mindspore 2.2.14__cp39-cp39-manylinux1_x86_64.whl → 2.3.0rc1__cp39-cp39-manylinux1_x86_64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of mindspore might be problematic. Click here for more details.
- mindspore/.commit_id +1 -1
- mindspore/__init__.py +4 -4
- mindspore/_akg/akg/composite/build_module.py +155 -11
- mindspore/_akg/akg/config/repository.json +38 -0
- mindspore/_akg/akg/ms/info_version_adapt.py +29 -0
- mindspore/_akg/akg/tvm/contrib/nvcc.py +4 -1
- mindspore/_akg/akg/utils/ascend_profilier/path_manager.py +2 -1
- mindspore/_akg/akg/utils/composite_op_helper.py +4 -2
- mindspore/_akg/akg/utils/dump_ascend_meta.py +2 -2
- mindspore/_akg/akg/utils/gen_random.py +14 -8
- mindspore/_akg/akg/utils/op_dsl.py +11 -0
- mindspore/_akg/akg/utils/tbe_codegen_utils.py +5 -5
- mindspore/_c_dataengine.cpython-39-x86_64-linux-gnu.so +0 -0
- mindspore/_c_expression.cpython-39-x86_64-linux-gnu.so +0 -0
- mindspore/_c_mindrecord.cpython-39-x86_64-linux-gnu.so +0 -0
- mindspore/_checkparam.py +58 -0
- mindspore/_extends/builtin_operations.py +2 -1
- mindspore/_extends/graph_kernel/model/graph_parallel.py +16 -6
- mindspore/_extends/parallel_compile/akg_compiler/akg_process.py +3 -16
- mindspore/_extends/parallel_compile/akg_compiler/build_tbe_kernel.py +16 -4
- mindspore/_extends/parallel_compile/akg_compiler/compiler.py +1 -0
- mindspore/_extends/parallel_compile/akg_compiler/gen_custom_op_files.py +96 -0
- mindspore/_extends/parallel_compile/akg_compiler/tbe_topi.py +2 -1
- mindspore/_extends/parallel_compile/akg_compiler/util.py +5 -2
- mindspore/_extends/parse/__init__.py +18 -14
- mindspore/_extends/parse/compile_config.py +229 -0
- mindspore/_extends/parse/parser.py +155 -59
- mindspore/_extends/parse/resources.py +40 -7
- mindspore/_extends/parse/standard_method.py +124 -204
- mindspore/_extends/remote/kernel_build_server.py +2 -0
- mindspore/_mindspore_offline_debug.cpython-39-x86_64-linux-gnu.so +0 -0
- mindspore/_profiler.py +30 -0
- mindspore/amp.py +24 -18
- mindspore/bin/cache_admin +0 -0
- mindspore/bin/cache_server +0 -0
- mindspore/boost/boost_cell_wrapper.py +1 -1
- mindspore/boost/group_loss_scale_manager.py +1 -1
- mindspore/common/__init__.py +3 -1
- mindspore/common/_jit_fallback_utils.py +2 -3
- mindspore/common/_register_for_adapter.py +7 -0
- mindspore/common/_stub_tensor.py +6 -1
- mindspore/common/_utils.py +5 -17
- mindspore/common/api.py +91 -48
- mindspore/common/auto_dynamic_shape.py +27 -14
- mindspore/common/dtype.py +5 -4
- mindspore/common/dump.py +5 -4
- mindspore/common/initializer.py +1 -1
- mindspore/common/jit_config.py +20 -11
- mindspore/common/lazy_inline.py +58 -17
- mindspore/common/mindir_util.py +12 -2
- mindspore/common/mutable.py +79 -14
- mindspore/common/parameter.py +19 -4
- mindspore/common/seed.py +9 -9
- mindspore/common/sparse_tensor.py +251 -18
- mindspore/common/symbol.py +122 -0
- mindspore/common/tensor.py +321 -433
- mindspore/communication/__init__.py +3 -3
- mindspore/communication/_comm_helper.py +5 -0
- mindspore/communication/management.py +53 -38
- mindspore/config/op_info.config +22 -54
- mindspore/context.py +167 -59
- mindspore/dataset/__init__.py +5 -5
- mindspore/dataset/audio/__init__.py +6 -6
- mindspore/dataset/audio/transforms.py +711 -158
- mindspore/dataset/callback/ds_callback.py +2 -2
- mindspore/dataset/engine/cache_client.py +2 -2
- mindspore/dataset/engine/datasets.py +72 -38
- mindspore/dataset/engine/datasets_audio.py +14 -14
- mindspore/dataset/engine/datasets_standard_format.py +33 -3
- mindspore/dataset/engine/datasets_text.py +38 -38
- mindspore/dataset/engine/datasets_user_defined.py +7 -7
- mindspore/dataset/engine/datasets_vision.py +75 -71
- mindspore/dataset/engine/offload.py +5 -7
- mindspore/dataset/text/__init__.py +3 -3
- mindspore/dataset/text/transforms.py +408 -121
- mindspore/dataset/text/utils.py +9 -9
- mindspore/dataset/transforms/__init__.py +1 -1
- mindspore/dataset/transforms/transforms.py +261 -76
- mindspore/dataset/utils/browse_dataset.py +9 -9
- mindspore/dataset/vision/__init__.py +3 -3
- mindspore/dataset/vision/c_transforms.py +5 -5
- mindspore/dataset/vision/transforms.py +2264 -514
- mindspore/dataset/vision/utils.py +40 -9
- mindspore/dataset/vision/validators.py +7 -1
- mindspore/experimental/optim/__init__.py +12 -2
- mindspore/experimental/optim/adadelta.py +161 -0
- mindspore/experimental/optim/adagrad.py +168 -0
- mindspore/experimental/optim/adam.py +35 -34
- mindspore/experimental/optim/adamax.py +170 -0
- mindspore/experimental/optim/adamw.py +40 -16
- mindspore/experimental/optim/asgd.py +153 -0
- mindspore/experimental/optim/lr_scheduler.py +60 -119
- mindspore/experimental/optim/nadam.py +157 -0
- mindspore/experimental/optim/optimizer.py +15 -8
- mindspore/experimental/optim/radam.py +194 -0
- mindspore/experimental/optim/rmsprop.py +154 -0
- mindspore/experimental/optim/rprop.py +164 -0
- mindspore/experimental/optim/sgd.py +28 -19
- mindspore/hal/__init__.py +34 -0
- mindspore/hal/_ascend.py +57 -0
- mindspore/hal/_base.py +57 -0
- mindspore/hal/_cpu.py +56 -0
- mindspore/hal/_gpu.py +57 -0
- mindspore/hal/device.py +356 -0
- mindspore/hal/event.py +179 -0
- mindspore/hal/stream.py +337 -0
- mindspore/include/api/data_type.h +2 -2
- mindspore/include/api/dual_abi_helper.h +16 -3
- mindspore/include/api/model.h +1 -3
- mindspore/include/api/status.h +14 -0
- mindspore/include/c_api/model_c.h +173 -0
- mindspore/include/c_api/ms/base/types.h +1 -0
- mindspore/include/c_api/types_c.h +19 -0
- mindspore/include/dataset/execute.h +1 -3
- mindspore/include/mindapi/base/format.h +125 -23
- mindspore/include/mindapi/base/types.h +7 -0
- mindspore/lib/libdnnl.so.2 +0 -0
- mindspore/lib/libmindspore.so +0 -0
- mindspore/lib/libmindspore_backend.so +0 -0
- mindspore/lib/libmindspore_common.so +0 -0
- mindspore/lib/libmindspore_core.so +0 -0
- mindspore/lib/libmindspore_glog.so.0 +0 -0
- mindspore/lib/libmindspore_gpr.so.15 +0 -0
- mindspore/lib/libmindspore_grpc++.so.1 +0 -0
- mindspore/lib/libmindspore_grpc.so.15 +0 -0
- mindspore/lib/libmindspore_shared_lib.so +0 -0
- mindspore/lib/libmpi_adapter.so +0 -0
- mindspore/lib/libmpi_collective.so +0 -0
- mindspore/lib/libnnacl.so +0 -0
- mindspore/lib/libopencv_core.so.4.5 +0 -0
- mindspore/lib/libopencv_imgcodecs.so.4.5 +0 -0
- mindspore/lib/libopencv_imgproc.so.4.5 +0 -0
- mindspore/lib/libps_cache.so +0 -0
- mindspore/lib/plugin/ascend/custom_aicore_ops/op_impl/ai_core/tbe/config/ascend910/aic-ascend910-ops-info.json +2044 -154
- mindspore/lib/plugin/ascend/custom_aicore_ops/op_impl/ai_core/tbe/config/ascend910b/aic-ascend910b-ops-info.json +2044 -33
- mindspore/lib/plugin/ascend/custom_aicore_ops/op_impl/ai_core/tbe/custom_aicore_ops_impl/build_tbe_kernel.py +529 -0
- mindspore/lib/plugin/ascend/custom_aicore_ops/op_impl/ai_core/tbe/custom_aicore_ops_impl/compiler.py +56 -0
- mindspore/lib/plugin/ascend/custom_aicore_ops/op_impl/ai_core/tbe/custom_aicore_ops_impl/custom.py +1109 -0
- mindspore/lib/plugin/ascend/custom_aicore_ops/op_impl/ai_core/tbe/custom_aicore_ops_impl/get_file_path.py +36 -0
- mindspore/lib/plugin/ascend/custom_aicore_ops/op_impl/ai_core/tbe/custom_aicore_ops_impl/kv_cache_mgr.py +0 -2
- mindspore/lib/plugin/ascend/custom_aicore_ops/op_impl/ai_core/tbe/custom_aicore_ops_impl/tbe_topi.py +556 -0
- mindspore/lib/plugin/ascend/custom_aicore_ops/op_impl/vector_core/tbe/custom_aicore_ops_impl/kv_cache_mgr.py +0 -2
- mindspore/lib/plugin/ascend/custom_aicpu_ops/op_impl/cpu/aicpu_kernel/impl/libcust_cpu_kernels.so +0 -0
- mindspore/lib/plugin/ascend/custom_aicpu_ops/op_impl/cpu/config/cust_aicpu_kernel.json +6325 -1767
- mindspore/lib/plugin/ascend/custom_aicpu_ops/op_proto/libcust_op_proto.so +0 -0
- mindspore/lib/plugin/ascend/custom_ascendc_ops/op_api/include/aclnn_add_custom.h +49 -0
- mindspore/lib/plugin/ascend/custom_ascendc_ops/op_api/include/aclnn_decoder_kv_cache.h +59 -0
- mindspore/lib/plugin/ascend/custom_ascendc_ops/op_api/include/aclnn_prompt_kv_cache.h +59 -0
- mindspore/lib/plugin/ascend/custom_ascendc_ops/op_api/lib/libcust_opapi.so +0 -0
- mindspore/lib/plugin/ascend/custom_ascendc_ops/op_impl/ai_core/tbe/config/ascend310p/aic-ascend310p-ops-info.json +52 -0
- mindspore/lib/plugin/ascend/custom_ascendc_ops/op_impl/ai_core/tbe/config/ascend910/aic-ascend910-ops-info.json +232 -0
- mindspore/lib/plugin/ascend/custom_ascendc_ops/op_impl/ai_core/tbe/config/ascend910b/aic-ascend910b-ops-info.json +232 -0
- mindspore/lib/plugin/ascend/custom_ascendc_ops/op_impl/ai_core/tbe/custom_ascendc_ops_impl/dynamic/add_custom.cpp +81 -0
- mindspore/lib/plugin/ascend/custom_ascendc_ops/op_impl/ai_core/tbe/custom_ascendc_ops_impl/dynamic/add_custom.py +134 -0
- mindspore/lib/plugin/ascend/custom_ascendc_ops/op_impl/ai_core/tbe/custom_ascendc_ops_impl/dynamic/decoder_kv_cache.cpp +192 -0
- mindspore/lib/plugin/ascend/custom_ascendc_ops/op_impl/ai_core/tbe/custom_ascendc_ops_impl/dynamic/decoder_kv_cache.py +134 -0
- mindspore/lib/plugin/ascend/custom_ascendc_ops/op_impl/ai_core/tbe/custom_ascendc_ops_impl/dynamic/prompt_kv_cache.cpp +274 -0
- mindspore/lib/plugin/ascend/custom_ascendc_ops/op_impl/ai_core/tbe/custom_ascendc_ops_impl/dynamic/prompt_kv_cache.py +134 -0
- mindspore/lib/plugin/ascend/custom_ascendc_ops/op_impl/ai_core/tbe/op_tiling/lib/linux/x86_64/libcust_opmaster_rt2.0.so +0 -0
- mindspore/lib/plugin/ascend/custom_ascendc_ops/op_impl/ai_core/tbe/op_tiling/liboptiling.so +0 -0
- mindspore/lib/plugin/ascend/custom_ascendc_ops/op_proto/inc/op_proto.h +39 -0
- mindspore/lib/plugin/ascend/custom_ascendc_ops/op_proto/lib/linux/x86_64/libcust_opsproto_rt2.0.so +0 -0
- mindspore/lib/plugin/ascend/libakg.so +0 -0
- mindspore/lib/plugin/ascend/libascend_collective.so +0 -0
- mindspore/lib/plugin/ascend/libdvpp_utils.so +0 -0
- mindspore/lib/plugin/ascend/libhccl_plugin.so +0 -0
- mindspore/lib/plugin/ascend/libmindspore_cpu_kernels.so +0 -0
- mindspore/lib/plugin/cpu/libakg.so +0 -0
- mindspore/lib/plugin/gpu/libcuda_ops.so.10 +0 -0
- mindspore/lib/plugin/gpu/libcuda_ops.so.11 +0 -0
- mindspore/lib/plugin/gpu10.1/libakg.so +0 -0
- mindspore/lib/plugin/gpu10.1/libnccl.so.2 +0 -0
- mindspore/lib/plugin/gpu10.1/libnvidia_collective.so +0 -0
- mindspore/lib/plugin/gpu11.1/libakg.so +0 -0
- mindspore/lib/plugin/gpu11.1/libnccl.so.2 +0 -0
- mindspore/lib/plugin/gpu11.1/libnvidia_collective.so +0 -0
- mindspore/lib/plugin/gpu11.6/libakg.so +0 -0
- mindspore/lib/plugin/gpu11.6/libnccl.so.2 +0 -0
- mindspore/lib/plugin/gpu11.6/libnvidia_collective.so +0 -0
- mindspore/lib/plugin/{libmindspore_ascend.so.1 → libmindspore_ascend.so.2} +0 -0
- mindspore/lib/plugin/libmindspore_gpu.so.10.1 +0 -0
- mindspore/lib/plugin/libmindspore_gpu.so.11.1 +0 -0
- mindspore/lib/plugin/libmindspore_gpu.so.11.6 +0 -0
- mindspore/mindrecord/__init__.py +5 -1
- mindspore/mindrecord/config.py +809 -0
- mindspore/mindrecord/filereader.py +25 -0
- mindspore/mindrecord/filewriter.py +74 -56
- mindspore/mindrecord/mindpage.py +40 -6
- mindspore/mindrecord/shardutils.py +3 -2
- mindspore/mindrecord/shardwriter.py +7 -0
- mindspore/mindrecord/tools/cifar100_to_mr.py +8 -13
- mindspore/mindrecord/tools/cifar10_to_mr.py +9 -15
- mindspore/mindrecord/tools/csv_to_mr.py +4 -9
- mindspore/mindrecord/tools/imagenet_to_mr.py +3 -8
- mindspore/mindrecord/tools/mnist_to_mr.py +7 -12
- mindspore/mindrecord/tools/tfrecord_to_mr.py +1 -6
- mindspore/multiprocessing/__init__.py +68 -0
- mindspore/nn/cell.py +86 -133
- mindspore/nn/dynamic_lr.py +2 -2
- mindspore/nn/layer/activation.py +79 -90
- mindspore/nn/layer/basic.py +4 -80
- mindspore/nn/layer/channel_shuffle.py +3 -16
- mindspore/nn/layer/container.py +3 -3
- mindspore/nn/layer/conv.py +71 -71
- mindspore/nn/layer/embedding.py +105 -44
- mindspore/nn/layer/image.py +4 -7
- mindspore/nn/layer/normalization.py +46 -38
- mindspore/nn/layer/padding.py +26 -39
- mindspore/nn/layer/pooling.py +13 -9
- mindspore/nn/layer/rnn_cells.py +5 -15
- mindspore/nn/layer/rnns.py +6 -5
- mindspore/nn/layer/thor_layer.py +1 -2
- mindspore/nn/layer/timedistributed.py +1 -1
- mindspore/nn/layer/transformer.py +52 -50
- mindspore/nn/learning_rate_schedule.py +6 -5
- mindspore/nn/loss/loss.py +43 -64
- mindspore/nn/optim/ada_grad.py +4 -2
- mindspore/nn/optim/adadelta.py +3 -1
- mindspore/nn/optim/adafactor.py +1 -1
- mindspore/nn/optim/adam.py +102 -181
- mindspore/nn/optim/adamax.py +4 -2
- mindspore/nn/optim/adasum.py +2 -2
- mindspore/nn/optim/asgd.py +4 -2
- mindspore/nn/optim/ftrl.py +31 -61
- mindspore/nn/optim/lamb.py +5 -3
- mindspore/nn/optim/lars.py +2 -2
- mindspore/nn/optim/lazyadam.py +6 -4
- mindspore/nn/optim/momentum.py +13 -25
- mindspore/nn/optim/optimizer.py +6 -3
- mindspore/nn/optim/proximal_ada_grad.py +4 -2
- mindspore/nn/optim/rmsprop.py +9 -3
- mindspore/nn/optim/rprop.py +4 -2
- mindspore/nn/optim/sgd.py +6 -5
- mindspore/nn/optim/thor.py +2 -2
- mindspore/nn/probability/distribution/_utils/custom_ops.py +2 -2
- mindspore/nn/probability/distribution/beta.py +2 -2
- mindspore/nn/probability/distribution/categorical.py +4 -6
- mindspore/nn/probability/distribution/cauchy.py +2 -2
- mindspore/nn/probability/distribution/exponential.py +1 -1
- mindspore/nn/probability/distribution/gumbel.py +2 -2
- mindspore/nn/probability/distribution/poisson.py +2 -2
- mindspore/nn/probability/distribution/uniform.py +2 -2
- mindspore/nn/reinforcement/_tensors_queue.py +13 -1
- mindspore/nn/wrap/__init__.py +2 -1
- mindspore/nn/wrap/cell_wrapper.py +33 -12
- mindspore/nn/wrap/grad_reducer.py +148 -8
- mindspore/nn/wrap/loss_scale.py +7 -7
- mindspore/numpy/__init__.py +2 -0
- mindspore/numpy/array_creations.py +2 -0
- mindspore/numpy/array_ops.py +1 -5
- mindspore/numpy/fft.py +431 -0
- mindspore/numpy/math_ops.py +54 -60
- mindspore/numpy/utils.py +3 -0
- mindspore/ops/__init__.py +5 -4
- mindspore/ops/_grad_experimental/grad_array_ops.py +4 -129
- mindspore/ops/_grad_experimental/grad_comm_ops.py +16 -22
- mindspore/ops/_grad_experimental/grad_math_ops.py +68 -283
- mindspore/ops/_grad_experimental/grad_nn_ops.py +0 -53
- mindspore/ops/_grad_experimental/grad_quant_ops.py +3 -3
- mindspore/ops/_grad_experimental/grad_sparse.py +1 -1
- mindspore/ops/_grad_experimental/grad_sparse_ops.py +3 -3
- mindspore/ops/_op_impl/__init__.py +0 -1
- mindspore/ops/_op_impl/aicpu/gamma.py +2 -0
- mindspore/ops/_op_impl/aicpu/generate_eod_mask.py +1 -1
- mindspore/ops/_op_impl/aicpu/log_uniform_candidate_sampler.py +1 -3
- mindspore/ops/_op_impl/aicpu/poisson.py +2 -0
- mindspore/ops/_op_impl/cpu/__init__.py +1 -3
- mindspore/ops/_op_impl/cpu/adam.py +2 -2
- mindspore/ops/_op_impl/cpu/adam_weight_decay.py +3 -2
- mindspore/ops/_op_impl/cpu/maximum_grad.py +16 -14
- mindspore/ops/_op_impl/cpu/minimum_grad.py +8 -0
- mindspore/ops/_vmap/vmap_array_ops.py +137 -101
- mindspore/ops/_vmap/vmap_base.py +8 -1
- mindspore/ops/_vmap/vmap_grad_math_ops.py +95 -9
- mindspore/ops/_vmap/vmap_grad_nn_ops.py +102 -56
- mindspore/ops/_vmap/vmap_image_ops.py +70 -13
- mindspore/ops/_vmap/vmap_math_ops.py +74 -49
- mindspore/ops/_vmap/vmap_nn_ops.py +164 -89
- mindspore/ops/_vmap/vmap_other_ops.py +1 -1
- mindspore/ops/auto_generate/__init__.py +31 -0
- mindspore/ops/auto_generate/cpp_create_prim_instance_helper.py +133 -0
- mindspore/ops/auto_generate/gen_arg_dtype_cast.py +248 -0
- mindspore/ops/auto_generate/gen_arg_handler.py +147 -0
- mindspore/ops/auto_generate/gen_extend_func.py +130 -0
- mindspore/ops/auto_generate/gen_ops_def.py +4786 -0
- mindspore/ops/auto_generate/gen_ops_prim.py +8335 -0
- mindspore/ops/auto_generate/pyboost_inner_prim.py +77 -0
- mindspore/ops/composite/__init__.py +5 -2
- mindspore/ops/composite/base.py +118 -17
- mindspore/ops/composite/math_ops.py +9 -48
- mindspore/ops/composite/multitype_ops/_compile_utils.py +166 -601
- mindspore/ops/composite/multitype_ops/_constexpr_utils.py +15 -133
- mindspore/ops/composite/multitype_ops/add_impl.py +6 -0
- mindspore/ops/composite/multitype_ops/bitwise_and_impl.py +6 -0
- mindspore/ops/composite/multitype_ops/bitwise_or_impl.py +6 -0
- mindspore/ops/composite/multitype_ops/bitwise_xor_impl.py +6 -0
- mindspore/ops/composite/multitype_ops/div_impl.py +8 -0
- mindspore/ops/composite/multitype_ops/equal_impl.py +6 -0
- mindspore/ops/composite/multitype_ops/floordiv_impl.py +8 -0
- mindspore/ops/composite/multitype_ops/getitem_impl.py +6 -0
- mindspore/ops/composite/multitype_ops/greater_equal_impl.py +6 -0
- mindspore/ops/composite/multitype_ops/greater_impl.py +6 -0
- mindspore/ops/composite/multitype_ops/in_impl.py +8 -2
- mindspore/ops/composite/multitype_ops/left_shift_impl.py +6 -0
- mindspore/ops/composite/multitype_ops/less_equal_impl.py +6 -0
- mindspore/ops/composite/multitype_ops/less_impl.py +6 -0
- mindspore/ops/composite/multitype_ops/logic_not_impl.py +6 -0
- mindspore/ops/composite/multitype_ops/logical_and_impl.py +6 -0
- mindspore/ops/composite/multitype_ops/logical_or_impl.py +6 -0
- mindspore/ops/composite/multitype_ops/mod_impl.py +6 -0
- mindspore/ops/composite/multitype_ops/mul_impl.py +6 -0
- mindspore/ops/composite/multitype_ops/negative_impl.py +9 -3
- mindspore/ops/composite/multitype_ops/not_equal_impl.py +6 -0
- mindspore/ops/composite/multitype_ops/not_in_impl.py +6 -1
- mindspore/ops/composite/multitype_ops/ones_like_impl.py +2 -2
- mindspore/ops/composite/multitype_ops/pow_impl.py +6 -0
- mindspore/ops/composite/multitype_ops/right_shift_impl.py +6 -0
- mindspore/ops/composite/multitype_ops/setitem_impl.py +32 -21
- mindspore/ops/composite/multitype_ops/sub_impl.py +6 -0
- mindspore/ops/composite/multitype_ops/zeros_like_impl.py +6 -3
- mindspore/ops/deprecated.py +14 -3
- mindspore/ops/extend/__init__.py +46 -0
- mindspore/ops/extend/array_func.py +152 -0
- mindspore/ops/extend/math_func.py +76 -0
- mindspore/ops/{_op_impl/tbe/atomic_addr_clean.py → extend/nn_func.py} +5 -15
- mindspore/ops/function/__init__.py +19 -11
- mindspore/ops/function/array_func.py +251 -1440
- mindspore/ops/function/clip_func.py +12 -13
- mindspore/ops/function/debug_func.py +1 -4
- mindspore/ops/function/fft_func.py +31 -0
- mindspore/ops/function/grad/grad_func.py +24 -17
- mindspore/ops/function/image_func.py +27 -21
- mindspore/ops/function/linalg_func.py +35 -68
- mindspore/ops/function/math_func.py +451 -2360
- mindspore/ops/function/nn_func.py +459 -780
- mindspore/ops/function/other_func.py +4 -5
- mindspore/ops/function/parameter_func.py +5 -93
- mindspore/ops/function/random_func.py +24 -80
- mindspore/ops/function/sparse_unary_func.py +9 -16
- mindspore/ops/function/spectral_func.py +1 -1
- mindspore/ops/function/vmap_func.py +14 -14
- mindspore/ops/functional.py +56 -62
- mindspore/ops/op_info_register.py +22 -19
- mindspore/ops/operations/__init__.py +19 -19
- mindspore/ops/operations/_grad_ops.py +20 -723
- mindspore/ops/operations/_inner_ops.py +178 -286
- mindspore/ops/operations/_scalar_ops.py +5 -480
- mindspore/ops/operations/_sequence_ops.py +4 -34
- mindspore/ops/operations/array_ops.py +99 -2491
- mindspore/ops/operations/comm_ops.py +38 -46
- mindspore/ops/operations/custom_ops.py +8 -8
- mindspore/ops/operations/debug_ops.py +100 -31
- mindspore/ops/operations/image_ops.py +1 -217
- mindspore/ops/operations/inner_ops.py +3 -38
- mindspore/ops/operations/linalg_ops.py +1 -49
- mindspore/{rewrite/ast_transformers → ops/operations/manually_defined}/__init__.py +11 -4
- mindspore/ops/operations/manually_defined/_inner.py +61 -0
- mindspore/ops/operations/manually_defined/ops_def.py +1391 -0
- mindspore/ops/operations/math_ops.py +703 -4601
- mindspore/ops/operations/nn_ops.py +374 -1748
- mindspore/ops/operations/other_ops.py +50 -42
- mindspore/ops/operations/random_ops.py +3 -52
- mindspore/ops/primitive.py +196 -96
- mindspore/ops_generate/__init__.py +27 -0
- mindspore/ops_generate/arg_dtype_cast.py +248 -0
- mindspore/ops_generate/arg_handler.py +147 -0
- mindspore/ops_generate/gen_aclnn_implement.py +266 -0
- mindspore/ops_generate/gen_ops.py +1062 -0
- mindspore/ops_generate/gen_ops_inner_prim.py +129 -0
- mindspore/ops_generate/gen_pyboost_func.py +932 -0
- mindspore/ops_generate/gen_utils.py +188 -0
- mindspore/ops_generate/op_proto.py +138 -0
- mindspore/ops_generate/pyboost_utils.py +364 -0
- mindspore/ops_generate/template.py +238 -0
- mindspore/parallel/__init__.py +5 -4
- mindspore/parallel/_auto_parallel_context.py +21 -76
- mindspore/parallel/_cell_wrapper.py +16 -9
- mindspore/parallel/_cost_model_context.py +1 -1
- mindspore/parallel/_dp_allreduce_fusion.py +159 -159
- mindspore/parallel/_parallel_serialization.py +30 -46
- mindspore/parallel/_ps_context.py +1 -1
- mindspore/parallel/_recovery_context.py +1 -1
- mindspore/parallel/_tensor.py +19 -7
- mindspore/parallel/_transformer/__init__.py +1 -1
- mindspore/parallel/_transformer/layers.py +1 -1
- mindspore/parallel/_transformer/loss.py +1 -1
- mindspore/parallel/_transformer/moe.py +1 -1
- mindspore/parallel/_transformer/op_parallel_config.py +1 -1
- mindspore/parallel/_transformer/transformer.py +1 -1
- mindspore/parallel/_utils.py +131 -6
- mindspore/parallel/algo_parameter_config.py +6 -6
- mindspore/parallel/checkpoint_transform.py +180 -196
- mindspore/parallel/cluster/__init__.py +15 -0
- mindspore/parallel/cluster/process_entity/__init__.py +18 -0
- mindspore/parallel/cluster/process_entity/_api.py +345 -0
- mindspore/parallel/cluster/process_entity/_utils.py +116 -0
- mindspore/parallel/cluster/run.py +139 -0
- mindspore/parallel/mpi/__init__.py +1 -1
- mindspore/parallel/mpi/_mpi_config.py +1 -1
- mindspore/parallel/parameter_broadcast.py +152 -0
- mindspore/parallel/shard.py +99 -2
- mindspore/profiler/common/util.py +20 -0
- mindspore/profiler/envprofiling.py +1 -1
- mindspore/{_extends/parallel_compile/tbe_compiler → profiler/parser/ascend_analysis}/__init__.py +1 -1
- mindspore/profiler/parser/ascend_analysis/constant.py +66 -0
- mindspore/profiler/parser/ascend_analysis/file_manager.py +77 -0
- mindspore/profiler/parser/ascend_analysis/function_event.py +146 -0
- mindspore/profiler/parser/ascend_analysis/fwk_cann_parser.py +108 -0
- mindspore/profiler/parser/ascend_analysis/fwk_file_parser.py +80 -0
- mindspore/profiler/parser/ascend_analysis/msprof_timeline_parser.py +52 -0
- mindspore/profiler/parser/ascend_analysis/profiler_info_parser.py +104 -0
- mindspore/profiler/parser/ascend_analysis/tlv_decoder.py +86 -0
- mindspore/profiler/parser/ascend_analysis/trace_event_manager.py +59 -0
- mindspore/profiler/parser/ascend_cluster_generator.py +14 -9
- mindspore/profiler/parser/ascend_communicate_generator.py +0 -1
- mindspore/profiler/parser/ascend_flops_generator.py +20 -4
- mindspore/profiler/parser/ascend_hccl_generator.py +25 -277
- mindspore/profiler/parser/ascend_msprof_exporter.py +112 -132
- mindspore/profiler/parser/ascend_msprof_generator.py +68 -285
- mindspore/profiler/parser/ascend_op_generator.py +75 -42
- mindspore/profiler/parser/ascend_timeline_generator.py +293 -135
- mindspore/profiler/parser/base_timeline_generator.py +6 -0
- mindspore/profiler/parser/framework_parser.py +3 -2
- mindspore/profiler/parser/integrator.py +3 -1
- mindspore/profiler/parser/msadvisor_analyzer.py +1 -1
- mindspore/profiler/parser/msadvisor_parser.py +1 -1
- mindspore/profiler/parser/profiler_info.py +5 -0
- mindspore/profiler/profiling.py +296 -166
- mindspore/rewrite/__init__.py +2 -13
- mindspore/rewrite/api/node.py +121 -35
- mindspore/rewrite/api/pattern_engine.py +2 -3
- mindspore/rewrite/api/scoped_value.py +16 -15
- mindspore/rewrite/api/symbol_tree.py +45 -29
- mindspore/rewrite/ast_helpers/__init__.py +3 -6
- mindspore/rewrite/ast_helpers/ast_converter.py +143 -0
- mindspore/rewrite/ast_helpers/ast_finder.py +48 -0
- mindspore/rewrite/ast_helpers/ast_flattener.py +268 -0
- mindspore/rewrite/ast_helpers/ast_modifier.py +160 -92
- mindspore/rewrite/common/__init__.py +1 -2
- mindspore/rewrite/common/config.py +24 -0
