mindspore 2.2.14__cp38-cp38-manylinux1_x86_64.whl → 2.3.0rc2__cp38-cp38-manylinux1_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of mindspore might be problematic. Click here for more details.

Files changed (1172) hide show
  1. mindspore/.commit_id +1 -1
  2. mindspore/__init__.py +4 -4
  3. mindspore/_akg/akg/composite/build_module.py +155 -11
  4. mindspore/_akg/akg/config/repository.json +38 -0
  5. mindspore/_akg/akg/ms/info_version_adapt.py +29 -0
  6. mindspore/_akg/akg/tvm/contrib/nvcc.py +4 -1
  7. mindspore/_akg/akg/utils/ascend_profilier/path_manager.py +2 -1
  8. mindspore/_akg/akg/utils/composite_op_helper.py +4 -2
  9. mindspore/_akg/akg/utils/dump_ascend_meta.py +2 -2
  10. mindspore/_akg/akg/utils/gen_random.py +14 -8
  11. mindspore/_akg/akg/utils/op_dsl.py +11 -0
  12. mindspore/_akg/akg/utils/tbe_codegen_utils.py +18 -8
  13. mindspore/_c_dataengine.cpython-38-x86_64-linux-gnu.so +0 -0
  14. mindspore/_c_expression.cpython-38-x86_64-linux-gnu.so +0 -0
  15. mindspore/_c_mindrecord.cpython-38-x86_64-linux-gnu.so +0 -0
  16. mindspore/_checkparam.py +78 -0
  17. mindspore/_extends/builtin_operations.py +2 -1
  18. mindspore/_extends/graph_kernel/model/graph_parallel.py +16 -6
  19. mindspore/_extends/parallel_compile/akg_compiler/akg_process.py +3 -16
  20. mindspore/_extends/parallel_compile/akg_compiler/build_tbe_kernel.py +16 -4
  21. mindspore/_extends/parallel_compile/akg_compiler/compiler.py +1 -0
  22. mindspore/_extends/parallel_compile/akg_compiler/gen_custom_op_files.py +96 -0
  23. mindspore/_extends/parallel_compile/akg_compiler/tbe_topi.py +2 -1
  24. mindspore/_extends/parallel_compile/akg_compiler/util.py +5 -2
  25. mindspore/_extends/parse/__init__.py +18 -14
  26. mindspore/_extends/parse/compile_config.py +229 -0
  27. mindspore/_extends/parse/parser.py +155 -59
  28. mindspore/_extends/parse/resources.py +40 -7
  29. mindspore/_extends/parse/standard_method.py +127 -206
  30. mindspore/_extends/remote/kernel_build_server.py +2 -0
  31. mindspore/_mindspore_offline_debug.cpython-38-x86_64-linux-gnu.so +0 -0
  32. mindspore/{ops/_op_impl/tbe/atomic_addr_clean.py → _profiler.py} +13 -16
  33. mindspore/amp.py +24 -18
  34. mindspore/bin/cache_admin +0 -0
  35. mindspore/bin/cache_server +0 -0
  36. mindspore/boost/boost_cell_wrapper.py +1 -1
  37. mindspore/boost/group_loss_scale_manager.py +1 -1
  38. mindspore/common/__init__.py +7 -3
  39. mindspore/common/_jit_fallback_utils.py +2 -3
  40. mindspore/common/_register_for_adapter.py +7 -0
  41. mindspore/common/_register_for_recompute.py +48 -0
  42. mindspore/common/_stub_tensor.py +7 -1
  43. mindspore/common/_utils.py +5 -17
  44. mindspore/common/api.py +145 -50
  45. mindspore/common/auto_dynamic_shape.py +27 -14
  46. mindspore/common/dtype.py +9 -6
  47. mindspore/common/dump.py +5 -4
  48. mindspore/common/hook_handle.py +51 -4
  49. mindspore/common/initializer.py +1 -1
