ -900,7 +900,8 @@ def setdiff1d(ar1, ar2, assume_unique=False):
|
|
|
900
900
|
Args:
|
|
901
901
|
ar1 (Union[int, float, bool, list, tuple, Tensor]): Input tensor.
|
|
902
902
|
ar2 (Union[int, float, bool, list, tuple, Tensor]): Input tensor.
|
|
903
|
-
assume_unique (bool): If `True`, the input Tensors are assumed to be unique,
|
|
903
|
+
assume_unique (bool, optional): If `True`, the input Tensors are assumed to be unique,
|
|
904
|
+
which can speed up the calculation.
|
|
904
905
|
If `True` but `ar1` or `ar2` are not unique,
|
|
905
906
|
incorrect results and out-of-bounds indices could result.
|
|
906
907
|
Default: ``False``.
|
mindspore/numpy/math_ops.py
CHANGED
|
@@ -79,7 +79,7 @@ def absolute(x, dtype=None):
|
|
|
79
79
|
Numpy arguments `out`, `where`, `casting`, `order`, `subok`, `signature`, and `extobj` are
|
|
80
80
|
not supported.
|
|
81
81
|
Currently the backend kernel only supports float calculation, if the input
|
|
82
|
-
is not a `float`, then it will be casted to
|
|
82
|
+
is not a `float`, then it will be casted to ``mstype.float32`` and casted back.
|
|
83
83
|
|
|
84
84
|
Args:
|
|
85
85
|
x (Tensor): Tensor to be used for calculation.
|
|
@@ -604,14 +604,14 @@ def mean(a, axis=None, keepdims=False, dtype=None):
|
|
|
604
604
|
Args:
|
|
605
605
|
a (Tensor): input tensor containing numbers whose mean is desired.
|
|
606
606
|
If a is not an array, a conversion is attempted.
|
|
607
|
-
axis (
|
|
607
|
+
axis (Union[int, tuple(int), None], optional): Axis or axes along
|
|
608
608
|
which the means are computed. The default is to compute
|
|
609
609
|
the mean of the flattened array. If this is a tuple of
|
|
610
|
-
ints, a mean is performed over multiple axes.
|
|
610
|
+
ints, a mean is performed over multiple axes. Default: ``None`` .
|
|
611
611
|
keepdims (bool, optional): If this is set to ``True`` , the axes which
|
|
612
612
|
are reduced are left in the result as dimensions with
|
|
613
613
|
size one. With this option, the result will broadcast
|
|
614
|
-
correctly against the input tensor.
|
|
614
|
+
correctly against the input tensor. Default: ``False`` .
|
|
615
615
|
dtype (:class:`mindspore.dtype`, optional): Default: ``None`` . Overrides the dtype of the
|
|
616
616
|
output Tensor.
|
|
617
617
|
|
|
@@ -902,7 +902,7 @@ def std(x, axis=None, ddof=0, keepdims=False):
|
|
|
902
902
|
|
|
903
903
|
If ``None`` , compute the standard deviation of the flattened array.
|
|
904
904
|
ddof (int): Means Delta Degrees of Freedom. The divisor used in calculations is :math:`N - ddof`,
|
|
905
|
-
where :math:`N` represents the number of elements. Default: 0
|
|
905
|
+
where :math:`N` represents the number of elements. Default: ``0``.
|
|
906
906
|
keepdims: If this is set to True, the axes which are reduced are left in the result as
|
|
907
907
|
dimensions with size one. With this option, the result will broadcast correctly against the input tensor.
|
|
908
908
|
If the default value is passed, then keepdims will not be passed through to the std method of
|
|
@@ -1011,14 +1011,14 @@ def average(x, axis=None, weights=None, returned=False):
|
|
|
1011
1011
|
|
|
1012
1012
|
Args:
|
|
1013
1013
|
x (Tensor): A Tensor to be averaged.
|
|
1014
|
-
axis (Union[None, int, tuple(int)]): Axis along which to average `x`. Default: ``None`` .
|
|
1014
|
+
axis (Union[None, int, tuple(int)], optional): Axis along which to average `x`. Default: ``None`` .
|
|
1015
1015
|
If the axis is `None`, it will average over all of the elements of the tensor `x`.
|
|
1016
1016
|
If the axis is negative, it counts from the last to the first axis.
|
|
1017
|
-
weights (Union[None, Tensor]): Weights associated with the values in `x`. Default: ``None`` .
|
|
1017
|
+
weights (Union[None, Tensor], optional): Weights associated with the values in `x`. Default: ``None`` .
|
|
1018
1018
|
If `weights` is `None`, all the data in `x` are assumed to have a weight equal to one.
|
|
1019
1019
|
If `weights` is 1-D tensor, the length must be the same as the given axis.
|
|
1020
1020
|
Otherwise, `weights` should have the same shape as `x`.
|
|
1021
|
-
returned (bool): Default: ``False`` .
|
|
1021
|
+
returned (bool, optional): Default: ``False`` .
|
|
1022
1022
|
If `True`, the tuple (average, sum_of_weights) is returned.
|
|
1023
1023
|
If `False`, only the average is returned.
|
|
1024
1024
|
|
|
@@ -1154,7 +1154,7 @@ def square(x, dtype=None):
|
|
|
1154
1154
|
|
|
1155
1155
|
Returns:
|
|
1156
1156
|
Tensor or scalar, element-wise ``x*x``, of the same shape and dtype as `x`.
|
|
1157
|
-
This is a scalar if `x` is a scalar
|
|
1157
|
+
This is a scalar if `x` is a scalar.
|
|
1158
1158
|
|
|
1159
1159
|
Supported Platforms:
|
|
1160
1160
|
``Ascend`` ``GPU`` ``CPU``
|
|
@@ -1402,7 +1402,7 @@ def amax(a, axis=None, keepdims=False, initial=None, where=True):
|
|
|
1402
1402
|
|
|
1403
1403
|
Args:
|
|
1404
1404
|
a (Tensor): Input data.