- mindspore/rewrite/common/{rewrite_elog.py → error_log.py} +39 -39
- mindspore/rewrite/{namer.py → common/namer.py} +63 -18
- mindspore/rewrite/common/namespace.py +118 -0
- mindspore/rewrite/node/__init__.py +5 -5
- mindspore/rewrite/node/call_function.py +23 -7
- mindspore/rewrite/node/cell_container.py +7 -3
- mindspore/rewrite/node/control_flow.py +53 -28
- mindspore/rewrite/node/node.py +212 -196
- mindspore/rewrite/node/node_manager.py +51 -22
- mindspore/rewrite/node/node_topological_manager.py +3 -23
- mindspore/rewrite/parsers/__init__.py +12 -0
- mindspore/rewrite/parsers/arguments_parser.py +8 -9
- mindspore/rewrite/parsers/assign_parser.py +635 -413
- mindspore/rewrite/parsers/attribute_parser.py +3 -4
- mindspore/rewrite/parsers/class_def_parser.py +107 -144
- mindspore/rewrite/parsers/constant_parser.py +5 -5
- mindspore/rewrite/parsers/container_parser.py +4 -6
- mindspore/rewrite/parsers/expr_parser.py +55 -0
- mindspore/rewrite/parsers/for_parser.py +31 -98
- mindspore/rewrite/parsers/function_def_parser.py +13 -5
- mindspore/rewrite/parsers/if_parser.py +28 -10
- mindspore/rewrite/parsers/module_parser.py +8 -182
- mindspore/rewrite/parsers/parser.py +1 -5
- mindspore/rewrite/parsers/parser_register.py +1 -1
- mindspore/rewrite/parsers/return_parser.py +5 -10
- mindspore/rewrite/parsers/while_parser.py +59 -0
- mindspore/rewrite/sparsify/utils.py +1 -1
- mindspore/rewrite/symbol_tree/__init__.py +20 -0
- mindspore/rewrite/{symbol_tree.py → symbol_tree/symbol_tree.py} +704 -185
- mindspore/rewrite/{symbol_tree_builder.py → symbol_tree/symbol_tree_builder.py} +8 -8
- mindspore/rewrite/{symbol_tree_dumper.py → symbol_tree/symbol_tree_dumper.py} +4 -4
- mindspore/run_check/_check_version.py +6 -14
- mindspore/run_check/run_check.py +1 -1
- mindspore/safeguard/rewrite_obfuscation.py +9 -19
- mindspore/scipy/__init__.py +2 -1
- mindspore/scipy/fft.py +133 -0
- mindspore/scipy/linalg.py +140 -55
- mindspore/scipy/ops.py +15 -71
- mindspore/scipy/ops_grad.py +5 -34
- mindspore/scipy/optimize/line_search.py +2 -2
- mindspore/scipy/optimize/minimize.py +1 -1
- mindspore/train/__init__.py +3 -2
- mindspore/train/_utils.py +178 -4
- mindspore/train/amp.py +167 -245
- mindspore/train/callback/_backup_and_restore.py +4 -4
- mindspore/train/callback/_callback.py +4 -4
- mindspore/train/callback/_checkpoint.py +39 -13
- mindspore/train/callback/_early_stop.py +2 -2
- mindspore/train/callback/_landscape.py +14 -8
- mindspore/train/callback/_loss_monitor.py +2 -2
- mindspore/train/callback/_on_request_exit.py +2 -2
- mindspore/train/callback/_reduce_lr_on_plateau.py +2 -2
- mindspore/train/callback/_summary_collector.py +7 -7
- mindspore/train/callback/_time_monitor.py +2 -2
- mindspore/train/data_sink.py +1 -1
- mindspore/train/dataset_helper.py +13 -4
- mindspore/train/loss_scale_manager.py +2 -2
- mindspore/train/metrics/accuracy.py +7 -7
- mindspore/train/metrics/confusion_matrix.py +8 -6
- mindspore/train/metrics/cosine_similarity.py +6 -4
- mindspore/train/metrics/error.py +2 -2
- mindspore/train/metrics/metric.py +3 -3
- mindspore/train/metrics/perplexity.py +2 -1
- mindspore/train/metrics/topk.py +2 -2
- mindspore/train/mind_ir_pb2.py +75 -6
- mindspore/train/model.py +24 -22
- mindspore/train/serialization.py +256 -132
- mindspore/train/summary/summary_record.py +51 -28
- mindspore/train/train_thor/convert_utils.py +3 -3
- mindspore/version.py +1 -1
- {mindspore-2.2.14.dist-info → mindspore-2.3.0rc1.dist-info}/METADATA +2 -2
- {mindspore-2.2.14.dist-info → mindspore-2.3.0rc1.dist-info}/RECORD +515 -1061
- {mindspore-2.2.14.dist-info → mindspore-2.3.0rc1.dist-info}/entry_points.txt +1 -0
- mindspore/_extends/parallel_compile/tbe_compiler/tbe_adapter.py +0 -662
- mindspore/_extends/parallel_compile/tbe_compiler/tbe_helper.py +0 -377
- mindspore/_extends/parallel_compile/tbe_compiler/tbe_job.py +0 -201
- mindspore/_extends/parallel_compile/tbe_compiler/tbe_job_manager.py +0 -515
- mindspore/config/super_bar_config.json +0 -544
- mindspore/gen_ops.py +0 -273
- mindspore/lib/plugin/ascend/custom_aicpu_ops/op_impl/cpu/aicpu_kernel/impl/libcust_aicpu_kernels.so +0 -0
- mindspore/lib/plugin/ascend/libmindspore_aicpu_kernels.so +0 -0
- mindspore/nn/layer/flash_attention.py +0 -189
- mindspore/ops/_op_impl/cpu/concat.py +0 -39
- mindspore/ops/_op_impl/cpu/tensor_shape.py +0 -42
- mindspore/ops/_op_impl/tbe/__init__.py +0 -47
- mindspore/ops/_op_impl/tbe/abs.py +0 -38
- mindspore/ops/_op_impl/tbe/abs_ds.py +0 -39
- mindspore/ops/_op_impl/tbe/abs_grad.py +0 -43
- mindspore/ops/_op_impl/tbe/abs_grad_ds.py +0 -44
- mindspore/ops/_op_impl/tbe/accumulate_n_v2.py +0 -41
- mindspore/ops/_op_impl/tbe/accumulate_n_v2_ds.py +0 -42
- mindspore/ops/_op_impl/tbe/acos.py +0 -37
- mindspore/ops/_op_impl/tbe/acos_ds.py +0 -38
- mindspore/ops/_op_impl/tbe/acos_grad.py +0 -43
- mindspore/ops/_op_impl/tbe/acos_grad_ds.py +0 -44
- mindspore/ops/_op_impl/tbe/acosh.py +0 -37
- mindspore/ops/_op_impl/tbe/acosh_ds.py +0 -38
- mindspore/ops/_op_impl/tbe/acosh_grad.py +0 -43
- mindspore/ops/_op_impl/tbe/acosh_grad_ds.py +0 -44
- mindspore/ops/_op_impl/tbe/act_ulq_clamp_max_grad.py +0 -38
- mindspore/ops/_op_impl/tbe/act_ulq_clamp_min_grad.py +0 -38
- mindspore/ops/_op_impl/tbe/acts_ulq.py +0 -45
- mindspore/ops/_op_impl/tbe/acts_ulq_input_grad.py +0 -38
- mindspore/ops/_op_impl/tbe/adam_apply_one.py +0 -50
- mindspore/ops/_op_impl/tbe/adam_apply_one_assign.py +0 -53
- mindspore/ops/_op_impl/tbe/adam_apply_one_ds.py +0 -51
- mindspore/ops/_op_impl/tbe/adam_apply_one_with_decay.py +0 -54
- mindspore/ops/_op_impl/tbe/adam_apply_one_with_decay_assign.py +0 -54
- mindspore/ops/_op_impl/tbe/adam_apply_one_with_decay_ds.py +0 -55
- mindspore/ops/_op_impl/tbe/adaptive_max_pool2d.py +0 -37
- mindspore/ops/_op_impl/tbe/add.py +0 -42
- mindspore/ops/_op_impl/tbe/add_ds.py +0 -43
- mindspore/ops/_op_impl/tbe/add_n.py +0 -39
- mindspore/ops/_op_impl/tbe/add_n_ds.py +0 -40
- mindspore/ops/_op_impl/tbe/addcdiv.py +0 -41
- mindspore/ops/_op_impl/tbe/addcdiv_ds.py +0 -42
- mindspore/ops/_op_impl/tbe/addcmul.py +0 -43
- mindspore/ops/_op_impl/tbe/addcmul_ds.py +0 -44
- mindspore/ops/_op_impl/tbe/apply_ada_max.py +0 -68
- mindspore/ops/_op_impl/tbe/apply_ada_max_ds.py +0 -69
- mindspore/ops/_op_impl/tbe/apply_adadelta.py +0 -66
- mindspore/ops/_op_impl/tbe/apply_adadelta_ds.py +0 -67
- mindspore/ops/_op_impl/tbe/apply_adagrad.py +0 -55
- mindspore/ops/_op_impl/tbe/apply_adagrad_d_a.py +0 -67
- mindspore/ops/_op_impl/tbe/apply_adagrad_ds.py +0 -56
- mindspore/ops/_op_impl/tbe/apply_adagrad_v2.py +0 -48
- mindspore/ops/_op_impl/tbe/apply_adagrad_v2_ds.py +0 -49
- mindspore/ops/_op_impl/tbe/apply_adam.py +0 -79
- mindspore/ops/_op_impl/tbe/apply_adam_ds.py +0 -80
- mindspore/ops/_op_impl/tbe/apply_adam_with_amsgrad.py +0 -60
- mindspore/ops/_op_impl/tbe/apply_adam_with_amsgrad_ds.py +0 -61
- mindspore/ops/_op_impl/tbe/apply_add_sign.py +0 -65
- mindspore/ops/_op_impl/tbe/apply_add_sign_ds.py +0 -66
- mindspore/ops/_op_impl/tbe/apply_centered_rms_prop.py +0 -77
- mindspore/ops/_op_impl/tbe/apply_centered_rms_prop_ds.py +0 -78
- mindspore/ops/_op_impl/tbe/apply_ftrl.py +0 -67
- mindspore/ops/_op_impl/tbe/apply_ftrl_ds.py +0 -68
- mindspore/ops/_op_impl/tbe/apply_gradient_descent.py +0 -44
- mindspore/ops/_op_impl/tbe/apply_gradient_descent_ds.py +0 -45
- mindspore/ops/_op_impl/tbe/apply_keras_momentum.py +0 -49
- mindspore/ops/_op_impl/tbe/apply_momentum.py +0 -64
- mindspore/ops/_op_impl/tbe/apply_momentum_ds.py +0 -65
- mindspore/ops/_op_impl/tbe/apply_power_sign.py +0 -65
- mindspore/ops/_op_impl/tbe/apply_power_sign_ds.py +0 -66
- mindspore/ops/_op_impl/tbe/apply_proximal_adagrad.py +0 -57
- mindspore/ops/_op_impl/tbe/apply_proximal_adagrad_ds.py +0 -58
- mindspore/ops/_op_impl/tbe/apply_proximal_gradient_descent.py +0 -54
- mindspore/ops/_op_impl/tbe/apply_proximal_gradient_descent_ds.py +0 -55
- mindspore/ops/_op_impl/tbe/apply_rms_prop.py +0 -52
- mindspore/ops/_op_impl/tbe/approximate_equal.py +0 -39
- mindspore/ops/_op_impl/tbe/approximate_equal_ds.py +0 -40
- mindspore/ops/_op_impl/tbe/arg_max.py +0 -38
- mindspore/ops/_op_impl/tbe/arg_max_with_value.py +0 -38
- mindspore/ops/_op_impl/tbe/arg_max_with_value_ds.py +0 -39
- mindspore/ops/_op_impl/tbe/arg_min.py +0 -38
- mindspore/ops/_op_impl/tbe/arg_min_v2_ds.py +0 -40
- mindspore/ops/_op_impl/tbe/arg_min_with_value.py +0 -38
- mindspore/ops/_op_impl/tbe/arg_min_with_value_ds.py +0 -39
- mindspore/ops/_op_impl/tbe/asin.py +0 -37
- mindspore/ops/_op_impl/tbe/asin_ds.py +0 -38
- mindspore/ops/_op_impl/tbe/asin_grad.py +0 -43
- mindspore/ops/_op_impl/tbe/asin_grad_ds.py +0 -44
- mindspore/ops/_op_impl/tbe/asinh.py +0 -37
- mindspore/ops/_op_impl/tbe/asinh_ds.py +0 -38
- mindspore/ops/_op_impl/tbe/asinh_grad.py +0 -43
- mindspore/ops/_op_impl/tbe/asinh_grad_ds.py +0 -44
- mindspore/ops/_op_impl/tbe/assign.py +0 -79
- mindspore/ops/_op_impl/tbe/assign_add.py +0 -59
- mindspore/ops/_op_impl/tbe/assign_add_ds.py +0 -60
- mindspore/ops/_op_impl/tbe/assign_ds.py +0 -80
- mindspore/ops/_op_impl/tbe/assign_sub.py +0 -55
- mindspore/ops/_op_impl/tbe/assign_sub_ds.py +0 -56
- mindspore/ops/_op_impl/tbe/atan.py +0 -37
- mindspore/ops/_op_impl/tbe/atan2.py +0 -38
- mindspore/ops/_op_impl/tbe/atan2_ds.py +0 -39
- mindspore/ops/_op_impl/tbe/atan_ds.py +0 -38
- mindspore/ops/_op_impl/tbe/atan_grad.py +0 -43
- mindspore/ops/_op_impl/tbe/atan_grad_ds.py +0 -44
- mindspore/ops/_op_impl/tbe/atanh.py +0 -37
- mindspore/ops/_op_impl/tbe/atanh_ds.py +0 -38
- mindspore/ops/_op_impl/tbe/avg_pool.py +0 -43
- mindspore/ops/_op_impl/tbe/avg_pool_3d.py +0 -44
- mindspore/ops/_op_impl/tbe/avg_pool_3d_grad.py +0 -45
- mindspore/ops/_op_impl/tbe/avg_pool_ds.py +0 -44
- mindspore/ops/_op_impl/tbe/avg_pool_grad.py +0 -42
- mindspore/ops/_op_impl/tbe/avg_pool_grad_vm.py +0 -42
- mindspore/ops/_op_impl/tbe/basic_lstm_cell.py +0 -57
- mindspore/ops/_op_impl/tbe/basic_lstm_cell_c_state_grad.py +0 -50
- mindspore/ops/_op_impl/tbe/basic_lstm_cell_c_state_grad_v2.py +0 -51
- mindspore/ops/_op_impl/tbe/basic_lstm_cell_input_grad.py +0 -42
- mindspore/ops/_op_impl/tbe/basic_lstm_cell_weight_grad.py +0 -41
- mindspore/ops/_op_impl/tbe/batch_matmul.py +0 -42
- mindspore/ops/_op_impl/tbe/batch_matmul_ds.py +0 -41
- mindspore/ops/_op_impl/tbe/batch_matmul_v2.py +0 -47
- mindspore/ops/_op_impl/tbe/batch_to_space.py +0 -38
- mindspore/ops/_op_impl/tbe/batch_to_space_nd.py +0 -38
- mindspore/ops/_op_impl/tbe/batch_to_space_nd_ds.py +0 -39
- mindspore/ops/_op_impl/tbe/batch_to_space_nd_v2.py +0 -41
- mindspore/ops/_op_impl/tbe/batchnorm.py +0 -58
- mindspore/ops/_op_impl/tbe/batchnorm_grad.py +0 -58
- mindspore/ops/_op_impl/tbe/bce_with_logits_loss.py +0 -42
- mindspore/ops/_op_impl/tbe/bessel_i0e.py +0 -37
- mindspore/ops/_op_impl/tbe/bessel_i0e_ds.py +0 -38
- mindspore/ops/_op_impl/tbe/bessel_i1e.py +0 -37
- mindspore/ops/_op_impl/tbe/bessel_i1e_ds.py +0 -38
- mindspore/ops/_op_impl/tbe/bias_add.py +0 -38
- mindspore/ops/_op_impl/tbe/bias_add_ds.py +0 -39
- mindspore/ops/_op_impl/tbe/bias_add_grad.py +0 -53
- mindspore/ops/_op_impl/tbe/binary_cross_entropy.py +0 -39
- mindspore/ops/_op_impl/tbe/binary_cross_entropy_ds.py +0 -40
- mindspore/ops/_op_impl/tbe/binary_cross_entropy_grad.py +0 -44
- mindspore/ops/_op_impl/tbe/binary_cross_entropy_grad_ds.py +0 -45
- mindspore/ops/_op_impl/tbe/bitwise_and.py +0 -39
- mindspore/ops/_op_impl/tbe/bitwise_and_ds.py +0 -40
- mindspore/ops/_op_impl/tbe/bitwise_or.py +0 -39
- mindspore/ops/_op_impl/tbe/bitwise_or_ds.py +0 -40
- mindspore/ops/_op_impl/tbe/bitwise_xor.py +0 -39
- mindspore/ops/_op_impl/tbe/bitwise_xor_ds.py +0 -40
- mindspore/ops/_op_impl/tbe/bn_infer.py +0 -43
- mindspore/ops/_op_impl/tbe/bn_infer_ds.py +0 -45
- mindspore/ops/_op_impl/tbe/bn_infer_grad.py +0 -41
- mindspore/ops/_op_impl/tbe/bn_infer_grad_ds.py +0 -40
- mindspore/ops/_op_impl/tbe/bn_inference.py +0 -50
- mindspore/ops/_op_impl/tbe/bn_training_reduce.py +0 -38
- mindspore/ops/_op_impl/tbe/bn_training_reduce_ds.py +0 -39
- mindspore/ops/_op_impl/tbe/bn_training_reduce_grad.py +0 -46
- mindspore/ops/_op_impl/tbe/bn_training_reduce_grad_ds.py +0 -47
- mindspore/ops/_op_impl/tbe/bn_training_update.py +0 -52
- mindspore/ops/_op_impl/tbe/bn_training_update_ds.py +0 -53
- mindspore/ops/_op_impl/tbe/bn_training_update_grad.py +0 -44
- mindspore/ops/_op_impl/tbe/bn_training_update_grad_ds.py +0 -45
- mindspore/ops/_op_impl/tbe/bn_training_update_v2.py +0 -48
- mindspore/ops/_op_impl/tbe/bn_training_update_v3.py +0 -51
- mindspore/ops/_op_impl/tbe/bounding_box_decode.py +0 -41
- mindspore/ops/_op_impl/tbe/bounding_box_decode_ds.py +0 -42
- mindspore/ops/_op_impl/tbe/bounding_box_encode.py +0 -38
- mindspore/ops/_op_impl/tbe/broadcast_to.py +0 -40
- mindspore/ops/_op_impl/tbe/broadcast_to_ds.py +0 -44
- mindspore/ops/_op_impl/tbe/cast.py +0 -55
- mindspore/ops/_op_impl/tbe/cast_ds.py +0 -58
- mindspore/ops/_op_impl/tbe/cdist.py +0 -38
- mindspore/ops/_op_impl/tbe/cdist_grad.py +0 -42
- mindspore/ops/_op_impl/tbe/ceil.py +0 -37
- mindspore/ops/_op_impl/tbe/ceil_ds.py +0 -38
- mindspore/ops/_op_impl/tbe/celu.py +0 -39
- mindspore/ops/_op_impl/tbe/centralization.py +0 -39
- mindspore/ops/_op_impl/tbe/check_valid.py +0 -38
- mindspore/ops/_op_impl/tbe/check_valid_ds.py +0 -39
- mindspore/ops/_op_impl/tbe/clip_by_norm_no_div_sum.py +0 -41
- mindspore/ops/_op_impl/tbe/clip_by_norm_no_div_sum_ds.py +0 -42
- mindspore/ops/_op_impl/tbe/clip_by_value.py +0 -41
- mindspore/ops/_op_impl/tbe/clip_by_value_ds.py +0 -42
- mindspore/ops/_op_impl/tbe/concat.py +0 -40
- mindspore/ops/_op_impl/tbe/concat_ds.py +0 -38
- mindspore/ops/_op_impl/tbe/confusion_matrix.py +0 -63
- mindspore/ops/_op_impl/tbe/confusion_mul_grad.py +0 -40
- mindspore/ops/_op_impl/tbe/confusion_softmax_grad.py +0 -41
- mindspore/ops/_op_impl/tbe/confusion_transpose_d.py +0 -39
- mindspore/ops/_op_impl/tbe/conv2d.py +0 -47
- mindspore/ops/_op_impl/tbe/conv2d_backprop_filter.py +0 -42
- mindspore/ops/_op_impl/tbe/conv2d_backprop_filter_ds.py +0 -43
- mindspore/ops/_op_impl/tbe/conv2d_backprop_input.py +0 -42
- mindspore/ops/_op_impl/tbe/conv2d_backprop_input_ds.py +0 -44
- mindspore/ops/_op_impl/tbe/conv2d_ds.py +0 -47
- mindspore/ops/_op_impl/tbe/conv2d_transpose.py +0 -48
- mindspore/ops/_op_impl/tbe/conv3d.py +0 -45
- mindspore/ops/_op_impl/tbe/conv3d_backprop_filter.py +0 -42
- mindspore/ops/_op_impl/tbe/conv3d_backprop_input.py +0 -42
- mindspore/ops/_op_impl/tbe/conv3d_transpose.py +0 -47
- mindspore/ops/_op_impl/tbe/conv3d_transpose_ds.py +0 -48
- mindspore/ops/_op_impl/tbe/cos.py +0 -37
- mindspore/ops/_op_impl/tbe/cos_ds.py +0 -38
- mindspore/ops/_op_impl/tbe/cosh.py +0 -37
- mindspore/ops/_op_impl/tbe/cosh_ds.py +0 -38
- mindspore/ops/_op_impl/tbe/ctc_loss_v2.py +0 -42
- mindspore/ops/_op_impl/tbe/ctc_loss_v2_grad.py +0 -44
- mindspore/ops/_op_impl/tbe/cum_sum.py +0 -42
- mindspore/ops/_op_impl/tbe/cum_sum_ds.py +0 -44
- mindspore/ops/_op_impl/tbe/cummin.py +0 -41
- mindspore/ops/_op_impl/tbe/cumprod.py +0 -42
- mindspore/ops/_op_impl/tbe/data_format_dim_map.py +0 -38
- mindspore/ops/_op_impl/tbe/data_format_dim_map_ds.py +0 -40
- mindspore/ops/_op_impl/tbe/deformable_offsets.py +0 -45
- mindspore/ops/_op_impl/tbe/deformable_offsets_grad.py +0 -48
- mindspore/ops/_op_impl/tbe/depth_to_space_ds.py +0 -49
- mindspore/ops/_op_impl/tbe/depthwise_conv2d.py +0 -44
- mindspore/ops/_op_impl/tbe/depthwise_conv2d_backprop_filter.py +0 -41
- mindspore/ops/_op_impl/tbe/depthwise_conv2d_backprop_input.py +0 -41
- mindspore/ops/_op_impl/tbe/diag.py +0 -38
- mindspore/ops/_op_impl/tbe/diag_part.py +0 -38
- mindspore/ops/_op_impl/tbe/dilation.py +0 -40
- mindspore/ops/_op_impl/tbe/div.py +0 -41
- mindspore/ops/_op_impl/tbe/div_ds.py +0 -42
- mindspore/ops/_op_impl/tbe/div_no_nan.py +0 -41
- mindspore/ops/_op_impl/tbe/div_no_nan_ds.py +0 -42
- mindspore/ops/_op_impl/tbe/dropout_do_mask.py +0 -38
- mindspore/ops/_op_impl/tbe/dropout_do_mask_ds.py +0 -39
- mindspore/ops/_op_impl/tbe/dropout_do_mask_v3.py +0 -39
- mindspore/ops/_op_impl/tbe/dynamic_atomic_addr_clean.py +0 -34
- mindspore/ops/_op_impl/tbe/dynamic_gru_v2.py +0 -95
- mindspore/ops/_op_impl/tbe/dynamic_rnn.py +0 -82
- mindspore/ops/_op_impl/tbe/elu.py +0 -38
- mindspore/ops/_op_impl/tbe/elu_ds.py +0 -39
- mindspore/ops/_op_impl/tbe/elu_grad.py +0 -43
- mindspore/ops/_op_impl/tbe/elu_grad_ds.py +0 -44
- mindspore/ops/_op_impl/tbe/equal.py +0 -42
- mindspore/ops/_op_impl/tbe/equal_ds.py +0 -42
- mindspore/ops/_op_impl/tbe/erf.py +0 -37
- mindspore/ops/_op_impl/tbe/erf_ds.py +0 -38
- mindspore/ops/_op_impl/tbe/erfc.py +0 -37
- mindspore/ops/_op_impl/tbe/erfc_ds.py +0 -38
- mindspore/ops/_op_impl/tbe/erfinv.py +0 -36
- mindspore/ops/_op_impl/tbe/exp.py +0 -40
- mindspore/ops/_op_impl/tbe/exp_ds.py +0 -41
- mindspore/ops/_op_impl/tbe/expand_dims.py +0 -38
- mindspore/ops/_op_impl/tbe/expm1.py +0 -37
- mindspore/ops/_op_impl/tbe/expm1_ds.py +0 -38
- mindspore/ops/_op_impl/tbe/extract_image_patches.py +0 -41
- mindspore/ops/_op_impl/tbe/extract_volume_patches.py +0 -39
- mindspore/ops/_op_impl/tbe/fake_quant_with_min_max_vars.py +0 -39
- mindspore/ops/_op_impl/tbe/fake_quant_with_min_max_vars_gradient.py +0 -43
- mindspore/ops/_op_impl/tbe/fake_quant_with_min_max_vars_per_channel.py +0 -39
- mindspore/ops/_op_impl/tbe/fake_quant_with_min_max_vars_per_channel_gradient.py +0 -43
- mindspore/ops/_op_impl/tbe/fast_gelu.py +0 -37
- mindspore/ops/_op_impl/tbe/fast_gelu_ds.py +0 -38
- mindspore/ops/_op_impl/tbe/fast_gelu_grad.py +0 -41
- mindspore/ops/_op_impl/tbe/fast_gelu_grad_ds.py +0 -42
- mindspore/ops/_op_impl/tbe/fill.py +0 -56
- mindspore/ops/_op_impl/tbe/fill_ds.py +0 -42
- mindspore/ops/_op_impl/tbe/flatten.py +0 -48
- mindspore/ops/_op_impl/tbe/floor.py +0 -37
- mindspore/ops/_op_impl/tbe/floor_div.py +0 -41
- mindspore/ops/_op_impl/tbe/floor_div_ds.py +0 -42
- mindspore/ops/_op_impl/tbe/floor_ds.py +0 -38
- mindspore/ops/_op_impl/tbe/floor_mod.py +0 -39
- mindspore/ops/_op_impl/tbe/floor_mod_ds.py +0 -40
- mindspore/ops/_op_impl/tbe/fused_dbn_dw.py +0 -52
- mindspore/ops/_op_impl/tbe/fused_mul_add.py +0 -38
- mindspore/ops/_op_impl/tbe/fused_mul_add_n.py +0 -48
- mindspore/ops/_op_impl/tbe/fused_mul_add_n_l2loss.py +0 -53
- mindspore/ops/_op_impl/tbe/fused_mul_apply_momentum.py +0 -57
- mindspore/ops/_op_impl/tbe/fused_mul_apply_momentum_extern.py +0 -67
- mindspore/ops/_op_impl/tbe/gather_nd.py +0 -52
- mindspore/ops/_op_impl/tbe/gather_nd_ds.py +0 -48
- mindspore/ops/_op_impl/tbe/gather_v2.py +0 -56
- mindspore/ops/_op_impl/tbe/gather_v2_ds.py +0 -68
- mindspore/ops/_op_impl/tbe/gelu.py +0 -37
- mindspore/ops/_op_impl/tbe/gelu_ds.py +0 -38
- mindspore/ops/_op_impl/tbe/gelu_grad.py +0 -42
- mindspore/ops/_op_impl/tbe/gelu_grad_ds.py +0 -43
- mindspore/ops/_op_impl/tbe/ger.py +0 -43
- mindspore/ops/_op_impl/tbe/ger_ds.py +0 -44
- mindspore/ops/_op_impl/tbe/greater.py +0 -43
- mindspore/ops/_op_impl/tbe/greater_equal.py +0 -41
- mindspore/ops/_op_impl/tbe/greater_equal_ds.py +0 -42
- mindspore/ops/_op_impl/tbe/gru_v2_hidden_grad.py +0 -51
- mindspore/ops/_op_impl/tbe/gru_v2_hidden_grad_cell.py +0 -52
- mindspore/ops/_op_impl/tbe/hard_swish.py +0 -37
- mindspore/ops/_op_impl/tbe/hard_swish_ds.py +0 -38
- mindspore/ops/_op_impl/tbe/hard_swish_grad.py +0 -41
- mindspore/ops/_op_impl/tbe/hard_swish_grad_ds.py +0 -42
- mindspore/ops/_op_impl/tbe/histogram_fixed_width.py +0 -40
- mindspore/ops/_op_impl/tbe/hshrink.py +0 -33
- mindspore/ops/_op_impl/tbe/hshrink_grad.py +0 -37
- mindspore/ops/_op_impl/tbe/hsigmoid.py +0 -45
- mindspore/ops/_op_impl/tbe/hsigmoid_grad.py +0 -39
- mindspore/ops/_op_impl/tbe/ifmr.py +0 -47
- mindspore/ops/_op_impl/tbe/ifmr_ds.py +0 -48
- mindspore/ops/_op_impl/tbe/im2col.py +0 -42
- mindspore/ops/_op_impl/tbe/in_top_k.py +0 -37
- mindspore/ops/_op_impl/tbe/inplace_add.py +0 -39
- mindspore/ops/_op_impl/tbe/inplace_index_add.py +0 -46
- mindspore/ops/_op_impl/tbe/inplace_sub.py +0 -39
- mindspore/ops/_op_impl/tbe/inplace_update.py +0 -39
- mindspore/ops/_op_impl/tbe/inplace_update_ds.py +0 -40
- mindspore/ops/_op_impl/tbe/inv.py +0 -38
- mindspore/ops/_op_impl/tbe/inv_ds.py +0 -39
- mindspore/ops/_op_impl/tbe/inv_grad.py +0 -40
- mindspore/ops/_op_impl/tbe/inv_grad_ds.py +0 -41
- mindspore/ops/_op_impl/tbe/invert.py +0 -37
- mindspore/ops/_op_impl/tbe/invert_ds.py +0 -38
- mindspore/ops/_op_impl/tbe/iou.py +0 -38
- mindspore/ops/_op_impl/tbe/iou_ds.py +0 -39
- mindspore/ops/_op_impl/tbe/is_close.py +0 -40
- mindspore/ops/_op_impl/tbe/kl_div_loss.py +0 -38
- mindspore/ops/_op_impl/tbe/kl_div_loss_ds.py +0 -39
- mindspore/ops/_op_impl/tbe/kl_div_loss_grad.py +0 -40
- mindspore/ops/_op_impl/tbe/l2_loss.py +0 -36
- mindspore/ops/_op_impl/tbe/l2_loss_ds.py +0 -37
- mindspore/ops/_op_impl/tbe/l2_normalize.py +0 -38
- mindspore/ops/_op_impl/tbe/l2_normalize_grad.py +0 -40
- mindspore/ops/_op_impl/tbe/lamb_apply_optimizer_assign.py +0 -55
- mindspore/ops/_op_impl/tbe/lamb_apply_weight_assign.py +0 -42
- mindspore/ops/_op_impl/tbe/lamb_next_mv.py +0 -59
- mindspore/ops/_op_impl/tbe/lamb_next_mv_with_decay.py +0 -59
- mindspore/ops/_op_impl/tbe/lamb_next_right.py +0 -44
- mindspore/ops/_op_impl/tbe/lamb_update_with_lr.py +0 -48
- mindspore/ops/_op_impl/tbe/lamb_update_with_lr_v2.py +0 -44
- mindspore/ops/_op_impl/tbe/lars_update.py +0 -50
- mindspore/ops/_op_impl/tbe/lars_update_ds.py +0 -51
- mindspore/ops/_op_impl/tbe/layer_norm.py +0 -46
- mindspore/ops/_op_impl/tbe/layer_norm_beta_gamma_backprop.py +0 -44
- mindspore/ops/_op_impl/tbe/layer_norm_beta_gamma_backprop_ds.py +0 -45
- mindspore/ops/_op_impl/tbe/layer_norm_beta_gamma_backprop_v2.py +0 -40
- mindspore/ops/_op_impl/tbe/layer_norm_beta_gamma_backprop_v2_ds.py +0 -41
- mindspore/ops/_op_impl/tbe/layer_norm_ds.py +0 -47
- mindspore/ops/_op_impl/tbe/layer_norm_grad.py +0 -48
- mindspore/ops/_op_impl/tbe/layer_norm_x_backprop.py +0 -43
- mindspore/ops/_op_impl/tbe/layer_norm_x_backprop_ds.py +0 -44
- mindspore/ops/_op_impl/tbe/layer_norm_x_backprop_v2.py +0 -45
- mindspore/ops/_op_impl/tbe/layer_norm_x_backprop_v2_ds.py +0 -45
- mindspore/ops/_op_impl/tbe/lerp.py +0 -38
- mindspore/ops/_op_impl/tbe/less.py +0 -41
- mindspore/ops/_op_impl/tbe/less_ds.py +0 -42
- mindspore/ops/_op_impl/tbe/less_equal.py +0 -41
- mindspore/ops/_op_impl/tbe/less_equal_ds.py +0 -42
- mindspore/ops/_op_impl/tbe/log.py +0 -40
- mindspore/ops/_op_impl/tbe/log1p.py +0 -37
- mindspore/ops/_op_impl/tbe/log1p_ds.py +0 -38
- mindspore/ops/_op_impl/tbe/log_ds.py +0 -41
- mindspore/ops/_op_impl/tbe/logical_and.py +0 -37
- mindspore/ops/_op_impl/tbe/logical_and_ds.py +0 -38
- mindspore/ops/_op_impl/tbe/logical_not.py +0 -36
- mindspore/ops/_op_impl/tbe/logical_not_ds.py +0 -37
- mindspore/ops/_op_impl/tbe/logical_or.py +0 -37
- mindspore/ops/_op_impl/tbe/logical_or_ds.py +0 -38
- mindspore/ops/_op_impl/tbe/logsoftmax.py +0 -37
- mindspore/ops/_op_impl/tbe/logsoftmax_ds.py +0 -38
- mindspore/ops/_op_impl/tbe/logsoftmax_grad.py +0 -38
- mindspore/ops/_op_impl/tbe/logsoftmax_grad_ds.py +0 -39
- mindspore/ops/_op_impl/tbe/lp_norm.py +0 -40
- mindspore/ops/_op_impl/tbe/lp_norm_ds.py +0 -41
- mindspore/ops/_op_impl/tbe/lrn.py +0 -41
- mindspore/ops/_op_impl/tbe/lrn_grad.py +0 -42
- mindspore/ops/_op_impl/tbe/lstm_input_grad.py +0 -51
- mindspore/ops/_op_impl/tbe/masked_fill.py +0 -40
- mindspore/ops/_op_impl/tbe/masked_fill_ds.py +0 -41
- mindspore/ops/_op_impl/tbe/matmul.py +0 -53
- mindspore/ops/_op_impl/tbe/matmul_ds.py +0 -47
- mindspore/ops/_op_impl/tbe/matmul_v2.py +0 -50
- mindspore/ops/_op_impl/tbe/matrix_diag.py +0 -45
- mindspore/ops/_op_impl/tbe/matrix_diag_part.py +0 -45
- mindspore/ops/_op_impl/tbe/matrix_set_diag.py +0 -46
- mindspore/ops/_op_impl/tbe/max_pool.py +0 -39
- mindspore/ops/_op_impl/tbe/max_pool3d.py +0 -44
- mindspore/ops/_op_impl/tbe/max_pool3d_grad.py +0 -43
- mindspore/ops/_op_impl/tbe/max_pool3d_grad_grad.py +0 -44
- mindspore/ops/_op_impl/tbe/max_pool_ds.py +0 -40