  50. mindspore/common/jit_config.py +33 -13
  51. mindspore/common/lazy_inline.py +58 -17
  52. mindspore/common/mindir_util.py +12 -2
  53. mindspore/common/mutable.py +79 -14
  54. mindspore/common/parameter.py +24 -4
  55. mindspore/common/recompute.py +247 -0
  56. mindspore/common/seed.py +9 -9
  57. mindspore/common/sparse_tensor.py +251 -18
  58. mindspore/common/symbol.py +122 -0
  59. mindspore/common/tensor.py +391 -465
  60. mindspore/communication/__init__.py +3 -3
  61. mindspore/communication/_comm_helper.py +5 -0
  62. mindspore/communication/management.py +53 -38
  63. mindspore/config/op_info.config +22 -54
  64. mindspore/context.py +176 -55
  65. mindspore/dataset/__init__.py +5 -5
  66. mindspore/dataset/audio/__init__.py +6 -6
  67. mindspore/dataset/audio/transforms.py +711 -158
  68. mindspore/dataset/callback/ds_callback.py +2 -2
  69. mindspore/dataset/engine/cache_client.py +2 -2
  70. mindspore/dataset/engine/datasets.py +72 -38
  71. mindspore/dataset/engine/datasets_audio.py +14 -14
  72. mindspore/dataset/engine/datasets_standard_format.py +33 -3
  73. mindspore/dataset/engine/datasets_text.py +38 -38
  74. mindspore/dataset/engine/datasets_user_defined.py +7 -7
  75. mindspore/dataset/engine/datasets_vision.py +75 -71
  76. mindspore/dataset/engine/offload.py +5 -7
  77. mindspore/dataset/text/__init__.py +3 -3
  78. mindspore/dataset/text/transforms.py +408 -121
  79. mindspore/dataset/text/utils.py +9 -9
  80. mindspore/dataset/transforms/__init__.py +1 -1
  81. mindspore/dataset/transforms/transforms.py +261 -76
  82. mindspore/dataset/utils/browse_dataset.py +9 -9
  83. mindspore/dataset/vision/__init__.py +3 -3
  84. mindspore/dataset/vision/c_transforms.py +5 -5
  85. mindspore/dataset/vision/transforms.py +2264 -514
  86. mindspore/dataset/vision/utils.py +40 -9
  87. mindspore/dataset/vision/validators.py +7 -1
  88. mindspore/experimental/optim/__init__.py +12 -2
  89. mindspore/experimental/optim/adadelta.py +161 -0
  90. mindspore/experimental/optim/adagrad.py +168 -0
  91. mindspore/experimental/optim/adam.py +35 -34
  92. mindspore/experimental/optim/adamax.py +170 -0
  93. mindspore/experimental/optim/adamw.py +40 -16
  94. mindspore/experimental/optim/asgd.py +153 -0
  95. mindspore/experimental/optim/lr_scheduler.py +66 -121
  96. mindspore/experimental/optim/nadam.py +157 -0
  97. mindspore/experimental/optim/optimizer.py +15 -8
  98. mindspore/experimental/optim/radam.py +194 -0
  99. mindspore/experimental/optim/rmsprop.py +154 -0
  100. mindspore/experimental/optim/rprop.py +164 -0
  101. mindspore/experimental/optim/sgd.py +28 -19
  102. mindspore/hal/__init__.py +34 -0
  103. mindspore/hal/_ascend.py +57 -0
  104. mindspore/hal/_base.py +57 -0
  105. mindspore/hal/_cpu.py +56 -0
  106. mindspore/hal/_gpu.py +57 -0
  107. mindspore/hal/device.py +356 -0
  108. mindspore/hal/event.py +179 -0
