mindspore 2.3.0__cp310-cp310-win_amd64.whl → 2.4.0__cp310-cp310-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of mindspore might be problematic. Click here for more details.

Files changed (308) hide show
  1. mindspore/.commit_id +1 -1
  2. mindspore/Microsoft.VisualStudio.Telemetry.dll +0 -0
  3. mindspore/Newtonsoft.Json.dll +0 -0
  4. mindspore/__init__.py +3 -1
  5. mindspore/_c_dataengine.cp310-win_amd64.pyd +0 -0
  6. mindspore/_c_expression.cp310-win_amd64.pyd +0 -0
  7. mindspore/_c_mindrecord.cp310-win_amd64.pyd +0 -0
  8. mindspore/_checkparam.py +50 -9
  9. mindspore/_extends/parse/compile_config.py +41 -0
  10. mindspore/_extends/parse/parser.py +9 -7
  11. mindspore/_extends/parse/standard_method.py +52 -14
  12. mindspore/_extends/pijit/pijit_func_white_list.py +350 -24
  13. mindspore/amp.py +24 -10
  14. mindspore/atlprov.dll +0 -0
  15. mindspore/avcodec-59.dll +0 -0
  16. mindspore/avdevice-59.dll +0 -0
  17. mindspore/avfilter-8.dll +0 -0
  18. mindspore/avformat-59.dll +0 -0
  19. mindspore/avutil-57.dll +0 -0
  20. mindspore/c1.dll +0 -0
  21. mindspore/c1xx.dll +0 -0
  22. mindspore/c2.dll +0 -0
  23. mindspore/common/__init__.py +6 -4
  24. mindspore/common/_pijit_context.py +190 -0
  25. mindspore/common/_register_for_tensor.py +2 -1
  26. mindspore/common/_tensor_overload.py +139 -0
  27. mindspore/common/api.py +102 -87
  28. mindspore/common/dump.py +5 -6
  29. mindspore/common/generator.py +1 -7
  30. mindspore/common/hook_handle.py +14 -26
  31. mindspore/common/mindir_util.py +2 -2
  32. mindspore/common/parameter.py +46 -13
  33. mindspore/common/recompute.py +39 -9
  34. mindspore/common/sparse_tensor.py +7 -3
  35. mindspore/common/tensor.py +209 -29
  36. mindspore/communication/__init__.py +1 -1
  37. mindspore/communication/_comm_helper.py +38 -3
  38. mindspore/communication/comm_func.py +310 -55
  39. mindspore/communication/management.py +14 -14
  40. mindspore/context.py +123 -22
  41. mindspore/dataset/__init__.py +1 -1
  42. mindspore/dataset/audio/__init__.py +1 -1
  43. mindspore/dataset/core/config.py +7 -0
  44. mindspore/dataset/core/validator_helpers.py +7 -0
  45. mindspore/dataset/engine/cache_client.py +1 -1
  46. mindspore/dataset/engine/datasets.py +72 -44
  47. mindspore/dataset/engine/datasets_audio.py +7 -7
  48. mindspore/dataset/engine/datasets_standard_format.py +53 -3
  49. mindspore/dataset/engine/datasets_text.py +20 -20
  50. mindspore/dataset/engine/datasets_user_defined.py +174 -104
  51. mindspore/dataset/engine/datasets_vision.py +33 -33
  52. mindspore/dataset/engine/iterators.py +29 -0
  53. mindspore/dataset/engine/obs/util.py +7 -0
  54. mindspore/dataset/engine/queue.py +114 -60
  55. mindspore/dataset/engine/serializer_deserializer.py +2 -2
  56. mindspore/dataset/engine/validators.py +34 -14
  57. mindspore/dataset/text/__init__.py +1 -4
  58. mindspore/dataset/transforms/__init__.py +0 -3
  59. mindspore/dataset/utils/line_reader.py +2 -0
  60. mindspore/dataset/vision/__init__.py +1 -4
  61. mindspore/dataset/vision/utils.py +1 -1
  62. mindspore/dataset/vision/validators.py +2 -1
  63. mindspore/dnnl.dll +0 -0
  64. mindspore/dpcmi.dll +0 -0
  65. mindspore/{nn/extend → experimental/es}/__init__.py +4 -11
  66. mindspore/experimental/es/embedding_service.py +883 -0
  67. mindspore/{nn/layer → experimental/es}/embedding_service_layer.py +218 -30
  68. mindspore/experimental/llm_boost/__init__.py +21 -0
  69. mindspore/{nn/extend/layer → experimental/llm_boost/atb}/__init__.py +4 -8
  70. mindspore/experimental/llm_boost/atb/boost_base.py +211 -0
  71. mindspore/experimental/llm_boost/atb/llama_boost.py +115 -0
  72. mindspore/experimental/llm_boost/atb/qwen_boost.py +101 -0
  73. mindspore/experimental/llm_boost/register.py +129 -0
  74. mindspore/experimental/llm_boost/utils.py +31 -0
  75. mindspore/experimental/optim/adamw.py +85 -0
  76. mindspore/experimental/optim/optimizer.py +3 -0
  77. mindspore/hal/__init__.py +3 -3
  78. mindspore/hal/contiguous_tensors_handle.py +175 -0
  79. mindspore/hal/stream.py +18 -0
  80. mindspore/include/api/model_group.h +13 -1
  81. mindspore/include/api/types.h +10 -10
  82. mindspore/include/dataset/config.h +2 -2
  83. mindspore/include/dataset/constants.h +2 -2
  84. mindspore/include/dataset/execute.h +2 -2
  85. mindspore/include/dataset/vision.h +4 -0
  86. mindspore/jpeg62.dll +0 -0
  87. mindspore/log.py +1 -1
  88. mindspore/mindrecord/filewriter.py +68 -51
  89. mindspore/mindspore_backend.dll +0 -0