- mindspore/ops/_op_impl/tbe/max_pool_grad.py +0 -43
- mindspore/ops/_op_impl/tbe/max_pool_grad_grad.py +0 -41
- mindspore/ops/_op_impl/tbe/max_pool_grad_grad_with_argmax.py +0 -41
- mindspore/ops/_op_impl/tbe/max_pool_grad_with_argmax.py +0 -42
- mindspore/ops/_op_impl/tbe/max_pool_with_argmax.py +0 -40
- mindspore/ops/_op_impl/tbe/maximum.py +0 -39
- mindspore/ops/_op_impl/tbe/maximum_ds.py +0 -40
- mindspore/ops/_op_impl/tbe/maximum_grad.py +0 -46
- mindspore/ops/_op_impl/tbe/maximum_grad_ds.py +0 -47
- mindspore/ops/_op_impl/tbe/mem_set.py +0 -38
- mindspore/ops/_op_impl/tbe/minimum.py +0 -40
- mindspore/ops/_op_impl/tbe/minimum_ds.py +0 -41
- mindspore/ops/_op_impl/tbe/minimum_grad.py +0 -46
- mindspore/ops/_op_impl/tbe/minimum_grad_ds.py +0 -47
- mindspore/ops/_op_impl/tbe/mish.py +0 -37
- mindspore/ops/_op_impl/tbe/mod.py +0 -41
- mindspore/ops/_op_impl/tbe/mod_ds.py +0 -42
- mindspore/ops/_op_impl/tbe/mul.py +0 -37
- mindspore/ops/_op_impl/tbe/mul_ds.py +0 -38
- mindspore/ops/_op_impl/tbe/mul_no_nan.py +0 -39
- mindspore/ops/_op_impl/tbe/mul_no_nan_ds.py +0 -40
- mindspore/ops/_op_impl/tbe/multilabel_margin_loss.py +0 -39
- mindspore/ops/_op_impl/tbe/neg.py +0 -39
- mindspore/ops/_op_impl/tbe/neg_ds.py +0 -40
- mindspore/ops/_op_impl/tbe/new_im2col.py +0 -40
- mindspore/ops/_op_impl/tbe/nll_loss.py +0 -41
- mindspore/ops/_op_impl/tbe/nll_loss_grad.py +0 -44
- mindspore/ops/_op_impl/tbe/nms_with_mask.py +0 -39
- mindspore/ops/_op_impl/tbe/not_equal.py +0 -41
- mindspore/ops/_op_impl/tbe/not_equal_ds.py +0 -42
- mindspore/ops/_op_impl/tbe/npu_alloc_float_status.py +0 -34
- mindspore/ops/_op_impl/tbe/npu_clear_float_status.py +0 -35
- mindspore/ops/_op_impl/tbe/npu_clear_float_status_v2.py +0 -35
- mindspore/ops/_op_impl/tbe/npu_get_float_status.py +0 -35
- mindspore/ops/_op_impl/tbe/npu_get_float_status_v2.py +0 -35
- mindspore/ops/_op_impl/tbe/one_hot.py +0 -48
- mindspore/ops/_op_impl/tbe/one_hot_ds.py +0 -45
- mindspore/ops/_op_impl/tbe/ones_like.py +0 -40
- mindspore/ops/_op_impl/tbe/ones_like_ds.py +0 -41
- mindspore/ops/_op_impl/tbe/p_s_r_o_i_pooling.py +0 -40
- mindspore/ops/_op_impl/tbe/p_s_r_o_i_pooling_grad.py +0 -40
- mindspore/ops/_op_impl/tbe/pack.py +0 -58
- mindspore/ops/_op_impl/tbe/pack_ds.py +0 -59
- mindspore/ops/_op_impl/tbe/pad_d.py +0 -40
- mindspore/ops/_op_impl/tbe/pad_d_ds.py +0 -41
- mindspore/ops/_op_impl/tbe/parallel_concat.py +0 -70
- mindspore/ops/_op_impl/tbe/parallel_resize_bilinear.py +0 -45
- mindspore/ops/_op_impl/tbe/parallel_resize_bilinear_grad.py +0 -44
- mindspore/ops/_op_impl/tbe/pdist.py +0 -36
- mindspore/ops/_op_impl/tbe/pooling.py +0 -46
- mindspore/ops/_op_impl/tbe/population_count.py +0 -38
- mindspore/ops/_op_impl/tbe/pow.py +0 -41
- mindspore/ops/_op_impl/tbe/pow_ds.py +0 -42
- mindspore/ops/_op_impl/tbe/prelu.py +0 -37
- mindspore/ops/_op_impl/tbe/prelu_ds.py +0 -38
- mindspore/ops/_op_impl/tbe/prelu_grad.py +0 -40
- mindspore/ops/_op_impl/tbe/range.py +0 -39
- mindspore/ops/_op_impl/tbe/real_div.py +0 -38
- mindspore/ops/_op_impl/tbe/real_div_ds.py +0 -39
- mindspore/ops/_op_impl/tbe/reciprocal.py +0 -36
- mindspore/ops/_op_impl/tbe/reciprocal_ds.py +0 -37
- mindspore/ops/_op_impl/tbe/reciprocal_grad.py +0 -38
- mindspore/ops/_op_impl/tbe/reciprocal_grad_ds.py +0 -39
- mindspore/ops/_op_impl/tbe/reduce_all.py +0 -38
- mindspore/ops/_op_impl/tbe/reduce_all_ds.py +0 -39
- mindspore/ops/_op_impl/tbe/reduce_any.py +0 -38
- mindspore/ops/_op_impl/tbe/reduce_any_ds.py +0 -39
- mindspore/ops/_op_impl/tbe/reduce_max.py +0 -43
- mindspore/ops/_op_impl/tbe/reduce_max_ds.py +0 -41
- mindspore/ops/_op_impl/tbe/reduce_mean.py +0 -40
- mindspore/ops/_op_impl/tbe/reduce_mean_ds.py +0 -42
- mindspore/ops/_op_impl/tbe/reduce_min.py +0 -41
- mindspore/ops/_op_impl/tbe/reduce_min_ds.py +0 -41
- mindspore/ops/_op_impl/tbe/reduce_prod.py +0 -42
- mindspore/ops/_op_impl/tbe/reduce_prod_ds.py +0 -41
- mindspore/ops/_op_impl/tbe/reduce_std.py +0 -44
- mindspore/ops/_op_impl/tbe/reduce_sum.py +0 -39
- mindspore/ops/_op_impl/tbe/reduce_sum_ds.py +0 -41
- mindspore/ops/_op_impl/tbe/relu.py +0 -39
- mindspore/ops/_op_impl/tbe/relu6.py +0 -38
- mindspore/ops/_op_impl/tbe/relu6_ds.py +0 -39
- mindspore/ops/_op_impl/tbe/relu6_grad.py +0 -43
- mindspore/ops/_op_impl/tbe/relu6_grad_ds.py +0 -44
- mindspore/ops/_op_impl/tbe/relu_ds.py +0 -40
- mindspore/ops/_op_impl/tbe/relu_grad.py +0 -41
- mindspore/ops/_op_impl/tbe/relu_grad_ds.py +0 -42
- mindspore/ops/_op_impl/tbe/relu_grad_v2.py +0 -40
- mindspore/ops/_op_impl/tbe/relu_grad_v2_ds.py +0 -41
- mindspore/ops/_op_impl/tbe/relu_v2.py +0 -40
- mindspore/ops/_op_impl/tbe/relu_v2_ds.py +0 -41
- mindspore/ops/_op_impl/tbe/renorm.py +0 -39
- mindspore/ops/_op_impl/tbe/resize_bilinear.py +0 -40
- mindspore/ops/_op_impl/tbe/resize_bilinear_grad.py +0 -41
- mindspore/ops/_op_impl/tbe/resize_bilinear_v2.py +0 -43
- mindspore/ops/_op_impl/tbe/resize_nearest_neighbor.py +0 -40
- mindspore/ops/_op_impl/tbe/resize_nearest_neighbor_ds.py +0 -40
- mindspore/ops/_op_impl/tbe/resize_nearest_neighbor_grad.py +0 -39
- mindspore/ops/_op_impl/tbe/resize_nearest_neighbor_grad_ds.py +0 -42
- mindspore/ops/_op_impl/tbe/reverse_v2_d.py +0 -37
- mindspore/ops/_op_impl/tbe/rint.py +0 -37
- mindspore/ops/_op_impl/tbe/rint_ds.py +0 -38
- mindspore/ops/_op_impl/tbe/roi_align.py +0 -43
- mindspore/ops/_op_impl/tbe/roi_align_ds.py +0 -44
- mindspore/ops/_op_impl/tbe/roi_align_grad.py +0 -43
- mindspore/ops/_op_impl/tbe/roi_align_grad_ds.py +0 -44
- mindspore/ops/_op_impl/tbe/roll.py +0 -42
- mindspore/ops/_op_impl/tbe/round.py +0 -38
- mindspore/ops/_op_impl/tbe/round_ds.py +0 -39
- mindspore/ops/_op_impl/tbe/rsqrt.py +0 -37
- mindspore/ops/_op_impl/tbe/rsqrt_ds.py +0 -38
- mindspore/ops/_op_impl/tbe/rsqrt_grad.py +0 -40
- mindspore/ops/_op_impl/tbe/rsqrt_grad_ds.py +0 -41
- mindspore/ops/_op_impl/tbe/scatter_add.py +0 -44
- mindspore/ops/_op_impl/tbe/scatter_div.py +0 -46
- mindspore/ops/_op_impl/tbe/scatter_max.py +0 -45
- mindspore/ops/_op_impl/tbe/scatter_min.py +0 -45
- mindspore/ops/_op_impl/tbe/scatter_mul.py +0 -44
- mindspore/ops/_op_impl/tbe/scatter_nd.py +0 -41
- mindspore/ops/_op_impl/tbe/scatter_nd_add.py +0 -45
- mindspore/ops/_op_impl/tbe/scatter_nd_d.py +0 -41
- mindspore/ops/_op_impl/tbe/scatter_nd_ds.py +0 -49
- mindspore/ops/_op_impl/tbe/scatter_nd_sub.py +0 -47
- mindspore/ops/_op_impl/tbe/scatter_nd_sub_ds.py +0 -48
- mindspore/ops/_op_impl/tbe/scatter_nd_update.py +0 -47
- mindspore/ops/_op_impl/tbe/scatter_nd_update_ds.py +0 -48
- mindspore/ops/_op_impl/tbe/scatter_non_aliasing_add.py +0 -39
- mindspore/ops/_op_impl/tbe/scatter_non_aliasing_add_ds.py +0 -40
- mindspore/ops/_op_impl/tbe/scatter_sub.py +0 -47
- mindspore/ops/_op_impl/tbe/scatter_sub_ds.py +0 -48
- mindspore/ops/_op_impl/tbe/scatter_update.py +0 -43
- mindspore/ops/_op_impl/tbe/select.py +0 -38
- mindspore/ops/_op_impl/tbe/select_ds.py +0 -39
- mindspore/ops/_op_impl/tbe/selu.py +0 -39
- mindspore/ops/_op_impl/tbe/selu_ds.py +0 -40
- mindspore/ops/_op_impl/tbe/sgd.py +0 -62
- mindspore/ops/_op_impl/tbe/sigmoid.py +0 -37
- mindspore/ops/_op_impl/tbe/sigmoid_cross_entropy_with_logits.py +0 -41
- mindspore/ops/_op_impl/tbe/sigmoid_cross_entropy_with_logits_ds.py +0 -42
- mindspore/ops/_op_impl/tbe/sigmoid_cross_entropy_with_logits_grad.py +0 -42
- mindspore/ops/_op_impl/tbe/sigmoid_cross_entropy_with_logits_grad_ds.py +0 -43
- mindspore/ops/_op_impl/tbe/sigmoid_ds.py +0 -38
- mindspore/ops/_op_impl/tbe/sigmoid_grad.py +0 -39
- mindspore/ops/_op_impl/tbe/sigmoid_grad_ds.py +0 -40
- mindspore/ops/_op_impl/tbe/sign.py +0 -38
- mindspore/ops/_op_impl/tbe/sign_ds.py +0 -39
- mindspore/ops/_op_impl/tbe/sin.py +0 -37
- mindspore/ops/_op_impl/tbe/sin_ds.py +0 -38
- mindspore/ops/_op_impl/tbe/sinh.py +0 -37
- mindspore/ops/_op_impl/tbe/sinh_ds.py +0 -38
- mindspore/ops/_op_impl/tbe/slice.py +0 -58
- mindspore/ops/_op_impl/tbe/smooth_l1_loss.py +0 -45
- mindspore/ops/_op_impl/tbe/smooth_l1_loss_ds.py +0 -46
- mindspore/ops/_op_impl/tbe/smooth_l1_loss_grad.py +0 -46
- mindspore/ops/_op_impl/tbe/smooth_l1_loss_grad_ds.py +0 -47
- mindspore/ops/_op_impl/tbe/soft_margin_loss.py +0 -38
- mindspore/ops/_op_impl/tbe/soft_margin_loss_grad.py +0 -39
- mindspore/ops/_op_impl/tbe/soft_shrink.py +0 -36
- mindspore/ops/_op_impl/tbe/soft_shrink_grad.py +0 -38
- mindspore/ops/_op_impl/tbe/softmax.py +0 -37
- mindspore/ops/_op_impl/tbe/softmax_cross_entropy_with_logits.py +0 -38
- mindspore/ops/_op_impl/tbe/softmax_cross_entropy_with_logits_ds.py +0 -39
- mindspore/ops/_op_impl/tbe/softmax_ds.py +0 -38
- mindspore/ops/_op_impl/tbe/softmax_grad_ext.py +0 -42
- mindspore/ops/_op_impl/tbe/softmax_v2_with_dropout_do_mask_v3.py +0 -39
- mindspore/ops/_op_impl/tbe/softplus.py +0 -37
- mindspore/ops/_op_impl/tbe/softplus_ds.py +0 -38
- mindspore/ops/_op_impl/tbe/softplus_grad.py +0 -38
- mindspore/ops/_op_impl/tbe/softplus_grad_ds.py +0 -38
- mindspore/ops/_op_impl/tbe/softsign.py +0 -37
- mindspore/ops/_op_impl/tbe/softsign_ds.py +0 -38
- mindspore/ops/_op_impl/tbe/sort.py +0 -38
- mindspore/ops/_op_impl/tbe/sort_ds.py +0 -39
- mindspore/ops/_op_impl/tbe/space_to_batch.py +0 -38
- mindspore/ops/_op_impl/tbe/space_to_batch_nd.py +0 -38
- mindspore/ops/_op_impl/tbe/space_to_depth.py +0 -47
- mindspore/ops/_op_impl/tbe/sparse_apply_adadelta.py +0 -56
- mindspore/ops/_op_impl/tbe/sparse_apply_adagrad.py +0 -45
- mindspore/ops/_op_impl/tbe/sparse_apply_adagrad_ds.py +0 -46
- mindspore/ops/_op_impl/tbe/sparse_apply_adagrad_v2.py +0 -46
- mindspore/ops/_op_impl/tbe/sparse_apply_adagrad_v2_ds.py +0 -47
- mindspore/ops/_op_impl/tbe/sparse_apply_ftrl_d.py +0 -53
- mindspore/ops/_op_impl/tbe/sparse_apply_ftrl_d_ds.py +0 -50
- mindspore/ops/_op_impl/tbe/sparse_apply_ftrl_v2.py +0 -50
- mindspore/ops/_op_impl/tbe/sparse_apply_proximal_adagrad.py +0 -66
- mindspore/ops/_op_impl/tbe/sparse_apply_proximal_adagrad_ds.py +0 -67
- mindspore/ops/_op_impl/tbe/sparse_apply_r_m_s_prop.py +0 -57
- mindspore/ops/_op_impl/tbe/sparse_apply_r_m_s_prop_ds.py +0 -58
- mindspore/ops/_op_impl/tbe/sparse_gather_v2.py +0 -56
- mindspore/ops/_op_impl/tbe/sparse_gather_v2_ds.py +0 -58
- mindspore/ops/_op_impl/tbe/split_d.py +0 -38
- mindspore/ops/_op_impl/tbe/split_d_ds.py +0 -39
- mindspore/ops/_op_impl/tbe/split_v.py +0 -39
- mindspore/ops/_op_impl/tbe/splitv.py +0 -39
- mindspore/ops/_op_impl/tbe/sqrt.py +0 -37
- mindspore/ops/_op_impl/tbe/sqrt_ds.py +0 -38
- mindspore/ops/_op_impl/tbe/sqrt_grad.py +0 -43
- mindspore/ops/_op_impl/tbe/sqrt_grad_ds.py +0 -44
- mindspore/ops/_op_impl/tbe/square.py +0 -38
- mindspore/ops/_op_impl/tbe/square_ds.py +0 -39
- mindspore/ops/_op_impl/tbe/square_sum_all.py +0 -40
- mindspore/ops/_op_impl/tbe/square_sum_all_ds.py +0 -41
- mindspore/ops/_op_impl/tbe/square_sum_v1.py +0 -38
- mindspore/ops/_op_impl/tbe/square_sum_v1_ds.py +0 -39
- mindspore/ops/_op_impl/tbe/square_sum_v2.py +0 -39
- mindspore/ops/_op_impl/tbe/squared_difference.py +0 -39
- mindspore/ops/_op_impl/tbe/squared_difference_ds.py +0 -41
- mindspore/ops/_op_impl/tbe/squeeze.py +0 -37
- mindspore/ops/_op_impl/tbe/strided_read.py +0 -38
- mindspore/ops/_op_impl/tbe/strided_slice_d.py +0 -44
- mindspore/ops/_op_impl/tbe/strided_slice_ds.py +0 -71
- mindspore/ops/_op_impl/tbe/strided_slice_grad_d.py +0 -51
- mindspore/ops/_op_impl/tbe/strided_slice_grad_ds.py +0 -57
- mindspore/ops/_op_impl/tbe/strided_write.py +0 -38
- mindspore/ops/_op_impl/tbe/sub.py +0 -39
- mindspore/ops/_op_impl/tbe/sub_ds.py +0 -40
- mindspore/ops/_op_impl/tbe/tan.py +0 -38
- mindspore/ops/_op_impl/tbe/tan_ds.py +0 -39
- mindspore/ops/_op_impl/tbe/tanh.py +0 -37
- mindspore/ops/_op_impl/tbe/tanh_ds.py +0 -38
- mindspore/ops/_op_impl/tbe/tanh_grad.py +0 -39
- mindspore/ops/_op_impl/tbe/tanh_grad_ds.py +0 -40
- mindspore/ops/_op_impl/tbe/tensor_move.py +0 -49
- mindspore/ops/_op_impl/tbe/tensor_move_ds.py +0 -50
- mindspore/ops/_op_impl/tbe/tensor_scatter_update.py +0 -41
- mindspore/ops/_op_impl/tbe/tile.py +0 -37
- mindspore/ops/_op_impl/tbe/tile_ds.py +0 -42
- mindspore/ops/_op_impl/tbe/top_k.py +0 -42
- mindspore/ops/_op_impl/tbe/top_k_ds.py +0 -43
- mindspore/ops/_op_impl/tbe/trans_data.py +0 -167
- mindspore/ops/_op_impl/tbe/trans_data_ds.py +0 -180
- mindspore/ops/_op_impl/tbe/trans_data_rnn.py +0 -44
- mindspore/ops/_op_impl/tbe/transpose.py +0 -60
- mindspore/ops/_op_impl/tbe/transpose_d.py +0 -47
- mindspore/ops/_op_impl/tbe/transpose_nod.py +0 -60
- mindspore/ops/_op_impl/tbe/trunc.py +0 -39
- mindspore/ops/_op_impl/tbe/truncate_div.py +0 -41
- mindspore/ops/_op_impl/tbe/truncate_div_ds.py +0 -42
- mindspore/ops/_op_impl/tbe/truncate_mod.py +0 -41
- mindspore/ops/_op_impl/tbe/truncate_mod_ds.py +0 -42
- mindspore/ops/_op_impl/tbe/unpack.py +0 -38
- mindspore/ops/_op_impl/tbe/unpack_ds.py +0 -39
- mindspore/ops/_op_impl/tbe/unsorted_segment_max.py +0 -49
- mindspore/ops/_op_impl/tbe/unsorted_segment_max_ds.py +0 -40
- mindspore/ops/_op_impl/tbe/unsorted_segment_min.py +0 -49
- mindspore/ops/_op_impl/tbe/unsorted_segment_min_ds.py +0 -40
- mindspore/ops/_op_impl/tbe/unsorted_segment_prod.py +0 -49
- mindspore/ops/_op_impl/tbe/unsorted_segment_prod_ds.py +0 -38
- mindspore/ops/_op_impl/tbe/unsorted_segment_sum.py +0 -38
- mindspore/ops/_op_impl/tbe/unsorted_segment_sum_ds.py +0 -41
- mindspore/ops/_op_impl/tbe/wts_arq.py +0 -40
- mindspore/ops/_op_impl/tbe/xdivy.py +0 -38
- mindspore/ops/_op_impl/tbe/xdivy_ds.py +0 -39
- mindspore/ops/_op_impl/tbe/xlogy.py +0 -38
- mindspore/ops/_op_impl/tbe/xlogy_ds.py +0 -39
- mindspore/ops/_op_impl/tbe/zeros_like.py +0 -41
- mindspore/ops/_op_impl/tbe/zeros_like_ds.py +0 -42
- mindspore/ops/_tracefunc.py +0 -241
- mindspore/ops/arg_dtype_cast.py +0 -54
- mindspore/rewrite/api/tree_node_helper.py +0 -60
- mindspore/rewrite/ast_creator_register.py +0 -37
- mindspore/rewrite/ast_helpers/ast_creator.py +0 -115
- mindspore/rewrite/ast_transformers/flatten_recursive_stmt.py +0 -267
- mindspore/rewrite/ast_transformers/remove_return_out_of_if.py +0 -228
- mindspore/rewrite/namespace.py +0 -53
- {mindspore-2.2.14.dist-info → mindspore-2.3.0rc1.dist-info}/WHEEL +0 -0
- {mindspore-2.2.14.dist-info → mindspore-2.3.0rc1.dist-info}/top_level.txt +0 -0
|
@@ -1,4 +1,4 @@
|
|
|
1
|
-
# Copyright 2020-
|
|
1
|
+
# Copyright 2020-2023 Huawei Technologies Co., Ltd
|
|
2
2
|
#
|
|
3
3
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
4
|
# you may not use this file except in compliance with the License.
|
|
@@ -29,15 +29,19 @@ from mindspore.common._utils import is_shape_unknown, is_dim_unknown
|
|
|
29
29
|
from mindspore.ops.primitive import Primitive, PrimitiveWithInfer, PrimitiveWithCheck, prim_attr_register, _run_op
|
|
30
30
|
from mindspore import _checkparam as validator
|
|
31
31
|
from mindspore._checkparam import _check_3d_int_or_tuple
|
|
32
|
-
from mindspore.ops._tracefunc import PackFunc
|
|
33
32
|
from mindspore.common import dtype as mstype
|
|
34
33
|
from mindspore.common._decorator import deprecated
|
|
35
|
-
from mindspore.common.parameter import Parameter
|
|
36
34
|
from mindspore.common import Tensor, CSRTensor, COOTensor
|
|
37
35
|
from mindspore._c_expression import Tensor as Tensor_
|
|
38
36
|
from mindspore._c_expression import CSRTensor as CSRTensor_
|
|
39
37
|
from mindspore._c_expression import COOTensor as COOTensor_
|
|
40
|
-
|
|
38
|
+
from ..auto_generate import (ExpandDims, Reshape, TensorShape, Transpose, Gather, OnesLike, ZerosLike, Argmax,
|
|
39
|
+
ReverseV2, Diag, Eye, ScatterNd, ResizeNearestNeighborV2, GatherNd, GatherD,
|
|
40
|
+
Range, MaskedFill, RightShift, NonZero, ResizeNearestNeighbor, Identity, Split,
|
|
41
|
+
CumSum, CumProd, Cummax, Cummin, Argmin, Concat, UnsortedSegmentSum, ScalarToTensor,
|
|
42
|
+
BroadcastTo, StridedSlice, Select)
|
|
43
|
+
from .manually_defined import Rank, Shape, Tile, Cast
|
|
44
|
+
from ..auto_generate import ArgMaxWithValue, ArgMinWithValue
|
|
41
45
|
|
|
42
46
|
class _ScatterOp(PrimitiveWithInfer):
|
|
43
47
|
"""
|
|
@@ -187,54 +191,6 @@ class Expand(Primitive):
|
|
|
187
191
|
self.init_prim_io_names(inputs=['x', 'shape'], outputs=['y'])
|
|
188
192
|
|
|
189
193
|
|
|
190
|
-
class ExpandDims(PrimitiveWithCheck):
|
|
191
|
-
"""
|
|
192
|
-
Adds an additional dimension to `input_x` at the given axis, the dimension of
|
|
193
|
-
`input_x` should be greater than or equal to 1.
|
|
194
|
-
|
|
195
|
-
Refer to :func:`mindspore.ops.expand_dims` for more details.
|
|
196
|
-
|
|
197
|
-
Inputs:
|
|
198
|
-
- **input_x** (Tensor) - The shape of tensor is :math:`(x_1, x_2, ..., x_R)`.
|
|
199
|
-
- **axis** (int) - Specifies the dimension index at which to expand
|
|
200
|
-
the shape of `input_x`. The value of axis must be in the range
|
|
201
|
-
`[-input_x.ndim-1, input_x.ndim]`. Only constant value is allowed.
|
|
202
|
-
|
|
203
|
-
Outputs:
|
|
204
|
-
Tensor, the shape of tensor is :math:`(1, x_1, x_2, ..., x_R)` if the
|
|
205
|
-
value of `axis` is 0. It has the same data type as `input_x`.
|
|
206
|
-
|
|
207
|
-
Supported Platforms:
|
|
208
|
-
``Ascend`` ``GPU`` ``CPU``
|
|
209
|
-
|
|
210
|
-
Examples:
|
|
211
|
-
>>> import mindspore
|
|
212
|
-
>>> import numpy as np
|
|
213
|
-
>>> from mindspore import Tensor, ops
|
|
214
|
-
>>> input_tensor = Tensor(np.array([[2, 2], [2, 2]]), mindspore.float32)
|
|
215
|
-
>>> expand_dims = ops.ExpandDims()
|
|
216
|
-
>>> output = expand_dims(input_tensor, 0)
|
|
217
|
-
>>> print(output)
|
|
218
|
-
[[[2. 2.]
|
|
219
|
-
[2. 2.]]]
|
|
220
|
-
"""
|
|
221
|
-
|
|
222
|
-
@prim_attr_register
|
|
223
|
-
def __init__(self):
|
|
224
|
-
"""Initialize ExpandDims"""
|
|
225
|
-
self.init_prim_io_names(inputs=['x', 'axis'], outputs=['output'])
|
|
226
|
-
|
|
227
|
-
def infer_value(self, input_x, axis):
|
|
228
|
-
value = None
|
|
229
|
-
if input_x is not None and axis is not None:
|
|
230
|
-
dtype = input_x.dtype
|
|
231
|
-
if input_x.dtype == mstype.bfloat16:
|
|
232
|
-
cpu_cast = Cast().set_device("CPU")
|
|
233
|
-
input_x = cpu_cast(input_x, mstype.float32)
|
|
234
|
-
value = Tensor(np.expand_dims(input_x.asnumpy(), axis), dtype)
|
|
235
|
-
return value
|
|
236
|
-
|
|
237
|
-
|
|
238
194
|
class DType(Primitive):
|
|
239
195
|
"""
|
|
240
196
|
Returns the data type of the input tensor as mindspore.dtype.
|
|
@@ -304,88 +260,6 @@ class CheckNumerics(Primitive):
|
|
|
304
260
|
self.init_prim_io_names(inputs=['x'], outputs=['y'])
|
|
305
261
|
|
|
306
262
|
|
|
307
|
-
class Cast(PrimitiveWithCheck):
|
|
308
|
-
"""
|
|
309
|
-
Returns a tensor with the new specified data type.
|
|
310
|
-
|
|
311
|
-
Note:
|
|
312
|
-
When converting complex numbers to boolean type, the imaginary part of the complex number is not
|
|
313
|
-
taken into account. As long as the real part is non-zero, it returns True; otherwise, it returns False.
|
|
314
|
-
|
|
315
|
-
Inputs:
|
|
316
|
-
- **input_x** (Union[Tensor, Number]) - The shape of tensor is :math:`(x_1, x_2, ..., x_R)`.
|
|
317
|
-
The tensor to be cast.
|
|
318
|
-
- **type** (dtype.Number) - The valid data type of the output tensor. Only constant value is allowed.
|
|
319
|
-
|
|
320
|
-
Outputs:
|
|
321
|
-
Tensor, the shape of tensor is the same as `input_x`, :math:`(x_1, x_2, ..., x_R)`.
|
|
322
|
-
|
|
323
|
-
Raises:
|
|
324
|
-
TypeError: If `input_x` is neither Tensor nor Number.
|
|
325
|
-
TypeError: If `type` is not a Number.
|
|
326
|
-
|
|
327
|
-
Supported Platforms:
|
|
328
|
-
``Ascend`` ``GPU`` ``CPU``
|
|
329
|
-
|
|
330
|
-
Examples:
|
|
331
|
-
>>> import mindspore
|
|
332
|
-
>>> import numpy as np
|
|
333
|
-
>>> from mindspore import Tensor, ops
|
|
334
|
-
>>> input_np = np.random.randn(2, 3, 4, 5).astype(np.float32)
|
|
335
|
-
>>> input_x = Tensor(input_np)
|
|
336
|
-
>>> type_dst = mindspore.int32
|
|
337
|
-
>>> cast = ops.Cast()
|
|
338
|
-
>>> output = cast(input_x, type_dst)
|
|
339
|
-
>>> print(output.dtype)
|
|
340
|
-
Int32
|
|
341
|
-
>>> print(output.shape)
|
|
342
|
-
(2, 3, 4, 5)
|
|
343
|
-
"""
|
|
344
|
-
|
|
345
|
-
@prim_attr_register
|
|
346
|
-
def __init__(self):
|
|
347
|
-
"""Initialize Cast"""
|
|
348
|
-
self.init_prim_io_names(inputs=['x', 'dst_type'], outputs=['output'])
|
|
349
|
-
|
|
350
|
-
def check_elim(self, x, dtype):
|
|
351
|
-
if isinstance(x, (Tensor, numbers.Number, Parameter)):
|
|
352
|
-
if isinstance(x, Parameter):
|
|
353
|
-
data = x.data
|
|
354
|
-
if data.dtype == dtype:
|
|
355
|
-
return (True, x)
|
|
356
|
-
if isinstance(x, Tensor) and x.dtype == dtype and not PackFunc.is_tracing():
|
|
357
|
-
x = Tensor(x)
|
|
358
|
-
x.set_cast_dtype()
|
|
359
|
-
return (True, x)
|
|
360
|
-
if isinstance(x, numbers.Number):
|
|
361
|
-
return (True, Tensor(x, dtype=dtype))
|
|
362
|
-
return (False, None)
|
|
363
|
-
|
|
364
|
-
def infer_value(self, x, dst_type):
|
|
365
|
-
if x is None:
|
|
366
|
-
return None
|
|
367
|
-
src_type = mstype.get_py_obj_dtype(x)
|
|
368
|
-
validator.check_subclass("input_x", src_type,
|
|
369
|
-
[mstype.tensor_type, mstype.number], self.name)
|
|
370
|
-
validator.check_subclass("type", dst_type, mstype.number, self.name)
|
|
371
|
-
|
|
372
|
-
if isinstance(src_type, type(mstype.tensor_type)):
|
|
373
|
-
src_type = src_type.element_type()
|
|
374
|
-
if isinstance(dst_type, type(mstype.tensor_type)):
|
|
375
|
-
dst_type = dst_type.element_type()
|
|
376
|
-
|
|
377
|
-
value = None
|
|
378
|
-
np_dst_type = mstype.dtype_to_nptype(dst_type)
|
|
379
|
-
if isinstance(x, (int, float)):
|
|
380
|
-
value = Tensor(np.array(x).astype(np_dst_type), dtype=dst_type)
|
|
381
|
-
else:
|
|
382
|
-
if x.dtype == mstype.bfloat16:
|
|
383
|
-
cpu_cast = Cast().set_device("CPU")
|
|
384
|
-
x = cpu_cast(x, mstype.float32)
|
|
385
|
-
value = Tensor(x.asnumpy().astype(np_dst_type), dtype=dst_type)
|
|
386
|
-
return value
|
|
387
|
-
|
|
388
|
-
|
|
389
263
|
class Im2Col(Primitive):
|
|
390
264
|
r"""
|
|
391
265
|
Extracts sliding local blocks from a batched input tensor.
|
|
@@ -434,7 +308,6 @@ class Im2Col(Primitive):
|
|
|
434
308
|
|
|
435
309
|
- If one int, :math:`pad\_height = pad\_width`.
|
|
436
310
|
- If two int, :math:`pad\_height = pads[0]`, :math:`pad\_width = pads[1]`.
|
|
437
|
-
- If four int, :math:`pads = [pad\_height\_top, pad\_height\_bottom, pad\_width\_left, pad\_width\_right]`.
|
|
438
311
|
|
|
439
312
|
Inputs:
|
|
440
313
|
- **x** (Tensor) - input tensor, only 4-D input tensors (batched image-like tensors) are supported.
|
|
@@ -499,11 +372,10 @@ class Im2Col(Primitive):
|
|
|
499
372
|
|
|
500
373
|
class Col2Im(Primitive):
|
|
501
374
|
r"""
|
|
502
|
-
|
|
375
|
+
Rearranges a row vector to an image. It is
|
|
503
376
|
usually used to reconstruct an image from a set of image patches(or sliding local blocks).
|
|
504
377
|
|
|
505
|
-
Consider
|
|
506
|
-
e.g., patches of images, of shape :math:`(N, C, \prod(\text{kernel_size}), L)`,
|
|
378
|
+
Consider an input Tensor of shape :math:`(N, C, \prod(\text{kernel_size}), L)`,
|
|
507
379
|
where :math:`N` is batch dimension, :math:`C` is channel dimension,
|
|
508
380
|
:math:`\prod(\text{kernel_size})` is the block size, and
|
|
509
381
|
:math:`L` is the total number of blocks. This operation combines these
|
|
@@ -590,149 +462,6 @@ class Col2Im(Primitive):
|
|
|
590
462
|
self.add_prim_attr('stride', self.stride)
|
|
591
463
|
|
|
592
464
|
|
|
593
|
-
class Reshape(PrimitiveWithCheck):
|
|
594
|
-
"""
|
|
595
|
-
Rearranges the input Tensor based on the given shape.
|
|
596
|
-
|
|
597
|
-
Refer to :func:`mindspore.ops.reshape` for more details.
|
|
598
|
-
|
|
599
|
-
Inputs:
|
|
600
|
-
- **input_x** (Tensor) - The shape of tensor is :math:`(x_1, x_2, ..., x_R)`.
|
|
601
|
-
- **input_shape** (tuple[int]) - The input tuple is constructed by multiple
|
|
602
|
-
integers, i.e., :math:`(y_1, y_2, ..., y_S)`.
|
|
603
|
-
|
|
604
|
-
Outputs:
|
|
605
|
-
Tensor, the shape of tensor is :math:`(y_1, y_2, ..., y_S)`.