|
|
1405
|
-
axis (
|
|
1405
|
+
axis (Union[int, tuple(int), None], optional): Default: ``None`` . Axis or
|
|
1406
1406
|
axes along which to operate. By default, flattened input is used. If
|
|
1407
1407
|
this is a tuple of integers, the maximum is selected over multiple axes,
|
|
1408
1408
|
instead of a single axis or all the axes as before.
|
|
@@ -1458,7 +1458,7 @@ def amin(a, axis=None, keepdims=False, initial=None, where=True):
|
|
|
1458
1458
|
|
|
1459
1459
|
Args:
|
|
1460
1460
|
a (Tensor): Input data.
|
|
1461
|
-
axis (
|
|
1461
|
+
axis (Union[int, tuple(int), None], optional): Default: ``None`` . Axis or
|
|
1462
1462
|
axes along which to operate. By default, flattened input is used. If
|
|
1463
1463
|
this is a tuple of integers, the minimum is selected over multiple axes,
|
|
1464
1464
|
instead of a single axis or all the axes as before.
|
|
@@ -1992,10 +1992,10 @@ def ediff1d(ary, to_end=None, to_begin=None):
|
|
|
1992
1992
|
|
|
1993
1993
|
Args:
|
|
1994
1994
|
ary (Tensor): If necessary, will be flattened before the differences are taken.
|
|
1995
|
-
to_end (Tensor
|
|
1996
|
-
returned differences.
|
|
1997
|
-
to_begin (Tensor
|
|
1998
|
-
of the returned differences.
|
|
1995
|
+
to_end (Tensor, scalar, optional): Number(s) to append at the end of the
|
|
1996
|
+
returned differences. Default: ``None`` .
|
|
1997
|
+
to_begin (Tensor, scalar, optional): Number(s) to prepend at the beginning
|
|
1998
|
+
of the returned differences. Default: ``None`` .
|
|
1999
1999
|
|
|
2000
2000
|
Returns:
|
|
2001
2001
|
The differences.
|
|
@@ -2432,7 +2432,7 @@ def _shape_reduced(shape, axes):
|
|
|
2432
2432
|
"""Removes dimensions corresponding to argument axes"""
|
|
2433
2433
|
ndim_orig = F.tuple_len(shape)
|
|
2434
2434
|
ndim_out = ndim_orig - F.tuple_len(axes)
|
|
2435
|
-
shape_out = [0]*ndim_out
|
|
2435
|
+
shape_out = [0] * ndim_out
|
|
2436
2436
|
idx_out = 0
|
|
2437
2437
|
for i in range(ndim_orig):
|
|
2438
2438
|
if i not in axes:
|
|
@@ -2499,8 +2499,8 @@ def nanmax(a, axis=None, dtype=None, keepdims=False):
|
|
|
2499
2499
|
Args:
|
|
2500
2500
|
a (Union[int, float, list, tuple, Tensor]): Array containing numbers whose maximum
|
|
2501
2501
|
is desired. If `a` is not an array, a conversion is attempted.
|
|
2502
|
-
axis (Union[int, tuple
|
|
2503
|
-
computed. The default is to compute the maximum of the flattened array.
|
|
2502
|
+
axis (Union[int, tuple(int), None], optional): Axis or axes along which the maximum is
|
|
2503
|
+
computed. The default is to compute the maximum of the flattened array. Default: ``None`` .
|
|
2504
2504
|
dtype (:class:`mindspore.dtype`, optional): Default: ``None`` . Overrides the dtype of the
|
|
2505
2505
|
output Tensor.
|
|
2506
2506
|
keepdims (boolean, optional): Default: ``False`` . If this is set to True, the axes which
|
|
@@ -2531,7 +2531,7 @@ def nanmax(a, axis=None, dtype=None, keepdims=False):
|
|
|
2531
2531
|
if not isinstance(keepdims, int):
|
|
2532
2532
|
_raise_type_error("integer argument expected, got", keepdims)
|
|
2533
2533
|
nan_mask = _isnan(a)
|
|
2534
|
-
a = F.select(nan_mask,
|
|
2534
|
+
a = F.select(nan_mask, P.FillV2()(F.shape(a), Tensor(-sys.maxsize - 1, F.dtype(a))), a)
|
|
2535
2535
|
reduce_fn = _reduce_max_keepdims if keepdims else _reduce_max_default
|
|
2536
2536
|
return _reduce(a, reduce_fn, axis=axis, keepdims=keepdims, dtype=dtype)
|
|
2537
2537
|
|
|
@@ -2549,8 +2549,8 @@ def nanmin(a, axis=None, dtype=None, keepdims=False):
|
|
|
2549
2549
|
Args:
|
|
2550
2550
|
a (Union[int, float, list, tuple, Tensor]): Array containing numbers whose minimum
|
|
2551
2551
|
is desired. If `a` is not an array, a conversion is attempted.
|
|
2552
|
-
axis (Union[int, tuple
|
|
2553
|
-
computed. The default is to compute the minimum of the flattened array.
|
|
2552
|
+
axis (Union[int, tuple(int), None], optional): Axis or axes along which the minimum is
|
|
2553
|
+
computed. The default is to compute the minimum of the flattened array. Default: ``None`` .
|
|
2554
2554
|
dtype (:class:`mindspore.dtype`, optional): Default: ``None`` . Overrides the dtype of the
|
|
2555
2555
|
output Tensor.