  90. mindspore/mindspore_common.dll +0 -0
  91. mindspore/mindspore_core.dll +0 -0
  92. mindspore/mindspore_glog.dll +0 -0
  93. mindspore/mindspore_np_dtype.dll +0 -0
  94. mindspore/mindspore_ops.dll +0 -0
  95. mindspore/mint/__init__.py +495 -46
  96. mindspore/mint/distributed/__init__.py +31 -0
  97. mindspore/mint/distributed/distributed.py +254 -0
  98. mindspore/mint/nn/__init__.py +266 -21
  99. mindspore/mint/nn/functional.py +125 -19
  100. mindspore/mint/nn/layer/__init__.py +39 -0
  101. mindspore/mint/nn/layer/activation.py +133 -0
  102. mindspore/mint/nn/layer/normalization.py +477 -0
  103. mindspore/mint/nn/layer/pooling.py +110 -0
  104. mindspore/mint/optim/adamw.py +28 -7
  105. mindspore/mint/special/__init__.py +63 -0
  106. mindspore/msobj140.dll +0 -0
  107. mindspore/mspdb140.dll +0 -0
  108. mindspore/mspdbcore.dll +0 -0
  109. mindspore/mspdbst.dll +0 -0
  110. mindspore/mspft140.dll +0 -0
  111. mindspore/msvcdis140.dll +0 -0
  112. mindspore/msvcp140_1.dll +0 -0
  113. mindspore/msvcp140_2.dll +0 -0
  114. mindspore/msvcp140_atomic_wait.dll +0 -0
  115. mindspore/msvcp140_codecvt_ids.dll +0 -0
  116. mindspore/multiprocessing/__init__.py +2 -1
  117. mindspore/nn/__init__.py +0 -1
  118. mindspore/nn/cell.py +275 -93
  119. mindspore/nn/layer/activation.py +211 -44
  120. mindspore/nn/layer/basic.py +113 -3
  121. mindspore/nn/layer/embedding.py +120 -2
  122. mindspore/nn/layer/normalization.py +101 -5
  123. mindspore/nn/layer/padding.py +34 -48
  124. mindspore/nn/layer/pooling.py +161 -7
  125. mindspore/nn/layer/transformer.py +3 -3
  126. mindspore/nn/loss/__init__.py +2 -2
  127. mindspore/nn/loss/loss.py +84 -6
  128. mindspore/nn/optim/__init__.py +2 -1
  129. mindspore/nn/optim/adadelta.py +1 -1
  130. mindspore/nn/optim/adam.py +1 -1
  131. mindspore/nn/optim/lamb.py +1 -1
  132. mindspore/nn/optim/tft_wrapper.py +127 -0
  133. mindspore/nn/wrap/cell_wrapper.py +12 -23
  134. mindspore/nn/wrap/grad_reducer.py +5 -5
  135. mindspore/nn/wrap/loss_scale.py +17 -3
  136. mindspore/numpy/__init__.py +1 -1
  137. mindspore/numpy/array_creations.py +65 -68
  138. mindspore/numpy/array_ops.py +64 -60
  139. mindspore/numpy/fft.py +610 -75
  140. mindspore/numpy/logic_ops.py +11 -10
  141. mindspore/numpy/math_ops.py +85 -84
  142. mindspore/numpy/utils_const.py +4 -4
  143. mindspore/opencv_core452.dll +0 -0
  144. mindspore/opencv_imgcodecs452.dll +0 -0
  145. mindspore/opencv_imgproc452.dll +0 -0
  146. mindspore/ops/__init__.py +6 -4
  147. mindspore/ops/_grad_experimental/grad_comm_ops.py +47 -3
  148. mindspore/ops/_grad_experimental/grad_math_ops.py +0 -22
  149. mindspore/ops/_vmap/vmap_array_ops.py +2 -4
  150. mindspore/ops/_vmap/vmap_math_ops.py +17 -1
  151. mindspore/ops/_vmap/vmap_nn_ops.py +43 -2
  152. mindspore/ops/auto_generate/cpp_create_prim_instance_helper.py +85 -7
  153. mindspore/ops/auto_generate/gen_arg_dtype_cast.py +2 -0
  154. mindspore/ops/auto_generate/gen_extend_func.py +734 -13
  155. mindspore/ops/auto_generate/gen_ops_def.py +2420 -381
  156. mindspore/ops/auto_generate/gen_ops_prim.py +5196 -1659
  157. mindspore/ops/auto_generate/pyboost_inner_prim.py +176 -56
  158. mindspore/ops/composite/base.py +85 -48
  159. mindspore/ops/composite/multitype_ops/_compile_utils.py +1 -0
  160. mindspore/ops/composite/multitype_ops/not_in_impl.py +2 -2
  161. mindspore/ops/function/__init__.py +22 -0
  162. mindspore/ops/function/array_func.py +490 -153
  163. mindspore/ops/function/debug_func.py +113 -1
  164. mindspore/ops/function/fft_func.py +15 -2
  165. mindspore/ops/function/grad/grad_func.py +3 -2
  166. mindspore/ops/function/math_func.py +558 -207
  167. mindspore/ops/function/nn_func.py +817 -383
  168. mindspore/ops/function/other_func.py +3 -2
  169. mindspore/ops/function/random_func.py +184 -8
  170. mindspore/ops/function/reshard_func.py +13 -11
  171. mindspore/ops/function/sparse_unary_func.py +1 -1
  172. mindspore/ops/function/vmap_func.py +3 -2
  173. mindspore/ops/functional.py +24 -14
  174. mindspore/ops/op_info_register.py +3 -3
  175. mindspore/ops/operations/__init__.py +6 -1
  176. mindspore/ops/operations/_grad_ops.py +2 -76
  177. mindspore/ops/operations/_infer_ops.py +1 -1
  178. mindspore/ops/operations/_inner_ops.py +71 -94
  179. mindspore/ops/operations/array_ops.py +12 -146
  180. mindspore/ops/operations/comm_ops.py +42 -53
  181. mindspore/ops/operations/custom_ops.py +83 -19