|
|
606
|
-
|
|
607
|
-
Supported Platforms:
|
|
608
|
-
``Ascend`` ``GPU`` ``CPU``
|
|
609
|
-
|
|
610
|
-
Examples:
|
|
611
|
-
>>> import mindspore
|
|
612
|
-
>>> import numpy as np
|
|
613
|
-
>>> from mindspore import Tensor, ops
|
|
614
|
-
>>> input_x = Tensor(np.array([[-0.1, 0.3, 3.6], [0.4, 0.5, -3.2]]), mindspore.float32)
|
|
615
|
-
>>> reshape = ops.Reshape()
|
|
616
|
-
>>> output = reshape(input_x, (3, 2))
|
|
617
|
-
>>> print(output)
|
|
618
|
-
[[-0.1 0.3]
|
|
619
|
-
[ 3.6 0.4]
|
|
620
|
-
[ 0.5 -3.2]]
|
|
621
|
-
"""
|
|
622
|
-
|
|
623
|
-
@prim_attr_register
|
|
624
|
-
def __init__(self):
|
|
625
|
-
"""Initialize Reshape"""
|
|
626
|
-
self.init_prim_io_names(inputs=['tensor', 'shape'], outputs=['output'])
|
|
627
|
-
|
|
628
|
-
def infer_value(self, x, shape):
|
|
629
|
-
"""infer value"""
|
|
630
|
-
# for shape is not constant
|
|
631
|
-
if shape is None or self.none_in_tuple_or_list(shape) or x is None:
|
|
632
|
-
return None
|
|
633
|
-
|
|
634
|
-
if isinstance(shape, (Tensor, Tensor_)):
|
|
635
|
-
validator.check_tensor_dtype_valid("shape", mstype.TensorType(shape.dtype),
|
|
636
|
-
[mstype.int32, mstype.int64], self.name)
|
|
637
|
-
shape = shape.asnumpy().tolist()
|
|
638
|
-
else:
|
|
639
|
-
validator.check_value_type("shape", shape, [tuple], self.name)
|
|
640
|
-
shape = list(shape)
|
|
641
|
-
|
|
642
|
-
neg_index = -1
|
|
643
|
-
dim_prod = 1
|
|
644
|
-
for i, shp_i in enumerate(shape):
|
|
645
|
-
validator.check_value_type("shape[%d]" % i, shp_i, [int], self.name)
|
|
646
|
-
if shp_i == -1:
|
|
647
|
-
if neg_index != -1:
|
|
648
|
-
raise ValueError(f"For '{self.name}', there can be at most one '-1' in 'input_shape', "
|
|
649
|
-
f"but got {shape}.")
|
|
650
|
-
neg_index = i
|
|
651
|
-
else:
|
|
652
|
-
dim_prod *= shp_i
|
|
653
|
-
out = None
|
|
654
|
-
if not is_shape_unknown(x.shape):
|
|
655
|
-
x_shp = x.shape
|
|
656
|
-
if dim_prod <= 0:
|
|
657
|
-
raise ValueError(f"For '{self.name}', the shape of 'input_x' is {x_shp}, "
|
|
658
|
-
f"the value of 'input_shape' is {shape}. "
|
|
659
|
-
f"The product of 'input_shape' should > 0, but got {dim_prod}.")
|
|
660
|
-
arr_prod = np.prod(x_shp)
|
|
661
|
-
if neg_index != -1:
|
|
662
|
-
shape[neg_index] = int(arr_prod // dim_prod)
|
|
663
|
-
dim_prod *= shape[neg_index]
|
|
664
|
-
if dim_prod != arr_prod:
|
|
665
|
-
raise ValueError(f"For '{self.name}', the product of the 'input_x' shape "
|
|
666
|
-
f"should be equal to product of 'input_shape', but got product of the"
|
|
667
|
-
f" shape of 'input_x': {arr_prod}, product of 'input_shape': {dim_prod}.")
|
|
668
|
-
out = Tensor(x.asnumpy().reshape(shape))
|
|
669
|
-
return out
|
|
670
|
-
|
|
671
|
-
def none_in_tuple_or_list(self, x):
|
|
672
|
-
return isinstance(x, (tuple, list)) and None in x
|
|
673
|
-
|
|
674
|
-
|
|
675
|
-
class Shape(Primitive):
|
|
676
|
-
"""
|
|
677
|
-
Returns the shape of the input tensor.
|
|
678
|
-
|
|
679
|
-
Refer to :func:`mindspore.ops.shape` for more details.
|
|
680
|
-
|
|
681
|
-
Inputs:
|
|
682
|
-
- **input_x** (Tensor) - The shape of tensor is :math:`(x_1, x_2, ..., x_R)`.
|
|
683
|
-
|
|
684
|
-
Outputs:
|
|
685
|
-
tuple[int], the output tuple is constructed by multiple integers,
|
|
686
|
-
:math:`(x_1, x_2, ..., x_R)`.
|
|
687
|
-
|
|
688
|
-
Supported Platforms:
|
|
689
|
-
``Ascend`` ``GPU`` ``CPU``
|
|
690
|
-
|
|
691
|
-
Examples:
|
|
692
|
-
>>> import mindspore
|
|
693
|
-
>>> import numpy as np
|
|
694
|
-
>>> from mindspore import Tensor, ops
|
|
695
|
-
>>> input_x = Tensor(np.ones(shape=[3, 2, 1]), mindspore.float32)
|
|
696
|
-
>>> shape = ops.Shape()
|
|
697
|
-
>>> output = shape(input_x)
|
|
698
|
-
>>> print(output)
|
|
699
|
-
(3, 2, 1)
|
|
700
|
-
"""
|
|
701
|
-
|
|
702
|
-
@prim_attr_register
|
|
703
|
-
def __init__(self):
|
|
704
|
-
"""Initialize Shape"""
|
|
705
|
-
|
|
706
|
-
def __call__(self, x):
|
|
707
|
-
if isinstance(x, (Tensor, COOTensor, CSRTensor, Tensor_)):
|
|
708
|
-
return x.shape
|
|
709
|
-
raise TypeError(f"For primitive[{self.name}], the input argument must be Tensor, but got {type(x)}.")
|
|
710
|
-
|
|
711
|
-
|
|
712
|
-
class TensorShape(Primitive):
|
|
713
|
-
"""
|
|
714
|
-
Returns the shape of the input tensor.
|
|
715
|
-
|
|
716
|
-
Supported Platforms:
|
|
717
|
-
``Ascend`` ``GPU`` ``CPU``
|
|
718
|
-
|
|
719
|
-
Examples:
|
|
720
|
-
>>> import mindspore
|
|
721
|
-
>>> import numpy as np
|
|
722
|
-
>>> from mindspore import Tensor, ops
|
|
723
|
-
>>> input_x = Tensor(np.ones(shape=[3, 2, 1]), mindspore.float32)
|
|
724
|
-
>>> shape = ops.TensorShape()
|
|
725
|
-
>>> output = shape(input_x)
|
|
726
|
-
>>> print(output)
|
|
727
|
-
[3 2 1]
|
|
728
|
-
"""
|
|
729
|
-
|
|
730
|
-
@prim_attr_register
|
|
731
|
-
def __init__(self):
|
|
732
|
-
"""init Shape"""
|
|
733
|
-
self.init_prim_io_names(inputs=['input_x'], outputs=['output'])
|
|
734
|
-
|
|
735
|
-
|
|
736
465
|
class Unsqueeze(PrimitiveWithCheck):
|
|
737
466
|
"""Unsqueeze"""
|
|
738
467
|
|
|
@@ -788,48 +517,6 @@ class Squeeze(Primitive):
|
|
|
788
517
|
self.add_prim_attr("axis", (axis,))
|
|
789
518
|
|
|
790
519
|
|
|
791
|
-
class Transpose(Primitive):
|
|
792
|
-
"""
|
|
793
|
-
Permutes the dimensions of the input tensor according to input permutation.
|
|
794
|
-
|
|
795
|
-
Refer to :func:`mindspore.ops.transpose` for more details.
|
|
796
|
-
|
|
797
|
-
Inputs:
|
|
798
|
-
- **input_x** (Tensor) - The shape of tensor is :math:`(x_1, x_2, ..., x_R)`.
|
|
799
|
-
- **input_perm** (tuple[int]) - The permutation to be converted. The elements in `input_perm` are composed of
|
|
800
|
-
the indexes of each dimension of `input_x`. The length of `input_perm` and the shape of `input_x` must be
|
|
801
|
-
the same. Only constant value is allowed. Must be in the range [0, rank(input_x)).
|
|
802
|
-
|
|
803
|
-
Outputs:
|
|
804
|
-
Tensor, the type of output tensor is the same as `input_x` and the shape of output tensor is decided by the
|
|
805
|
-
shape of `input_x` and the value of `input_perm`.
|
|
806
|
-
|
|
807
|
-
Supported Platforms:
|
|
808
|
-
``Ascend`` ``GPU`` ``CPU``
|
|
809
|
-
|
|
810
|
-
Examples:
|
|
811
|
-
>>> import mindspore
|
|
812
|
-
>>> import numpy as np
|
|
813
|
-
>>> from mindspore import Tensor, ops
|
|
814
|
-
>>> input_x = Tensor(np.array([[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]]), mindspore.float32)
|
|
815
|
-
>>> input_perm = (0, 2, 1)
|
|
816
|
-
>>> transpose = ops.Transpose()
|
|
817
|
-
>>> output = transpose(input_x, input_perm)
|
|
818
|
-
>>> print(output)
|
|
819
|
-
[[[ 1. 4.]
|
|
820
|
-
[ 2. 5.]
|
|
821
|
-
[ 3. 6.]]
|
|
822
|
-
[[ 7. 10.]
|
|
823
|
-
[ 8. 11.]
|
|
824
|
-
[ 9. 12.]]]
|
|
825
|
-
"""
|
|
826
|
-
|
|
827
|
-
@prim_attr_register
|
|
828
|
-
def __init__(self):
|
|
829
|
-
"""Initialize Transpose"""
|
|
830
|
-
self.init_prim_io_names(inputs=['x', 'perm'], outputs=['output'])
|
|
831
|
-
|
|
832
|
-
|
|
833
520
|
class ConjugateTranspose(Primitive):
|
|
834
521
|
"""
|
|
835
522
|
Calculate the conjugate matrix of input x which has been transposed according to input perm.
|
|
@@ -999,99 +686,6 @@ class UniqueConsecutive(Primitive):
|
|
|
999
686
|
self.add_prim_attr("axis", axis)
|
|
1000
687
|
|
|
1001
688
|
|
|
1002
|
-
class Gather(Primitive):
|
|
1003
|
-
r"""
|
|
1004
|
-
Returns the slice of the input tensor corresponding to the elements of `input_indices` on the specified `axis`.
|
|
1005
|
-
|
|
1006
|
-
Refer to :func:`mindspore.ops.gather` for more details.
|
|
1007
|
-
|
|
1008
|
-
Args:
|
|
1009
|
-
batch_dims (int, optional): Specifies the number of batch dimensions.
|
|
1010
|
-
It must be less than or equal to the rank of `input_indices`. Default: ``0`` .
|
|
1011
|
-
|
|
1012
|
-
Inputs:
|
|
1013
|
-
- **input_params** (Tensor) - The original Tensor. The shape of tensor is :math:`(x_1, x_2, ..., x_R)`.
|
|
1014
|
-
- **input_indices** (Tensor) - Index tensor to be sliced, the shape of tensor is :math:`(y_1, y_2, ..., y_S)`.
|
|
1015
|
-
Specifies the indices of elements of the original Tensor. The data type can be int32 or int64.
|
|
1016
|
-
- **axis** (Union(int, Tensor[int])) - Specifies the dimension index to gather indices.
|
|
1017
|
-
When axis is Tensor, the size must be 1.
|
|
1018
|
-
|
|
1019
|
-
Outputs:
|
|
1020
|
-
Tensor, the shape of tensor is
|
|
1021
|
-
:math:`input\_params.shape[:axis] + input\_indices.shape + input\_params.shape[axis + 1:]`.
|
|
1022
|
-
|
|
1023
|
-
Supported Platforms:
|
|
1024
|
-
``Ascend`` ``GPU`` ``CPU``
|
|
1025
|
-
|
|
1026
|
-
Examples:
|
|
1027
|
-
>>> import mindspore
|
|
1028
|
-
>>> import numpy as np
|
|
1029
|
-
>>> from mindspore import Tensor, ops
|
|
1030
|
-
>>> # case1: input_indices is a Tensor with shape (5, ).
|
|
1031
|
-
>>> input_params = Tensor(np.array([1, 2, 3, 4, 5, 6, 7]), mindspore.float32)
|
|
1032
|
-
>>> input_indices = Tensor(np.array([0, 2, 4, 2, 6]), mindspore.int32)
|
|
1033
|
-
>>> axis = 0
|
|
1034
|
-
>>> output = ops.Gather()(input_params, input_indices, axis)
|
|
1035
|
-
>>> print(output)
|
|
1036
|
-
[1. 3. 5. 3. 7.]
|
|
1037
|
-
>>> # case2: input_indices is a Tensor with shape (2, 2). When the input_params has one dimension,
|
|
1038
|
-
the output shape is equal to the input_indices shape.
|
|
1039
|
-
>>> input_indices = Tensor(np.array([[0, 2], [2, 6]]), mindspore.int32)
|
|
1040
|
-
>>> axis = 0
|
|
1041
|
-
>>> output = ops.Gather()(input_params, input_indices, axis)
|
|
1042
|
-
>>> print(output)
|
|
1043
|
-
[[ 1. 3.]
|
|
1044
|
-
[ 3. 7.]]
|
|
1045
|
-
>>> # case3: input_indices is a Tensor with shape (2, ). input_params is a Tensor with shape (3, 4) and axis is 0.
|
|
1046
|
-
>>> input_params = Tensor(np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]]), mindspore.float32)
|
|
1047
|
-
>>> input_indices = Tensor(np.array([0, 2]), mindspore.int32)
|
|
1048
|
-
>>> axis = 0
|
|
1049
|
-
>>> output = ops.Gather()(input_params, input_indices, axis)
|
|
1050
|
-
>>> print(output)
|
|
1051
|
-
[[1. 2. 3. 4.]
|
|
1052
|
-
[9. 10. 11. 12.]]
|
|
1053
|
-
>>> # case4: input_indices is a Tensor with shape (2, ).
|
|
1054
|
-
>>> # input_params is a Tensor with shape (3, 4) and axis is 1, batch_dims is 1.
|
|
1055
|
-
>>> input_params = Tensor(np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]]), mindspore.float32)
|
|
1056
|
-
>>> input_indices = Tensor(np.array([0, 2, 1]), mindspore.int32)
|
|
1057
|
-
>>> axis = 1
|
|
1058
|
-
>>> batch_dims = 1
|
|
1059
|
-
>>> output = ops.Gather(batch_dims)(input_params, input_indices, axis)
|
|
1060
|
-
>>> print(output)
|
|
1061
|
-
[ 1. 7. 10.]
|
|
1062
|
-
"""
|
|
1063
|
-
|
|
1064
|
-
@prim_attr_register
|
|
1065
|
-
def __init__(self, batch_dims=0):
|
|
1066
|
-
"""Initialize Gather"""
|
|
1067
|
-
validator.check_value_type("batch_dims", batch_dims, [int], self.name)
|
|
1068
|
-
self.add_prim_attr("batch_dims", batch_dims)
|
|
1069
|
-
self.init_prim_io_names(inputs=['params', 'indices', 'axis'], outputs=['output'])
|
|
1070
|
-
|
|
1071
|
-
|
|
1072
|
-
class GatherV2(PrimitiveWithCheck):
|
|
1073
|
-
"""
|
|
1074
|
-
Same as operator Gather. GatherV2 will be deprecated in the future.
|
|
1075
|
-
Please use Gather instead.
|
|
1076
|
-
"""
|
|
1077
|
-
|
|
1078
|
-
@deprecated("1.1", "Gather", True)
|
|
1079
|
-
@prim_attr_register
|
|
1080
|
-
def __init__(self):
|
|
1081
|
-
"""Initialize GatherV2"""
|
|
1082
|
-
self.add_prim_attr("batch_dims", 0)
|
|
1083
|
-
self.init_prim_io_names(inputs=['params', 'indices', 'axis'], outputs=['output'])
|
|
1084
|
-
|
|
1085
|
-
def __check__(self, params, indices, axis):
|
|
1086
|
-
validator.check_subclass("params", params['dtype'], mstype.tensor_type, self.name)
|
|
1087
|
-
validator.check_tensor_dtype_valid("indices", indices['dtype'], mstype.int_type, self.name)
|
|
1088
|
-
validator.check_subclass("axis", axis['dtype'], [mstype.number], self.name)
|
|
1089
|
-
axis_v = axis['value']
|
|
1090
|
-
validator.check_value_type('axis', axis_v, [int], self.name)
|
|
1091
|
-
rank = len(params['shape'])
|
|
1092
|
-
validator.check_int_range(axis_v, -rank, rank, validator.INC_LEFT, "axis", self.name)
|
|
1093
|
-
|
|
1094
|
-
|
|
1095
689
|
class SparseGatherV2(Primitive):
|
|
1096
690
|
"""
|
|
1097
691
|
Returns a slice of input tensor based on the specified indices and axis.
|
|
@@ -1214,100 +808,6 @@ class UniqueWithPad(Primitive):
|
|
|
1214
808
|
self.init_prim_io_names(inputs=['x', 'pad_num'], outputs=['y', 'idx'])
|
|
1215
809
|
|
|
1216
810
|
|
|
1217
|
-
class Split(Primitive):
|
|
1218
|
-
r"""
|
|
1219
|
-
Splits the input tensor into output_num of tensors along the given axis and output numbers.
|
|
1220
|
-
|
|
1221
|
-
Refer to :func:`mindspore.ops.split` for more details.
|
|
1222
|
-
|
|
1223
|
-
Args:
|
|
1224
|
-
axis (int): Index of the split position. Default: ``0`` .
|
|
1225
|
-
output_num (int): The number of output tensors. Must be positive int. Default: ``1`` .
|
|
1226
|
-
|
|
1227
|
-
Inputs:
|
|
1228
|
-
- **input_x** (Tensor) - The shape of tensor is :math:`(x_0, x_1, ..., x_{R-1})`, R >= 1.
|
|
1229
|
-
|
|
1230
|
-
Outputs:
|
|
1231
|
-
tuple[Tensor], the shape of each output tensor is the same, which is
|
|
1232
|
-
:math:`(x_0, x_1, ..., x_{axis}/{output\_num}, ..., x_{R-1})`.
|
|
1233
|
-
And the data type is the same as `input_x`.
|
|
1234
|
-
|
|
1235
|
-
Supported Platforms:
|
|
1236
|
-
``Ascend`` ``GPU`` ``CPU``
|
|
1237
|
-
|
|
1238
|
-
Examples:
|
|
1239
|
-
>>> import mindspore
|
|
1240
|
-
>>> import numpy as np
|
|
1241
|
-
>>> from mindspore import Tensor, ops
|
|
1242
|
-
>>> split = ops.Split(1, 2)
|
|
1243
|
-
>>> x = Tensor(np.array([[1, 1, 1, 1], [2, 2, 2, 2]]), mindspore.int32)
|
|
1244
|
-
>>> print(x)
|
|
1245
|
-
[[1 1 1 1]
|
|
1246
|
-
[2 2 2 2]]
|
|
1247
|
-
>>> output = split(x)
|
|
1248
|
-
>>> print(output)
|
|
1249
|
-
(Tensor(shape=[2, 2], dtype=Int32, value=
|
|
1250
|
-
[[1, 1],
|
|
1251
|
-
[2, 2]]), Tensor(shape=[2, 2], dtype=Int32, value=
|
|
1252
|
-
[[1, 1],
|
|
1253
|
-
[2, 2]]))
|
|
1254
|
-
>>> split = ops.Split(1, 4)
|
|
1255
|
-
>>> output = split(x)
|
|
1256
|
-
>>> print(output)
|
|
1257
|
-
(Tensor(shape=[2, 1], dtype=Int32, value=
|
|
1258
|
-
[[1],
|
|
1259
|
-
[2]]), Tensor(shape=[2, 1], dtype=Int32, value=
|
|
1260
|
-
[[1],
|
|
1261
|
-
[2]]), Tensor(shape=[2, 1], dtype=Int32, value=
|
|
1262
|
-
[[1],
|
|
1263
|
-
[2]]), Tensor(shape=[2, 1], dtype=Int32, value=
|
|
1264
|
-
[[1],
|
|
1265
|
-
[2]]))
|
|
1266
|
-
"""
|
|
1267
|
-
|
|
1268
|
-
@prim_attr_register
|
|
1269
|
-
def __init__(self, axis=0, output_num=1):
|
|
1270
|
-
"""Initialize Split"""
|
|
1271
|
-
validator.check_value_type("axis", axis, [int], self.name)
|
|
1272
|
-
validator.check_value_type("output_num", output_num, [int], self.name)
|
|
1273
|
-
validator.check_positive_int(output_num, "output_num", self.name)
|
|
1274
|
-
self.axis = axis
|
|
1275
|
-
self.output_num = output_num
|
|
1276
|
-
self.add_prim_attr('num_split', self.output_num)
|
|
1277
|
-
|
|
1278
|
-
|
|
1279
|
-
class Rank(Primitive):
|
|
1280
|
-
"""
|
|
1281
|
-
Returns the rank of a tensor.
|
|
1282
|
-
|
|
1283
|
-
Refer to :func:`mindspore.ops.rank` for more details.
|
|
1284
|
-
|
|
1285
|
-
Supported Platforms:
|
|
1286
|
-
``Ascend`` ``GPU`` ``CPU``
|
|
1287
|
-
|
|
1288
|
-
Examples:
|
|
1289
|
-
>>> import mindspore
|
|
1290
|
-
>>> import numpy as np
|
|
1291
|
-
>>> from mindspore import Tensor, ops
|
|
1292
|
-
>>> input_tensor = Tensor(np.array([[2, 2], [2, 2]]), mindspore.float32)
|
|
1293
|
-
>>> rank = ops.Rank()
|
|
1294
|
-
>>> output = rank(input_tensor)
|
|
1295
|
-
>>> print(output)
|
|
1296
|
-
2
|
|
1297
|
-
>>> print(type(output))
|
|
1298
|
-
<class 'int'>
|
|
1299
|
-
"""
|
|
1300
|
-
|
|
1301
|
-
@prim_attr_register
|
|
1302
|
-
def __init__(self):
|
|
1303
|
-
"""Initialize Rank"""
|
|
1304
|
-
|
|
1305
|
-
def __call__(self, x):
|
|
1306
|
-
if not isinstance(x, (Tensor, Tensor_)):
|
|
1307
|
-
raise TypeError("the input x must be Tensor!")
|
|
1308
|
-
return len(x.shape)
|
|
1309
|
-
|
|
1310
|
-
|
|
1311
811
|
class Size(Primitive):
|
|
1312
812
|
r"""
|
|
1313
813
|
Returns a Scalar of type int that represents the size of the input Tensor and the total number of elements in the
|
|
@@ -1317,7 +817,7 @@ class Size(Primitive):
|
|
|
1317
817
|
|
|
1318
818
|
Inputs:
|
|
1319
819
|
- **input_x** (Tensor) - Input parameters, the shape of tensor is :math:`(x_1, x_2, ..., x_R)`. The data type is
|
|
1320
|
-
`number <https://www.mindspore.cn/docs/en/r2.
|
|
820
|
+
`number <https://www.mindspore.cn/docs/en/r2.3.q1/api_python/mindspore.html#mindspore.dtype>`_.
|
|
1321
821
|
|
|
1322
822
|
Outputs:
|
|
1323
823
|
int. A scalar representing the elements' size of `input_x`, tensor is the number of elements
|
|
@@ -1504,7 +1004,7 @@ class MatrixDiagPartV3(Primitive):
|
|
|
1504
1004
|
class MatrixSetDiagV3(Primitive):
|
|
1505
1005
|
r"""
|
|
1506
1006
|
Updates the diagonal part of a batched tensor.
|
|
1507
|
-
It takes
|
|
1007
|
+
It takes a Tensor `x` and `diagonal` as input and returns a Tensor in which
|
|
1508
1008
|
the specified diagonal values in the innermost matrices will be replaced
|
|
1509
1009
|
by the values in the `diagonal`.
|
|
1510
1010
|
|
|
@@ -1770,20 +1270,23 @@ class FillV2(PrimitiveWithCheck):
|
|
|
1770
1270
|
self.init_prim_io_names(inputs=['shape', 'value'], outputs=['y'])
|
|
1771
1271
|
|
|
1772
1272
|
def check_elim(self, dims, x):
|
|
1773
|
-
|
|
1774
|
-
|
|
1775
|
-
|
|
1776
|
-
if x_is_invalid or dims_is_invalid:
|
|
1273
|
+
if x is None or (not isinstance(x, (Tensor, Tensor_))) or (x.shape != ()) or \
|
|
1274
|
+
dims is None or (isinstance(dims, (tuple, list)) and dims) or \
|
|
1275
|
+
isinstance(dims, (Tensor, Tensor_)):
|
|
1777
1276
|
return (False, None)
|
|
1778
1277
|
return (True, x)
|
|
1779
1278
|
|
|
1780
1279
|
def infer_value(self, dims, x):
|
|
1781
|
-
|
|
1782
|
-
|
|
1783
|
-
|
|
1784
|
-
if x is None or dims_is_invalid:
|
|
1280
|
+
if x is None or dims is None or isinstance(dims, (Tensor, Tensor_)):
|
|
1281
|
+
return None
|
|
1282
|
+
if isinstance(dims, (tuple, list)) and None in dims:
|
|
1785
1283
|
return None
|
|
1786
|
-
|
|
1284
|
+
if 0 in dims:
|
|
1285
|
+
init_func = Zero()
|
|
1286
|
+
init_func.__enable_zero_dim__ = True
|
|
1287
|
+
out = Tensor(shape=dims, dtype=x.dtype, init=init_func)
|
|
1288
|
+
return out
|
|
1289
|
+
return Tensor(np.full(dims, x.asnumpy()))
|
|
1787
1290
|
|
|
1788
1291
|
|
|
1789
1292
|
class Ones(Primitive):
|
|
@@ -1861,95 +1364,30 @@ class Zeros(Primitive):
|
|
|
1861
1364
|
"""Initialize Zeros"""
|
|
1862
1365
|
|
|
1863
1366
|
|
|
1864
|
-
class
|
|
1367
|
+
class TupleToArray(PrimitiveWithInfer):
|
|
1865
1368
|
"""
|
|
1866
|
-
|
|
1369
|
+
Converts a tuple to a tensor.
|
|
1867
1370
|
|
|
1868
|
-
Refer to :func:`mindspore.ops.
|
|
1371
|
+
Refer to :func:`mindspore.ops.tuple_to_array` for more details.
|
|
1869
1372
|
|
|
1870
1373
|
Inputs:
|
|
1871
|
-
- **input_x** (
|
|
1374
|
+
- **input_x** (tuple) - A tuple of numbers. These numbers have the same type.
|
|
1375
|
+
The shape is :math:`(N,*)` where :math:`*` means any number of additional dimensions.
|
|
1872
1376
|
|
|
1873
1377
|
Outputs:
|
|
1874
|
-
Tensor,
|
|
1378
|
+
Tensor, if the input tuple contains `N` numbers, then the shape of the output tensor is :math:`(N,)`.
|
|
1875
1379
|
|
|
1876
1380
|
Supported Platforms:
|
|
1877
1381
|
``Ascend`` ``GPU`` ``CPU``
|
|
1878
1382
|
|
|
1879
1383
|
Examples:
|
|
1880
|
-
>>>
|
|
1881
|
-
>>>
|
|
1882
|
-
>>>
|
|
1883
|
-
|
|
1884
|
-
>>> output =
|
|
1885
|
-
>>> print(output)
|
|
1886
|
-
|
|
1887
|
-
[1 1]]
|
|
1888
|
-
"""
|
|
1889
|
-
|
|
1890
|
-
@prim_attr_register
|
|
1891
|
-
def __init__(self):
|
|
1892
|
-
"""Initialize OnesLike"""
|
|
1893
|
-
self.init_prim_io_names(inputs=['x'], outputs=['y'])
|
|
1894
|
-
|
|
1895
|
-
|
|
1896
|
-
class ZerosLike(Primitive):
|
|
1897
|
-
"""
|
|
1898
|
-
Returns a Tensor with a value of 0 and its shape and data type is the same as the input.
|
|
1899
|
-
|
|
1900
|
-
Inputs:
|
|
1901
|
-
- **input_x** (Tensor) - Input Tensor of any dimension.
|
|
1902
|
-
|
|
1903
|
-
Outputs:
|
|
1904
|
-
Tensor, has the same shape and data type as `input_x` but filled with zeros.
|
|
1905
|
-
|
|
1906
|
-
Raises:
|
|
1907
|
-
TypeError: If `input_x` is not a Tensor.
|
|
1908
|
-
|
|
1909
|
-
Supported Platforms:
|
|
1910
|
-
``Ascend`` ``GPU`` ``CPU``
|
|
1911
|
-
|
|
1912
|
-
Examples:
|
|
1913
|
-
>>> import numpy as np
|
|
1914
|
-
>>> from mindspore import Tensor, ops
|
|
1915
|
-
>>> zeroslike = ops.ZerosLike()
|
|
1916
|
-
>>> input_x = Tensor(np.array([[0, 1], [2, 1]]).astype(np.float32))
|
|
1917
|
-
>>> output = zeroslike(input_x)
|
|
1918
|
-
>>> print(output)
|
|
1919
|
-
[[0. 0.]
|
|
1920
|
-
[0. 0.]]
|
|
1921
|
-
"""
|
|
1922
|
-
|
|
1923
|
-
@prim_attr_register
|
|
1924
|
-
def __init__(self):
|
|
1925
|
-
"""Initialize ZerosLike"""
|
|
1926
|
-
self.init_prim_io_names(inputs=['x'], outputs=['y'])
|
|
1927
|
-
|
|
1928
|
-
|
|
1929
|
-
class TupleToArray(PrimitiveWithInfer):
|
|
1930
|
-
"""
|
|
1931
|
-
Converts a tuple to a tensor.
|
|
1932
|
-
|
|
1933
|
-
Refer to :func:`mindspore.ops.tuple_to_array` for more details.
|
|
1934
|
-
|
|
1935
|
-
Inputs:
|
|
1936
|
-
- **input_x** (tuple) - A tuple of numbers. These numbers have the same type.
|
|
1937
|
-
The shape is :math:`(N,*)` where :math:`*` means any number of additional dimensions.
|
|
1938
|
-
|
|
1939
|
-
Outputs:
|
|
1940
|
-
Tensor, if the input tuple contains `N` numbers, then the shape of the output tensor is :math:`(N,)`.
|
|
1941
|
-
|
|
1942
|
-
Supported Platforms:
|
|
1943
|
-
``Ascend`` ``GPU`` ``CPU``
|
|
1944
|
-
|
|
1945
|
-
Examples:
|
|
1946
|
-
>>> from mindspore import ops
|
|
1947
|
-
>>> input_x = (1,2,3)
|
|
1948
|
-
>>> print(type(input_x))
|
|
1949
|
-
<class 'tuple'>
|
|
1950
|
-
>>> output = ops.TupleToArray()(input_x)
|
|
1951
|
-
>>> print(type(output))
|
|
1952
|
-
<class 'mindspore.common.tensor.Tensor'>
|
|
1384
|
+
>>> from mindspore import ops
|
|
1385
|
+
>>> input_x = (1,2,3)
|
|
1386
|
+
>>> print(type(input_x))
|
|
1387
|
+
<class 'tuple'>
|
|
1388
|
+
>>> output = ops.TupleToArray()(input_x)
|
|
1389
|
+
>>> print(type(output))
|
|
1390
|
+
<class 'mindspore.common.tensor.Tensor'>
|
|
1953
1391
|
>>> print(output)
|
|
1954
1392
|
[1 2 3]
|
|
1955
1393
|
"""
|
|
@@ -1982,42 +1420,6 @@ class TupleToArray(PrimitiveWithInfer):
|
|
|
1982
1420
|
return _run_op(self, self.name, args)
|
|
1983
1421
|
|
|
1984
1422
|
|
|
1985
|
-
class ScalarToTensor(PrimitiveWithInfer):
|
|
1986
|
-
"""
|
|
1987
|
-
Converts a scalar to a `Tensor`, and converts the data type to the specified type.
|
|
1988
|
-
|
|
1989
|
-
Refer to :func:`mindspore.ops.scalar_to_tensor` for more details.
|
|
1990
|
-
|
|
1991
|
-
Inputs:
|
|
1992
|
-
- **input_x** (Union[int, float]) - The input is a scalar. Only constant value is allowed.
|
|
1993
|
-
- **dtype** (mindspore.dtype) - The target data type. Default: ``mindspore.float32`` . Only
|
|
1994
|
-
constant value is allowed.
|
|
1995
|
-
|
|
1996
|
-
Outputs:
|
|
1997
|
-
Tensor. 0-D Tensor and the content is the input.
|
|
1998
|
-
|
|
1999
|
-
Supported Platforms:
|
|
2000
|
-
``Ascend`` ``GPU`` ``CPU``
|
|
2001
|
-
|
|
2002
|
-
Examples:
|
|
2003
|
-
>>> import mindspore
|
|
2004
|
-
>>> from mindspore import ops
|
|
2005
|
-
>>> op = ops.ScalarToTensor()
|
|
2006
|
-
>>> data = 1
|
|
2007
|
-
>>> output = op(data, mindspore.float32)
|
|
2008
|
-
>>> print(output)
|
|
2009
|
-
1.0
|
|
2010
|
-
"""
|
|
2011
|
-
|
|
2012
|
-
@prim_attr_register
|
|
2013
|
-
def __init__(self):
|
|
2014
|
-
self.init_prim_io_names(inputs=['input_scalar', 'dtype'], outputs=['output_data'])
|
|
2015
|
-
|
|
2016
|
-
def __call__(self, x, dtype=mstype.float32):
|
|
2017
|
-
validator.check_value_type("x", x, [bool, int, float], self.name)
|
|
2018
|
-
validator.check_subclass("dtype", dtype, mstype.number, self.name)
|
|
2019
|
-
data_type = mstype.dtype_to_nptype(dtype)
|
|
2020
|
-
return Tensor(np.array(x, data_type), dtype=dtype)
|
|
2021
1423
|
|
|
2022
1424
|
|
|
2023
1425
|
class InvertPermutation(PrimitiveWithInfer):
|
|
@@ -2099,94 +1501,6 @@ class InvertPermutation(PrimitiveWithInfer):
|
|
|
2099
1501
|
'value': tuple(y)}
|
|
2100
1502
|
|
|
2101
1503
|
|
|
2102
|
-
class Argmax(Primitive):
|
|
2103
|
-
"""
|
|
2104
|
-
Returns the indices of the maximum value along a specified `axis` of a Tensor.
|
|
2105
|
-
|
|
2106
|
-
Refer to :func:`mindspore.ops.argmax` for more details.
|
|
2107
|
-
|
|
2108
|
-
Args:
|
|
2109
|
-
axis (int): Axis where the Argmax operation applies to. Default: ``-1`` .
|
|
2110
|
-
output_type (:class:`mindspore.dtype`): Output data type.
|
|
2111
|
-
Supported types: ``mstype.int32`` , ``mstype.int64`` . Default: ``mstype.int32`` .
|
|
2112
|
-
|
|
2113
|
-
Inputs:
|
|
2114
|
-
- **input_x** (Tensor) - The input tensor. :math:`(N, *)` where :math:`*` means, any number of additional
|
|
2115
|
-
dimensions.
|
|
2116
|
-
|
|
2117
|
-
Outputs:
|
|
2118
|
-
Tensor, indices of the max value of input tensor across the axis.