|
|
2556
2556
|
keepdims (boolean, optional): Default: ``False`` . If this is set to True, the axes which
|
|
@@ -2581,7 +2581,7 @@ def nanmin(a, axis=None, dtype=None, keepdims=False):
|
|
|
2581
2581
|
if not isinstance(keepdims, int):
|
|
2582
2582
|
_raise_type_error("integer argument expected, got", keepdims)
|
|
2583
2583
|
nan_mask = _isnan(a)
|
|
2584
|
-
a = F.select(nan_mask,
|
|
2584
|
+
a = F.select(nan_mask, P.FillV2()(F.shape(a), Tensor(sys.maxsize, F.dtype(a))), a)
|
|
2585
2585
|
reduce_fn = _reduce_min_keepdims if keepdims else _reduce_min_default
|
|
2586
2586
|
return _reduce(a, reduce_fn, axis=axis, keepdims=keepdims, dtype=dtype)
|
|
2587
2587
|
|
|
@@ -2605,7 +2605,7 @@ def nansum(a, axis=None, dtype=None, keepdims=False):
|
|
|
2605
2605
|
a (Union[int, float, list, tuple, Tensor]): Array containing numbers
|
|
2606
2606
|
whose sum is desired. If `a` is not an array, a conversion is attempted.
|
|
2607
2607
|
axis (Union[int, tuple of int, None], optional): Axis or axes along which the sum is
|
|
2608
|
-
computed. The default is to compute the sum of the flattened array.
|
|
2608
|
+
computed. The default is to compute the sum of the flattened array. Default: ``None`` .
|
|
2609
2609
|
dtype (:class:`mindspore.dtype`, optional): Default: ``None`` . Overrides the dtype of the
|
|
2610
2610
|
output Tensor.
|
|
2611
2611
|
keepdims (boolean, optional): Default: ``False`` . If this is set to True, the axes which
|
|
@@ -2662,7 +2662,7 @@ def nanmean(a, axis=None, dtype=None, keepdims=False):
|
|
|
2662
2662
|
a (Union[int, float, list, tuple, Tensor]): Array containing numbers
|
|
2663
2663
|
whose mean is desired. If `a` is not an array, a conversion is attempted.
|
|
2664
2664
|
axis (Union[int, tuple of int, None], optional): Axis or axes along which the mean is
|
|
2665
|
-
computed. The default is to compute the mean of the flattened array.
|
|
2665
|
+
computed. The default is to compute the mean of the flattened array. Default: ``None`` .
|
|
2666
2666
|
dtype (:class:`mindspore.dtype`, optional): Default: ``None`` . Overrides the dtype of the
|
|
2667
2667
|
output Tensor.
|
|
2668
2668
|
keepdims (boolean, optional): Default: ``False`` . If this is set to True, the axes which
|
|
@@ -2724,7 +2724,7 @@ def nanvar(a, axis=None, dtype=None, ddof=0, keepdims=False):
|
|
|
2724
2724
|
a (Union[int, float, list, tuple, Tensor]): Array containing numbers
|
|
2725
2725
|
whose variance is desired. If `a` is not an array, a conversion is attempted.
|
|
2726
2726
|
axis (Union[int, tuple of int, None], optional): Axis or axes along which the variance is
|
|
2727
|
-
computed. The default is to compute the variance of the flattened array.
|
|
2727
|
+
computed. The default is to compute the variance of the flattened array. Default: ``None`` .
|
|
2728
2728
|
dtype (:class:`mindspore.dtype`, optional): Default: ``None`` . Overrides the dtype of the
|
|
2729
2729
|
output Tensor.
|
|
2730
2730
|
ddof (int, optional): "Delta Degrees of Freedom": the divisor used in the calculation is
|
|
@@ -2779,7 +2779,7 @@ def nanstd(a, axis=None, dtype=None, ddof=0, keepdims=False):
|
|
|
2779
2779
|
a (Union[int, float, list, tuple, Tensor]): Calculates the standard deviation of the non-NaN values.
|
|
2780
2780
|
axis (Union[int, tuple of int, None], optional): Axis or axes along which the standard
|
|
2781
2781
|
deviation is computed. The default is to compute the standard deviation of the
|
|
2782
|
-
flattened array.
|
|
2782
|
+
flattened array. Default: ``None`` .
|
|
2783
2783
|
dtype (:class:`mindspore.dtype`, optional): Default: ``None`` . Overrides the dtype of the
|
|
2784
2784
|
output Tensor.
|
|
2785
2785
|
ddof (int, optional): "Delta Degrees of Freedom": the divisor used in the calculation is
|
|
@@ -2894,9 +2894,9 @@ def kron(a, b):
|
|
|
2894
2894
|
|
|
2895
2895
|
# scales a by the shape of b
|
|
2896
2896
|
kron_shape = _seq_prod(shape_a, shape_b)
|
|
2897
|
-
a = F.reshape(a, _add_unit_axes(shape_a, 2*ndim, True))
|
|
2898
|
-
a = F.tile(a, _add_unit_axes(shape_b, 2*ndim, False))
|
|
2899
|
-
a = moveaxis(a, F.make_range(ndim, 2*ndim), F.make_range(1, 2*ndim, 2))
|
|
2897
|
+
a = F.reshape(a, _add_unit_axes(shape_a, 2 * ndim, True))
|
|
2898
|
+
a = F.tile(a, _add_unit_axes(shape_b, 2 * ndim, False))
|
|
2899
|
+
a = moveaxis(a, F.make_range(ndim, 2 * ndim), F.make_range(1, 2 * ndim, 2))
|
|
2900
2900
|
a = F.reshape(a, kron_shape)
|
|
2901
2901
|
# scales b by the shape of a
|
|
2902
2902
|
b = F.tile(b, shape_a)
|
|
@@ -3118,8 +3118,8 @@ def cumsum(a, axis=None, dtype=None):
|
|
|
3118
3118
|
Returns the cumulative sum of the elements along a given axis.
|
|
3119
3119
|
|
|
3120
3120
|
Note:
|
|
3121
|
-
If ``a.dtype`` is
|
|
3122
|
-
`dtype` will be elevated to
|
|
3121
|
+
If ``a.dtype`` is `int8`, `int16` or `bool`, the result
|
|
3122
|
+
`dtype` will be elevated to `int32`.
|
|
3123
3123
|
|
|
3124
3124
|
Args:
|
|
3125
3125
|
a (Tensor): Input tensor.
|
|
@@ -3161,8 +3161,8 @@ def nancumsum(a, axis=None, dtype=None):
|
|
|
3161
3161
|
Zeros are returned for slices that are all-NaN or empty.