  182. mindspore/ops/operations/debug_ops.py +42 -10
  183. mindspore/ops/operations/manually_defined/_inner.py +12 -0
  184. mindspore/ops/operations/manually_defined/ops_def.py +265 -10
  185. mindspore/ops/operations/math_ops.py +12 -223
  186. mindspore/ops/operations/nn_ops.py +20 -114
  187. mindspore/ops/operations/other_ops.py +7 -4
  188. mindspore/ops/operations/random_ops.py +46 -1
  189. mindspore/ops/primitive.py +18 -6
  190. mindspore/ops_generate/arg_dtype_cast.py +2 -0
  191. mindspore/ops_generate/gen_aclnn_implement.py +11 -11
  192. mindspore/ops_generate/gen_constants.py +36 -0
  193. mindspore/ops_generate/gen_ops.py +67 -52
  194. mindspore/ops_generate/gen_ops_inner_prim.py +1 -1
  195. mindspore/ops_generate/gen_pyboost_func.py +131 -47
  196. mindspore/ops_generate/op_proto.py +10 -3
  197. mindspore/ops_generate/pyboost_utils.py +14 -1
  198. mindspore/ops_generate/template.py +43 -21
  199. mindspore/parallel/__init__.py +3 -1
  200. mindspore/parallel/_auto_parallel_context.py +28 -8
  201. mindspore/parallel/_cell_wrapper.py +83 -0
  202. mindspore/parallel/_parallel_serialization.py +47 -19
  203. mindspore/parallel/_tensor.py +81 -11
  204. mindspore/parallel/_utils.py +13 -1
  205. mindspore/parallel/algo_parameter_config.py +5 -5
  206. mindspore/parallel/checkpoint_transform.py +46 -39
  207. mindspore/parallel/cluster/process_entity/__init__.py +1 -1
  208. mindspore/parallel/cluster/process_entity/_api.py +31 -23
  209. mindspore/parallel/cluster/process_entity/_utils.py +2 -27
  210. mindspore/parallel/parameter_broadcast.py +3 -4
  211. mindspore/parallel/shard.py +162 -31
  212. mindspore/parallel/transform_safetensors.py +993 -0
  213. mindspore/pgodb140.dll +0 -0
  214. mindspore/pgort140.dll +0 -0
  215. mindspore/profiler/__init__.py +2 -1
  216. mindspore/profiler/common/constant.py +29 -0
  217. mindspore/profiler/common/registry.py +47 -0
  218. mindspore/profiler/common/util.py +28 -0
  219. mindspore/profiler/dynamic_profiler.py +694 -0
  220. mindspore/profiler/envprofiling.py +17 -19
  221. mindspore/profiler/parser/ascend_analysis/constant.py +18 -0
  222. mindspore/profiler/parser/ascend_analysis/file_manager.py +25 -4
  223. mindspore/profiler/parser/ascend_analysis/function_event.py +43 -19
  224. mindspore/profiler/parser/ascend_analysis/fwk_cann_parser.py +31 -26
  225. mindspore/profiler/parser/ascend_analysis/fwk_file_parser.py +56 -10
  226. mindspore/profiler/parser/ascend_analysis/msprof_timeline_parser.py +55 -8
  227. mindspore/profiler/parser/ascend_analysis/path_manager.py +313 -0
  228. mindspore/profiler/parser/ascend_analysis/profiler_info_parser.py +27 -20
  229. mindspore/profiler/parser/ascend_analysis/trace_event_manager.py +9 -2
  230. mindspore/profiler/parser/ascend_msprof_exporter.py +5 -4
  231. mindspore/profiler/parser/ascend_timeline_generator.py +27 -25
  232. mindspore/profiler/parser/base_timeline_generator.py +19 -25
  233. mindspore/profiler/parser/cpu_gpu_timeline_generator.py +25 -12
  234. mindspore/profiler/parser/framework_parser.py +1 -391
  235. mindspore/profiler/parser/gpu_analysis/__init__.py +14 -0
  236. mindspore/profiler/parser/gpu_analysis/function_event.py +44 -0
  237. mindspore/profiler/parser/gpu_analysis/fwk_file_parser.py +89 -0
  238. mindspore/profiler/parser/gpu_analysis/profiler_info_parser.py +72 -0
  239. mindspore/profiler/parser/memory_usage_parser.py +0 -154
  240. mindspore/profiler/parser/profiler_info.py +78 -6
  241. mindspore/profiler/profiler.py +153 -0
  242. mindspore/profiler/profiling.py +280 -412
  243. mindspore/rewrite/__init__.py +1 -2
  244. mindspore/rewrite/common/namespace.py +4 -4
  245. mindspore/rewrite/symbol_tree/symbol_tree.py +3 -3
  246. mindspore/run_check/_check_version.py +36 -103
  247. mindspore/safeguard/rewrite_obfuscation.py +591 -247
  248. mindspore/swresample-4.dll +0 -0
  249. mindspore/swscale-6.dll +0 -0
  250. mindspore/tbbmalloc.dll +0 -0
  251. mindspore/tinyxml2.dll +0 -0
  252. mindspore/train/__init__.py +4 -3
  253. mindspore/train/_utils.py +28 -2
  254. mindspore/train/amp.py +171 -53
  255. mindspore/train/callback/__init__.py +2 -2
  256. mindspore/train/callback/_callback.py +4 -4
  257. mindspore/train/callback/_checkpoint.py +85 -22
  258. mindspore/train/callback/_cluster_monitor.py +1 -1
  259. mindspore/train/callback/_flops_collector.py +1 -0
  260. mindspore/train/callback/_loss_monitor.py +3 -3
  261. mindspore/train/callback/_on_request_exit.py +134 -31