|
|
2119
|
-
|
|
2120
|
-
Supported Platforms:
|
|
2121
|
-
``Ascend`` ``GPU`` ``CPU``
|
|
2122
|
-
|
|
2123
|
-
Examples:
|
|
2124
|
-
>>> import mindspore
|
|
2125
|
-
>>> import numpy as np
|
|
2126
|
-
>>> from mindspore import Tensor, ops
|
|
2127
|
-
>>> input_x = Tensor(np.array([[1, 20, 5], [67, 8, 9], [130, 24, 15]]).astype(np.float32))
|
|
2128
|
-
>>> output = ops.Argmax(output_type=mindspore.int32)(input_x)
|
|
2129
|
-
>>> print(output)
|
|
2130
|
-
[1 0 0]
|
|
2131
|
-
"""
|
|
2132
|
-
|
|
2133
|
-
@prim_attr_register
|
|
2134
|
-
def __init__(self, axis=-1, output_type=mstype.int32):
|
|
2135
|
-
"""Initialize Argmax"""
|
|
2136
|
-
self.init_prim_io_names(inputs=['x'], outputs=['output'])
|
|
2137
|
-
validator.check_value_type("axis", axis, [int], self.name)
|
|
2138
|
-
validator.check_types_same_and_valid({'output': output_type}, [mstype.int32, mstype.int64], self.name)
|
|
2139
|
-
self.axis = axis
|
|
2140
|
-
self.add_prim_attr('output_type', output_type)
|
|
2141
|
-
|
|
2142
|
-
|
|
2143
|
-
class Argmin(Primitive):
|
|
2144
|
-
"""
|
|
2145
|
-
Returns the indices of the minimum value along a specified `axis` of a Tensor.
|
|
2146
|
-
|
|
2147
|
-
If the shape of input tensor is :math:`(x_1, ..., x_N)`, the shape of the output tensor is
|
|
2148
|
-
:math:`(x_1, ..., x_{axis-1}, x_{axis+1}, ..., x_N)`.
|
|
2149
|
-
|
|
2150
|
-
Args:
|
|
2151
|
-
axis (int): Axis where the Argmin operation applies to. Default: ``-1`` .
|
|
2152
|
-
output_type (:class:`mindspore.dtype`): Output data type.
|
|
2153
|
-
Supported types: ``mstype.int32`` , ``mstype.int64`` . Default: ``mstype.int32`` .
|
|
2154
|
-
|
|
2155
|
-
Inputs:
|
|
2156
|
-
- **input_x** (Tensor) - Input tensor.
|
|
2157
|
-
The shape is :math:`(N, *)` where :math:`*` means, any number of additional dimensions.
|
|
2158
|
-
|
|
2159
|
-
Outputs:
|
|
2160
|
-
Tensor, whose dtype is determined by `output_type`.
|
|
2161
|
-
|
|
2162
|
-
Raises:
|
|
2163
|
-
TypeError: If `axis` is not an int.
|
|
2164
|
-
TypeError: If `output_type` is neither int32 nor int64.
|
|
2165
|
-
|
|
2166
|
-
Supported Platforms:
|
|
2167
|
-
``Ascend`` ``GPU`` ``CPU``
|
|
2168
|
-
|
|
2169
|
-
Examples:
|
|
2170
|
-
>>> import mindspore
|
|
2171
|
-
>>> import numpy as np
|
|
2172
|
-
>>> from mindspore import Tensor, ops
|
|
2173
|
-
>>> input_x = Tensor(np.array([2.0, 3.1, 1.2]), mindspore.float32)
|
|
2174
|
-
>>> index = ops.Argmin()(input_x)
|
|
2175
|
-
>>> print(index)
|
|
2176
|
-
2
|
|
2177
|
-
"""
|
|
2178
|
-
|
|
2179
|
-
@prim_attr_register
|
|
2180
|
-
def __init__(self, axis=-1, output_type=mstype.int32):
|
|
2181
|
-
"""Initialize Argmin"""
|
|
2182
|
-
self.init_prim_io_names(inputs=['x'], outputs=['output'])
|
|
2183
|
-
validator.check_value_type("axis", axis, [int], self.name)
|
|
2184
|
-
validator.check_type_name("output_type", output_type, [mstype.int32, mstype.int64], self.name)
|
|
2185
|
-
self.axis = axis
|
|
2186
|
-
self.add_prim_attr('output_type', output_type)
|
|
2187
|
-
self.add_prim_attr('axis', axis)
|
|
2188
|
-
|
|
2189
|
-
|
|
2190
1504
|
class ArgminV2(Primitive):
|
|
2191
1505
|
"""
|
|
2192
1506
|
Returns the indices of the minimum value of a tensor across the axis.
|
|
@@ -2245,328 +1559,6 @@ class ArgminV2(Primitive):
|
|
|
2245
1559
|
return output
|
|
2246
1560
|
|
|
2247
1561
|
|
|
2248
|
-
class ArgMaxWithValue(Primitive):
|
|
2249
|
-
"""
|
|
2250
|
-
Calculates the maximum value along with the given axis for the input tensor, and returns the maximum values and
|
|
2251
|
-
indices.
|
|
2252
|
-
|
|
2253
|
-
Note:
|
|
2254
|
-
In auto_parallel and semi_auto_parallel mode, the first output index can not be used.
|
|
2255
|
-
|
|
2256
|
-
.. warning::
|
|
2257
|
-
- If there are multiple maximum values, the index of the first maximum value is used.
|
|
2258
|
-
- The value range of "axis" is [-dims, dims - 1]. "dims" is the dimension length of "x".
|
|
2259
|
-
|
|
2260
|
-
Also see :func:`mindspore.ops.max`.
|
|
2261
|
-
|
|
2262
|
-
Args:
|
|
2263
|
-
axis (int): The dimension to reduce. Default: ``0`` .
|
|
2264
|
-
keep_dims (bool): Whether to reduce dimension, if ``True`` , the output will keep same dimension with the
|
|
2265
|
-
input, the output will reduce dimension if ``false`` . Default: ``False`` .
|
|
2266
|
-
|
|
2267
|
-
Inputs:
|
|
2268
|
-
- **x** (Tensor) - The input tensor, can be any dimension. Set the shape of input tensor as
|
|
2269
|
-
:math:`(x_1, x_2, ..., x_N)`.
|
|
2270
|
-
|
|
2271
|
-
Outputs:
|
|
2272
|
-
tuple (Tensor), tuple of 2 tensors, containing the corresponding index and the maximum value of the input
|
|
2273
|
-
tensor.
|
|
2274
|
-
|
|
2275
|
-
- **index** (Tensor) - The index for the maximum value of the input tensor, with dtype int32. If `keep_dims`
|
|
2276
|
-
is ``True`` , the shape of output tensors is :math:`(x_1, x_2, ..., x_{axis-1}, 1, x_{axis+1}, ..., x_N)`.
|
|
2277
|
-
Otherwise, the shape is :math:`(x_1, x_2, ..., x_{axis-1}, x_{axis+1}, ..., x_N)` .
|
|
2278
|
-
- **values** (Tensor) - The maximum value of input tensor, with the same shape as index, and same dtype as x.
|
|
2279
|
-
|
|
2280
|
-
Raises:
|
|
2281
|
-
TypeError: If `x` is not Tensor.
|
|
2282
|
-
TypeError: If `keep_dims` is not a bool.
|
|
2283
|
-
TypeError: If `axis` is not an int.
|
|
2284
|
-
|
|
2285
|
-
Supported Platforms:
|
|
2286
|
-
``Ascend`` ``GPU`` ``CPU``
|
|
2287
|
-
|
|
2288
|
-
Examples:
|
|
2289
|
-
>>> import mindspore
|
|
2290
|
-
>>> import numpy as np
|
|
2291
|
-
>>> from mindspore import Tensor, ops
|
|
2292
|
-
>>> input_x = Tensor(np.array([0.0, 0.4, 0.6, 0.7, 0.1]), mindspore.float32)
|
|
2293
|
-
>>> index, output = ops.ArgMaxWithValue()(input_x)
|
|
2294
|
-
>>> print(index, output)
|
|
2295
|
-
3 0.7
|
|
2296
|
-
>>> index, output = ops.ArgMaxWithValue(keep_dims=True)(input_x)
|
|
2297
|
-
>>> print(index, output)
|
|
2298
|
-
[3] [0.7]
|
|
2299
|
-
"""
|
|
2300
|
-
|
|
2301
|
-
@prim_attr_register
|
|
2302
|
-
def __init__(self, axis=0, keep_dims=False):
|
|
2303
|
-
"""Initialize ArgMaxWithValue"""
|
|
2304
|
-
self.init_prim_io_names(inputs=['x'], outputs=['index', 'values'])
|
|
2305
|
-
validator.check_value_type("axis", axis, [int], self.name)
|
|
2306
|
-
validator.check_value_type('keep_dims', keep_dims, [bool], self.name)
|
|
2307
|
-
self.axis = axis
|
|
2308
|
-
self.keep_dims = keep_dims
|
|
2309
|
-
self.add_prim_attr('dimension', self.axis)
|
|
2310
|
-
|
|
2311
|
-
|
|
2312
|
-
class ArgMinWithValue(Primitive):
|
|
2313
|
-
"""
|
|
2314
|
-
Calculates the minimum value along with the given axis for the input tensor, and returns the minimum values and
|
|
2315
|
-
indices.
|
|
2316
|
-
|
|
2317
|
-
Note:
|
|
2318
|
-
In auto_parallel and semi_auto_parallel mode, the first output index can not be used.
|
|
2319
|
-
|
|
2320
|
-
.. warning::
|
|
2321
|
-
- If there are multiple minimum values, the index of the first minimum value is used.
|
|
2322
|
-
- The value range of "axis" is [-dims, dims - 1]. "dims" is the dimension length of "x".
|
|
2323
|
-
|
|
2324
|
-
Also see :func:`mindspore.ops.min`.
|
|
2325
|
-
|
|
2326
|
-
Args:
|
|
2327
|
-
axis (int): The dimension to reduce. Default: ``0`` .
|
|
2328
|
-
keep_dims (bool): Whether to reduce dimension, if ``True`` the output will keep the same dimension as the
|
|
2329
|
-
input, the output will reduce dimension if ``false`` . Default: ``False`` .
|
|
2330
|
-
|
|
2331
|
-
Inputs:
|
|
2332
|
-
- **x** (Tensor) - The input tensor, can be any dimension. Set the shape of input tensor as
|
|
2333
|
-
:math:`(x_1, x_2, ..., x_N)` .Complex tensor is not supported.
|
|
2334
|
-
|
|
2335
|
-
Outputs:
|
|
2336
|
-
tuple (Tensor), tuple of 2 tensors, containing the corresponding index and the minimum value of the input
|
|
2337
|
-
tensor.
|
|
2338
|
-
|
|
2339
|
-
- **index** (Tensor) - The index for the minimum value of the input tensor, with dtype int32. If `keep_dims`
|
|
2340
|
-
is ``True`` , the shape of output tensors is :math:`(x_1, x_2, ..., x_{axis-1}, 1, x_{axis+1}, ..., x_N)`.
|
|
2341
|
-
Otherwise, the shape is :math:`(x_1, x_2, ..., x_{axis-1}, x_{axis+1}, ..., x_N)` .
|
|
2342
|
-
- **values** (Tensor) - The minimum value of input tensor, with the same
|
|
2343
|
-
shape as `index`, and same dtype as `x`.
|
|
2344
|
-
|
|
2345
|
-
Raises:
|
|
2346
|
-
TypeError: If `x` is not Tensor.
|
|
2347
|
-
TypeError: If `keep_dims` is not a bool.
|
|
2348
|
-
TypeError: If `axis` is not an int.
|
|
2349
|
-
|
|
2350
|
-
Supported Platforms:
|
|
2351
|
-
``Ascend`` ``GPU`` ``CPU``
|
|
2352
|
-
|
|
2353
|
-
Examples:
|
|
2354
|
-
>>> import mindspore
|
|
2355
|
-
>>> import numpy as np
|
|
2356
|
-
>>> from mindspore import Tensor, ops
|
|
2357
|
-
>>> x = Tensor(np.array([0.0, 0.4, 0.6, 0.7, 0.1]), mindspore.float32)
|
|
2358
|
-
>>> index, output = ops.ArgMinWithValue()(x)
|
|
2359
|
-
>>> print(index, output)
|
|
2360
|
-
0 0.0
|
|
2361
|
-
>>> index, output = ops.ArgMinWithValue(keep_dims=True)(x)
|
|
2362
|
-
>>> print(index, output)
|
|
2363
|
-
[0] [0.0]
|
|
2364
|
-
"""
|
|
2365
|
-
|
|
2366
|
-
@prim_attr_register
|
|
2367
|
-
def __init__(self, axis=0, keep_dims=False):
|
|
2368
|
-
"""Initialize ArgMinWithValue"""
|
|
2369
|
-
self.init_prim_io_names(inputs=['x'], outputs=['index', 'values'])
|
|
2370
|
-
validator.check_value_type("axis", axis, [int], self.name)
|
|
2371
|
-
validator.check_value_type('keep_dims', keep_dims, [bool], self.name)
|
|
2372
|
-
self.axis = axis
|
|
2373
|
-
self.keep_dims = keep_dims
|
|
2374
|
-
self.add_prim_attr('dimension', self.axis)
|
|
2375
|
-
|
|
2376
|
-
|
|
2377
|
-
class Tile(PrimitiveWithInfer):
|
|
2378
|
-
r"""
|
|
2379
|
-
Replicates an input tensor with given multiples times.
|
|
2380
|
-
|
|
2381
|
-
Refer to :func:`mindspore.ops.tile` for more details.
|
|
2382
|
-
|
|
2383
|
-
Inputs:
|
|
2384
|
-
- **input_x** (Tensor) - 1-D or higher dimensional Tensor. Set the shape of input tensor as
|
|
2385
|
-
:math:`(x_1, x_2, ..., x_S)` .
|
|
2386
|
-
- **multiples** (tuple[int]) - The parameter that specifies the number of replications,
|
|
2387
|
-
the parameter type is tuple, and the data type is int, i.e., :math:`(y_1, y_2, ..., y_S)`.
|
|
2388
|
-
The length of `multiples` cannot be smaller than the length of the shape of `input_x`.
|
|
2389
|
-
Only constant value is allowed.
|
|
2390
|
-
|
|
2391
|
-
Outputs:
|
|
2392
|
-
Tensor, has the same data type as the `input_x`. Suppose the length of `multiples` is `d`,
|
|
2393
|
-
the dimension of `input_x` is `input_x.dim`, and the shape of `input_x` is :math:`(x_1, x_2, ..., x_S)`.
|
|
2394
|
-
|
|
2395
|
-
- If `input_x.dim = d`, then the shape of their corresponding positions can be multiplied, and
|
|
2396
|
-
the shape of Outputs is :math:`(x_1*y_1, x_2*y_2, ..., x_S*y_S)`.
|
|
2397
|
-
- If `input_x.dim < d`, fill in multiple 1 in the length of the shape of `input_x` until their
|
|
2398
|
-
lengths are consistent. Such as set the shape of `input_x` as :math:`(1, ..., x_1, x_2, ..., x_S)`,
|
|
2399
|
-
then the shape of their corresponding positions can be multiplied, and the shape of Outputs is
|
|
2400
|
-
:math:`(1*y_1, ..., x_R*y_R, x_S*y_S)`.
|
|
2401
|
-
|
|
2402
|
-
Supported Platforms:
|
|
2403
|
-
``Ascend`` ``GPU`` ``CPU``
|
|
2404
|
-
|
|
2405
|
-
Examples:
|
|
2406
|
-
>>> import mindspore
|
|
2407
|
-
>>> import numpy as np
|
|
2408
|
-
>>> from mindspore import Tensor, ops
|
|
2409
|
-
>>> tile = ops.Tile()
|
|
2410
|
-
>>> input_x = Tensor(np.array([[1, 2], [3, 4]]), mindspore.float32)
|
|
2411
|
-
>>> multiples = (2, 3)
|
|
2412
|
-
>>> output = tile(input_x, multiples)
|
|
2413
|
-
>>> print(output)
|
|
2414
|
-
[[1. 2. 1. 2. 1. 2.]
|
|
2415
|
-
[3. 4. 3. 4. 3. 4.]
|
|
2416
|
-
[1. 2. 1. 2. 1. 2.]
|
|
2417
|
-
[3. 4. 3. 4. 3. 4.]]
|
|
2418
|
-
>>> multiples = (2, 3, 2)
|
|
2419
|
-
>>> output = tile(input_x, multiples)
|
|
2420
|
-
>>> print(output)
|
|
2421
|
-
[[[1. 2. 1. 2.]
|
|
2422
|
-
[3. 4. 3. 4.]
|
|
2423
|
-
[1. 2. 1. 2.]
|
|
2424
|
-
[3. 4. 3. 4.]
|
|
2425
|
-
[1. 2. 1. 2.]
|
|
2426
|
-
[3. 4. 3. 4.]]
|
|
2427
|
-
[[1. 2. 1. 2.]
|
|
2428
|
-
[3. 4. 3. 4.]
|
|
2429
|
-
[1. 2. 1. 2.]
|
|
2430
|
-
[3. 4. 3. 4.]
|
|
2431
|
-
[1. 2. 1. 2.]
|
|
2432
|
-
[3. 4. 3. 4.]]]
|
|
2433
|
-
"""
|
|
2434
|
-
|
|
2435
|
-
@prim_attr_register
|
|
2436
|
-
def __init__(self):
|
|
2437
|
-
"""Initialize Tile"""
|
|
2438
|
-
self.init_prim_io_names(inputs=['x', 'multiples'], outputs=['output'])
|
|
2439
|
-
|
|
2440
|
-
def check_elim(self, *args):
|
|
2441
|
-
base_tensor, multiplier = args
|
|
2442
|
-
if PackFunc.is_tracing() and not PackFunc.current.is_pynative_mode:
|
|
2443
|
-
return (False, None)
|
|
2444
|
-
if not isinstance(base_tensor, Tensor):
|
|
2445
|
-
raise TypeError(f"For '{self.name}', the type of 'input_x' must be Tensor, "
|
|
2446
|
-
f"but got {type(base_tensor).__name__}.")
|
|
2447
|
-
if not isinstance(multiplier, tuple):
|
|
2448
|
-
raise TypeError(f"For '{self.name}', the type of 'multiplier' must be tuple, "
|
|
2449
|
-
f"but got {type(multiplier).__name__}.")
|
|
2450
|
-
|
|
2451
|
-
if all(v == 1 for v in multiplier) and len(base_tensor.shape) >= len(multiplier):
|
|
2452
|
-
ret = Identity()(base_tensor)
|
|
2453
|
-
return (True, ret)
|
|
2454
|
-
return (False, None)
|
|
2455
|
-
|
|
2456
|
-
def _get_shape_and_range(self, x, multiples):
|
|
2457
|
-
"""calculate tile shape and value"""
|
|
2458
|
-
x_shp = x['shape']
|
|
2459
|
-
if is_dim_unknown(x_shp):
|
|
2460
|
-
return {'shape': x_shp}, None
|
|
2461
|
-
multiples_v = multiples['value']
|
|
2462
|
-
value = None
|
|
2463
|
-
len_sub = len(multiples_v) - len(x_shp)
|
|
2464
|
-
multiples_w = None
|
|
2465
|
-
if len_sub == 0:
|
|
2466
|
-
multiples_w = multiples_v
|
|
2467
|
-
if len_sub > 0:
|
|
2468
|
-
for _ in range(0, len_sub):
|
|
2469
|
-
x_shp.insert(0, 1)
|
|
2470
|
-
multiples_w = multiples_v
|
|
2471
|
-
elif len_sub < 0:
|
|
2472
|
-
raise ValueError(f"For '{self.name}', the length of 'multiples' can not be smaller than "
|
|
2473
|
-
f"the dimension of 'input_x', but got length of 'multiples': {len(multiples_v)} "
|
|
2474
|
-
f"and dimension of 'input_x': {len(x_shp)}.")
|
|
2475
|
-
|
|
2476
|
-
for i, a in enumerate(multiples_w):
|
|
2477
|
-
if x_shp[i] >= 0:
|
|
2478
|
-
x_shp[i] *= a
|
|
2479
|
-
if x['value'] is not None:
|
|
2480
|
-
value = Tensor(np.tile(x['value'].asnumpy(), multiples_w))
|
|
2481
|
-
out_shape = {
|
|
2482
|
-
'shape': x_shp
|
|
2483
|
-
}
|
|
2484
|
-
return out_shape, value
|
|
2485
|
-
|
|
2486
|
-
def __infer__(self, x, multiples):
|
|
2487
|
-
multiples_v = multiples['value']
|
|
2488
|
-
if multiples_v is None or None in multiples_v:
|
|
2489
|
-
if 'max_value' not in multiples or 'min_value' not in multiples:
|
|
2490
|
-
if multiples_v is not None:
|
|
2491
|
-
shape = [len(multiples['shape'])]
|
|
2492
|
-
else:
|
|
2493
|
-
shape = multiples['shape']
|
|
2494
|
-
if len(shape) != 1:
|
|
2495
|
-
raise ValueError(f'For \'{self.name}\', the dim of multiples must be 1.')
|
|
2496
|
-
rank = max(len(x['shape']), shape[0])
|
|
2497
|
-
out_shape = [-1] * rank
|
|
2498
|
-
if -2 in x['shape']:
|
|
2499
|
-
out_shape = [-2]
|
|
2500
|
-
return {
|
|
2501
|
-
'shape': out_shape,
|
|
2502
|
-
'dtype': x['dtype'],
|
|
2503
|
-
'value': None
|
|
2504
|
-
}
|
|
2505
|
-
out_shape, value = self._get_shape_and_range(x, multiples)
|
|
2506
|
-
shape = out_shape.get('shape', None)
|
|
2507
|
-
out = {'shape': shape,
|
|
2508
|
-
'dtype': x['dtype'],
|
|
2509
|
-
'value': value}
|
|
2510
|
-
return out
|
|
2511
|
-
|
|
2512
|
-
validator.check_value_type(
|
|
2513
|
-
"multiples", multiples_v, [tuple], self.name)
|
|
2514
|
-
for i, multiple in enumerate(multiples_v):
|
|
2515
|
-
validator.check_positive_int(
|
|
2516
|
-
multiple, "multiples[%d]" % i, self.name)
|
|
2517
|
-
validator.check_value_type(
|
|
2518
|
-
"x[\'dtype\']", x["dtype"], mstype.TensorType, self.name)
|
|
2519
|
-
out_shp, value = self._get_shape_and_range(x, multiples)
|
|
2520
|
-
shp = out_shp.get('shape', None)
|
|
2521
|
-
out = {'shape': shp,
|
|
2522
|
-
'dtype': x['dtype'],
|
|
2523
|
-
'value': value}
|
|
2524
|
-
return out
|
|
2525
|
-
|
|
2526
|
-
|
|
2527
|
-
class UnsortedSegmentSum(Primitive):
|
|
2528
|
-
r"""
|
|
2529
|
-
Computes the sum of a tensor along segments.
|
|
2530
|
-
|
|
2531
|
-
Refer to :func:`mindspore.ops.unsorted_segment_sum` for more details.
|
|
2532
|
-
|
|
2533
|
-
Inputs:
|
|
2534
|
-
- **input_x** (Tensor) - Input Tensor contains the data to be summed.
|
|
2535
|
-
The shape is :math:`(x_1, x_2, ..., x_R)`.
|
|
2536
|
-
- **segment_ids** (Tensor) - The label indicates the segment to which each element belongs.
|
|
2537
|
-
Set the shape as :math:`(x_1, x_2, ..., x_N)`, where 0 < N <= R.
|
|
2538
|
-
- **num_segments** (int) - Set :math:`z` as num_segments, it can be an int or 0-D Tensor.
|
|
2539
|
-
|
|
2540
|
-
Outputs:
|
|
2541
|
-
Tensor, the shape is :math:`(z, x_{N+1}, ..., x_R)`.
|
|
2542
|
-
|
|
2543
|
-
Supported Platforms:
|
|
2544
|
-
``Ascend`` ``GPU`` ``CPU``
|
|
2545
|
-
|
|
2546
|
-
Examples:
|
|
2547
|
-
>>> from mindspore import Tensor
|
|
2548
|
-
>>> from mindspore import ops
|
|
2549
|
-
>>> import mindspore
|
|
2550
|
-
>>> input_x = Tensor([1, 2, 3, 4], mindspore.float32)
|
|
2551
|
-
>>> segment_ids = Tensor([0, 0, 1, 2], mindspore.int32)
|
|
2552
|
-
>>> num_segments = 4
|
|
2553
|
-
>>> output = ops.UnsortedSegmentSum()(input_x, segment_ids, num_segments)
|
|
2554
|
-
>>> print(output)
|
|
2555
|
-
[3. 3. 4. 0.]
|
|
2556
|
-
>>> input_x = Tensor([1, 2, 3, 4, 2, 5], mindspore.float32)
|
|
2557
|
-
>>> segment_ids = Tensor([0, 0, 1, 2, 3, 4], mindspore.int32)
|
|
2558
|
-
>>> num_segments = 6
|
|
2559
|
-
>>> output = ops.UnsortedSegmentSum()(input_x, segment_ids, num_segments)
|
|
2560
|
-
>>> print(output)
|
|
2561
|
-
[3. 3. 4. 2. 5. 0.]
|
|
2562
|
-
"""
|
|
2563
|
-
|
|
2564
|
-
@prim_attr_register
|
|
2565
|
-
def __init__(self):
|
|
2566
|
-
"""Initialize UnsortedSegmentSum"""
|
|
2567
|
-
self.init_prim_io_names(inputs=['x', 'segment_ids', 'num_segments'], outputs=['y'])
|
|
2568
|
-
|
|
2569
|
-
|
|
2570
1562
|
class UnsortedSegmentMin(PrimitiveWithCheck):
|
|
2571
1563
|
r"""
|
|
2572
1564
|
Computes the minimum of a tensor along segments.
|
|
@@ -2578,10 +1570,10 @@ class UnsortedSegmentMin(PrimitiveWithCheck):
|
|
|
2578
1570
|
The data type must be float16, float32 or int32.
|
|
2579
1571
|
- **segment_ids** (Tensor) - The label indicates the segment to which each element belongs.
|
|
2580
1572
|
Set the shape as :math:`(x_1, x_2, ..., x_N)`, where 0 < N <= R.
|
|
2581
|
-
- **num_segments** (int) -
|
|
1573
|
+
- **num_segments** (Union[int, Tensor]) - Set :math:`z` as num_segments, it can be an int or 0-D Tensor.
|
|
2582
1574
|
|
|
2583
1575
|
Outputs:
|
|
2584
|
-
Tensor,
|
|
1576
|
+
Tensor, the shape is :math:`(z, x_{N+1}, ..., x_R)`.
|
|
2585
1577
|
|
|
2586
1578
|
Supported Platforms:
|
|
2587
1579
|
``Ascend`` ``GPU`` ``CPU``
|
|
@@ -2640,10 +1632,10 @@ class UnsortedSegmentMax(PrimitiveWithCheck):
|
|
|
2640
1632
|
The data type must be float16, float32 or int32.
|
|
2641
1633
|
- **segment_ids** (Tensor) - The label indicates the segment to which each element belongs.
|
|
2642
1634
|
Set the shape as :math:`(x_1, x_2, ..., x_N)`, where 0 < N <= R.
|
|
2643
|
-
- **num_segments** (int) -
|
|
1635
|
+
- **num_segments** (Union[int, Tensor]) - Set :math:`z` as num_segments, it can be an int or 0-D Tensor.
|
|
2644
1636
|
|
|
2645
1637
|
Outputs:
|
|
2646
|
-
Tensor,
|
|
1638
|
+
Tensor, the shape is :math:`(z, x_{N+1}, ..., x_R)`.
|
|
2647
1639
|
|
|
2648
1640
|
Supported Platforms:
|
|
2649
1641
|
``Ascend`` ``GPU`` ``CPU``
|
|
@@ -2759,13 +1751,12 @@ class UnsortedSegmentProd(Primitive):
|
|
|
2759
1751
|
Inputs:
|
|
2760
1752
|
- **input_x** (Tensor) - The shape is :math:`(x_1, x_2, ..., x_R)`.
|
|
2761
1753
|
With float16, float32 or int32 data type.
|
|
2762
|
-
- **segment_ids** (Tensor) -
|
|
2763
|
-
Data type must be int32.
|
|
2764
|
-
- **num_segments** (int) -
|
|
2765
|
-
must be greater than 0.
|
|
1754
|
+
- **segment_ids** (Tensor) - The label indicates the segment to which each element belongs.
|
|
1755
|
+
Set the shape as :math:`(x_1, x_2, ..., x_N)`, where 0 < N <= R. Data type must be int32.
|
|
1756
|
+
- **num_segments** (Union[int, Tensor]) - Set :math:`z` as num_segments, it can be an int or 0-D Tensor.
|
|
2766
1757
|
|
|
2767
1758
|
Outputs:
|
|
2768
|
-
Tensor,
|
|
1759
|
+
Tensor, the shape is :math:`(z, x_{N+1}, ..., x_R)`.
|
|
2769
1760
|
|
|
2770
1761
|
Supported Platforms:
|
|
2771
1762
|
``Ascend`` ``GPU`` ``CPU``
|
|
@@ -2790,65 +1781,9 @@ class UnsortedSegmentProd(Primitive):
|
|
|
2790
1781
|
self.init_prim_io_names(inputs=['x', 'segment_ids', 'num_segments'], outputs=['y'])
|
|
2791
1782
|
|
|
2792
1783
|
|
|
2793
|
-
class
|
|
1784
|
+
class ConcatOffsetV1(Primitive):
|
|
2794
1785
|
r"""
|
|
2795
|
-
|
|
2796
|
-
|
|
2797
|
-
Refer to :func:`mindspore.ops.concat` for more details.
|
|
2798
|
-
|
|
2799
|
-
Args:
|
|
2800
|
-
axis (int, optional): The specified axis. Default: ``0`` .
|
|
2801
|
-
|
|
2802
|
-
Inputs:
|
|
2803
|
-
- **input_x** (Union[tuple, list]) - A tuple or a list of input tensors.
|
|
2804
|
-
Suppose there are two tensors in this tuple or list, namely x1 and x2.
|
|
2805
|
-
To perform `Concat` in the axis 0 direction, except for the 0th axis, all other axes should be equal,
|
|
2806
|
-
that is, :math:`x1.shape[1] == x2.shape[1], x1.shape[2] == x2.shape[2], ..., x1.shape[R] == x2.shape[R]`,
|
|
2807
|
-
where the :math:`R` indicates the last axis.
|
|
2808
|
-
|
|
2809
|
-
Outputs:
|
|
2810
|
-
- Tensor, the shape is :math:`(x_1, x_2, ..., \sum_{i=1}^Nx_{mi}, ..., x_R)`.
|
|
2811
|
-
The data type is the same with `input_x`.
|
|
2812
|
-
|
|
2813
|
-
Supported Platforms:
|
|
2814
|
-
``Ascend`` ``GPU`` ``CPU``
|
|
2815
|
-
|
|
2816
|
-
Examples:
|
|
2817
|
-
>>> import numpy as np
|
|
2818
|
-
>>> from mindspore import Tensor, ops
|
|
2819
|
-
>>> input_x1 = Tensor(np.array([[0, 1], [2, 1]]).astype(np.float32))
|
|
2820
|
-
>>> input_x2 = Tensor(np.array([[0, 1], [2, 1]]).astype(np.float32))
|
|
2821
|
-
>>> op = ops.Concat()
|
|
2822
|
-
>>> output = op((input_x1, input_x2))
|
|
2823
|
-
>>> print(output)
|
|
2824
|
-
[[0. 1.]
|
|
2825
|
-
[2. 1.]
|
|
2826
|
-
[0. 1.]
|
|
2827
|
-
[2. 1.]]
|
|
2828
|
-
>>> op = ops.Concat(1)
|
|
2829
|
-
>>> output = op((input_x1, input_x2))
|
|
2830
|
-
>>> print(output)
|
|
2831
|
-
[[0. 1. 0. 1.]
|
|
2832
|
-
[2. 1. 2. 1.]]
|
|
2833
|
-
"""
|
|
2834
|
-
|
|
2835
|
-
@prim_attr_register
|
|
2836
|
-
def __init__(self, axis=0):
|
|
2837
|
-
"""Initialize Concat"""
|
|
2838
|
-
self.axis = axis
|
|
2839
|
-
validator.check_value_type("axis", axis, [int], self.name)
|
|
2840
|
-
|
|
2841
|
-
def infer_value(self, input_x):
|
|
2842
|
-
"""Implement Concat infer value"""
|
|
2843
|
-
value = None
|
|
2844
|
-
if input_x is not None and None not in input_x:
|
|
2845
|
-
value = Tensor(np.concatenate([x.asnumpy() for x in input_x], axis=self.axis))
|
|
2846
|
-
return value
|
|
2847
|
-
|
|
2848
|
-
|
|
2849
|
-
class ConcatOffsetV1(Primitive):
|
|
2850
|
-
r"""
|
|
2851
|
-
primitive for computing Concat’s gradient.
|
|
1786
|
+
primitive for computing Concat’s gradient.
|
|
2852
1787
|
|
|
2853
1788
|
Computes offsets of concat inputs within its output. Accumulate offsets from zero along `axis`.
|
|
2854
1789
|
If tensor element in `x` isn't along `axis`, they should be the same along their axis.