|
|
3162
3162
|
|
|
3163
3163
|
Note:
|
|
3164
|
-
If ``a.dtype`` is
|
|
3165
|
-
`dtype` will be elevated to
|
|
3164
|
+
If ``a.dtype`` is `int8`, `int16` or `bool`, the result
|
|
3165
|
+
`dtype` will be elevated to `int32`.
|
|
3166
3166
|
|
|
3167
3167
|
Args:
|
|
3168
3168
|
a (Tensor): Input tensor.
|
|
@@ -3171,7 +3171,7 @@ def nancumsum(a, axis=None, dtype=None):
|
|
|
3171
3171
|
dtype (:class:`mindspore.dtype`, optional): If not specified, stay the same as `a`,
|
|
3172
3172
|
unless `a` has an integer dtype with a precision less than that of the
|
|
3173
3173
|
default platform integer. In that case, the default platform integer
|
|
3174
|
-
is used.
|
|
3174
|
+
is used. Default: ``None`` .
|
|
3175
3175
|
|
|
3176
3176
|
Returns:
|
|
3177
3177
|
Tensor.
|
|
@@ -3231,7 +3231,7 @@ def cbrt(x, dtype=None):
|
|
|
3231
3231
|
def _cbrt(x):
|
|
3232
3232
|
compute_type = promote_types(x.dtype, "float32")
|
|
3233
3233
|
x = x.astype(compute_type)
|
|
3234
|
-
#
|
|
3234
|
+
# use P.Sign() once gpu support is added
|
|
3235
3235
|
abs_x = F.absolute(x)
|
|
3236
3236
|
sign_x = abs_x / x
|
|
3237
3237
|
return sign_x * F.tensor_pow(abs_x, 1. / 3.)
|
|
@@ -3497,7 +3497,7 @@ def tan(x, dtype=None):
|
|
|
3497
3497
|
Tensor or scalar. This is a scalar if `x` is a scalar.
|
|
3498
3498
|
|
|
3499
3499
|
Raises:
|
|
3500
|
-
TypeError: If the input is not a tensor or
|
|
3500
|
+
TypeError: If the input is not a tensor or the dtype of tensor is mindspore.float64.
|
|
3501
3501
|
|
|
3502
3502
|
Supported Platforms:
|
|
3503
3503
|
``Ascend`` ``CPU``
|
|
@@ -3932,11 +3932,11 @@ def _gradient_along_axis(f, h, axis):
|
|
|
3932
3932
|
"""compute the gradients of `f` along a given axis, a helper function of gradient."""
|
|
3933
3933
|
end = f.shape[axis]
|
|
3934
3934
|
upper_edge = _slice_along_axis(f, axis, 1, 2) - _slice_along_axis(f, axis, 0, 1)
|
|
3935
|
-
lower_edge = _slice_along_axis(f, axis, end-1, end) - _slice_along_axis(f, axis, end-2, end-1)
|
|
3935
|
+
lower_edge = _slice_along_axis(f, axis, end - 1, end) - _slice_along_axis(f, axis, end - 2, end - 1)
|
|
3936
3936
|
if end <= 2:
|
|
3937
3937
|
a_grad = concatenate((upper_edge, lower_edge), axis)
|
|
3938
3938
|
else:
|
|
3939
|
-
middle = (_slice_along_axis(f, axis, 2, end) - _slice_along_axis(f, axis, 0, end-2)) * 0.5
|
|
3939
|
+
middle = (_slice_along_axis(f, axis, 2, end) - _slice_along_axis(f, axis, 0, end - 2)) * 0.5
|
|
3940
3940
|
a_grad = concatenate((upper_edge, middle, lower_edge), axis)
|
|
3941
3941
|
return a_grad / h
|
|
3942
3942
|
|
|
@@ -3978,10 +3978,10 @@ def gradient(f, *varargs, axis=None, edge_order=1):
|
|
|
3978
3978
|
1. single scalar to specify a sample distance for all dimensions.
|
|
3979
3979
|
2. N scalars to specify a constant sample distance for each dimension.
|
|
3980
3980
|
axis (Union[None, int, tuple(int), list(int)], optional): Gradient is calculated
|
|
3981
|
-
only along the given axis or axes. The default
|
|
3981
|
+
only along the given axis or axes. The default ``(axis = None)`` is to calculate
|
|
3982
3982
|
the gradient for all the axes of the input tensor. `axis` may be negative,
|
|
3983
3983
|
in which case it counts from the last to the first `axis`.
|
|
3984
|
-
edge_order (int): Gradient is calculated using N-th order accurate differences
|
|
3984
|
+
edge_order (int, optional): Gradient is calculated using N-th order accurate differences
|
|
3985
3985
|
at the boundaries. Default: ``1`` .
|
|
3986
3986
|
|
|
3987
3987
|
Returns:
|
|
@@ -4050,21 +4050,22 @@ def sum_(a, axis=None, dtype=None, keepdims=False, initial=None):
|
|
|
4050
4050
|
`extobj` are not supported.
|
|
4051
4051
|
|
|
4052
4052
|
Args:
|
|
4053
|
-
|
|
4054
|
-
axis (Union[None, int, tuple(int)]): Axis or axes along which a sum is performed. Default:
|
|
4053
|
+
a (Union[int, float, bool, list, tuple, Tensor]): Elements to sum.
|
|
4054
|
+
axis (Union[None, int, tuple(int)], optional): Axis or axes along which a sum is performed. Default: ``None``.
|
|
4055
4055
|
If `None`, sum all of the elements of the input array.
|
|
4056
4056
|
If axis is negative it counts from the last to the first axis.
|
|
4057
4057
|
If axis is a tuple of integers, a sum is performed on all of the axes specified in the tuple
|
|
4058
4058
|
instead of a single axis or all the axes as before.
|
|
4059
4059
|
dtype (:class:`mindspore.dtype`, optional): Defaults to `None`. Overrides the dtype of the
|
|
4060
4060
|
output Tensor.