  262. mindspore/train/callback/_summary_collector.py +5 -5
  263. mindspore/train/callback/_tft_register.py +352 -0
  264. mindspore/train/dataset_helper.py +7 -3
  265. mindspore/train/metrics/metric.py +3 -3
  266. mindspore/train/metrics/roc.py +4 -4
  267. mindspore/train/mind_ir_pb2.py +44 -39
  268. mindspore/train/model.py +134 -58
  269. mindspore/train/serialization.py +336 -112
  270. mindspore/turbojpeg.dll +0 -0
  271. mindspore/utils/__init__.py +21 -0
  272. mindspore/utils/utils.py +60 -0
  273. mindspore/vcmeta.dll +0 -0
  274. mindspore/vcruntime140.dll +0 -0
  275. mindspore/vcruntime140_1.dll +0 -0
  276. mindspore/version.py +1 -1
  277. {mindspore-2.3.0.dist-info → mindspore-2.4.0.dist-info}/METADATA +6 -2
  278. {mindspore-2.3.0.dist-info → mindspore-2.4.0.dist-info}/RECORD +281 -275
  279. mindspore/include/c_api/ms/abstract.h +0 -67
  280. mindspore/include/c_api/ms/attribute.h +0 -197
  281. mindspore/include/c_api/ms/base/handle_types.h +0 -43
  282. mindspore/include/c_api/ms/base/macros.h +0 -32
  283. mindspore/include/c_api/ms/base/status.h +0 -33
  284. mindspore/include/c_api/ms/base/types.h +0 -283
  285. mindspore/include/c_api/ms/context.h +0 -102
  286. mindspore/include/c_api/ms/graph.h +0 -160
  287. mindspore/include/c_api/ms/node.h +0 -606
  288. mindspore/include/c_api/ms/tensor.h +0 -161
  289. mindspore/include/c_api/ms/value.h +0 -84
  290. mindspore/mindspore_shared_lib.dll +0 -0
  291. mindspore/nn/extend/basic.py +0 -140
  292. mindspore/nn/extend/embedding.py +0 -143
  293. mindspore/nn/extend/layer/normalization.py +0 -109
  294. mindspore/nn/extend/pooling.py +0 -117
  295. mindspore/nn/layer/embedding_service.py +0 -531
  296. mindspore/ops/_op_impl/aicpu/strided_slice_v2.py +0 -93
  297. mindspore/ops/_op_impl/aicpu/strided_slice_v2_grad.py +0 -66
  298. mindspore/ops/extend/__init__.py +0 -53
  299. mindspore/ops/extend/array_func.py +0 -218
  300. mindspore/ops/extend/math_func.py +0 -76
  301. mindspore/ops/extend/nn_func.py +0 -308
  302. mindspore/ops/silent_check.py +0 -162
  303. mindspore/profiler/parser/msadvisor_analyzer.py +0 -82
  304. mindspore/profiler/parser/msadvisor_parser.py +0 -240
  305. mindspore/train/callback/_mindio_ttp.py +0 -443
  306. {mindspore-2.3.0.dist-info → mindspore-2.4.0.dist-info}/WHEEL +0 -0
  307. {mindspore-2.3.0.dist-info → mindspore-2.4.0.dist-info}/entry_points.txt +0 -0
  308. {mindspore-2.3.0.dist-info → mindspore-2.4.0.dist-info}/top_level.txt +0 -0
@@ -1,93 +0,0 @@
1
- # Copyright 2022 Huawei Technologies Co., Ltd
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- # ============================================================================
15
-
16
- """StridedSliceV2 op"""
17
- from mindspore.ops.op_info_register import op_info_register, AiCPURegOp, DataType
18
-
19
- strided_slice_v2_op_info = AiCPURegOp("StridedSliceV2") \
20
- .fusion_type("OPAQUE") \
21
- .input(0, "x", "required") \
22
- .input(1, "begin", "required") \
23
- .input(2, "end", "required") \
24
- .input(3, "strides", "required") \
25
- .output(0, "output", "required") \
26
- .attr("begin_mask", "int") \
27
- .attr("end_mask", "int") \
28
- .attr("ellipsis_mask", "int") \
29
- .attr("new_axis_mask", "int") \
30
- .attr("shrink_axis_mask", "int") \
31
- .dtype_format(DataType.BOOL_Default, DataType.I64_Default, DataType.I64_Default,
32
- DataType.I64_Default, DataType.BOOL_Default) \
33
- .dtype_format(DataType.I8_Default, DataType.I64_Default, DataType.I64_Default,
34
- DataType.I64_Default, DataType.I8_Default) \
35
- .dtype_format(DataType.I16_Default, DataType.I64_Default, DataType.I64_Default,
36
- DataType.I64_Default, DataType.I16_Default) \
37
- .dtype_format(DataType.I32_Default, DataType.I64_Default, DataType.I64_Default,
38
- DataType.I64_Default, DataType.I32_Default) \
39
- .dtype_format(DataType.I64_Default, DataType.I64_Default, DataType.I64_Default,
40
- DataType.I64_Default, DataType.I64_Default) \
41
- .dtype_format(DataType.U8_Default, DataType.I64_Default, DataType.I64_Default,
42
- DataType.I64_Default, DataType.U8_Default) \
43
- .dtype_format(DataType.U16_Default, DataType.I64_Default, DataType.I64_Default,
44
- DataType.I64_Default, DataType.U16_Default) \
45
- .dtype_format(DataType.U32_Default, DataType.I64_Default, DataType.I64_Default,
46
- DataType.I64_Default, DataType.U32_Default) \
47
- .dtype_format(DataType.U64_Default, DataType.I64_Default, DataType.I64_Default,
48
- DataType.I64_Default, DataType.U64_Default) \
49