  109. mindspore/hal/stream.py +339 -0
  110. mindspore/include/api/data_type.h +2 -2
  111. mindspore/include/api/dual_abi_helper.h +16 -3
  112. mindspore/include/api/model.h +1 -3
  113. mindspore/include/api/status.h +14 -0
  114. mindspore/include/c_api/model_c.h +173 -0
  115. mindspore/include/c_api/ms/base/types.h +1 -0
  116. mindspore/include/c_api/types_c.h +19 -0
  117. mindspore/include/dataset/execute.h +1 -3
  118. mindspore/include/mindapi/base/format.h +125 -23
  119. mindspore/include/mindapi/base/types.h +12 -0
  120. mindspore/lib/libdnnl.so.2 +0 -0
  121. mindspore/lib/libmindspore.so +0 -0
  122. mindspore/lib/libmindspore_backend.so +0 -0
  123. mindspore/lib/libmindspore_common.so +0 -0
  124. mindspore/lib/libmindspore_core.so +0 -0
  125. mindspore/lib/libmindspore_glog.so.0 +0 -0
  126. mindspore/lib/libmindspore_gpr.so.15 +0 -0
  127. mindspore/lib/libmindspore_grpc++.so.1 +0 -0
  128. mindspore/lib/libmindspore_grpc.so.15 +0 -0
  129. mindspore/lib/libmindspore_shared_lib.so +0 -0
  130. mindspore/lib/libmpi_adapter.so +0 -0
  131. mindspore/lib/libmpi_collective.so +0 -0
  132. mindspore/lib/libnnacl.so +0 -0
  133. mindspore/lib/libopencv_core.so.4.5 +0 -0
  134. mindspore/lib/libopencv_imgcodecs.so.4.5 +0 -0
  135. mindspore/lib/libopencv_imgproc.so.4.5 +0 -0
  136. mindspore/lib/libps_cache.so +0 -0
  137. mindspore/lib/plugin/ascend/custom_aicore_ops/op_impl/ai_core/tbe/config/ascend910/aic-ascend910-ops-info.json +2044 -154
  138. mindspore/lib/plugin/ascend/custom_aicore_ops/op_impl/ai_core/tbe/config/ascend910b/aic-ascend910b-ops-info.json +2044 -33
  139. mindspore/lib/plugin/ascend/custom_aicore_ops/op_impl/ai_core/tbe/custom_aicore_ops_impl/build_tbe_kernel.py +529 -0
  140. mindspore/lib/plugin/ascend/custom_aicore_ops/op_impl/ai_core/tbe/custom_aicore_ops_impl/compiler.py +56 -0
  141. mindspore/lib/plugin/ascend/custom_aicore_ops/op_impl/ai_core/tbe/custom_aicore_ops_impl/custom.py +1109 -0
  142. mindspore/lib/plugin/ascend/custom_aicore_ops/op_impl/ai_core/tbe/custom_aicore_ops_impl/get_file_path.py +36 -0
  143. mindspore/lib/plugin/ascend/custom_aicore_ops/op_impl/ai_core/tbe/custom_aicore_ops_impl/kv_cache_mgr.py +0 -2
  144. mindspore/lib/plugin/ascend/custom_aicore_ops/op_impl/ai_core/tbe/custom_aicore_ops_impl/tbe_topi.py +556 -0
  145. mindspore/lib/plugin/ascend/custom_aicore_ops/op_impl/vector_core/tbe/custom_aicore_ops_impl/kv_cache_mgr.py +0 -2
  146. mindspore/lib/plugin/ascend/custom_aicpu_ops/op_impl/cpu/aicpu_kernel/impl/libcust_cpu_kernels.so +0 -0
  147. mindspore/lib/plugin/ascend/custom_aicpu_ops/op_impl/cpu/config/cust_aicpu_kernel.json +6318 -1760
  148. mindspore/lib/plugin/ascend/custom_aicpu_ops/op_proto/libcust_op_proto.so +0 -0
  149. mindspore/lib/plugin/ascend/custom_ascendc_ops/op_api/include/aclnn_add_custom.h +49 -0
  150. mindspore/lib/plugin/ascend/custom_ascendc_ops/op_api/include/aclnn_decoder_kv_cache.h +59 -0