|
|
@@ -2959,7 +1894,7 @@ def _get_stack_shape(value, x_shape, x_type, axis, prim_name):
|
|
|
2959
1894
|
|
|
2960
1895
|
out_n = len(x_shape)
|
|
2961
1896
|
for i in range(1, out_n):
|
|
2962
|
-
if x_type[i] != x_type[i-1]:
|
|
1897
|
+
if x_type[i] != x_type[i - 1]:
|
|
2963
1898
|
raise TypeError(f"For {prim_name}, all types should be same, but got {x_type}")
|
|
2964
1899
|
|
|
2965
1900
|
new_x_shape = []
|
|
@@ -3047,31 +1982,21 @@ class Stack(PrimitiveWithInfer):
|
|
|
3047
1982
|
tuple_value = value['value']
|
|
3048
1983
|
input_array = []
|
|
3049
1984
|
infered_value = None
|
|
1985
|
+
dtype = x_type[0]
|
|
3050
1986
|
if tuple_value is not None and None not in tuple_value:
|
|
3051
1987
|
for item in tuple_value:
|
|
3052
|
-
npy_item = item.asnumpy()
|
|
1988
|
+
npy_item = item.asnumpy() if item.dtype != mstype.bfloat16 else item.float().asnumpy()
|
|
3053
1989
|
input_array.append(npy_item)
|
|
3054
|
-
|
|
1990
|
+
if dtype == mstype.TensorType(mstype.bfloat16):
|
|
1991
|
+
infered_value = Tensor(np.stack(input_array, axis=self.axis), mstype.bfloat16)
|
|
1992
|
+
else:
|
|
1993
|
+
infered_value = Tensor(np.stack(input_array, axis=self.axis))
|
|
3055
1994
|
|
|
3056
1995
|
shape = all_shape.get('shape') if isinstance(all_shape, dict) else all_shape
|
|
3057
1996
|
out = {'shape': shape,
|
|
3058
|
-
'dtype':
|
|
1997
|
+
'dtype': dtype,
|
|
3059
1998
|
'value': infered_value}
|
|
3060
1999
|
|
|
3061
|
-
def unpack(x):
|
|
3062
|
-
if isinstance(x, (tuple, list)) and len(x) == 1:
|
|
3063
|
-
return unpack(x[0])
|
|
3064
|
-
return x
|
|
3065
|
-
|
|
3066
|
-
if 'shape_value' in value and value['shape_value'] is not None:
|
|
3067
|
-
input_shape_value = []
|
|
3068
|
-
for item in value['shape_value']:
|
|
3069
|
-
item = unpack(item)
|
|
3070
|
-
item = np.array(item)
|
|
3071
|
-
input_shape_value.append(item)
|
|
3072
|
-
infered_shape_value = np.stack(input_shape_value, axis=self.axis)
|
|
3073
|
-
infered_shape_value = tuple(infered_shape_value.tolist())
|
|
3074
|
-
out['shape_value'] = infered_shape_value
|
|
3075
2000
|
return out
|
|
3076
2001
|
|
|
3077
2002
|
|
|
@@ -3224,61 +2149,6 @@ class Coalesce(Primitive):
|
|
|
3224
2149
|
outputs=['y_indices', 'y_values', 'y_shape'])
|
|
3225
2150
|
|
|
3226
2151
|
|
|
3227
|
-
class ReverseV2(Primitive):
|
|
3228
|
-
"""
|
|
3229
|
-
Reverses specific dimensions of a tensor.
|
|
3230
|
-
|
|
3231
|
-
.. warning::
|
|
3232
|
-
The value range of "axis" is [-dims, dims - 1]. "dims" is the dimension length of "input_x".
|
|
3233
|
-
|
|
3234
|
-
Args:
|
|
3235
|
-
axis (Union[tuple(int), list(int)]): The indices of the dimensions to reverse.
|
|
3236
|
-
|
|
3237
|
-
Inputs:
|
|
3238
|
-
- **input_x** (Tensor) - The target tensor.
|
|
3239
|
-
The shape is :math:`(N, *)` where :math:`*` means, any number of additional dimensions.
|
|
3240
|
-
|
|
3241
|
-
Outputs:
|
|
3242
|
-
Tensor, has the same shape and type as `input_x`.
|
|
3243
|
-
|
|
3244
|
-
Raises:
|
|
3245
|
-
TypeError: If `axis` is neither list nor tuple.
|
|
3246
|
-
TypeError: If element of `axis` is not an int.
|
|
3247
|
-
ValueError: There are multiple identical axes in `axis`.
|
|
3248
|
-
|
|
3249
|
-
Supported Platforms:
|
|
3250
|
-
``Ascend`` ``GPU`` ``CPU``
|
|
3251
|
-
|
|
3252
|
-
Examples:
|
|
3253
|
-
>>> import mindspore
|
|
3254
|
-
>>> import numpy as np
|
|
3255
|
-
>>> from mindspore import Tensor, ops
|
|
3256
|
-
>>> input_x = Tensor(np.array([[1, 2, 3, 4], [5, 6, 7, 8]]), mindspore.int32)
|
|
3257
|
-
>>> op = ops.ReverseV2(axis=[1])
|
|
3258
|
-
>>> output = op(input_x)
|
|
3259
|
-
>>> print(output)
|
|
3260
|
-
[[4 3 2 1]
|
|
3261
|
-
[8 7 6 5]]
|
|
3262
|
-
>>> op = ops.ReverseV2(axis=[1, 0])
|
|
3263
|
-
>>> output = op(input_x)
|
|
3264
|
-
>>> print(output)
|
|
3265
|
-
[[8 7 6 5]
|
|
3266
|
-
[4 3 2 1]]
|
|
3267
|
-
"""
|
|
3268
|
-
|
|
3269
|
-
@prim_attr_register
|
|
3270
|
-
def __init__(self, axis):
|
|
3271
|
-
"""Initialize ReverseV2."""
|
|
3272
|
-
validator.check_value_type('axis', axis, [list, tuple], self.name)
|
|
3273
|
-
for i, each in enumerate(axis):
|
|
3274
|
-
validator.check_value_type(f'axis[{i}]', each, [int], self.name)
|
|
3275
|
-
self.axis = axis
|
|
3276
|
-
if isinstance(axis, list):
|
|
3277
|
-
self.axis = tuple(axis)
|
|
3278
|
-
self.add_prim_attr('axis', self.axis)
|
|
3279
|
-
self.init_prim_io_names(inputs=['x'], outputs=['output'])
|
|
3280
|
-
|
|
3281
|
-
|
|
3282
2152
|
class Rint(Primitive):
|
|
3283
2153
|
"""
|
|
3284
2154
|
Returns an integer that is closest to `input_x` element-wise.
|
|
@@ -3318,54 +2188,6 @@ class Rint(Primitive):
|
|
|
3318
2188
|
self.init_prim_io_names(inputs=['x'], outputs=['output'])
|
|
3319
2189
|
|
|
3320
2190
|
|
|
3321
|
-
class Select(Primitive):
|
|
3322
|
-
r"""
|
|
3323
|
-
The conditional tensor determines whether the corresponding element in the output must be
|
|
3324
|
-
selected from `x` (if True) or `y` (if False) based on the value of each
|
|
3325
|
-
element.
|
|
3326
|
-
|
|
3327
|
-
It can be defined as:
|
|
3328
|
-
|
|
3329
|
-
.. math::
|
|
3330
|
-
out_i = \begin{cases}
|
|
3331
|
-
x_i, & \text{if } condition_i \\
|
|
3332
|
-
y_i, & \text{otherwise}
|
|
3333
|
-
\end{cases}
|
|
3334
|
-
|
|
3335
|
-
Inputs:
|
|
3336
|
-
- **condition** (Tensor[bool]) - The condition tensor, decides which element is chosen.
|
|
3337
|
-
The shape is :math:`(x_1, x_2, ..., x_N, ..., x_R)`.
|
|
3338
|
-
- **x** (Tensor) - The first tensor to be selected and the shape is :math:`(x_1, x_2, ..., x_N, ..., x_R)`.
|
|
3339
|
-
- **y** (Tensor) - The second tensor to be selected and the shape is :math:`(x_1, x_2, ..., x_N, ..., x_R)`.
|
|
3340
|
-
|
|
3341
|
-
Outputs:
|
|
3342
|
-
Tensor, has the same shape as `condition`.
|
|
3343
|
-
|
|
3344
|
-
Raises:
|
|
3345
|
-
TypeError: If `x` or `y` is not a Tensor.
|
|
3346
|
-
ValueError: If shape of the three inputs are different.
|
|
3347
|
-
|
|
3348
|
-
Supported Platforms:
|
|
3349
|
-
``Ascend`` ``GPU`` ``CPU``
|
|
3350
|
-
|
|
3351
|
-
Examples:
|
|
3352
|
-
>>> import mindspore
|
|
3353
|
-
>>> from mindspore import Tensor, ops
|
|
3354
|
-
>>> select = ops.Select()
|
|
3355
|
-
>>> input_cond = Tensor([True, False])
|
|
3356
|
-
>>> input_x = Tensor([2,3], mindspore.float32)
|
|
3357
|
-
>>> input_y = Tensor([1,2], mindspore.float32)
|
|
3358
|
-
>>> output = select(input_cond, input_x, input_y)
|
|
3359
|
-
>>> print(output)
|
|
3360
|
-
[2. 2.]
|
|
3361
|
-
"""
|
|
3362
|
-
|
|
3363
|
-
@prim_attr_register
|
|
3364
|
-
def __init__(self):
|
|
3365
|
-
"""Initialize Select."""
|
|
3366
|
-
self.init_prim_io_names(inputs=['condition', 'x', 'y'], outputs=['output'])
|
|
3367
|
-
|
|
3368
|
-
|
|
3369
2191
|
class StridedSliceV2(Primitive):
|
|
3370
2192
|
r"""
|
|
3371
2193
|
StridedSliceV2 will be deprecated by StridedSlice in the future.
|
|
@@ -3420,523 +2242,6 @@ class StridedSliceV2(Primitive):
|
|
|
3420
2242
|
self.init_prim_io_names(inputs=['x', 'begin', 'end', 'strides'], outputs=['output'])
|
|
3421
2243
|
|
|
3422
2244
|
|
|
3423
|
-
class StridedSlice(PrimitiveWithInfer):
|
|
3424
|
-
r"""
|
|
3425
|
-
|
|
3426
|
-
Extracts a strided slice of a tensor.
|
|
3427
|
-
|
|
3428
|
-
Refer to :func:`mindspore.ops.strided_slice` for more details.
|
|
3429
|
-
|
|
3430
|
-
Args:
|
|
3431
|
-
begin_mask (int, optional): Starting index of the slice. Default: ``0`` .
|
|
3432
|
-
end_mask (int, optional): Ending index of the slice. Default: ``0`` .
|
|
3433
|
-
ellipsis_mask (int, optional): An int mask, ignore slicing operation when set to 1. Default: ``0`` .
|
|
3434
|
-
new_axis_mask (int, optional): An int mask for adding new dims. Default: ``0`` .
|
|
3435
|
-
shrink_axis_mask (int, optional): An int mask for shrinking dims. Default: ``0`` .
|
|
3436
|
-
|
|
3437
|
-
Inputs:
|
|
3438
|
-
- **input_x** (Tensor) - The input Tensor to be extracted from.
|
|
3439
|
-
- **begin** (tuple[int]) - A tuple which represents the location where to start.
|
|
3440
|
-
- **end** (tuple[int]) - A tuple or which represents the maximum location where to end.
|
|
3441
|
-
- **strides** (tuple[int]) - A tuple which represents the strides is continuously added
|
|
3442
|
-
before reaching the maximum location. Only int is allowed, it can be negative
|
|
3443
|
-
which results in reversed slicing.
|
|
3444
|
-
|
|
3445
|
-
Outputs:
|
|
3446
|
-
Tensor, return the extracts a strided slice of a Tensor based on `begin/end` index and `strides`.
|
|
3447
|
-
|
|
3448
|
-
Supported Platforms:
|
|
3449
|
-
``Ascend`` ``GPU`` ``CPU``
|
|
3450
|
-
|
|
3451
|
-
Examples:
|
|
3452
|
-
>>> import mindspore
|
|
3453
|
-
>>> from mindspore import Tensor, ops
|
|
3454
|
-
>>> input_x = Tensor([[[1, 1, 1], [2, 2, 2]], [[3, 3, 3], [4, 4, 4]],
|
|
3455
|
-
... [[5, 5, 5], [6, 6, 6]]], mindspore.float32)
|
|
3456
|
-
>>> # [[[1. 1. 1.]
|
|
3457
|
-
>>> # [2. 2. 2.]]
|
|
3458
|
-
>>> #
|
|
3459
|
-
>>> # [[3. 3. 3.]
|
|
3460
|
-
>>> # [4. 4. 4.]]
|
|
3461
|
-
>>> #
|
|
3462
|
-
>>> # [[5. 5. 5.]
|
|
3463
|
-
>>> # [6. 6. 6.]]]
|
|
3464
|
-
>>> # In order to visually view the multi-dimensional array, write the above as follows
|
|
3465
|
-
>>> # [
|
|
3466
|
-
>>> # [
|
|
3467
|
-
>>> # [1,1,1]
|
|
3468
|
-
>>> # [2,2,2]
|
|
3469
|
-
>>> # ]
|
|
3470
|
-
>>> # [
|
|
3471
|
-
>>> # [3,3,3]
|
|
3472
|
-
>>> # [4,4,4]
|
|
3473
|
-
>>> # ]
|
|
3474
|
-
>>> # [
|
|
3475
|
-
>>> # [5,5,5]
|
|
3476
|
-
>>> # [6,6,6]
|
|
3477
|
-
>>> # ]
|
|
3478
|
-
>>> # ]
|
|
3479
|
-
>>> strided_slice = ops.StridedSlice()
|
|
3480
|
-
>>> output = strided_slice(input_x, (1, 0, 2), (3, 1, 3), (1, 1, 1))
|
|
3481
|
-
>>> # Take this " output = strided_slice(input_x, (1, 0, 2), (3, 1, 3), (1, 1, 1)) " as an example,
|
|
3482
|
-
>>> # start = [1, 0, 2] , end = [3, 1, 3], stride = [1, 1, 1], Find a segment of (start, end),
|
|
3483
|
-
>>> # note that end is an open interval
|
|
3484
|
-
>>> # To facilitate understanding, this operator can be divided into three steps:
|
|
3485
|
-
>>> # Step 1: Calculation of the first dimension:
|
|
3486
|
-
>>> # start = 1, end = 3, stride = 1, So can take 1st, 2nd rows, and then gets the final output at this time.
|
|
3487
|
-
>>> # output_1th =
|
|
3488
|
-
>>> # [
|
|
3489
|
-
>>> # [
|
|
3490
|
-
>>> # [3,3,3]
|
|
3491
|
-
>>> # [4,4,4]
|
|
3492
|
-
>>> # ]
|
|
3493
|
-
>>> # [
|
|
3494
|
-
>>> # [5,5,5]
|
|
3495
|
-
>>> # [6,6,6]
|
|
3496
|
-
>>> # ]
|
|
3497
|
-
>>> # ]
|
|
3498
|
-
>>> # Step 2: Calculation of the second dimension
|
|
3499
|
-
>>> # 2nd dimension, start = 0, end = 1, stride = 1. So only 0th rows can be taken, and the output at this time.
|
|
3500
|
-
>>> # output_2nd =
|
|
3501
|
-
>>> # [
|
|
3502
|
-
>>> # [
|
|
3503
|
-
>>> # [3,3,3]
|
|
3504
|
-
>>> # ]
|
|
3505
|
-
>>> # [
|
|
3506
|
-
>>> # [5,5,5]
|
|
3507
|
-
>>> # ]
|
|
3508
|
-
>>> # ]
|
|
3509
|
-
>>> # Step 3: Calculation of the third dimension
|
|
3510
|
-
>>> # 3nd dimension,start = 2, end = 3, stride = 1, So can take 2th cols,
|
|
3511
|
-
>>> # and you get the final output at this time.
|
|
3512
|
-
>>> # output_3ed =
|
|
3513
|
-
>>> # [
|
|
3514
|
-
>>> # [
|
|
3515
|
-
>>> # [3]
|
|
3516
|
-
>>> # ]
|
|
3517
|
-
>>> # [
|
|
3518
|
-
>>> # [5]
|
|
3519
|
-
>>> # ]
|
|
3520
|
-
>>> # ]
|
|
3521
|
-
>>> # The final output after finishing is:
|
|
3522
|
-
>>> print(output)
|
|
3523
|
-
[[[3.]]
|
|
3524
|
-
[[5.]]]
|
|
3525
|
-
>>> # another example like :
|
|
3526
|
-
>>> output = strided_slice(input_x, (1, 0, 0), (2, 1, 3), (1, 1, 1))
|
|
3527
|
-
>>> print(output)
|
|
3528
|
-
[[[3. 3. 3.]]]
|
|
3529
|
-
"""
|
|
3530
|
-
|
|
3531
|
-
@prim_attr_register
|
|
3532
|
-
def __init__(self,
|
|
3533
|
-
begin_mask=0,
|
|
3534
|
-
end_mask=0,
|
|
3535
|
-
ellipsis_mask=0,
|
|
3536
|
-
new_axis_mask=0,
|
|
3537
|
-
shrink_axis_mask=0):
|
|
3538
|
-
"""Initialize StridedSlice"""
|
|
3539
|
-
self.init_prim_io_names(inputs=['x', 'begin', 'end', 'strides'], outputs=['output'])
|
|
3540
|
-
|
|
3541
|
-
validator.check_non_negative_int(begin_mask, 'begin_mask', self.name)
|
|
3542
|
-
validator.check_non_negative_int(end_mask, 'end_mask', self.name)
|
|
3543
|
-
validator.check_non_negative_int(ellipsis_mask, 'ellipsis_mask', self.name)
|
|
3544
|
-
if len(tuple(filter(lambda x: x == '1', bin(ellipsis_mask)[-1:1:-1]))) > 1:
|
|
3545
|
-
raise ValueError(f"For '{self.name}', only support one ellipsis in the index, but got {ellipsis_mask}.")
|
|
3546
|
-
validator.check_non_negative_int(new_axis_mask, 'new_axis_mask', self.name)
|
|
3547
|
-
validator.check_non_negative_int(shrink_axis_mask, 'shrink_axis_mask',
|
|
3548
|
-
self.name)
|
|
3549
|
-
|
|
3550
|
-
def __infer__(self, x, begin, end, strides):
|
|
3551
|
-
begin_v, begin_len = self._check_and_get_value(begin, 'begin')
|
|
3552
|
-
end_v, end_len = self._check_and_get_value(end, 'end')
|
|
3553
|
-
strides_v, strides_len = self._check_and_get_value(strides, 'strides')
|
|
3554
|
-
|
|
3555
|
-
is_dynamic_tuple = (self._is_none_in_tuple(begin_v.get('value'))
|
|
3556
|
-
or self._is_none_in_tuple(end_v.get('value'))
|
|
3557
|
-
or self._is_none_in_tuple(strides_v.get('value')))
|
|
3558
|
-
is_dynamic = None in (begin_v.get('value'), end_v.get('value'), strides_v.get('value'))
|
|
3559
|
-
|
|
3560
|
-
if not is_dynamic and (begin_len != strides_len or end_len != strides_len):
|
|
3561
|
-
raise ValueError(
|
|
3562
|
-
f"For '{self.name}', 'begin', 'end' and 'strides' must be the same length, but got "
|
|
3563
|
-
f"'begin' length: {begin_len}, 'end' length: {end_len}, 'strides' length: {strides_len}."
|
|
3564
|
-
)
|
|
3565
|
-
|
|
3566
|
-
if is_dynamic or is_dynamic_tuple or is_shape_unknown(x['shape']):
|
|
3567
|
-
ret_shape = self._compute_dynamic_slicing_shape(x, begin_v, end_v, strides_v, begin_len)
|
|
3568
|
-
rets = {'shape': ret_shape,
|
|
3569
|
-
'dtype': x['dtype'],
|
|
3570
|
-
'value': None}
|
|
3571
|
-
return rets
|
|
3572
|
-
|
|
3573
|
-
ret_shape = self._compute_slicing_shape(x['shape'], begin_v['value'], end_v['value'], strides_v['value'])
|
|
3574
|
-
if all(ret_shape):
|
|
3575
|
-
value = None
|
|
3576
|
-
else:
|
|
3577
|
-
init_func = Zero()
|
|
3578
|
-
init_func.__enable_zero_dim__ = True
|
|
3579
|
-
value = Tensor(dtype=x['dtype'].element_type(), shape=ret_shape, init=init_func)
|
|
3580
|
-
|
|
3581
|
-
if "max_value" in x and "min_value" in x:
|
|
3582
|
-
validator.check_value_type("min_value", x["min_value"], [tuple, list], self.name)
|
|
3583
|
-
validator.check_value_type("max_value", x["max_value"], [tuple, list], self.name)
|
|
3584
|
-
max_value_slice = self._compute_dynamic_slicing_value(x["max_value"], begin_v, end_v, strides_v)
|
|
3585
|
-
min_value_slice = self._compute_dynamic_slicing_value(x["min_value"], begin_v, end_v, strides_v)
|
|
3586
|
-
return {'shape': ret_shape,
|
|
3587
|
-
'dtype': x['dtype'],
|
|
3588
|
-
'value': value,
|
|
3589
|
-
'max_value': max_value_slice,
|
|
3590
|
-
'min_value': min_value_slice}
|
|
3591
|
-
|
|
3592
|
-
if "shape_value" in x:
|
|
3593
|
-
validator.check_value_type("shape_value", x["shape_value"], [tuple], self.name)
|
|
3594
|
-
shape_value_slice = self._compute_dynamic_slicing_value(x["shape_value"], begin_v, end_v, strides_v)
|
|
3595
|
-
return {'shape': ret_shape,
|
|
3596
|
-
'dtype': x['dtype'],
|
|
3597
|
-
'shape_value': shape_value_slice,
|
|
3598
|
-
'value': value}
|
|
3599
|
-
return {'shape': ret_shape,
|
|
3600
|
-
'dtype': x['dtype'],
|
|
3601
|
-
'value': value}
|
|
3602
|
-
|
|
3603
|
-
@staticmethod
|
|
3604
|
-
def _compute_slicing_len_for_positive_stride(begin, end, stride, x_dim):
|
|
3605
|
-
"""Compute slice length for positive stride."""
|
|
3606
|
-
if x_dim == -1:
|
|
3607
|
-
if begin >= end:
|
|
3608
|
-
# When slicing forward, if begin >= end, the length of the slicing is 0.
|
|
3609
|
-
slicing_length = 0
|
|
3610
|
-
else:
|
|
3611
|
-
slicing_length = -1
|
|
3612
|
-
return slicing_length
|
|
3613
|
-
# When slicing forward, convert begin and end to positive numbers.
|
|
3614
|
-
if begin >= x_dim or end < -x_dim:
|
|
3615
|
-
# When slicing forward, if begin >= x_dim or end < -x_dim, the length of the slicing is 0.
|
|
3616
|
-
slicing_length = 0
|
|
3617
|
-
else:
|
|
3618
|
-
if -x_dim <= begin < 0:
|
|
3619
|
-
begin += x_dim
|
|
3620
|
-
if begin < -x_dim:
|
|
3621
|
-
# When slicing forward, if begin < -x_dim, set begin = 0, which means start from the 0th element.
|
|
3622
|
-
begin = 0
|
|
3623
|
-
if -x_dim <= end < 0:
|
|
3624
|
-
end += x_dim
|
|
3625
|
-
if end > x_dim:
|
|
3626
|
-
# When slicing forward, if end > x_dim, set end = x_dims, which means slice to the last element.
|
|
3627
|
-
end = x_dim
|
|
3628
|
-
if begin >= end:
|
|
3629
|
-
# When slicing forward, if begin >= end, the length of the slicing is 0.
|
|
3630
|
-
slicing_length = 0
|
|
3631
|
-
else:
|
|
3632
|
-
slicing_length = 1 + (end - 1 - begin) // stride
|
|
3633
|
-
return slicing_length
|
|
3634
|
-
|
|
3635
|
-
@staticmethod
|
|
3636
|
-
def _compute_slicing_len_for_negative_stride(begin, end, stride, x_dim):
|
|
3637
|
-
"""Compute slice length for negative stride."""
|
|
3638
|
-
if x_dim == -1:
|
|
3639
|
-
if begin <= end:
|
|
3640
|
-
slicing_length = 0
|
|
3641
|
-
else:
|
|
3642
|
-
slicing_length = -1
|
|
3643
|
-
return slicing_length
|
|
3644
|
-
# When slicing backward, convert begin and end to negative numbers.
|
|
3645
|
-
if begin < -x_dim or end >= x_dim:
|
|
3646
|
-
# When slicing backward, if begin < -x_dim or end >= x_dim, the length of the slicing is 0.
|
|
3647
|
-
slicing_length = 0
|
|
3648
|
-
else:
|
|
3649
|
-
if 0 <= begin < x_dim:
|
|
3650
|
-
begin += -x_dim
|
|
3651
|
-
if begin >= x_dim:
|
|
3652
|
-
begin = -1
|
|
3653
|
-
if 0 <= end < x_dim:
|
|
3654
|
-
end += -x_dim
|
|
3655
|
-
if end < -x_dim - 1:
|
|
3656
|
-
# Slicing to the 0th element.
|
|
3657
|
-
end = -x_dim - 1
|
|
3658
|
-
if begin <= end:
|
|
3659
|
-
slicing_length = 0
|
|
3660
|
-
else:
|
|
3661
|
-
slicing_length = 1 + (end + 1 - begin) // stride
|
|
3662
|
-
return slicing_length
|
|
3663
|
-
|
|
3664
|
-
@staticmethod
|
|
3665
|
-
def _get_slice_value(begin_v, end_v, strides_v):
|
|
3666
|
-
"""Get the slice value from value or shape_value."""
|
|
3667
|
-
begin_value = begin_v['value']
|
|
3668
|
-
end_value = end_v['value']
|
|
3669
|
-
strides_value = strides_v['value']
|
|
3670
|
-
if begin_value is None:
|
|
3671
|
-
begin_value = begin_v['shape_value']
|
|
3672
|
-
if end_value is None:
|
|
3673
|
-
end_value = end_v['shape_value']
|
|
3674
|
-
if strides_value is None:
|
|
3675
|
-
strides_value = strides_v['shape_value']
|
|
3676
|
-
return begin_value, end_value, strides_value
|
|
3677
|
-
|
|
3678
|
-
def _is_none_in_tuple(self, x):
|
|
3679
|
-
return isinstance(x, tuple) and None in x
|
|
3680
|
-
|
|
3681
|
-
def _compute_slicing_length(self, begin, end, stride, x_dim):
|
|
3682
|
-
"""Computes the length of the slicing."""
|
|
3683
|
-
if stride > 0:
|
|
3684
|
-
slicing_length = self._compute_slicing_len_for_positive_stride(begin, end, stride, x_dim)
|
|
3685
|
-
else:
|
|
3686
|
-
slicing_length = self._compute_slicing_len_for_negative_stride(begin, end, stride, x_dim)
|
|
3687
|
-
return slicing_length
|
|
3688
|
-
|
|
3689
|
-
def _compute_slicing_shape(self, x_shape, begin_v, end_v, strides_v):
|
|
3690
|
-
"""Computes the shape of the slicing."""
|
|
3691
|
-
x_rank = len(x_shape)
|
|
3692
|
-
slice_len = len(begin_v)
|
|
3693
|
-
|
|
3694
|
-
# After the integer is converted to binary, it is a str and the first two chars are the flag char '0b'.
|
|
3695
|
-
begin_pos = bin(self.begin_mask)[-1:1:-1]
|
|
3696
|
-
end_pos = bin(self.end_mask)[-1:1:-1]
|
|
3697
|
-
ellipsis_pos = bin(self.ellipsis_mask)[-1:1:-1]
|
|
3698
|
-
new_axis_pos = bin(self.new_axis_mask)[-1:1:-1]
|
|
3699
|
-
shrink_axis_pos = bin(self.shrink_axis_mask)[-1:1:-1]
|
|
3700
|
-
|
|
3701
|
-
ret_shape = []
|
|
3702
|
-
i, j = 0, 0
|
|
3703
|
-
has_ellipsis = False
|
|
3704
|
-
while i < x_rank or j < slice_len:
|
|
3705
|
-
if j < slice_len:
|
|
3706
|
-
begin, end, stride = begin_v[j], end_v[j], strides_v[j]
|
|
3707
|
-
|
|
3708
|
-
if j < len(ellipsis_pos) and ellipsis_pos[j] == '1':
|
|
3709
|
-
# When there is ellipsis, the latter part of the ellipsis will be processed separately.
|
|
3710
|
-
has_ellipsis = True
|
|
3711
|
-
break
|
|
3712
|
-
if j < len(begin_pos) and begin_pos[j] == '1':
|
|
3713
|
-
begin = -1 if strides_v[j] < 0 else 0
|
|
3714
|
-
if j < len(end_pos) and end_pos[j] == '1':
|
|
3715
|
-
end = -(x_shape[i] + 1) if strides_v[j] < 0 else x_shape[i]
|
|
3716
|
-
if j < len(new_axis_pos) and new_axis_pos[j] == '1':
|
|
3717
|
-
ret_shape.append(1)
|
|
3718
|
-
j += 1
|
|
3719
|
-
continue
|
|
3720
|
-
if j < len(shrink_axis_pos) and shrink_axis_pos[j] == '1':
|
|
3721
|
-
if (not -x_shape[i] <= begin < x_shape[i]) or stride < 0:
|
|
3722
|
-
raise IndexError(f"For '{self.name}', the 'strides[{i}]' cannot be negative number and "
|
|
3723
|
-
f"'begin[{i}]' must be in [-{x_shape[i]}, {x_shape[i]}) "
|
|
3724
|
-
f"when 'shrink_axis_mask' is greater than 0, "
|
|
3725
|
-
f"but got 'shrink_axis_mask': {self.shrink_axis_mask}, "
|
|
3726
|
-
f"'strides[{i}]': {stride}, 'begin[{i}]': {begin}.")
|
|
3727
|
-
j += 1
|
|
3728
|
-
i += 1
|
|
3729
|
-
continue
|
|
3730
|
-
else:
|
|
3731
|
-
begin, end, stride = 0, x_shape[i], 1
|
|
3732
|
-
|
|
3733
|
-
slicing_length = self._compute_slicing_length(begin, end, stride, x_shape[i])
|
|
3734
|
-
ret_shape.append(slicing_length)
|
|
3735
|
-
i += 1
|
|
3736
|
-
j += 1
|
|
3737
|
-
if has_ellipsis:
|
|
3738
|
-
# When there is ellipsis, handle the second half of the ellipsis split.
|
|
3739
|
-
ellipsis_occupied_dims = x_rank - i - (slice_len - (j + 1)) + \
|
|
3740
|
-
len(tuple(filter(lambda x: x == '1', new_axis_pos[j + 1:slice_len])))
|
|
3741
|
-
ret_shape.extend(x_shape[i:i + ellipsis_occupied_dims])
|
|
3742
|
-
j += 1
|
|
3743
|
-
i += ellipsis_occupied_dims
|
|
3744
|
-
|
|
3745
|
-
while i < x_rank or j < slice_len:
|
|
3746
|
-
begin, end, stride = begin_v[j], end_v[j], strides_v[j]
|
|
3747
|
-
|
|
3748
|
-
if j < len(begin_pos) and begin_pos[j] == '1':
|
|
3749
|
-
begin = -1 if strides_v[j] < 0 else 0
|
|
3750
|
-
if j < len(end_pos) and end_pos[j] == '1':
|
|
3751
|
-
end = -(x_shape[i] + 1) if strides_v[j] < 0 else x_shape[i]
|
|
3752
|
-
if j < len(new_axis_pos) and new_axis_pos[j] == '1':
|
|
3753
|
-
ret_shape.append(1)
|
|
3754
|
-
j += 1
|
|
3755
|
-
continue
|
|
3756
|
-
if j < len(shrink_axis_pos) and shrink_axis_pos[j] == '1':
|
|
3757
|
-
if (not -x_shape[i] <= begin < x_shape[i]) or stride < 0:
|
|
3758
|
-
raise IndexError(f"For '{self.name}', the 'strides[{i}]' can not be negative number and "
|
|
3759
|
-
f"'begin[{i}]' must be in [-{x_shape[i]}, {x_shape[i]}) "
|
|
3760
|
-
f"when 'shrink_axis_mask' is greater than 0, "
|
|
3761
|
-
f"but got 'shrink_axis_mask': {self.shrink_axis_mask}, "
|
|
3762
|
-
f"'strides[{i}]': {stride}, 'begin[{i}]': {begin}.")
|
|
3763
|
-
j += 1
|
|
3764
|
-
i += 1
|
|
3765
|
-
continue
|
|
3766
|
-
|
|
3767
|
-
slicing_length = self._compute_slicing_length(begin, end, stride, x_shape[i])
|
|
3768
|
-
ret_shape.append(slicing_length)
|
|
3769
|
-
i += 1
|
|
3770
|
-
j += 1
|
|
3771
|
-
return ret_shape
|
|
3772
|
-
|
|
3773
|
-
def _compute_dynamic_slicing_value(self, shape_value, begin_v, end_v, strides_v):
|
|
3774
|
-
"""Computes the length of the slicing for dynamic shape."""
|
|
3775
|
-
shape_value_np = np.array(shape_value)
|
|
3776
|
-
slice_index = []
|
|
3777
|
-
for begin_i, end_i, strides_i in zip(begin_v['value'], end_v['value'], strides_v['value']):
|
|
3778
|
-
s = slice(begin_i, end_i, strides_i)
|
|
3779
|
-
slice_index.append(s)
|
|
3780
|
-
slice_index = tuple(slice_index)
|
|
3781
|
-
shape_value_slice = shape_value_np[slice_index]
|
|
3782
|
-
shape_value_slice = tuple(shape_value_slice.tolist())
|
|
3783
|
-
return shape_value_slice
|
|
3784
|
-
|
|
3785
|
-
def _compute_dynamic_slicing_length(self, begin, end, stride, x_dim):
|
|
3786
|
-
"""Computes the length of the slicing for dynamic shape."""
|
|
3787
|
-
slicing_length = -1
|
|
3788
|
-
if None in (begin, end, stride) or -1 in (begin, end, stride):
|
|
3789
|
-
return slicing_length
|
|
3790
|
-
slicing_length = self._compute_slicing_length(begin, end, stride, x_dim)
|
|
3791
|
-
return slicing_length
|
|
3792
|
-
|
|
3793
|
-
def _compute_dynamic_slicing_shape(self, x, begin_v, end_v, strides_v, slice_len):
|
|
3794
|
-
"""Computes the shape of the slicing for dynamic shape, mask is currently not supported."""
|
|
3795
|
-
x_shape = x['shape']
|
|
3796
|
-
if is_dim_unknown(x_shape):
|
|
3797
|
-
return [-2]
|
|
3798
|
-
x_rank = len(x_shape)
|
|
3799
|
-
new_axis_pos = bin(self.new_axis_mask)[-1:1:-1]
|
|
3800
|
-
shrink_axis_pos = bin(self.shrink_axis_mask)[-1:1:-1]
|
|
3801
|
-
if self.ellipsis_mask:
|
|
3802
|
-
raise ValueError("Ellipsis Mask is currently not supported in dynamic shape.")