- .dtype_format(DataType.F16_Default, DataType.I64_Default, DataType.I64_Default,
50
- DataType.I64_Default, DataType.F16_Default) \
51
- .dtype_format(DataType.F32_Default, DataType.I64_Default, DataType.I64_Default,
52
- DataType.I64_Default, DataType.F32_Default) \
53
- .dtype_format(DataType.F64_Default, DataType.I64_Default, DataType.I64_Default,
54
- DataType.I64_Default, DataType.F64_Default) \
55
- .dtype_format(DataType.C64_Default, DataType.I64_Default, DataType.I64_Default,
56
- DataType.I64_Default, DataType.C64_Default) \
57
- .dtype_format(DataType.C128_Default, DataType.I64_Default, DataType.I64_Default,
58
- DataType.I64_Default, DataType.C128_Default) \
59
- .dtype_format(DataType.BOOL_Default, DataType.I32_Default, DataType.I32_Default,
60
- DataType.I32_Default, DataType.BOOL_Default) \
61
- .dtype_format(DataType.I8_Default, DataType.I32_Default, DataType.I32_Default,
62
- DataType.I32_Default, DataType.I8_Default) \
63
- .dtype_format(DataType.I16_Default, DataType.I32_Default, DataType.I32_Default,
64
- DataType.I32_Default, DataType.I16_Default) \
65
- .dtype_format(DataType.I32_Default, DataType.I32_Default, DataType.I32_Default,
66
- DataType.I32_Default, DataType.I32_Default) \
67
- .dtype_format(DataType.I64_Default, DataType.I32_Default, DataType.I32_Default,
68
- DataType.I32_Default, DataType.I64_Default) \
69
- .dtype_format(DataType.U8_Default, DataType.I32_Default, DataType.I32_Default,
70
- DataType.I32_Default, DataType.U8_Default) \
71
- .dtype_format(DataType.U16_Default, DataType.I32_Default, DataType.I32_Default,
72
- DataType.I32_Default, DataType.U16_Default) \
73
- .dtype_format(DataType.U32_Default, DataType.I32_Default, DataType.I32_Default,
74
- DataType.I32_Default, DataType.U32_Default) \
75
- .dtype_format(DataType.U64_Default, DataType.I32_Default, DataType.I32_Default,
76
- DataType.I32_Default, DataType.U64_Default) \
77
- .dtype_format(DataType.F16_Default, DataType.I32_Default, DataType.I32_Default,
78
- DataType.I32_Default, DataType.F16_Default) \
79
- .dtype_format(DataType.F32_Default, DataType.I32_Default, DataType.I32_Default,
80
- DataType.I32_Default, DataType.F32_Default) \
81
- .dtype_format(DataType.F64_Default, DataType.I32_Default, DataType.I32_Default,
82
- DataType.I32_Default, DataType.F64_Default) \
83
- .dtype_format(DataType.C64_Default, DataType.I32_Default, DataType.I32_Default,
84
- DataType.I32_Default, DataType.C64_Default) \
85
- .dtype_format(DataType.C128_Default, DataType.I32_Default, DataType.I32_Default,
86
- DataType.I32_Default, DataType.C128_Default) \
87
- .get_op_info()
88
-
89
-
90
- @op_info_register(strided_slice_v2_op_info)
91
- def _strided_slice_v2_aicpu():
92
- """StridedSliceV2 AiCPU register"""
93
- return
@@ -1,66 +0,0 @@
1
- # Copyright 2022 Huawei Technologies Co., Ltd
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- # ============================================================================
15
-
16
- """StridedSliceGradV2 op"""
17
- from mindspore.ops.op_info_register import op_info_register, AiCPURegOp, DataType
18
-
19
- strided_slice_v2_grad_op_info = AiCPURegOp("StridedSliceV2Grad") \
20
- .fusion_type("OPAQUE") \
21
- .input(0, "shapex", "required") \
22
- .input(1, "begin", "required") \
23
- .input(2, "end", "required") \
24
- .input(3, "strides", "required") \
25
- .input(4, "dy", "required") \
26
- .output(0, "output", "required") \
27
- .attr("begin_mask", "int") \
28
- .attr("end_mask", "int") \
29
- .attr("ellipsis_mask", "int") \
30
- .attr("new_axis_mask", "int") \
31
- .attr("shrink_axis_mask", "int") \
32
- .dtype_format(DataType.I32_Default, DataType.I32_Default,
33
- DataType.I32_Default, DataType.I32_Default, DataType.BOOL_Default, DataType.BOOL_Default) \
34
- .dtype_format(DataType.I32_Default, DataType.I32_Default,
35
- DataType.I32_Default, DataType.I32_Default, DataType.I8_Default, DataType.I8_Default) \
36
- .dtype_format(DataType.I32_Default, DataType.I32_Default,
37
- DataType.I32_Default, DataType.I32_Default, DataType.I16_Default, DataType.I16_Default) \
38
- .dtype_format(DataType.I32_Default, DataType.I32_Default,
39
- DataType.I32_Default, DataType.I32_Default, DataType.I32_Default, DataType.I32_Default) \
40
- .dtype_format(DataType.I32_Default, DataType.I32_Default,
41
- DataType.I32_Default, DataType.I32_Default, DataType.I64_Default, DataType.I64_Default) \
42
- .dtype_format(DataType.I32_Default, DataType.I32_Default,
43
- DataType.I32_Default, DataType.I32_Default, DataType.U8_Default, DataType.U8_Default) \