  151. mindspore/lib/plugin/ascend/custom_ascendc_ops/op_api/include/aclnn_prompt_kv_cache.h +59 -0
  152. mindspore/lib/plugin/ascend/custom_ascendc_ops/op_api/lib/libcust_opapi.so +0 -0
  153. mindspore/lib/plugin/ascend/custom_ascendc_ops/op_impl/ai_core/tbe/config/ascend310p/aic-ascend310p-ops-info.json +52 -0
  154. mindspore/lib/plugin/ascend/custom_ascendc_ops/op_impl/ai_core/tbe/config/ascend910/aic-ascend910-ops-info.json +232 -0
  155. mindspore/lib/plugin/ascend/custom_ascendc_ops/op_impl/ai_core/tbe/config/ascend910b/aic-ascend910b-ops-info.json +232 -0
  156. mindspore/lib/plugin/ascend/custom_ascendc_ops/op_impl/ai_core/tbe/custom_ascendc_ops_impl/dynamic/add_custom.cpp +81 -0
  157. mindspore/lib/plugin/ascend/custom_ascendc_ops/op_impl/ai_core/tbe/custom_ascendc_ops_impl/dynamic/add_custom.py +134 -0
  158. mindspore/lib/plugin/ascend/custom_ascendc_ops/op_impl/ai_core/tbe/custom_ascendc_ops_impl/dynamic/decoder_kv_cache.cpp +192 -0
  159. mindspore/lib/plugin/ascend/custom_ascendc_ops/op_impl/ai_core/tbe/custom_ascendc_ops_impl/dynamic/decoder_kv_cache.py +134 -0
  160. mindspore/lib/plugin/ascend/custom_ascendc_ops/op_impl/ai_core/tbe/custom_ascendc_ops_impl/dynamic/prompt_kv_cache.cpp +274 -0
  161. mindspore/lib/plugin/ascend/custom_ascendc_ops/op_impl/ai_core/tbe/custom_ascendc_ops_impl/dynamic/prompt_kv_cache.py +134 -0
  162. mindspore/lib/plugin/ascend/custom_ascendc_ops/op_impl/ai_core/tbe/op_tiling/lib/linux/x86_64/libcust_opmaster_rt2.0.so +0 -0
  163. mindspore/lib/plugin/ascend/custom_ascendc_ops/op_impl/ai_core/tbe/op_tiling/liboptiling.so +0 -0
  164. mindspore/lib/plugin/ascend/custom_ascendc_ops/op_proto/inc/op_proto.h +39 -0
  165. mindspore/lib/plugin/ascend/custom_ascendc_ops/op_proto/lib/linux/x86_64/libcust_opsproto_rt2.0.so +0 -0
  166. mindspore/lib/plugin/ascend/libakg.so +0 -0
  167. mindspore/lib/plugin/ascend/libascend_collective.so +0 -0
  168. mindspore/lib/plugin/ascend/libdvpp_utils.so +0 -0
  169. mindspore/lib/plugin/ascend/libhccl_plugin.so +0 -0
  170. mindspore/lib/plugin/ascend/libmindspore_cpu_kernels.so +0 -0
  171. mindspore/lib/plugin/cpu/libakg.so +0 -0
  172. mindspore/lib/plugin/gpu/libcuda_ops.so.10 +0 -0
  173. mindspore/lib/plugin/gpu/libcuda_ops.so.11 +0 -0
  174. mindspore/lib/plugin/gpu10.1/libakg.so +0 -0
  175. mindspore/lib/plugin/gpu10.1/libnccl.so.2 +0 -0
  176. mindspore/lib/plugin/gpu10.1/libnvidia_collective.so +0 -0
  177. mindspore/lib/plugin/gpu11.1/libakg.so +0 -0
  178. mindspore/lib/plugin/gpu11.1/libnccl.so.2 +0 -0
  179. mindspore/lib/plugin/gpu11.1/libnvidia_collective.so +0 -0
  180. mindspore/lib/plugin/gpu11.6/libakg.so +0 -0
  181. mindspore/lib/plugin/gpu11.6/libnccl.so.2 +0 -0
  182. mindspore/lib/plugin/gpu11.6/libnvidia_collective.so +0 -0
  183. mindspore/lib/plugin/{libmindspore_ascend.so.1 → libmindspore_ascend.so.2} +0 -0
  184. mindspore/lib/plugin/libmindspore_gpu.so.10.1 +0 -0