|
|
3803
|
-
ret_shape = []
|
|
3804
|
-
i, j = 0, 0
|
|
3805
|
-
slice_has_special_value = False
|
|
3806
|
-
begin_value, end_value, strides_value = self._get_slice_value(
|
|
3807
|
-
begin_v, end_v, strides_v)
|
|
3808
|
-
is_dynamic_tuple = (self._is_none_in_tuple(begin_value)
|
|
3809
|
-
or self._is_none_in_tuple(end_value)
|
|
3810
|
-
or self._is_none_in_tuple(strides_value))
|
|
3811
|
-
if None in (begin_v['value'], end_v['value'], strides_v['value']) or is_dynamic_tuple:
|
|
3812
|
-
slice_has_special_value = True
|
|
3813
|
-
while i < x_rank or j < slice_len:
|
|
3814
|
-
slicing_length = -1
|
|
3815
|
-
if j < slice_len:
|
|
3816
|
-
if j < len(new_axis_pos) and new_axis_pos[j] == '1':
|
|
3817
|
-
ret_shape.append(1)
|
|
3818
|
-
j += 1
|
|
3819
|
-
continue
|
|
3820
|
-
if j < len(shrink_axis_pos) and shrink_axis_pos[j] == '1':
|
|
3821
|
-
j += 1
|
|
3822
|
-
i += 1
|
|
3823
|
-
continue
|
|
3824
|
-
if None in (begin_value, end_value, strides_value):
|
|
3825
|
-
slicing_length = -1
|
|
3826
|
-
elif slice_has_special_value:
|
|
3827
|
-
slicing_length = self._compute_dynamic_slicing_length(
|
|
3828
|
-
begin_value[j], end_value[j], strides_value[j], x_shape[i])
|
|
3829
|
-
else:
|
|
3830
|
-
slicing_length = \
|
|
3831
|
-
self._compute_slicing_length(begin_value[j], end_value[j], strides_value[j], x_shape[i])
|
|
3832
|
-
else:
|
|
3833
|
-
if i >= len(x_shape):
|
|
3834
|
-
raise ValueError(f"For 'StridedSlice', the index must be less than or equal to "
|
|
3835
|
-
f"the dimension of 'input_x', but got the dimension of 'input_x': {len(x_shape)} "
|
|
3836
|
-
f"and the index: {i}.")
|
|
3837
|
-
begin, end, stride = 0, x_shape[i], 1
|
|
3838
|
-
if end > 0:
|
|
3839
|
-
slicing_length = self._compute_slicing_length(begin, end, stride, x_shape[i])
|
|
3840
|
-
ret_shape.append(slicing_length)
|
|
3841
|
-
i += 1
|
|
3842
|
-
j += 1
|
|
3843
|
-
return ret_shape
|
|
3844
|
-
|
|
3845
|
-
def _check_and_get_value(self, slice_input, name):
|
|
3846
|
-
"""Check begin, end, strides. Get its length and value."""
|
|
3847
|
-
slice_value = slice_input['value']
|
|
3848
|
-
slice_min = None
|
|
3849
|
-
slice_max = None
|
|
3850
|
-
slice_special_value = None
|
|
3851
|
-
if "min_value" in slice_input and "max_value" in slice_input:
|
|
3852
|
-
slice_min = slice_input["min_value"]
|
|
3853
|
-
slice_max = slice_input["max_value"]
|
|
3854
|
-
elif "shape_value" in slice_input:
|
|
3855
|
-
slice_special_value = slice_input["shape_value"]
|
|
3856
|
-
if slice_value is None:
|
|
3857
|
-
validator.check_tensor_dtype_valid(name, slice_input['dtype'], [mstype.int32, mstype.int64], self.name)
|
|
3858
|
-
slice_shape = slice_input['shape']
|
|
3859
|
-
if len(slice_shape) != 1:
|
|
3860
|
-
raise ValueError(f"For '{self.name}', both the 'begins', 'ends', and 'strides' must be 1-D, "
|
|
3861
|
-
f"but got '{name}' shape: {slice_shape}.")
|
|
3862
|
-
# not support scalar
|
|
3863
|
-
slices = {
|
|
3864
|
-
'value': slice_value,
|
|
3865
|
-
'shape_value': slice_special_value,
|
|
3866
|
-
'min_value': slice_min,
|
|
3867
|
-
'max_value': slice_max
|
|
3868
|
-
}
|
|
3869
|
-
return slices, slice_shape[0]
|
|
3870
|
-
|
|
3871
|
-
if isinstance(slice_value, (Tensor, Tensor_)):
|
|
3872
|
-
validator.check_tensor_dtype_valid(name, slice_input['dtype'], [mstype.int64], self.name)
|
|
3873
|
-
slice_value = slice_value.asnumpy().tolist()
|
|
3874
|
-
elif not isinstance(slice_value, tuple):
|
|
3875
|
-
raise TypeError(f"For '{self.name}', both the 'begin', 'end', and 'strides' must be a tuple or Tensor, "
|
|
3876
|
-
f"but got '{name}': {slice_value}.")
|
|
3877
|
-
|
|
3878
|
-
if tuple(filter(lambda x: x is not None and not isinstance(x, int), slice_value)):
|
|
3879
|
-
raise TypeError(f"For '{self.name}', the elements of 'begin', 'end', and 'strides' must be int, "
|
|
3880
|
-
f"but got {name}: {slice_value}.")
|
|
3881
|
-
|
|
3882
|
-
if name == 'strides':
|
|
3883
|
-
if slice_value is not None and tuple(filter(lambda x: x == 0, slice_value)):
|
|
3884
|
-
raise ValueError(f"For '{self.name}', 'strides' cannot contain 0, but got 'strides': {slice_value}.")
|
|
3885
|
-
|
|
3886
|
-
slices = {
|
|
3887
|
-
'value': slice_value,
|
|
3888
|
-
'shape_value': slice_special_value,
|
|
3889
|
-
'min_value': slice_min,
|
|
3890
|
-
'max_value': slice_max
|
|
3891
|
-
}
|
|
3892
|
-
return slices, len(slice_value)
|
|
3893
|
-
|
|
3894
|
-
|
|
3895
|
-
class Diag(PrimitiveWithCheck):
|
|
3896
|
-
r"""
|
|
3897
|
-
|
|
3898
|
-
Constructs a diagonal tensor with a given diagonal values.
|
|
3899
|
-
|
|
3900
|
-
.. warning::
|
|
3901
|
-
This is an experimental API that is subject to change or deletion.
|
|
3902
|
-
|
|
3903
|
-
Refer to :func:`mindspore.ops.diag` for more details.
|
|
3904
|
-
|
|
3905
|
-
Inputs:
|
|
3906
|
-
- **input_x** (Tensor) - The input tensor.
|
|
3907
|
-
|
|
3908
|
-
Outputs:
|
|
3909
|
-
Tensor, has the same dtype as the `input_x`.
|
|
3910
|
-
|
|
3911
|
-
Supported Platforms:
|
|
3912
|
-
``Ascend`` ``GPU`` ``CPU``
|
|
3913
|
-
|
|
3914
|
-
Examples:
|
|
3915
|
-
>>> from mindspore import Tensor, ops
|
|
3916
|
-
>>> input_x = Tensor([1, 2, 3, 4]).astype('int32')
|
|
3917
|
-
>>> diag = ops.Diag()
|
|
3918
|
-
>>> output = diag(input_x)
|
|
3919
|
-
>>> print(output)
|
|
3920
|
-
[[1 0 0 0]
|
|
3921
|
-
[0 2 0 0]
|
|
3922
|
-
[0 0 3 0]
|
|
3923
|
-
[0 0 0 4]]
|
|
3924
|
-
"""
|
|
3925
|
-
|
|
3926
|
-
@prim_attr_register
|
|
3927
|
-
def __init__(self):
|
|
3928
|
-
"""Initialize Diag"""
|
|
3929
|
-
|
|
3930
|
-
def infer_value(self, x):
|
|
3931
|
-
if x is None:
|
|
3932
|
-
return None
|
|
3933
|
-
# do constant-folding only when x rank is 1
|
|
3934
|
-
if len(x.shape) != 1:
|
|
3935
|
-
return None
|
|
3936
|
-
ret = np.diag(x.asnumpy())
|
|
3937
|
-
return Tensor(ret)
|
|
3938
|
-
|
|
3939
|
-
|
|
3940
2245
|
class DiagPart(PrimitiveWithCheck):
|
|
3941
2246
|
r"""
|
|
3942
2247
|
|
|
@@ -3987,300 +2292,24 @@ class DiagPart(PrimitiveWithCheck):
|
|
|
3987
2292
|
|
|
3988
2293
|
class Mvlgamma(Primitive):
|
|
3989
2294
|
r"""
|
|
3990
|
-
Calculates the multivariate log-gamma function element-wise for a given dimension `p`.
|
|
3991
|
-
|
|
3992
|
-
.. warning::
|
|
3993
|
-
This is an experimental API that is subject to change or deletion.
|
|
3994
|
-
|
|
3995
|
-
Refer to :func:`mindspore.ops.mvlgamma` for more details.
|
|
3996
|
-
|
|
3997
|
-
Args:
|
|
3998
|
-
p(int): The number of dimensions. And the value of `p` must be greater than or equal to 1.
|
|
3999
|
-
|
|
4000
|
-
Inputs:
|
|
4001
|
-
- **x** (Tensor) - The tensor to compute the multivariate log-gamma function,
|
|
4002
|
-
which must be one of the following types: float32, float64.
|
|
4003
|
-
The shape is :math:`(N,*)`, where :math:`*` means any number of additional dimensions.
|
|
4004
|
-
And the value of any element in `x` must be greater than :math:`(p - 1) / 2`.
|
|
4005
|
-
|
|
4006
|
-
Outputs:
|
|
4007
|
-
Tensor, has the same shape and type as `x`.
|
|
4008
|
-
|
|
4009
|
-
Supported Platforms:
|
|
4010
|
-
``Ascend`` ``GPU`` ``CPU``
|
|
4011
|
-
|
|
4012
|
-
Examples:
|
|
4013
|
-
>>> import mindspore
|
|
4014
|
-
>>> import numpy as np
|
|
4015
|
-
>>> from mindspore import Tensor, ops
|
|
4016
|
-
>>> x = Tensor(np.array([[3, 4, 5], [4, 2, 6]]), mindspore.float32)
|
|
4017
|
-
>>> op = ops.Mvlgamma(p=3)
|
|
4018
|
-
>>> y = op(x)
|
|
4019
|
-
>>> print(y)
|
|
4020
|
-
[[ 2.694925 5.402975 9.140645 ]
|
|
4021
|
-
[ 5.402975 1.5963125 13.640454 ]]
|
|
4022
|
-
"""
|
|
4023
|
-
|
|
4024
|
-
@prim_attr_register
|
|
4025
|
-
def __init__(self, p):
|
|
4026
|
-
"""Initialize Mvlgamma."""
|
|
4027
|
-
self.init_prim_io_names(inputs=['x'], outputs=['y'])
|
|
4028
|
-
validator.check_value_type('p', p, [int], self.name)
|
|
4029
|
-
validator.check_positive_int(p, 'p', self.name)
|
|
4030
|
-
|
|
4031
|
-
|
|
4032
|
-
class Eye(Primitive):
|
|
4033
|
-
"""
|
|
4034
|
-
Creates a tensor with ones on the diagonal and zeros in the rest.
|
|
4035
|
-
|
|
4036
|
-
Refer to :func:`mindspore.ops.eye` for more details.
|
|
4037
|
-
|
|
4038
|
-
Inputs:
|
|
4039
|
-
- **n** (int) - The number of rows of returned tensor. Constant value only.
|
|
4040
|
-
- **m** (int) - The number of columns of returned tensor. Constant value only.
|
|
4041
|
-
- **t** (mindspore.dtype) - MindSpore's dtype, the data type of the returned tensor.
|
|
4042
|
-
Default: ``None`` , the data type of the returned tensor is mindspore.float32.
|
|
4043
|
-
|
|
4044
|
-
Outputs:
|
|
4045
|
-
Tensor, a tensor with ones on the diagonal and the rest of elements are zero. The shape of `output` depends on
|
|
4046
|
-
the user's Inputs `n` and `m`. And the data type depends on Inputs `t`.
|
|
4047
|
-
|
|
4048
|
-
Supported Platforms:
|
|
4049
|
-
``Ascend`` ``GPU`` ``CPU``
|
|
4050
|
-
|
|
4051
|
-
Examples:
|
|
4052
|
-
>>> import mindspore
|
|
4053
|
-
>>> from mindspore import ops
|
|
4054
|
-
>>> eye = ops.Eye()
|
|
4055
|
-
>>> output = eye(2, 2, mindspore.int32)
|
|
4056
|
-
>>> print(output)
|
|
4057
|
-
[[1 0]
|
|
4058
|
-
[0 1]]
|
|
4059
|
-
>>> print(output.dtype)
|
|
4060
|
-
Int32
|
|
4061
|
-
>>> output = eye(1, 2, mindspore.float64)
|
|
4062
|
-
>>> print(output)
|
|
4063
|
-
[[1. 0.]]
|
|
4064
|
-
>>> print(output.dtype)
|
|
4065
|
-
Float64
|
|
4066
|
-
"""
|
|
4067
|
-
|
|
4068
|
-
@prim_attr_register
|
|
4069
|
-
def __init__(self):
|
|
4070
|
-
"""Initialize Eye"""
|
|
4071
|
-
self.init_prim_io_names(inputs=['n', 'm', 't'], outputs=['output'])
|
|
4072
|
-
|
|
4073
|
-
|
|
4074
|
-
class ScatterNd(Primitive):
|
|
4075
|
-
r"""
|
|
4076
|
-
Scatters a tensor into a new tensor depending on the specified indices.
|
|
4077
|
-
|
|
4078
|
-
Refer to :func:`mindspore.ops.scatter_nd` for more details.
|
|
4079
|
-
|
|
4080
|
-
Inputs:
|
|
4081
|
-
- **indices** (Tensor) - The index of scattering in the new tensor with int32 or int64 data type.
|
|
4082
|
-
The rank of indices must be at least 2 and `indices_shape[-1] <= len(shape)`.
|
|
4083
|
-
- **updates** (Tensor) - The source Tensor to be scattered.
|
|
4084
|
-
It has shape `indices_shape[:-1] + shape[indices_shape[-1]:]`.
|
|
4085
|
-
- **shape** (tuple[int]) - Define the shape of the output tensor, has the same data type as indices.
|
|
4086
|
-
The shape of `shape` is :math:`(x_1, x_2, ..., x_R)`, and the length of 'shape' is greater than or equal to 2.
|
|
4087
|
-
In other words, the shape of `shape` is at least :math:`(x_1, x_2)`.
|
|
4088
|
-
And the value of any element in `shape` must be greater than or equal to 1.
|
|
4089
|
-
In other words, :math:`x_1` >= 1, :math:`x_2` >= 1.
|
|
4090
|
-
|
|
4091
|
-
Outputs:
|
|
4092
|
-
Tensor, the new tensor, has the same type as `update` and the same shape as `shape`.
|
|
4093
|
-
|
|
4094
|
-
Supported Platforms:
|
|
4095
|
-
``Ascend`` ``GPU`` ``CPU``
|
|
4096
|
-
|
|
4097
|
-
Examples:
|
|
4098
|
-
>>> import mindspore
|
|
4099
|
-
>>> import numpy as np
|
|
4100
|
-
>>> from mindspore import Tensor, ops
|
|
4101
|
-
>>> op = ops.ScatterNd()
|
|
4102
|
-
>>> indices = Tensor(np.array([[0], [2]]), mindspore.int32)
|
|
4103
|
-
>>> updates = Tensor(np.array([[[1, 1, 1, 1], [2, 2, 2, 2],
|
|
4104
|
-
... [3, 3, 3, 3], [4, 4, 4, 4]],
|
|
4105
|
-
... [[1, 1, 1, 1], [2, 2, 2, 2],
|
|
4106
|
-
... [3, 3, 3, 3], [4, 4, 4, 4]]]), mindspore.float32)
|
|
4107
|
-
>>> shape = (4, 4, 4)
|
|
4108
|
-
>>> output = op(indices, updates, shape)
|
|
4109
|
-
>>> print(output)
|
|
4110
|
-
[[[1. 1. 1. 1.]
|
|
4111
|
-
[2. 2. 2. 2.]
|
|
4112
|
-
[3. 3. 3. 3.]
|
|
4113
|
-
[4. 4. 4. 4.]]
|
|
4114
|
-
[[0. 0. 0. 0.]
|
|
4115
|
-
[0. 0. 0. 0.]
|
|
4116
|
-
[0. 0. 0. 0.]
|
|
4117
|
-
[0. 0. 0. 0.]]
|
|
4118
|
-
[[1. 1. 1. 1.]
|
|
4119
|
-
[2. 2. 2. 2.]
|
|
4120
|
-
[3. 3. 3. 3.]
|
|
4121
|
-
[4. 4. 4. 4.]]
|
|
4122
|
-
[[0. 0. 0. 0.]
|
|
4123
|
-
[0. 0. 0. 0.]
|
|
4124
|
-
[0. 0. 0. 0.]
|
|
4125
|
-
[0. 0. 0. 0.]]]
|
|
4126
|
-
>>> indices = Tensor(np.array([[0, 1], [1, 1]]), mindspore.int32)
|
|
4127
|
-
>>> updates = Tensor(np.array([3.2, 1.1]), mindspore.float32)
|
|
4128
|
-
>>> shape = (3, 3)
|
|
4129
|
-
>>> output = op(indices, updates, shape)
|
|
4130
|
-
>>> # In order to facilitate understanding, explain the operator pseudo-operation process step by step:
|
|
4131
|
-
>>> # Step 1: Generate an empty Tensor of the specified shape according to the shape
|
|
4132
|
-
>>> # [
|
|
4133
|
-
>>> # [0. 0. 0.]
|
|
4134
|
-
>>> # [0. 0. 0.]
|
|
4135
|
-
>>> # [0. 0. 0.]
|
|
4136
|
-
>>> # ]
|
|
4137
|
-
>>> # Step 2: Modify the data at the specified location according to the indicators
|
|
4138
|
-
>>> # 0th row of indices is [0, 1], 0th row of updates is 3.2.
|
|
4139
|
-
>>> # means that the empty tensor in the 0th row and 1st col set to 3.2
|
|
4140
|
-
>>> # [
|
|
4141
|
-
>>> # [0. 3.2. 0.]
|
|
4142
|
-
>>> # [0. 0. 0.]
|
|
4143
|
-
>>> # [0. 0. 0.]
|
|
4144
|
-
>>> # ]
|
|
4145
|
-
>>> # 1th row of indices is [1, 1], 1th row of updates is 1.1.
|
|
4146
|
-
>>> # means that the empty tensor in the 1th row and 1st col set to 1.1
|
|
4147
|
-
>>> # [
|
|
4148
|
-
>>> # [0. 3.2. 0.]
|
|
4149
|
-
>>> # [0. 1.1 0.]
|
|
4150
|
-
>>> # [0. 0. 0.]
|
|
4151
|
-
>>> # ]
|
|
4152
|
-
>>> # The final result is as follows:
|
|
4153
|
-
>>> print(output)
|
|
4154
|
-
[[0. 3.2 0.]
|
|
4155
|
-
[0. 1.1 0.]
|
|
4156
|
-
[0. 0. 0.]]
|
|
4157
|
-
"""
|
|
4158
|
-
|
|
4159
|
-
@prim_attr_register
|
|
4160
|
-
def __init__(self):
|
|
4161
|
-
"""Initialize ScatterNd"""
|
|
4162
|
-
self.init_prim_io_names(inputs=['indices', 'update', 'shape'], outputs=['output'])
|
|
4163
|
-
|
|
4164
|
-
|
|
4165
|
-
class ResizeNearestNeighbor(Primitive):
|
|
4166
|
-
r"""
|
|
4167
|
-
Resizes the input tensor to a given size by using the nearest neighbor algorithm. The nearest
|
|
4168
|
-
neighbor algorithm selects the value of the nearest point and does not consider the
|
|
4169
|
-
values of neighboring points at all, yielding a piecewise-constant interpolant.
|
|
4170
|
-
|
|
4171
|
-
Args:
|
|
4172
|
-
size (Union[tuple, list]): The target size. The dimension of size must be 2.
|
|
4173
|
-
align_corners (bool): Whether the centers of the 4 corner pixels of the input
|
|
4174
|
-
and output tensors are aligned. Default: ``False`` .
|
|
4175
|
-
|
|
4176
|
-
Inputs:
|
|
4177
|
-
- **input_x** (Tensor) - The input tensor. The shape of the tensor is :math:`(N, C, H, W)`.
|
|
4178
|
-
|
|
4179
|
-
Outputs:
|
|
4180
|
-
Tensor, the shape of the output tensor is :math:`(N, C, NEW\_H, NEW\_W)`.
|
|
4181
|
-
The data type is the same as the `input_x`.
|
|
4182
|
-
|
|
4183
|
-
Raises:
|
|
4184
|
-
TypeError: If `size` is neither tuple nor list.
|
|
4185
|
-
TypeError: If `align_corners` is not a bool.
|
|
4186
|
-
ValueError: If length of `size` is not equal to 2.
|
|
4187
|
-
|
|
4188
|
-
Supported Platforms:
|
|
4189
|
-
``Ascend`` ``GPU`` ``CPU``
|
|
4190
|
-
|
|
4191
|
-
Examples:
|
|
4192
|
-
>>> import numpy as np
|
|
4193
|
-
>>> import mindspore
|
|
4194
|
-
>>> from mindspore import Tensor, ops
|
|
4195
|
-
>>> input_tensor = Tensor(np.array([[[[-0.1, 0.3, 3.6], [0.4, 0.5, -3.2]]]]), mindspore.float32)
|
|
4196
|
-
>>> size = (2, 2)
|
|
4197
|
-
>>> output = ops.ResizeNearestNeighbor(size=size)(input_tensor)
|
|
4198
|
-
>>> print(output)
|
|
4199
|
-
[[[[-0.1 0.3]
|
|
4200
|
-
[ 0.4 0.5]]]]
|
|
4201
|
-
"""
|
|
4202
|
-
|
|
4203
|
-
@prim_attr_register
|
|
4204
|
-
def __init__(self, size, align_corners=False):
|
|
4205
|
-
"""Initialize ResizeNearestNeighbor"""
|
|
4206
|
-
validator.check_value_type("size", size, [tuple, list], self.name)
|
|
4207
|
-
validator.check_value_type("align_corners", align_corners, [bool], self.name)
|
|
4208
|
-
validator.check_equal_int(len(size), 2, "length of size", self.name)
|
|
4209
|
-
for i, value in enumerate(size):
|
|
4210
|
-
validator.check_non_negative_int(value, f'{i}th value of size', self.name)
|
|
4211
|
-
self.init_prim_io_names(inputs=['image_in'], outputs=['image_out'])
|
|
4212
|
-
|
|
4213
|
-
|
|
4214
|
-
class ResizeNearestNeighborV2(Primitive):
|
|
4215
|
-
r"""
|
|
4216
|
-
Resizes the input tensor to specific size by using the nearest neighbor algorithm.
|
|
4217
|
-
|
|
4218
|
-
The nearest neighbor algorithm selects the value of the nearest point and does not consider the
|
|
4219
|
-
values of neighboring points at all, yielding a piecewise-constant interpolant.
|
|
4220
|
-
|
|
4221
|
-
Args:
|
|
4222
|
-
align_corners (bool, optional): If ``True`` , the centers of the 4 corner pixels of the input and output
|
|
4223
|
-
tensors are aligned, preserving the values at the corner pixels. Default: ``False`` .
|
|
4224
|
-
half_pixel_centers (bool, optional): Whether half pixel center. If set to ``True`` ,
|
|
4225
|
-
`align_corners` should be False. Default: ``False`` .
|
|
4226
|
-
|
|
4227
|
-
Inputs:
|
|
4228
|
-
- **x** (Tensor) - 4-D with shape :math:`(batch, channels, height, width)` .
|
|
4229
|
-
- **size** (Tensor) - The new size for the images. A 1-D int32 Tensor
|
|
4230
|
-
of 2 elements: [`new_height, new_width`].
|
|
4231
|
-
|
|
4232
|
-
Outputs:
|
|
4233
|
-
- **y** (Tensor) - The resized images. A 4-D with shape
|
|
4234
|
-
:math:`(batch, channels, new\_height, new\_width)`. It has the same dtype as `x`.
|
|
4235
|
-
|
|
4236
|
-
Raises:
|
|
4237
|
-
TypeError: If `x` or `size` is not a Tensor.
|
|
4238
|
-
TypeError: If the data type of `size` is not int32.
|
|
4239
|
-
TypeError: If `align_corners` or `half_pixel_centers` is not bool.
|
|
4240
|
-
ValueError: If any value of `size` is non positive.
|
|
4241
|
-
ValueError: If the dimension of `x` is not 4.
|
|
4242
|
-
ValueError: If the dimension of `size` is not 1.
|
|
4243
|
-
ValueError: If the elements number of `size` is not 2.
|
|
4244
|
-
ValueError: If attr `half_pixel_centers` and `align_corners` are True at the same time.
|
|
4245
|
-
|
|
4246
|
-
Supported Platforms:
|
|
4247
|
-
``Ascend`` ``GPU`` ``CPU``
|
|
4248
|
-
|
|
4249
|
-
Examples:
|
|
4250
|
-
>>> import numpy as np
|
|
4251
|
-
>>> from mindspore import Tensor, ops
|
|
4252
|
-
>>> from mindspore import dtype as mstype
|
|
4253
|
-
>>> input_tensor = Tensor(np.ones((1, 1, 4, 4)), mstype.float32)
|
|
4254
|
-
>>> size = Tensor([2, 2], mstype.int32)
|
|
4255
|
-
>>> resize = ops.ResizeNearestNeighborV2()
|
|
4256
|
-
>>> output = resize(input_tensor, size)
|
|
4257
|
-
>>> print(output)
|
|
4258
|
-
[[[[1. 1.]
|
|
4259
|
-
[1. 1.]]]]
|
|
4260
|
-
>>> print(output.shape)
|
|
4261
|
-
(1, 1, 2, 2)
|
|
4262
|
-
"""
|
|
4263
|
-
|
|
4264
|
-
@prim_attr_register
|
|
4265
|
-
def __init__(self, align_corners=False, half_pixel_centers=False):
|
|
4266
|
-
"""Initialize ResizeNearestNeighborV2"""
|
|
4267
|
-
self.init_prim_io_names(inputs=['x', 'size'], outputs=['y'])
|
|
4268
|
-
validator.check_bool(align_corners, 'align_corners', self.name)
|
|
4269
|
-
validator.check_bool(half_pixel_centers, 'half_pixel_centers', self.name)
|
|
2295
|
+
Calculates the multivariate log-gamma function element-wise for a given dimension `p`.
|
|
4270
2296
|
|
|
2297
|
+
.. warning::
|
|
2298
|
+
This is an experimental API that is subject to change or deletion.
|
|
4271
2299
|
|
|
4272
|
-
|
|
4273
|
-
r"""
|
|
4274
|
-
Gathers slices from a tensor by indices.
|
|
2300
|
+
Refer to :func:`mindspore.ops.mvlgamma` for more details.
|
|
4275
2301
|
|
|
4276
|
-
|
|
2302
|
+
Args:
|
|
2303
|
+
p(int): The number of dimensions. And the value of `p` must be greater than or equal to 1.
|
|
4277
2304
|
|
|
4278
2305
|
Inputs:
|
|
4279
|
-
- **
|
|
4280
|
-
|
|
2306
|
+
- **x** (Tensor) - The tensor to compute the multivariate log-gamma function,
|
|
2307
|
+
which must be one of the following types: float32, float64.
|
|
2308
|
+
The shape is :math:`(N,*)`, where :math:`*` means any number of additional dimensions.
|
|
2309
|
+
And the value of any element in `x` must be greater than :math:`(p - 1) / 2`.
|
|
4281
2310
|
|
|
4282
2311
|
Outputs:
|
|
4283
|
-
Tensor, has the same type as `
|
|
2312
|
+
Tensor, has the same shape and type as `x`.
|
|
4284
2313
|
|
|
4285
2314
|
Supported Platforms:
|
|
4286
2315
|
``Ascend`` ``GPU`` ``CPU``
|
|
@@ -4289,18 +2318,20 @@ class GatherNd(Primitive):
|
|
|
4289
2318
|
>>> import mindspore
|
|
4290
2319
|
>>> import numpy as np
|
|
4291
2320
|
>>> from mindspore import Tensor, ops
|
|
4292
|
-
>>>
|
|
4293
|
-
>>>
|
|
4294
|
-
>>>
|
|
4295
|
-
>>>
|
|
4296
|
-
|
|
4297
|
-
|
|
2321
|
+
>>> x = Tensor(np.array([[3, 4, 5], [4, 2, 6]]), mindspore.float32)
|
|
2322
|
+
>>> op = ops.Mvlgamma(p=3)
|
|
2323
|
+
>>> y = op(x)
|
|
2324
|
+
>>> print(y)
|
|
2325
|
+
[[ 2.694925 5.402975 9.140645 ]
|
|
2326
|
+
[ 5.402975 1.5963125 13.640454 ]]
|
|
4298
2327
|
"""
|
|
4299
2328
|
|
|
4300
2329
|
@prim_attr_register
|
|
4301
|
-
def __init__(self):
|
|
4302
|
-
"""Initialize
|
|
4303
|
-
self.init_prim_io_names(inputs=['
|
|
2330
|
+
def __init__(self, p):
|
|
2331
|
+
"""Initialize Mvlgamma."""
|
|
2332
|
+
self.init_prim_io_names(inputs=['x'], outputs=['y'])
|
|
2333
|
+
validator.check_value_type('p', p, [int], self.name)
|
|
2334
|
+
validator.check_positive_int(p, 'p', self.name)
|
|
4304
2335
|
|
|
4305
2336
|
|
|
4306
2337
|
class ScatterUpdate(Primitive):
|
|
@@ -4826,7 +2857,7 @@ class Triu(Primitive):
|
|
|
4826
2857
|
- **y** (Tensor) - A tensor has the same shape and data type as input.
|
|
4827
2858
|
|
|
4828
2859
|
Raises:
|
|
4829
|
-
TypeError: If `x` is not
|
|
2860
|
+
TypeError: If `x` is not a Tensor.
|
|
4830
2861
|
TypeError: If `diagonal` is not an int.
|
|
4831
2862
|
ValueError: If the dimension of `input` is less than 2.
|
|
4832
2863
|
|
|
@@ -5933,59 +3964,6 @@ class BatchToSpaceNDV2(Primitive):
|
|
|
5933
3964
|
self.add_prim_attr('origin_format', 'NHWC')
|
|
5934
3965
|
|
|
5935
3966
|
|
|
5936
|
-
class BroadcastTo(PrimitiveWithCheck):
|
|
5937
|
-
"""
|
|
5938
|
-
Broadcasts input tensor to a given shape.
|
|
5939
|
-
|
|
5940
|
-
Refer to :func:`mindspore.ops.broadcast_to` for more details.
|
|
5941
|
-
|
|
5942
|
-
Args:
|
|
5943
|
-
shape (tuple): The target shape to broadcast. Can be fully specified, or have -1 in one position
|
|
5944
|
-
where it will be substituted by the input tensor's shape in that position, see example.
|
|
5945
|
-
|
|
5946
|
-
Inputs:
|
|
5947
|
-
- **input_x** (Tensor) - The input tensor of any dimension.
|
|
5948
|
-
|
|
5949
|
-
Outputs:
|
|
5950
|
-
Tensor, with the given `shape` and the same data type as `input_x`.
|
|
5951
|
-
|
|
5952
|
-
Supported Platforms:
|
|
5953
|
-
``Ascend`` ``GPU`` ``CPU``
|
|
5954
|
-
|
|
5955
|
-
Examples:
|
|
5956
|
-
>>> import numpy as np
|
|
5957
|
-
>>> from mindspore import Tensor, ops
|
|
5958
|
-
>>> shape = (2, 3)
|
|
5959
|
-
>>> x = Tensor(np.array([1, 2, 3]).astype(np.float32))
|
|
5960
|
-
>>> output = ops.BroadcastTo(shape=shape)(x)
|
|
5961
|
-
>>> print(output)
|
|
5962
|
-
[[1. 2. 3.]
|
|
5963
|
-
[1. 2. 3.]]
|
|
5964
|
-
>>>
|
|
5965
|
-
>>> shape = (-1, 2)
|
|
5966
|
-
>>> x = Tensor(np.array([[1], [2]]).astype(np.float32))
|
|
5967
|
-
>>> output = ops.BroadcastTo(shape=shape)(x)
|
|
5968
|
-
>>> print(output)
|
|
5969
|
-
[[1. 1.]
|
|
5970
|
-
[2. 2.]]
|
|
5971
|
-
"""
|
|
5972
|
-
|
|
5973
|
-
@prim_attr_register
|
|
5974
|
-
def __init__(self, shape):
|
|
5975
|
-
"""Initialize BroadcastTo"""
|
|
5976
|
-
validator.check_value_type("shape", shape, (tuple), self.name)
|
|
5977
|
-
validator.check("dimension of x", len(shape), "", 0, validator.GT, self.name)
|
|
5978
|
-
for ix, i in enumerate(shape):
|
|
5979
|
-
validator.check_value_type('target shape index -> ' + str(ix), i, [int], self.name)
|
|
5980
|
-
validator.check("shape element", i, "shape element min limit", -1, validator.GE, self.name)
|
|
5981
|
-
self.shape = shape
|
|
5982
|
-
|
|
5983
|
-
def infer_value(self, x):
|
|
5984
|
-
if x is None:
|
|
5985
|
-
return None
|
|
5986
|
-
return Tensor(np.broadcast_to(x.asnumpy(), self.shape))
|
|
5987
|
-
|
|
5988
|
-
|
|
5989
3967
|
class Meshgrid(PrimitiveWithInfer):
|
|
5990
3968
|
"""
|
|
5991
3969
|
Generates coordinate matrices from given coordinate tensors.
|
|
@@ -5993,13 +3971,13 @@ class Meshgrid(PrimitiveWithInfer):
|
|
|
5993
3971
|
Refer to :func:`mindspore.ops.meshgrid` for more details.
|
|
5994
3972
|
|
|
5995
3973
|
Args:
|
|
5996
|
-
indexing (str, optional): Cartesian
|
|
5997
|
-
matrix
|
|
3974
|
+
indexing (str, optional): Cartesian ``'xy'`` or
|
|
3975
|
+
matrix ``'ij'`` indexing of output. In the 2-D case with
|
|
5998
3976
|
inputs of length `M` and `N`, the outputs are of shape :math:`(N, M)`
|
|
5999
|
-
for 'xy' indexing and :math:`(M, N)` for 'ij' indexing. In the 3-D
|
|
3977
|
+
for ``'xy'`` indexing and :math:`(M, N)` for ``'ij'`` indexing. In the 3-D
|
|
6000
3978
|
case with inputs of length `M`, `N` and `P`, outputs are of shape
|
|
6001
|
-
:math:`(N, M, P)` for 'xy' indexing and :math:`(M, N, P)` for 'ij' indexing.
|
|
6002
|
-
Default: 'xy'
|
|
3979
|
+
:math:`(N, M, P)` for ``'xy'`` indexing and :math:`(M, N, P)` for ``'ij'`` indexing.
|
|
3980
|
+
Default: ``'xy'``.
|
|
6003
3981
|
|
|
6004
3982
|
Inputs:
|
|
6005
3983
|
- **input** (Union[tuple]) - A Tuple of N 1-D Tensor objects.