|
|
4061
|
-
keepdims (bool): If this is set to True, the axes which are reduced are left in the result as
|
|
4061
|
+
keepdims (bool, optional): If this is set to True, the axes which are reduced are left in the result as
|
|
4062
4062
|
dimensions with size one. With this option, the result will broadcast correctly against the input array.
|
|
4063
4063
|
If the default value is passed, then keepdims will not be passed through to the sum method of
|
|
4064
4064
|
sub-classes of ndarray, however any non-default value will be. If the sub-class method does not
|
|
4065
|
-
implement keepdims any exceptions will be raised. Default:
|
|
4066
|
-
initial (scalar): Starting value for the sum, if `None`,
|
|
4067
|
-
|
|
4065
|
+
implement keepdims any exceptions will be raised. Default: ``False``.
|
|
4066
|
+
initial (scalar, optional): Starting value for the sum, if `None`,
|
|
4067
|
+
which refers to the first element of the reduction.
|
|
4068
|
+
Default: ``None``.
|
|
4068
4069
|
|
|
4069
4070
|
Returns:
|
|
4070
4071
|
Tensor. An array with the same shape as a, with the specified axis removed.
|
|
@@ -4099,8 +4100,8 @@ def _min_cost_chain_matmul(dims):
|
|
|
4099
4100
|
"""
|
|
4100
4101
|
dims = tuple(dims)
|
|
4101
4102
|
n = len(dims) - 1
|
|
4102
|
-
m = [[0]*n for _ in range(n)]
|
|
4103
|
-
s = [[0]*n for _ in range(n)]
|
|
4103
|
+
m = [[0] * n for _ in range(n)]
|
|
4104
|
+
s = [[0] * n for _ in range(n)]
|
|
4104
4105
|
for pos in range(1, n):
|
|
4105
4106
|
for i in range(n - pos):
|
|
4106
4107
|
j = i + pos
|
|
@@ -4309,12 +4310,12 @@ def searchsorted(a, v, side='left', sorter=None):
|
|
|
4309
4310
|
None, then it must be sorted in ascending order, otherwise `sorter` must be
|
|
4310
4311
|
an array of indices that sort it.
|
|
4311
4312
|
v (Union[int, float, bool, list, tuple, Tensor]): Values to insert into `a`.
|
|
4312
|
-
side ('left', 'right', optional): If ``'left'`` , the index of the first suitable
|
|
4313
|
+
side ('left', 'right', optional): If ``'left'`` (default value), the index of the first suitable
|
|
4313
4314
|
location found is given. If ``'right'`` , return the last such index. If there is
|
|
4314
4315
|
no suitable index, return either 0 or N (where N is the length of `a`).
|
|
4315
4316
|
sorter (Union[int, float, bool, list, tuple, Tensor]): 1-D optional array of
|
|
4316
4317
|
integer indices that sort array `a` into ascending order. They are typically
|
|
4317
|
-
the result of argsort.
|
|
4318
|
+
the result of argsort. Default: ``None`` .
|
|
4318
4319
|
|
|
4319
4320
|
Returns:
|
|
4320
4321
|
Tensor, array of insertion points with the same shape as `v`.
|
|
@@ -4378,9 +4379,9 @@ def interp(x, xp, fp, left=None, right=None):
|
|
|
4378
4379
|
fp (Union[int, float, bool, list, tuple, Tensor]): 1-D sequence of floats, the
|
|
4379
4380
|
y-coordinates of the data points, same length as `xp`.
|
|
4380
4381
|
left (float, optional): Value to return for ``x < xp[0]``, default is ``fp[0]``
|
|
4381
|
-
once obtained.
|
|
4382
|
+
once obtained. Default: ``None`` .
|
|
4382
4383
|
right (float, optional): Value to return for ``x > xp[-1]``, default is ``fp[-1]``
|
|
4383
|
-
once obtained.
|
|
4384
|
+
once obtained. Default: ``None`` .
|
|
4384
4385
|
|
|
4385
4386
|
Returns:
|
|
4386
4387
|
Tensor, the interpolated values, same shape as `x`.
|
|
@@ -4421,7 +4422,7 @@ def interp(x, xp, fp, left=None, right=None):
|
|
|
4421
4422
|
x_1 = F.gather_nd(xp, indices_1)
|
|
4422
4423
|
y_0 = F.gather_nd(fp, indices_0)
|
|
4423
4424
|
y_1 = F.gather_nd(fp, indices_1)
|
|
4424
|
-
res = (y_0*(x_1 - x) + y_1*(x - x_0))/(x_1 - x_0)
|
|
4425
|
+
res = (y_0 * (x_1 - x) + y_1 * (x - x_0)) / (x_1 - x_0)
|
|
4425
4426
|
res = F.select(F.equal(x_0, x_1), y_0, res)
|
|
4426
4427
|
|
|
4427
4428
|
idx_0 = _to_tensor([0])
|
|
@@ -4685,21 +4686,21 @@ def histogram(a, bins=10, range=None, weights=None, density=False): # pylint: di
|
|
|
4685
4686
|
bins (Union[int, tuple, list, Tensor], optional): If `bins` is an int, it
|
|
4686
4687
|
defines the number of equal-width bins in the given range (10, by
|
|
4687
4688
|
default). If `bins` is a sequence, it defines the bin edges, including
|
|
4688
|
-
the rightmost edge, allowing for non-uniform bin widths.
|
|
4689
|
+
the rightmost edge, allowing for non-uniform bin widths. Default: ``10`` .
|
|
4689
4690
|
range((float, float), optional): The lower and upper range of the bins. If
|
|
4690
4691
|
not provided, `range` is simply ``(a.min(), a.max())``. Values outside
|
|
4691
4692
|
the range are ignored. The first element of the range must be less than
|
|
4692
|
-
or equal to the second.
|
|
4693
|
+
or equal to the second. Default: ``None`` .