44
- .dtype_format(DataType.I32_Default, DataType.I32_Default,
45
- DataType.I32_Default, DataType.I32_Default, DataType.U16_Default, DataType.U16_Default) \
46
- .dtype_format(DataType.I32_Default, DataType.I32_Default,
47
- DataType.I32_Default, DataType.I32_Default, DataType.U32_Default, DataType.U32_Default) \
48
- .dtype_format(DataType.I32_Default, DataType.I32_Default,
49
- DataType.I32_Default, DataType.I32_Default, DataType.U64_Default, DataType.U64_Default) \
50
- .dtype_format(DataType.I32_Default, DataType.I32_Default,
51
- DataType.I32_Default, DataType.I32_Default, DataType.F16_Default, DataType.F16_Default) \
52
- .dtype_format(DataType.I32_Default, DataType.I32_Default,
53
- DataType.I32_Default, DataType.I32_Default, DataType.F32_Default, DataType.F32_Default) \
54
- .dtype_format(DataType.I32_Default, DataType.I32_Default,
55
- DataType.I32_Default, DataType.I32_Default, DataType.F64_Default, DataType.F64_Default) \
56
- .dtype_format(DataType.I32_Default, DataType.I32_Default,
57
- DataType.I32_Default, DataType.I32_Default, DataType.C64_Default, DataType.C64_Default) \
58
- .dtype_format(DataType.I32_Default, DataType.I32_Default,
59
- DataType.I32_Default, DataType.I32_Default, DataType.C128_Default, DataType.C128_Default) \
60
- .get_op_info()
61
-
62
-
63
- @op_info_register(strided_slice_v2_grad_op_info)
64
- def _strided_slice_v2_grad_aicpu():
65
- """StridedSliceV2Grad AiCPU register"""
66
- return
@@ -1,53 +0,0 @@
1
- # Copyright 2020 Huawei Technologies Co., Ltd
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- # ============================================================================
15
-
16
- """
17
-
18
- Operators with better performance
19
-
20
- """
21
-
22
- from __future__ import absolute_import
23
-
24
- from mindspore.common import Tensor
25
- from mindspore.ops.primitive import Primitive, PrimitiveWithInfer, PrimitiveWithCheck, prim_attr_register
26
- from mindspore.ops.vm_impl_registry import get_vm_impl_fn, vm_impl_registry
27
- from mindspore.ops.op_info_register import op_info_register, custom_info_register, AkgGpuRegOp, AkgAscendRegOp, \
28
- AiCPURegOp, TBERegOp, CpuRegOp, CustomRegOp, DataType
29
- from mindspore.ops.primitive import constexpr
30
- from . import (
31
- array_func,
32
- math_func,
33
- nn_func,
34
- )
35
-
36
- from .array_func import gather, max, min, one_hot
37
- from .math_func import (
38
- baddbmm,
39
- bmm,
40
- add,
41
- sub
42
- )
43
-
44
- from .nn_func import (
45
- conv2d,
46
- max_pool2d,
47
- leaky_relu_ext
48
- )
49
-
50
- __all__ = []
51
- __all__.extend(array_func.__all__)
52
- __all__.extend(math_func.__all__)
53
- __all__.extend(nn_func.__all__)
@@ -1,218 +0,0 @@
1
- # Copyright 2024 Huawei Technologies Co., Ltd
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- # ============================================================================
15
-
16
- """
17
-
18
- Array Operators
19
-
20
- """
21
- from mindspore.common import Tensor
22
- from mindspore.ops.operations.array_ops import ArgMaxWithValue, ArgMinWithValue
23
- from mindspore.ops._primitive_cache import _get_cache_prim
24
- from mindspore.ops.auto_generate.gen_ops_prim import gather_d_op
25
- from mindspore.ops.auto_generate.gen_ops_def import max_, min_
26
- from mindspore.ops.auto_generate.pyboost_inner_prim import _PyboostOneHotExtPrim
27
- one_hot_ext_impl = _PyboostOneHotExtPrim()
28
-
29
- # define Primitive global variables
30
-
31
- def gather(input, dim, index):
32
- r"""
33
- Gather data from a tensor by indices.
34
-
35
- .. math::
36
- output[(i_0, i_1, ..., i_{dim}, i_{dim+1}, ..., i_n)] =
37
- input[(i_0, i_1, ..., index[(i_0, i_1, ..., i_{dim}, i_{dim+1}, ..., i_n)], i_{dim+1}, ..., i_n)]
38
-
39
- .. warning::
40
- On Ascend, the behavior is unpredictable in the following cases:
41
-
42
- - the value of `index` is not in the range `[-input.shape[dim], input.shape[dim])` in forward;
43
- - the value of `index` is not in the range `[0, input.shape[dim])` in backward.
44
-
45
- Args:
46
- input (Tensor): The target tensor to gather values.
47
- dim (int): the axis to index along, must be in range `[-input.rank, input.rank)`.
48
- index (Tensor): The index tensor, with int32 or int64 data type. An valid `index` should be:
49
-
50
- - `index.rank == input.rank`;
51
- - for `axis != dim`, `index.shape[axis] <= input.shape[axis]`;
52
- - the value of `index` is in range `[-input.shape[dim], input.shape[dim])`.