|
|
@@ -6390,56 +4368,6 @@ class EmbeddingLookup(Primitive):
|
|
|
6390
4368
|
self.add_prim_attr('bprop_return_sparse', True)
|
|
6391
4369
|
|
|
6392
4370
|
|
|
6393
|
-
class GatherD(Primitive):
|
|
6394
|
-
"""
|
|
6395
|
-
Gathers elements along an axis specified by dim.
|
|
6396
|
-
|
|
6397
|
-
Refer to :func:`mindspore.ops.gather_elements` for more details.
|
|
6398
|
-
|
|
6399
|
-
Inputs:
|
|
6400
|
-
- **x** (Tensor) - The input tensor.
|
|
6401
|
-
- **dim** (int) - The axis along which to index. It must be int32 or int64.
|
|
6402
|
-
- **index** (Tensor) - The indices of elements to gather. It can be one of the following data types:
|
|
6403
|
-
int32, int64. The value range of each index element is [-x_rank[dim], x_rank[dim]).
|
|
6404
|
-
|
|
6405
|
-
Outputs:
|
|
6406
|
-
Tensor, has the same data type with `x`.
|
|
6407
|
-
|
|
6408
|
-
Supported Platforms:
|
|
6409
|
-
``Ascend`` ``GPU`` ``CPU``
|
|
6410
|
-
|
|
6411
|
-
Examples:
|
|
6412
|
-
>>> import mindspore
|
|
6413
|
-
>>> import numpy as np
|
|
6414
|
-
>>> from mindspore import Tensor, ops
|
|
6415
|
-
>>> x = Tensor(np.array([[1, 2], [3, 4]]), mindspore.int32)
|
|
6416
|
-
>>> index = Tensor(np.array([[0, 0], [1, 0]]), mindspore.int32)
|
|
6417
|
-
>>> dim = 1
|
|
6418
|
-
>>> output = ops.GatherD()(x, dim, index)
|
|
6419
|
-
>>> print(output)
|
|
6420
|
-
[[1 1]
|
|
6421
|
-
[4 3]]
|
|
6422
|
-
"""
|
|
6423
|
-
|
|
6424
|
-
@prim_attr_register
|
|
6425
|
-
def __init__(self):
|
|
6426
|
-
"""Initialize GatherD"""
|
|
6427
|
-
self.init_prim_io_names(inputs=['x', 'dim', 'index'], outputs=['output'])
|
|
6428
|
-
|
|
6429
|
-
|
|
6430
|
-
class Identity(Primitive):
|
|
6431
|
-
"""
|
|
6432
|
-
The `mindspore.ops.Identity` interface is deprecated, please use the :func:`mindspore.ops.deepcopy` instead.
|
|
6433
|
-
|
|
6434
|
-
Supported Platforms:
|
|
6435
|
-
Deprecated
|
|
6436
|
-
"""
|
|
6437
|
-
|
|
6438
|
-
@prim_attr_register
|
|
6439
|
-
def __init__(self):
|
|
6440
|
-
pass
|
|
6441
|
-
|
|
6442
|
-
|
|
6443
4371
|
class IdentityN(Primitive):
|
|
6444
4372
|
"""
|
|
6445
4373
|
Return a tuple of tensors with the same shapes and contents as the input.
|
|
@@ -6478,72 +4406,6 @@ class IdentityN(Primitive):
|
|
|
6478
4406
|
self.init_prim_io_names(inputs=['x'], outputs=['y'])
|
|
6479
4407
|
|
|
6480
4408
|
|
|
6481
|
-
class Range(PrimitiveWithCheck):
|
|
6482
|
-
r"""
|
|
6483
|
-
Creates a sequence of numbers that begins at `start` and extlimits by increments of
|
|
6484
|
-
`delta` up to but not including `limit`.
|
|
6485
|
-
|
|
6486
|
-
Refer to :func:`mindspore.ops.range` for more details.
|
|
6487
|
-
|
|
6488
|
-
Args:
|
|
6489
|
-
maxlen (int, optional): Memory that can fit `maxlen` many elements
|
|
6490
|
-
will be allocated for the output. Optional, must be positive. Default: 1000000.
|
|
6491
|
-
If the output has more than `maxlen` elements, a runtime error
|
|
6492
|
-
will occur.
|
|
6493
|
-
|
|
6494
|
-
Inputs:
|
|
6495
|
-
- **start** (Tensor) - A scalar Tensor. The first number in the sequence.
|
|
6496
|
-
- **limit** (Tensor) - A scalar Tensor. Upper limit of the sequence, exclusive.
|
|
6497
|
-
- **delta** (Tensor) - A scalar Tensor. Number that increments `start`.
|
|
6498
|
-
|
|
6499
|
-
Outputs:
|
|
6500
|
-
A 1-D Tensor, with the same type as the inputs.
|
|
6501
|
-
|
|
6502
|
-
Supported Platforms:
|
|
6503
|
-
``GPU`` ``CPU``
|
|
6504
|
-
|
|
6505
|
-
Examples:
|
|
6506
|
-
>>> from mindspore import Tensor, ops
|
|
6507
|
-
>>> from mindspore import dtype as mstype
|
|
6508
|
-
>>> start = Tensor(0, mstype.int32)
|
|
6509
|
-
>>> limit = Tensor(10, mstype.int32)
|
|
6510
|
-
>>> delta = Tensor(4, mstype.int32)
|
|
6511
|
-
>>> output = ops.Range()(start, limit, delta)
|
|
6512
|
-
>>> print(output)
|
|
6513
|
-
[0 4 8]
|
|
6514
|
-
"""
|
|
6515
|
-
|
|
6516
|
-
@prim_attr_register
|
|
6517
|
-
def __init__(self, maxlen=1000000):
|
|
6518
|
-
self.init_prim_io_names(inputs=['start', 'limit', 'delta'], outputs=['output'])
|
|
6519
|
-
validator.check_value_type("maxlen", maxlen, [int], self.name)
|
|
6520
|
-
validator.check_positive_int(maxlen, "maxlen", self.name)
|
|
6521
|
-
self.maxlen = maxlen
|
|
6522
|
-
self.add_prim_attr('maxlen', maxlen)
|
|
6523
|
-
|
|
6524
|
-
def check_shape(self, start_shape, limit_shape, delta_shape):
|
|
6525
|
-
if not is_shape_unknown(start_shape):
|
|
6526
|
-
validator.check("start_shape", len(start_shape), "", 0, validator.EQ, self.name)
|
|
6527
|
-
if not is_shape_unknown(limit_shape):
|
|
6528
|
-
validator.check("limit_shape", len(limit_shape), "", 0, validator.EQ, self.name)
|
|
6529
|
-
if not is_shape_unknown(delta_shape):
|
|
6530
|
-
validator.check("delta_shape", len(delta_shape), "", 0, validator.EQ, self.name)
|
|
6531
|
-
|
|
6532
|
-
def check_dtype(self, start_dtype, limit_dtype, delta_dtype):
|
|
6533
|
-
valid_dtypes = [mstype.int32, mstype.float32, mstype.int64, mstype.float64]
|
|
6534
|
-
inputs = {"start": start_dtype, "limit": limit_dtype, "delta": delta_dtype}
|
|
6535
|
-
validator.check_tensors_dtypes_same_and_valid(inputs, valid_dtypes, self.name)
|
|
6536
|
-
|
|
6537
|
-
def infer_value(self, start_value, limit_value, delat_value):
|
|
6538
|
-
"""Infer the value of input for Range."""
|
|
6539
|
-
if start_value is not None and limit_value is not None and delat_value is not None:
|
|
6540
|
-
start = start_value.asnumpy()
|
|
6541
|
-
limit = limit_value.asnumpy()
|
|
6542
|
-
delat = delat_value.asnumpy()
|
|
6543
|
-
return Tensor(np.arange(start, limit, delat), dtype=start_value.dtype)
|
|
6544
|
-
return None
|
|
6545
|
-
|
|
6546
|
-
|
|
6547
4409
|
class RangeV2(Primitive):
|
|
6548
4410
|
"""
|
|
6549
4411
|
Creates a sequence of numbers that begins at `start`, ends at `limit` but not including `limit`
|
|
@@ -6598,46 +4460,6 @@ class RangeV2(Primitive):
|
|
|
6598
4460
|
validator.check_positive_int(maxlen, "maxlen", self.name)
|
|
6599
4461
|
|
|
6600
4462
|
|
|
6601
|
-
class MaskedFill(Primitive):
|
|
6602
|
-
"""
|
|
6603
|
-
Fills elements with value where mask is True.
|
|
6604
|
-
|
|
6605
|
-
Note:
|
|
6606
|
-
If `value` is a floating-point number of Python, it will be converted to float32 later by default.
|
|
6607
|
-
In this case, if `input_x` is a float16 Tensor, it will be converted to float32 for calculation,
|
|
6608
|
-
and the result type will be converted back to float16 on the CPU and Ascend platforms, which may
|
|
6609
|
-
cause the performance penalty. A TypeError may be raised on the GPU platform. Therefore,
|
|
6610
|
-
it is recommended that 'value' should use a Tensor with the same dtype as `input_x`.
|
|
6611
|
-
|
|
6612
|
-
Refer to :func:`mindspore.ops.masked_fill` for more details.
|
|
6613
|
-
|
|
6614
|
-
Inputs:
|
|
6615
|
-
- **input** (Tensor) - The input Tensor.
|
|
6616
|
-
- **mask** (Tensor[bool]) - The boolean mask.
|
|
6617
|
-
- **value** (Union[float, Tensor]) - The value to fill in with, which dtype is the same as `input`.
|
|
6618
|
-
|
|
6619
|
-
Outputs:
|
|
6620
|
-
Tensor, has the same type and shape as `input`.
|
|
6621
|
-
|
|
6622
|
-
Supported Platforms:
|
|
6623
|
-
``Ascend`` ``GPU`` ``CPU``
|
|
6624
|
-
|
|
6625
|
-
Examples:
|
|
6626
|
-
>>> import mindspore
|
|
6627
|
-
>>> import numpy as np
|
|
6628
|
-
>>> from mindspore import Tensor, ops
|
|
6629
|
-
>>> input = Tensor(np.array([1., 2., 3., 4.]), mindspore.float32)
|
|
6630
|
-
>>> mask = Tensor(np.array([True, True, False, True]), mindspore.bool_)
|
|
6631
|
-
>>> output = ops.MaskedFill()(input, mask, 0.5)
|
|
6632
|
-
>>> print(output)
|
|
6633
|
-
[0.5 0.5 3. 0.5]
|
|
6634
|
-
"""
|
|
6635
|
-
|
|
6636
|
-
@prim_attr_register
|
|
6637
|
-
def __init__(self):
|
|
6638
|
-
self.init_prim_io_names(inputs=['input', 'mask', 'value'], outputs=['output'])
|
|
6639
|
-
|
|
6640
|
-
|
|
6641
4463
|
class MaskedScatter(Primitive):
|
|
6642
4464
|
"""
|
|
6643
4465
|
Updates the value in the input with value in `updates` according to the `mask`.
|
|
@@ -6889,43 +4711,15 @@ class TensorScatterUpdate(_TensorScatterOp):
|
|
|
6889
4711
|
def __init__(self):
|
|
6890
4712
|
self.init_prim_io_names(inputs=['input_x', 'indices', 'updates'], outputs=['y'])
|
|
6891
4713
|
|
|
6892
|
-
def _infer_specified_value(self, input_x_value, indices_value, updates_value):
|
|
6893
|
-
"""Calculate min/max value for output of TensorScatterUpdate op"""
|
|
6894
|
-
if isinstance(input_x_value, tuple):
|
|
6895
|
-
input_x_value = list(input_x_value)
|
|
6896
|
-
if isinstance(input_x_value, (Tensor, Tensor_)):
|
|
6897
|
-
input_x_value = input_x_value.asnumpy()
|
|
6898
|
-
if indices_value is None or updates_value is None:
|
|
6899
|
-
return None
|
|
6900
|
-
if isinstance(indices_value, (Tensor, Tensor_)):
|
|
6901
|
-
indices_value = indices_value.asnumpy()
|
|
6902
|
-
if isinstance(updates_value, (Tensor, Tensor_)):
|
|
6903
|
-
updates_value = updates_value.asnumpy()
|
|
6904
|
-
input_x = np.array(input_x_value)
|
|
6905
|
-
updates = np.array(updates_value)
|
|
6906
|
-
for i, indice in enumerate(indices_value):
|
|
6907
|
-
input_x[indice] = updates[i]
|
|
6908
|
-
output = tuple(input_x.tolist())
|
|
6909
|
-
return output
|
|
6910
|
-
|
|
6911
|
-
def _infer_min_value(self, input_x_value, indices_value, updates_value):
|
|
6912
|
-
return self._infer_specified_value(input_x_value, indices_value, updates_value)
|
|
6913
|
-
|
|
6914
|
-
def _infer_max_value(self, input_x_value, indices_value, updates_value):
|
|
6915
|
-
return self._infer_specified_value(input_x_value, indices_value, updates_value)
|
|
6916
|
-
|
|
6917
4714
|
def infer_dtype(self, input_x_dtype, indices_dtype, updates_dtype):
|
|
6918
4715
|
validator.check_tensor_dtype_valid('indices', indices_dtype, [mstype.int32, mstype.int64], self.name)
|
|
6919
4716
|
args = {"input_x": input_x_dtype, "updates": updates_dtype}
|
|
6920
4717
|
validator.check_tensors_dtypes_same_and_valid(args, (mstype.bool_,) + mstype.number_type, self.name)
|
|
6921
4718
|
return input_x_dtype
|
|
6922
4719
|
|
|
6923
|
-
def _infer_shape_value(self, input_x_value, indices_value, updates_value):
|
|
6924
|
-
return self._infer_specified_value(input_x_value, indices_value, updates_value)
|
|
6925
|
-
|
|
6926
4720
|
|
|
6927
4721
|
class TensorScatterMax(Primitive):
|
|
6928
|
-
"""
|
|
4722
|
+
r"""
|
|
6929
4723
|
By comparing the value at the position indicated by `indices` in `x` with the value in the `updates`,
|
|
6930
4724
|
the value at the index will eventually be equal to the largest one to create a new tensor.
|
|
6931
4725
|
|
|
@@ -6936,7 +4730,7 @@ class TensorScatterMax(Primitive):
|
|
|
6936
4730
|
- **indices** (Tensor) - The index of input tensor whose data type is int32 or int64.
|
|
6937
4731
|
The rank must be at least 2.
|
|
6938
4732
|
- **updates** (Tensor) - The tensor to update the input tensor, has the same type as input,
|
|
6939
|
-
and updates.shape should be equal to indices.shape[:-1] +
|
|
4733
|
+
and updates.shape should be equal to :math:`indices.shape[:-1] + input\_x.shape[indices.shape[-1]:]`.
|
|
6940
4734
|
|
|
6941
4735
|
Outputs:
|
|
6942
4736
|
Tensor, has the same shape and type as `input_x`.
|
|
@@ -6973,7 +4767,7 @@ class TensorScatterMax(Primitive):
|
|
|
6973
4767
|
|
|
6974
4768
|
|
|
6975
4769
|
class TensorScatterMin(Primitive):
|
|
6976
|
-
"""
|
|
4770
|
+
r"""
|
|
6977
4771
|
By comparing the value at the position indicated by `indices` in `input_x` with the value in the `updates`,
|
|
6978
4772
|
the value at the index will eventually be equal to the smallest one to create a new tensor.
|
|
6979
4773
|
|
|
@@ -6984,7 +4778,7 @@ class TensorScatterMin(Primitive):
|
|
|
6984
4778
|
- **indices** (Tensor) - The index of input tensor whose data type is int32 or int64.
|
|
6985
4779
|
The rank must be at least 2.
|
|
6986
4780
|
- **updates** (Tensor) - The tensor to update the input tensor, has the same type as input,
|
|
6987
|
-
and updates.shape should be equal to indices.shape[:-1] +
|
|
4781
|
+
and updates.shape should be equal to :math:`indices.shape[:-1] + input\_x.shape[indices.shape[-1]:]`.
|
|
6988
4782
|
|
|
6989
4783
|
Outputs:
|
|
6990
4784
|
Tensor, has the same shape and type as `input_x`.
|
|
@@ -7029,7 +4823,7 @@ class TensorScatterSub(Primitive):
|
|
|
7029
4823
|
instead of input `Parameter`.
|
|
7030
4824
|
|
|
7031
4825
|
.. math::
|
|
7032
|
-
output[indices] = input\_x
|
|
4826
|
+
output\left [indices \right ] = input\_x- update
|
|
7033
4827
|
|
|
7034
4828
|
Refer to :func:`mindspore.ops.tensor_scatter_sub` for more details.
|
|
7035
4829
|
|
|
@@ -7133,7 +4927,7 @@ class TensorScatterMul(_TensorScatterOp):
|
|
|
7133
4927
|
The updates are applied on output `Tensor` instead of input `Parameter`.
|
|
7134
4928
|
|
|
7135
4929
|
.. math::
|
|
7136
|
-
output[indices] = input\_x
|
|
4930
|
+
output\left [indices \right ] = input\_x\times update
|
|
7137
4931
|
|
|
7138
4932
|
Refer to :func:`mindspore.ops.tensor_scatter_mul` for more details.
|
|
7139
4933
|
|
|
@@ -7142,7 +4936,7 @@ class TensorScatterMul(_TensorScatterOp):
|
|
|
7142
4936
|
- **indices** (Tensor) - The index of input tensor whose data type is int32 or int64.
|
|
7143
4937
|
The rank must be at least 2.
|
|
7144
4938
|
- **updates** (Tensor) - The tensor to update the input tensor, has the same type as `input_x`,
|
|
7145
|
-
and the shape of `updates` should be equal to indices.shape[:-1] +
|
|
4939
|
+
and the shape of `updates` should be equal to :math:`indices.shape[:-1] + input\_x.shape[indices.shape[-1]:]`.
|
|
7146
4940
|
|
|
7147
4941
|
Outputs:
|
|
7148
4942
|
Tensor, has the same shape and type as `input_x`.
|
|
@@ -7179,7 +4973,7 @@ class TensorScatterMul(_TensorScatterOp):
|
|
|
7179
4973
|
|
|
7180
4974
|
|
|
7181
4975
|
class TensorScatterDiv(_TensorScatterOp):
|
|
7182
|
-
"""
|
|
4976
|
+
r"""
|
|
7183
4977
|
Creates a new tensor by dividing the values from the positions in `input_x` indicated by
|
|
7184
4978
|
`indices`, with values from `updates`. When divided values are provided for the same
|
|
7185
4979
|
index, the result of the update will be to divided these values respectively. Except that
|
|
@@ -7192,7 +4986,7 @@ class TensorScatterDiv(_TensorScatterOp):
|
|
|
7192
4986
|
- **indices** (Tensor) - The index of input tensor whose data type is int32 or int64.
|
|
7193
4987
|
The rank must be at least 2.
|
|
7194
4988
|
- **updates** (Tensor) - The tensor to update the input tensor, has the same type as input,
|
|
7195
|
-
and updates.shape should be equal to indices.shape[:-1] +
|
|
4989
|
+
and updates.shape should be equal to :math:`indices.shape[:-1] + input\_x.shape[indices.shape[-1]:]`.
|
|
7196
4990
|
|
|
7197
4991
|
Outputs:
|
|
7198
4992
|
Tensor, has the same shape and type as `input_x`.
|
|
@@ -7446,64 +5240,13 @@ class TensorScatterElements(Primitive):
|
|
|
7446
5240
|
|
|
7447
5241
|
|
|
7448
5242
|
class ExtractVolumePatches(Primitive):
|
|
7449
|
-
|
|
7450
|
-
|
|
7451
|
-
"depth" dimension is the second dim of output.
|
|
7452
|
-
|
|
7453
|
-
.. warning::
|
|
7454
|
-
This is an experimental API that is subject to change or deletion.
|
|
7455
|
-
|
|
7456
|
-
Args:
|
|
7457
|
-
kernel_size (Union[int, tuple[int], list[int]]): A list of ints which's length is 3 or 5.
|
|
7458
|
-
The size of the sliding window for each dimension of input. Must be: :math:`[1, 1, k_d, k_h, k_w]` or
|
|
7459
|
-
:math:`[k_d, k_h, k_w]`. If :math:`k_d = k_h = k_w`, you can enter an integer.
|
|
7460
|
-
strides (Union[int, tuple[int], list[int]]): A list of ints which's length is 3 or 5.
|
|
7461
|
-
How far the centers of two consecutive patches are in input. Must be: :math:`[1, 1, s_d, s_h, s_w]` or
|
|
7462
|
-
:math:`[s_d, s_h, s_w]`. If :math:`s_d = s_h = s_w`, you can enter an integer.
|
|
7463
|
-
padding (str): A string from: ``"SAME"`` , ``"VALID"`` . The type of padding algorithm to use.
|
|
7464
|
-
|
|
7465
|
-
Inputs:
|
|
7466
|
-
- **input_x** (Tensor) - A Tensor. 5-D Tensor with shape :math:`(x_n, x_c, x_d, x_h, x_w)`.
|
|
7467
|
-
|
|
7468
|
-
Outputs:
|
|
7469
|
-
Tensor, has the same type as input.
|
|
7470
|
-
If padding is "VALID", the shape is :math:`(x_n, k_d * k_h * k_w * x_c, 1 + (x_d - k_d) / s_d,
|
|
7471
|
-
1 + (x_h - k_h) / s_h, 1 + (x_w - k_w) / s_w)`; if padding is "SAME", the shape is :math:`(
|
|
7472
|
-
x_n, k_d * k_h * k_w * x_c, (x_d + s_d - 1) / s_d, (x_h + s_h - 1) / s_h, (x_w + s_w - 1) / s_w)`.
|
|
7473
|
-
|
|
7474
|
-
Raises:
|
|
7475
|
-
TypeError: If kernel_size or strides is not a list, a tuple or an int.
|
|
7476
|
-
TypeError: If input_x is not a tensor.
|
|
7477
|
-
TypeError: If padding is not str.
|
|
7478
|
-
ValueError: If the length of kernel_size is neither 3 nor 5 and kernel_size is not an integer.
|
|
7479
|
-
ValueError: If the length of strides is neither 3 nor 5 and strides is not an integer.
|
|
7480
|
-
ValueError: If padding is neither ``"VALID"`` nor ``"SAME"`` .
|
|
7481
|
-
ValueError: If elements of kernel_size or strides are not positive integer.
|
|
7482
|
-
ValueError: If input_x is not a tensor in dimension 5.
|
|
7483
|
-
ValueError: If input_x's shape has zero.
|
|
7484
|
-
ValueError: If one of kernel_size or strides' first two numbers is not 1.
|
|
7485
|
-
ValueError: If padding = "VALID" and :math:`input\_x - kernel\_size` is less than 0 in d, h or w dimension.
|
|
7486
|
-
ValueError: If padding = "SAME" and :math:`padding\_needed = ((input\_x + strides - 1) / strides - 1) *
|
|
7487
|
-
strides + kernel\_size - input\_x` is less than 0 in d, h or w dimension.
|
|
7488
|
-
ValueError: If x_h is not 1 or x_w is not 1 and :math:`x_w + padding\_needed - k_w - s_w` is less than 0.
|
|
7489
|
-
ValueError: If :math:`x_d * x_h * x_w` is greater than 2048.
|
|
5243
|
+
"""
|
|
5244
|
+
`ops.ExtractVolumePatches` is deprecated from version 2.3 and will be removed in a future version.
|
|
7490
5245
|
|
|
7491
5246
|
Supported Platforms:
|
|
7492
|
-
|
|
7493
|
-
|
|
7494
|
-
Examples:
|
|
7495
|
-
>>> import numpy as np
|
|
7496
|
-
>>> from mindspore import Tensor, ops
|
|
7497
|
-
>>> from mindspore import dtype as mstype
|
|
7498
|
-
>>> kernel_size = (1, 1, 2, 2, 2)
|
|
7499
|
-
>>> strides = (1, 1, 1, 1, 1)
|
|
7500
|
-
>>> padding = "VALID"
|
|
7501
|
-
>>> input_x = ops.Reshape()(Tensor(np.arange(1, 28), mstype.float16), (1, 1, 3, 3, 3))
|
|
7502
|
-
>>> output_y = ops.ExtractVolumePatches(kernel_size, strides, padding)(input_x)
|
|
7503
|
-
>>> print(output_y.shape)
|
|
7504
|
-
(1, 8, 2, 2, 2)
|
|
5247
|
+
Deprecated
|
|
7505
5248
|
"""
|
|
7506
|
-
|
|
5249
|
+
@deprecated("2.3", "ops.ExtractVolumePatches", False)
|
|
7507
5250
|
@prim_attr_register
|
|
7508
5251
|
def __init__(self, kernel_size, strides, padding):
|
|
7509
5252
|
validator.check_value_type("kernel_size", kernel_size, (int, list, tuple), self.name)
|
|
@@ -7750,100 +5493,6 @@ class UpperBound(Primitive):
|
|
|
7750
5493
|
self.init_prim_io_names(inputs=['sorted_x', 'values'], outputs=['y'])
|
|
7751
5494
|
|
|
7752
5495
|
|
|
7753
|
-
class Cummax(Primitive):
|
|
7754
|
-
"""
|
|
7755
|
-
Returns the cumulative maximum of elements and the index.
|
|
7756
|
-
|
|
7757
|
-
Refer to :func:`mindspore.ops.cummax` for more details.
|
|
7758
|
-
|
|
7759
|
-
Args:
|
|
7760
|
-
axis (int): The axis to accumulate the tensor's value. Must be in the range [-rank(input), rank(input)).
|
|
7761
|
-
|
|
7762
|
-
Inputs:
|
|
7763
|
-
- **input** (Tensor) - The input tensor.
|
|
7764
|
-
|
|
7765
|
-
Outputs:
|
|
7766
|
-
A tuple of 2 Tensors(values, indices), containing the cumulative maximum of elements and the index,
|
|
7767
|
-
The shape of each output tensor is the same as input `input`.
|
|
7768
|
-
|
|
7769
|
-
Supported Platforms:
|
|
7770
|
-
``GPU`` ``CPU``
|
|
7771
|
-
|
|
7772
|
-
Examples:
|
|
7773
|
-
>>> import mindspore
|
|
7774
|
-
>>> import numpy as np
|
|
7775
|
-
>>> from mindspore import Tensor
|
|
7776
|
-
>>> import mindspore.ops as ops
|
|
7777
|
-
>>> cummax = ops.Cummax(axis=0)
|
|
7778
|
-
>>> x = Tensor(np.array([[3, 4, 6, 10], [1, 6, 7, 9], [4, 3, 8, 7], [1, 3, 7, 9]]).astype(np.float32))
|
|
7779
|
-
>>> output = cummax(x)
|
|
7780
|
-
>>> print(output[0])
|
|
7781
|
-
[[ 3. 4. 6. 10.]
|
|
7782
|
-
[ 3. 6. 7. 10.]
|
|
7783
|
-
[ 4. 6. 8. 10.]
|
|
7784
|
-
[ 4. 6. 8. 10.]]
|
|
7785
|
-
>>> print(output[1])
|
|
7786
|
-
[[0 0 0 0]
|
|
7787
|
-
[0 1 1 0]
|
|
7788
|
-
[2 1 2 0]
|
|
7789
|
-
[2 1 2 0]]
|
|
7790
|
-
"""
|
|
7791
|
-
|
|
7792
|
-
@prim_attr_register
|
|
7793
|
-
def __init__(self, axis):
|
|
7794
|
-
"""Initialize Cummax"""
|
|
7795
|
-
validator.check_value_type("axis", axis, [int], self.name)
|
|
7796
|
-
self.init_prim_io_names(inputs=['x'], outputs=['y', 'indices'])
|
|
7797
|
-
self.add_prim_attr("dim", axis)
|
|
7798
|
-
|
|
7799
|
-
|
|
7800
|
-
class RightShift(Primitive):
|
|
7801
|
-
r"""
|
|
7802
|
-
Shift the value of each position of Tensor `input_x` to the right by corresponding bits in Tensor `input_y`.
|
|
7803
|
-
The inputs are two tensors, dtypes of them must be consistent, and the
|
|
7804
|
-
shapes of them could be broadcast.
|
|
7805
|
-
|
|
7806
|
-
.. math::
|
|
7807
|
-
|
|
7808
|
-
\begin{aligned}
|
|
7809
|
-
&out_{i} =x_{i} >> y_{i}
|
|
7810
|
-
\end{aligned}
|
|
7811
|
-
|
|
7812
|
-
.. warning::
|
|
7813
|
-
This is an experimental API that is subject to change or deletion.
|
|
7814
|
-
|
|
7815
|
-
Inputs:
|
|
7816
|
-
- **input_x** (Tensor) - The target tensor, will be shifted to the right
|
|
7817
|
-
by `input_y` bits element-wise. Support all int and uint types.
|
|
7818
|
-
- **input_y** (Tensor) - Number of bits shifted, the tensor must have the same type as `input_x`.
|
|
7819
|
-
|
|
7820
|
-
Outputs:
|
|
7821
|
-
- **output** (Tensor) - The output tensor, has the same type as `input_x`.
|
|
7822
|
-
|
|
7823
|
-
Raises:
|
|
7824
|
-
TypeError: If `input_x` or `input_y` is not tensor.
|
|
7825
|
-
TypeError: If `input_x` and `input_y` could not be broadcast.
|
|
7826
|
-
|
|
7827
|
-
Supported Platforms:
|
|
7828
|
-
``Ascend`` ``GPU`` ``CPU``
|
|
7829
|
-
|
|
7830
|
-
Examples:
|
|
7831
|
-
>>> import numpy as np
|
|
7832
|
-
>>> from mindspore import Tensor, ops
|
|
7833
|
-
>>> rightshift = ops.RightShift()
|
|
7834
|
-
>>> input_x = Tensor(np.array([1, 2, 3]).astype(np.uint8))
|
|
7835
|
-
>>> input_y = Tensor(np.array([1, 1, 1]).astype(np.uint8))
|
|
7836
|
-
>>> output = rightshift(input_x, input_y)
|
|
7837
|
-
>>> print(output)
|
|
7838
|
-
[0 1 1]
|
|
7839
|
-
"""
|
|
7840
|
-
|
|
7841
|
-
@prim_attr_register
|
|
7842
|
-
def __init__(self):
|
|
7843
|
-
"""Initialize RightShift."""
|
|
7844
|
-
self.init_prim_io_names(inputs=['input_x', 'input_y'], outputs=['output'])
|
|
7845
|
-
|
|
7846
|
-
|
|
7847
5496
|
class LogSpace(Primitive):
|
|
7848
5497
|
r"""
|
|
7849
5498
|
Generates a 1-D Tensor with a length of steps. The tensor's
|
|
@@ -7911,46 +5560,6 @@ class LogSpace(Primitive):
|
|
|
7911
5560
|
self.init_prim_io_names(inputs=['start', 'end'], outputs=['y'])
|
|
7912
5561
|
|
|
7913
5562
|
|
|
7914
|
-
class NonZero(Primitive):
|
|
7915
|
-
"""
|
|
7916
|
-
Return a tensor of the positions of all non-zero values.
|
|
7917
|
-
|
|
7918
|
-
Refer to :func:`mindspore.ops.nonzero` for more details.
|
|
7919
|
-
|
|
7920
|
-
Inputs:
|
|
7921
|
-
- **x** (Tensor) - The input Tensor, its rank should be greater than or eaqual to 1.
|
|
7922
|
-
|
|
7923
|
-
Outputs:
|
|
7924
|
-
- **y** (Tensor), 2-D Tensor of data type int64.
|
|
7925
|
-
|
|
7926
|
-
Supported Platforms:
|
|
7927
|
-
``Ascend`` ``GPU`` ``CPU``
|
|
7928
|
-
|
|
7929
|
-
Examples:
|
|
7930
|
-
>>> import mindspore
|
|
7931
|
-
>>> import numpy as np
|
|
7932
|
-
>>> from mindspore import Tensor
|
|
7933
|
-
>>> from mindspore.ops import NonZero
|
|
7934
|
-
>>> x = Tensor(np.array([[[1, 0], [-5, 0]]]), mindspore.int32)
|
|
7935
|
-
>>> nonzero = NonZero()
|
|
7936
|
-
>>> output = nonzero(x)
|
|
7937
|
-
>>> print(output)
|
|
7938
|
-
[[0 0 0]
|
|
7939
|
-
[0 1 0]]
|
|
7940
|
-
>>> x = Tensor(np.array([1, 0, 2, 0, 3]), mindspore.int32)
|
|
7941
|
-
>>> nonzero = NonZero()
|
|
7942
|
-
>>> output = nonzero(x)
|
|
7943
|
-
>>> print(output)
|
|
7944
|
-
[[0]
|
|
7945
|
-
[2]
|
|
7946
|
-
[4]]
|
|
7947
|
-
"""
|
|
7948
|
-
|
|
7949
|
-
@prim_attr_register
|
|
7950
|
-
def __init__(self):
|
|
7951
|
-
self.init_prim_io_names(inputs=['x'], outputs=['y'])
|
|
7952
|
-
|
|
7953
|
-
|
|
7954
5563
|
class Tril(Primitive):
|
|
7955
5564
|
"""
|
|
7956
5565
|
Returns the lower triangular portion of the 2-D matrix or the set of matrices
|
|
@@ -7963,7 +5572,7 @@ class Tril(Primitive):
|
|
|
7963
5572
|
|
|
7964
5573
|
Args:
|
|
7965
5574
|
diagonal (int, optional): An optional attribute indicates the diagonal to consider, default: ``0`` ,
|
|
7966
|
-
indicating the main
|
|
5575
|
+
indicating the main diagonal.
|
|
7967
5576
|
|
|
7968
5577
|
Inputs:
|
|
7969
5578
|
- **x** (Tensor) - The input tensor with shape :math:`(M, N, *)`
|
|
@@ -8713,7 +6322,7 @@ class TopK(Primitive):
|
|
|
8713
6322
|
|
|
8714
6323
|
.. math::
|
|
8715
6324
|
|
|
8716
|
-
values.shape = indices.shape = input.shape[:-1] + [k]
|
|
6325
|
+
values.shape = indices.shape = input.shape[:-1] + [k]
|
|
8717
6326
|
|
|
8718
6327
|
If the two compared elements are the same, the one with the smaller index value is returned first.
|
|
8719
6328
|
|
|
@@ -8729,8 +6338,7 @@ class TopK(Primitive):
|
|
|
8729
6338
|
- GPU: float16, float32.
|
|
8730
6339
|
- CPU: all numeric types.
|
|
8731
6340
|
|
|
8732
|
-
- **k** (
|
|
8733
|
-
If `k` is a Tensor, the supported dtype is int32 and it should be 0-D or 1-D with shape :math:`(1, )` .
|
|
6341
|
+
- **k** (int) - The number of top elements to be computed along the last dimension, constant input is needed.
|
|
8734
6342
|
|
|
8735
6343
|
Outputs:
|
|
8736
6344
|
A tuple consisting of `values` and `indexes`.
|