|
|
4693
4694
|
weights (Union[int, float, bool, list, tuple, Tensor], optional): An array
|
|
4694
4695
|
of weights, of the same shape as `a`. If density is True, the weights
|
|
4695
4696
|
are normalized, so that the integral of the density over the range
|
|
4696
|
-
remains 1.
|
|
4697
|
+
remains 1. Default: ``None`` .
|
|
4697
4698
|
density (boolean, optional): If False, the result will contain the number of
|
|
4698
4699
|
samples in each bin. If True, the result is the value of the probability
|
|
4699
4700
|
density function at the bin, normalized such that the integral over the
|
|
4700
4701
|
range is 1. Note that the sum of the histogram values will not be equal
|
|
4701
4702
|
to 1 unless bins of unity width are chosen; it is not a probability mass
|
|
4702
|
-
function.
|
|
4703
|
+
function. Default: ``False`` .
|
|
4703
4704
|
|
|
4704
4705
|
Returns:
|
|
4705
4706
|
(Tensor, Tensor), the values of the histogram and the bin edges.
|
|
@@ -4739,7 +4740,7 @@ def histogram(a, bins=10, range=None, weights=None, density=False): # pylint: di
|
|
|
4739
4740
|
return count, bin_edges
|
|
4740
4741
|
if density:
|
|
4741
4742
|
count = F.cast(count, mstype.float32)
|
|
4742
|
-
count = count/diff(bin_edges)/F.reduce_sum(count)
|
|
4743
|
+
count = count / diff(bin_edges) / F.reduce_sum(count)
|
|
4743
4744
|
return count, bin_edges
|
|
4744
4745
|
|
|
4745
4746
|
|
|
@@ -4795,7 +4796,7 @@ def histogramdd(sample, bins=10, range=None, weights=None, density=False): # pyl
|
|
|
4795
4796
|
such as ``histogramdd((X, Y, Z))``.
|
|
4796
4797
|
|
|
4797
4798
|
The first form should be preferred.
|
|
4798
|
-
bins (Union[int, tuple, list], optional): The bin specification:
|
|
4799
|
+
bins (Union[int, tuple, list], optional): Default: ``10`` . The bin specification:
|
|
4799
4800
|
|
|
4800
4801
|
A sequence of arrays describing the monotonically increasing bin edges along
|
|
4801
4802
|
each dimension.
|
|
@@ -4807,12 +4808,12 @@ def histogramdd(sample, bins=10, range=None, weights=None, density=False): # pyl
|
|
|
4807
4808
|
``(lower, upper)`` tuple giving the outer bin edges to be used if the edges
|
|
4808
4809
|
are not given explicitly in bins. An entry of None in the sequence results in
|
|
4809
4810
|
the minimum and maximum values being used for the corresponding dimension.
|
|
4810
|
-
The default, None, is equivalent to passing a tuple of `D` None values.
|
|
4811
|
+
The default, None, is equivalent to passing a tuple of `D` None values. Default: ``None`` .
|
|
4811
4812
|
weights (Union[list, tuple, Tensor], optional): An array with shape `(N,)` of values
|
|
4812
|
-
`w_i` weighing each sample ``(x_i, y_i, z_i, …)``.
|
|
4813
|
+
`w_i` weighing each sample ``(x_i, y_i, z_i, …)``. Default: ``None`` .
|
|
4813
4814
|
density (boolean, optional): If False, the default, returns the number of samples
|
|
4814
4815
|
in each bin. If True, returns the probability density function at the bin,
|
|
4815
|
-
``bin_count / sample_count / bin_volume``.
|
|
4816
|
+
``bin_count / sample_count / bin_volume``. Default: ``False`` .
|
|
4816
4817
|
|
|
4817
4818
|
Returns:
|
|
4818
4819
|
(Tensor, list of Tensor), the values of the histogram and the bin edges.
|
|
@@ -4899,7 +4900,7 @@ def histogram2d(x, y, bins=10, range=None, weights=None, density=False): # pylin
|
|
|
4899
4900
|
coordinates of the points to be histogrammed.
|
|
4900
4901
|
y (Union[list, tuple, Tensor]): An array with shape `(N,)` containing the y
|
|
4901
4902
|
coordinates of the points to be histogrammed.
|
|
4902
|
-
bins (Union[int, tuple, list], optional): The bin specification:
|
|
4903
|
+
bins (Union[int, tuple, list], optional): Default: ``10`` . The bin specification:
|
|
4903
4904
|
|
|
4904
4905
|
If int, the number of bins for the two dimensions ``(nx=ny=bins)``.
|
|
4905
4906
|
|
|
@@ -4914,12 +4915,12 @@ def histogram2d(x, y, bins=10, range=None, weights=None, density=False): # pylin
|
|
|
4914
4915
|
range(Union[list, tuple], optional): has shape (2, 2), the leftmost and rightmost
|
|
4915
4916
|
edges of the bins along each dimension (if not specified explicitly in the bins
|
|
4916
4917
|
parameters): ``[[xmin, xmax], [ymin, ymax]]``. All values outside of this range
|
|
4917
|
-
will be considered outliers and not tallied in the histogram.
|
|
4918
|
+
will be considered outliers and not tallied in the histogram. Default: ``None`` .
|
|
4918
4919
|
weights (Union[list, tuple, Tensor], optional): An array with shape `(N,)` of values
|
|
4919
|
-
`w_i` weighing each sample `(x_i, y_i)`.
|
|
4920
|
+
`w_i` weighing each sample `(x_i, y_i)`. Default: ``None`` .
|
|
4920
4921
|
density (boolean, optional): If False, the default, returns the number of samples
|
|
4921
4922
|
in each bin. If True, returns the probability density function at the bin,
|
|
4922
|
-
``bin_count / sample_count / bin_volume``.
|
|
4923
|
+
``bin_count / sample_count / bin_volume``. Default: ``False`` .