53
-
54
- Returns:
55
- Tensor, has the same type as `input` and the same shape as `index`.
56
-
57
- Raises:
58
- ValueError: If the shape of `index` is illegal.
59
- ValueError: If `dim` is not in `[-input.rank, input.rank)`.
60
- ValueError: If the value of `index` is out of the valid range.
61
- TypeError: If the type of `index` is illegal.
62
-
63
- Supported Platforms:
64
- ``Ascend`` ``GPU`` ``CPU``
65
-
66
- Examples:
67
- >>> import mindspore
68
- >>> import numpy as np
69
- >>> from mindspore import Tensor, ops
70
- >>> input = Tensor(np.array([[-0.1, 0.3, 3.6], [0.4, 0.5, -3.2]]), mindspore.float32)
71
- >>> index = Tensor(np.array([[0, 0], [1, 1]]), mindspore.int32)
72
- >>> output = ops.extend.gather(input, 1, index)
73
- >>> print(output)
74
- [[-0.1 -0.1]
75
- [0.5 0.5]]
76
- """
77
- return gather_d_op(input, dim, index)
78
-
79
-
80
- def max(input, dim=None, keepdim=False):
81
- """
82
- Calculates the maximum value along with the given dimension for the input tensor.
83
-
84
- Args:
85
- input (Tensor): The input tensor, can be any dimension. Complex tensor is not supported for now.
86
- dim (int, optional): The dimension to reduce. Default: ``None`` .
87
- keepdim (bool, optional): Whether to reduce dimension, if true, the output will keep same dimension
88
- with the input, the output will reduce dimension if false. Default: ``False`` .
89
-
90
- Returns:
91
- Tensor if `dim` is the default value ``None`` , the maximum value of input tensor, with the shape :math:`()` ,
92
- and same dtype as `input`.
93
-
94
- tuple (Tensor) if `dim` is not the default value ``None`` , tuple of 2 tensors, containing the maximum
95
- value of the input tensor along the given dimension `dim` and the corresponding index.
96
-
97
- - **values (Tensor)** - The maximum value of input tensor along the given dimension `dim`, with same dtype as
98
- `input`. If `keepdim` is ``True`` , the shape of output tensors is :math:`(input_1, input_2, ...,
99
- input_{axis-1}, 1, input_{axis+1}, ..., input_N)` . Otherwise, the shape is :math:`(input_1, input_2, ...,
100
- input_{axis-1}, input_{axis+1}, ..., input_N)` .
101
- - **index (Tensor)** - The index for the maximum value of the input tensor along the given dimension `dim`, with
102
- the same shape as `values`.
103
-
104
- Raises:
105
- ValueError: If `dim` is the default value ``None`` and `keepdim` is not ``False`` .
106
-
107
- Supported Platforms:
108
- ``Ascend`` ``GPU`` ``CPU``
109
-
110
- Examples:
111
- >>> import mindspore
112
- >>> import numpy as np
113
- >>> from mindspore import Tensor, ops
114
- >>> y = Tensor(np.array([[0.0, 0.3, 0.4, 0.5, 0.1],
115
- ... [3.2, 0.4, 0.1, 2.9, 4.0]]), mindspore.float32)
116
- >>> output, index = ops.extend.max(y, 0, True)
117
- >>> print(output, index)
118
- [[3.2 0.4 0.4 2.9 4. ]] [[1 1 0 1 1]]
119
- """
120
- if dim is None:
121
- if keepdim is not False:
122
- raise ValueError(f"For 'max', the `keepdim` must be False when the `dim` is None, but got {keepdim}")
123
- return max_(input)
124
- argmax_with_value_op = _get_cache_prim(ArgMaxWithValue)(dim, keepdim)
125
- indices, values = argmax_with_value_op(input)
126
- return values, indices
127
-
128
-
129
- def min(input, dim=None, keepdim=False):
130
- """
131
- Calculates the minimum value along with the given dimension for the input tensor.
132
-
133
- Args:
134
- input (Tensor): The input tensor, can be any dimension. Complex tensor is not supported for now.
135
- dim (int, optional): The dimension to reduce. Default: ``None`` .
136
- keepdim (bool, optional): Whether to reduce dimension, if true, the output will keep same dimension
137
- with the input, the output will reduce dimension if false. Default: ``False`` .
138
-
139
- Returns:
140
- Tensor if `dim` is the default value ``None`` , the minimum value of input tensor, with the shape :math:`()` ,
141
- and same dtype as `input`.
142
-
143
- tuple (Tensor) if `dim` is not the default value ``None`` , tuple of 2 tensors, containing the minimum value
144
- of the input tensor along the given dimension `dim` and the corresponding index.
145
-
146
- - **values (Tensor)** - The minimum value of input tensor along the given dimension `dim`, with same dtype as
147
- `input`. If `keepdim` is ``True`` , the shape of output tensors is :math:`(input_1, input_2, ...,
148
- input_{axis-1}, 1, input_{axis+1}, ..., input_N)` . Otherwise, the shape is :math:`(input_1, input_2, ...,
149
- input_{axis-1}, input_{axis+1}, ..., input_N)` .
150
- - **index (Tensor)** - The index for the minimum value of the input tensor along the given dimension `dim`,
151
- with the same shape as `values`.
152
-
153
- Raises:
154
- ValueError: If `dim` is the default value ``None`` and `keepdim` is not ``False`` .