|
|
4923
4924
|
|
|
4924
4925
|
Returns:
|
|
4925
4926
|
(Tensor, Tensor, Tensor), the values of the bi-directional histogram and the bin edges
|
|
@@ -5060,8 +5061,8 @@ def polyadd(a1, a2):
|
|
|
5060
5061
|
Numpy object poly1d is currently not supported.
|
|
5061
5062
|
|
|
5062
5063
|
Args:
|
|
5063
|
-
a1 (Union[int, float, list, tuple, Tensor): Input polynomial.
|
|
5064
|
-
a2 (Union[int, float, list, tuple, Tensor): Input polynomial.
|
|
5064
|
+
a1 (Union[int, float, list, tuple, Tensor]): Input polynomial.
|
|
5065
|
+
a2 (Union[int, float, list, tuple, Tensor]): Input polynomial.
|
|
5065
5066
|
|
|
5066
5067
|
Returns:
|
|
5067
5068
|
Tensor, the sum of the inputs.
|
|
@@ -5096,8 +5097,8 @@ def polysub(a1, a2):
|
|
|
5096
5097
|
Numpy object poly1d is currently not supported.
|
|
5097
5098
|
|
|
5098
5099
|
Args:
|
|
5099
|
-
a1 (Union[int, float, list, tuple, Tensor): Minuend polynomial.
|
|
5100
|
-
a2 (Union[int, float, list, tuple, Tensor): Subtrahend polynomial.
|
|
5100
|
+
a1 (Union[int, float, list, tuple, Tensor]): Minuend polynomial.
|
|
5101
|
+
a2 (Union[int, float, list, tuple, Tensor]): Subtrahend polynomial.
|
|
5101
5102
|
|
|
5102
5103
|
Returns:
|
|
5103
5104
|
Tensor, the difference of the inputs.
|
|
@@ -5128,10 +5129,10 @@ def polyval(p, x):
|
|
|
5128
5129
|
Numpy object poly1d is currently not supported.
|
|
5129
5130
|
|
|
5130
5131
|
Args:
|
|
5131
|
-
p (Union[int, float, bool, list, tuple, Tensor): 1D array of polynomial
|
|
5132
|
+
p (Union[int, float, bool, list, tuple, Tensor]): 1D array of polynomial
|
|
5132
5133
|
coefficients (including coefficients equal to zero) from highest
|
|
5133
5134
|
degree to the constant term.
|
|
5134
|
-
x (Union[int, float, bool, list, tuple, Tensor): A number, an array of
|
|
5135
|
+
x (Union[int, float, bool, list, tuple, Tensor]): A number, an array of
|
|
5135
5136
|
numbers, at which to evaluate `p`.
|
|
5136
5137
|
|
|
5137
5138
|
Returns:
|
|
@@ -5152,7 +5153,7 @@ def polyval(p, x):
|
|
|
5152
5153
|
shape = F.shape(x)
|
|
5153
5154
|
exp_p = arange(_type_convert(int, p.size) - 1, -1, -1).astype(mstype.float32)
|
|
5154
5155
|
var_p = (x.reshape(shape + (1,)))**exp_p
|
|
5155
|
-
return F.reduce_sum(p*var_p, -1)
|
|
5156
|
+
return F.reduce_sum(p * var_p, -1)
|
|
5156
5157
|
|
|
5157
5158
|
|
|
5158
5159
|
def polyder(p, m=1):
|
|
@@ -5163,7 +5164,7 @@ def polyder(p, m=1):
|
|
|
5163
5164
|
Numpy object poly1d is currently not supported.
|
|
5164
5165
|
|
|
5165
5166
|
Args:
|
|
5166
|
-
p (Union[int, float, bool, list, tuple, Tensor): Polynomial to differentiate.
|
|
5167
|
+
p (Union[int, float, bool, list, tuple, Tensor]): Polynomial to differentiate.
|
|
5167
5168
|
A sequence is interpreted as polynomial coefficients.
|
|
5168
5169
|
m (int, optional): Default: ``1`` , order of differentiation.
|
|
5169
5170
|
|
|
@@ -5200,8 +5201,8 @@ def polymul(a1, a2):
|
|
|
5200
5201
|
Numpy object poly1d is currently not supported.
|
|
5201
5202
|
|
|
5202
5203
|
Args:
|
|
5203
|
-
a1 (Union[int, float, bool, list, tuple, Tensor): Input polynomial.
|
|
5204
|
-
a2 (Union[int, float, bool, list, tuple, Tensor): Input polynomial.
|
|
5204
|
+
a1 (Union[int, float, bool, list, tuple, Tensor]): Input polynomial.
|
|
5205
|
+
a2 (Union[int, float, bool, list, tuple, Tensor]): Input polynomial.
|
|
5205
5206
|
|
|
5206
5207
|
Returns:
|
|
5207
5208
|
Tensor, a new polynomial representing the derivative.
|
|
@@ -5230,10 +5231,10 @@ def polyint(p, m=1, k=None):
|
|
|
5230
5231
|
Numpy object poly1d is currently not supported.
|
|
5231
5232
|
|
|
5232
5233
|
Args:
|
|
5233
|
-
p (Union[int, float, bool, list, tuple, Tensor): Polynomial to integrate. A
|
|
5234
|
+
p (Union[int, float, bool, list, tuple, Tensor]): Polynomial to integrate. A
|
|
5234
5235
|
sequence is interpreted as polynomial coefficients.
|
|
5235
5236
|
m (int, optional): Defaults to 1, Order of the antiderivative.
|
|
5236
|
-
k (Union[int, list
|
|
5237
|
+
k (Union[int, list[int]], optional): Integration constants. They are given
|
|
5237
5238
|
in the order of integration: those corresponding to highest-order terms
|
|
5238
5239
|
come first. If None (default), all constants are assumed to be zero. If
|
|
5239
5240
|
``m = 1``, a single scalar can be given instead of a list.
|
|
@@ -5337,7 +5338,7 @@ def unwrap(p, discont=3.141592653589793, axis=-1):
|
|
|
5337
5338
|
differently than numpy due to differences in round-off.