155
-
156
- Supported Platforms:
157
- ``Ascend`` ``GPU`` ``CPU``
158
-
159
- Examples:
160
- >>> import mindspore
161
- >>> import numpy as np
162
- >>> from mindspore import Tensor, ops
163
- >>> x = Tensor(np.array([0.0, 0.4, 0.6, 0.7, 0.1]), mindspore.float32)
164
- >>> output, index = ops.extend.min(x, 0, keepdim=True)
165
- >>> print(output, index)
166
- [0.0] [0]
167
- """
168
- if dim is None:
169
- if keepdim is not False:
170
- raise ValueError(f"For 'min', the `keepdim` must be False when the `dim` is None, but got {keepdim}")
171
- return min_(input)
172
- argmin_with_value_op = _get_cache_prim(ArgMinWithValue)(dim, keepdim)
173
- indices, values = argmin_with_value_op(input)
174
- return values, indices
175
-
176
-
177
- def one_hot(tensor, num_classes):
178
- r"""
179
- Computes a one-hot tensor.
180
-
181
- The locations represented by tensor in `tensor` take value `1`, while all
182
- other locations take value `0`.
183
-
184
- Args:
185
- tensor (Tensor): A tensor of indices. Tensor of shape :math:`(X_0, \ldots, X_n)`.
186
- Data type must be int32 or int64.
187
- num_classes (int): A scalar defining the depth of the one-hot dimension.
188
-
189
- Returns:
190
- Tensor, one-hot tensor.
191
-
192
- Raises:
193
- TypeError: If `num_classes` is not an int.
194
- TypeError: If dtype of `tensor` is not int32 or int64.
195
- ValueError: If `num_classes` is less than 0.
196
-
197
- Supported Platforms:
198
- ``Ascend`` ``GPU`` ``CPU``
199
-
200
- Examples:
201
- >>> import mindspore
202
- >>> import numpy as np
203
- >>> from mindspore import ops
204
- >>> from mindspore import Tensor
205
- >>> tensor = Tensor(np.array([0, 1, 2]), mindspore.int32)
206
- >>> num_classes = 3
207
- >>> output = ops.extend.one_hot(tensor, num_classes)
208
- >>> print(output)
209
- [[1. 0. 0.]
210
- [0. 1. 0.]
211
- [0. 0. 1.]]
212
- """
213
- on_value = Tensor(1, dtype=tensor.dtype)
214
- off_value = Tensor(0, dtype=tensor.dtype)
215
- return one_hot_ext_impl(tensor, num_classes, on_value, off_value, -1)
216
-
217
-
218
- __all__ = ['gather', 'max', 'min', 'one_hot']
@@ -1,76 +0,0 @@
1
- # Copyright 2023 Huawei Technologies Co., Ltd
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- # ============================================================================
15
-
16
- """
17
-
18
- Math Operators with better performance
19
-
20
- """
21
-
22
- from mindspore.ops import auto_generate as P
23
- from mindspore.ops.auto_generate.gen_ops_def import add_ext as add, sub_ext as sub, bmm_ext as bmm
24
-
25
-
26
- # define Primitive global variables
27
-
28
-
29
- def baddbmm(input, batch1, batch2, beta=1, alpha=1):
30
- r"""
31
- The result is the sum of the input and a batch matrix-matrix product of matrices in batch1 and batch2.
32
- The formula is defined as follows:
33
-
34
- .. math::
35
- \text{out}_{i} = \beta \text{input}_{i} + \alpha (\text{batch1}_{i} \mathbin{@} \text{batch2}_{i})
36
-
37
- Args:
38
- input (Tensor): The input Tensor. When batch1 is a :math:`(C, W, T)` Tensor and batch2 is a
39
- :math:`(C, T, H)` Tensor, input must be broadcastable with :math:`(C, W, H)` Tensor.
40
- batch1 (Tensor): :math:`batch1` in the above formula. Must be 3-D Tensor, dtype is same as input.
41
- batch2 (Tensor): :math:`batch2` in the above formula. Must be 3-D Tensor, dtype is same as input.
42
- beta (Union[float, int], optional): multiplier for input. Default: ``1`` .
43
- alpha (Union[float, int], optional): multiplier for :math:`batch1 @ batch2`. Default: ``1`` .
44
- Arguments beta and alpha must be integers when inputs of type not FloatTensor, otherwise they should
45
- be a real number.
46
-
47
- Returns:
48
- Tensor, has the same dtype as input, shape will be :math:`(C, W, H)`.
49
-
50
- Raises:
51
- TypeError: The type of `input`, `batch1`, `batch2` is not Tensor.
52
- TypeError: The types of `input`, `batch1`, `batch2` are different.
53
- TypeError: For inputs of type FloatTensor or DoubleTensor, \
54
- arguments beta and alpha not be real numbers, otherwise not be integers.
55
- TypeError: For Baddbmm, attributes alpha and beta are not real numbers
56
- ValueError: If `batch1` and `batch2` are not 3-D tensors.
57
-
58
- Supported Platforms:
59
- ``Ascend`` ``GPU`` ``CPU``
60
-
61
- Examples:
62
- >>> import numpy as np
63
- >>> from mindspore import Tensor, ops
64
- >>> input = Tensor(np.ones([1, 3, 3]).astype(np.float32))
65
- >>> batch1 = Tensor(np.ones([1, 3, 4]).astype(np.float32))
66
- >>> batch2 = Tensor(np.ones([1, 4, 3]).astype(np.float32))
67
- >>> output = ops.baddbmm(input, batch1, batch2)
68
- >>> print(output)
69
- [[[5. 5. 5.]
70
- [5. 5. 5.]
71
- [5. 5. 5.]]]
72
- """
73
- return P.baddbmm(input, batch1, batch2, beta, alpha)
74
-
75
-
76
- __all__ = ['baddbmm', 'add', 'sub', 'bmm']