|
|
5338
5339
|
|
|
5339
5340
|
Args:
|
|
5340
|
-
p (Union[int, float, bool, list, tuple, Tensor): Input array.
|
|
5341
|
+
p (Union[int, float, bool, list, tuple, Tensor]): Input array.
|
|
5341
5342
|
discont (float, optional): Maximum discontinuity between values, default: ``pi`` .
|
|
5342
5343
|
axis (int, optional): Axis along which unwrap will operate, default: ``-1`` .
|
|
5343
5344
|
|
|
@@ -5472,14 +5473,14 @@ def ravel_multi_index(multi_index, dims, mode='clip', order='C'):
|
|
|
5472
5473
|
Args:
|
|
5473
5474
|
multi_index (tuple of array_like):
|
|
5474
5475
|
A tuple of integer arrays, one array for each dimension.
|
|
5475
|
-
dims (Union[int, tuple
|
|
5476
|
-
mode ({`wrap`, `clip`}): Specifies how out-of-bounds indices are handled. Default: ``clip'
|
|
5476
|
+
dims (Union[int, tuple(int)]): The shape of array into which the indices from multi_index apply.
|
|
5477
|
+
mode ({`wrap`, `clip`}, optional): Specifies how out-of-bounds indices are handled. Default: ``'clip'``.
|
|
5477
5478
|
|
|
5478
5479
|
- `wrap`: wrap around
|
|
5479
5480
|
- `clip`: clip to the range
|
|
5480
5481
|
|
|
5481
5482
|
In `clip` mode, a negative index which would normally wrap will clip to 0 instead.
|
|
5482
|
-
order ({`C`, `F`}): Determines whether the multi-index should be viewed as indexing in
|
|
5483
|
+
order ({`C`, `F`}, optional): Determines whether the multi-index should be viewed as indexing in
|
|
5483
5484
|
row-major (C-style) or column-major (Fortran-style) order.
|
|
5484
5485
|
|
|
5485
5486
|
Returns:
|
|
@@ -5534,7 +5535,7 @@ def _vector_norm(x, _ord, axis, keepdims):
|
|
|
5534
5535
|
elif _ord == 0:
|
|
5535
5536
|
res = P.ReduceSum(keepdims)(F.not_equal(x, 0).astype(mstype.float32), axis)
|
|
5536
5537
|
else:
|
|
5537
|
-
res = power(P.ReduceSum(keepdims)(power(absolute(x), _ord), axis), 1
|
|
5538
|
+
res = power(P.ReduceSum(keepdims)(power(absolute(x), _ord), axis), 1. / _ord)
|
|
5538
5539
|
return res
|
|
5539
5540
|
|
|
5540
5541
|
|
|
@@ -5581,7 +5582,7 @@ def norm(x, ord=None, axis=None, keepdims=False): # pylint: disable=redefined-bu
|
|
|
5581
5582
|
the 2-norm of ``x.ravel`` will be returned.
|
|
5582
5583
|
ord (Union[None, 'fro', 'nuc', inf, -inf, int, float], optional): Order of the norm.
|
|
5583
5584
|
inf means numpy’s inf object. Default: ``None`` .
|
|
5584
|
-
axis (Union[
|
|
5585
|
+
axis (Union[int, 2-tuple(int), None], optional): If `axis` is an integer, it
|
|
5585
5586
|
specifies the axis of `x` along which to compute the vector norms. If `axis` is
|
|
5586
5587
|
a 2-tuple, it specifies the axes that hold 2-D matrices, and the matrix norms of
|
|
5587
5588
|
these matrices are computed. If `axis` is None then either a vector norm (when x
|
mindspore/numpy/utils_const.py
CHANGED
|
@@ -208,7 +208,7 @@ def _check_shape_aligned(shape1, shape2):
|
|
|
208
208
|
@_primexpr
|
|
209
209
|
def _tile_size(shape, out_shape, ndim):
|
|
210
210
|
"""Returns tile_size such that shape*tile_size = out_shape"""
|
|
211
|
-
size = [1]*ndim
|
|
211
|
+
size = [1] * ndim
|
|
212
212
|
for idx, (i, j) in enumerate(zip(shape, out_shape)):
|
|
213
213
|
if i != j:
|
|
214
214
|
size[idx] = j
|
|
@@ -441,7 +441,7 @@ def _add_unit_axes(shape, ndim, append=False):
|
|
|
441
441
|
|
|
442
442
|
|
|
443
443
|
@constexpr
|
|
444
|
-
def
|
|
444
|
+
def _check_element_int(lst):
|
|
445
445
|
"""
|
|
446
446
|
Check whether each element in `lst` is an integer.
|
|
447
447
|
"""
|
|
@@ -508,7 +508,7 @@ def _iota(dtype, num, increasing=True):
|
|
|
508
508
|
raise ValueError("zero shape Tensor is not currently supported.")
|
|
509
509
|
if increasing:
|
|
510
510
|
return Tensor(list(range(int(num))), dtype)
|
|
511
|
-
return Tensor(list(range(int(num)-1, -1, -1)), dtype)
|
|
511
|
+
return Tensor(list(range(int(num) - 1, -1, -1)), dtype)
|
|
512
512
|
|
|
513
513
|
|
|
514
514
|
@constexpr
|
|
@@ -520,7 +520,7 @@ def _ceil(number):
|
|
|
520
520
|
@_primexpr
|
|
521
521
|
def _seq_prod(seq1, seq2):
|
|
522
522
|
"""Returns the element-wise product of seq1 and seq2."""
|
|
523
|
-
return tuple(map(lambda x, y: x*y, seq1, seq2))
|
|
523
|
+
return tuple(map(lambda x, y: x * y, seq1, seq2))
|
|
524
524
|
|
|
525
525
|
|
|
526
526
|
@constexpr
|
mindspore/opencv_core452.dll
CHANGED
|
Binary file
|
|
Binary file
|
mindspore/opencv_imgproc452.dll
CHANGED
|
Binary file
|