  185. mindspore/lib/plugin/libmindspore_gpu.so.11.1 +0 -0
  186. mindspore/lib/plugin/libmindspore_gpu.so.11.6 +0 -0
  187. mindspore/log.py +2 -2
  188. mindspore/mindrecord/__init__.py +5 -1
  189. mindspore/mindrecord/config.py +809 -0
  190. mindspore/mindrecord/filereader.py +25 -0
  191. mindspore/mindrecord/filewriter.py +74 -56
  192. mindspore/mindrecord/mindpage.py +40 -6
  193. mindspore/mindrecord/shardutils.py +3 -2
  194. mindspore/mindrecord/shardwriter.py +7 -0
  195. mindspore/mindrecord/tools/cifar100_to_mr.py +8 -13
  196. mindspore/mindrecord/tools/cifar10_to_mr.py +9 -15
  197. mindspore/mindrecord/tools/csv_to_mr.py +4 -9
  198. mindspore/mindrecord/tools/imagenet_to_mr.py +3 -8
  199. mindspore/mindrecord/tools/mnist_to_mr.py +7 -12
  200. mindspore/mindrecord/tools/tfrecord_to_mr.py +1 -6
  201. mindspore/mint/__init__.py +457 -0
  202. mindspore/mint/nn/__init__.py +430 -0
  203. mindspore/mint/nn/functional.py +424 -0
  204. mindspore/mint/optim/__init__.py +24 -0
  205. mindspore/mint/optim/adamw.py +186 -0
  206. mindspore/multiprocessing/__init__.py +72 -0
  207. mindspore/nn/__init__.py +3 -0
  208. mindspore/nn/cell.py +131 -174
  209. mindspore/nn/dynamic_lr.py +2 -2
  210. mindspore/nn/extend/__init__.py +29 -0
  211. mindspore/nn/extend/basic.py +140 -0
  212. mindspore/nn/extend/embedding.py +143 -0
  213. mindspore/{rewrite/ast_creator_register.py → nn/extend/layer/__init__.py} +9 -19
  214. mindspore/nn/extend/layer/normalization.py +107 -0
  215. mindspore/nn/extend/pooling.py +117 -0
  216. mindspore/nn/generator.py +297 -0
  217. mindspore/nn/layer/activation.py +79 -90
  218. mindspore/nn/layer/basic.py +113 -81
  219. mindspore/nn/layer/channel_shuffle.py +3 -16
  220. mindspore/nn/layer/container.py +3 -3
  221. mindspore/nn/layer/conv.py +71 -71
  222. mindspore/nn/layer/embedding.py +105 -44
  223. mindspore/nn/layer/image.py +4 -7
  224. mindspore/nn/layer/normalization.py +52 -66
  225. mindspore/nn/layer/padding.py +30 -39
  226. mindspore/nn/layer/pooling.py +13 -9
  227. mindspore/nn/layer/rnn_cells.py +5 -15
  228. mindspore/nn/layer/rnns.py +6 -5
  229. mindspore/nn/layer/thor_layer.py +1 -2
  230. mindspore/nn/layer/timedistributed.py +1 -1
  231. mindspore/nn/layer/transformer.py +52 -50
  232. mindspore/nn/learning_rate_schedule.py +6 -5
  233. mindspore/nn/loss/loss.py +43 -64
  234. mindspore/nn/optim/ada_grad.py +4 -2
  235. mindspore/nn/optim/adadelta.py +3 -1
  236. mindspore/nn/optim/adafactor.py +1 -1
  237. mindspore/nn/optim/adam.py +102 -181
  238. mindspore/nn/optim/adamax.py +4 -2
  239. mindspore/nn/optim/adasum.py +2 -2
  240. mindspore/nn/optim/asgd.py +4 -2
  241. mindspore/nn/optim/ftrl.py +31 -61
  242. mindspore/nn/optim/lamb.py +5 -3
  243. mindspore/nn/optim/lars.py +2 -2
  244. mindspore/nn/optim/lazyadam.py +6 -4
  245. mindspore/nn/optim/momentum.py +13 -25
  246. mindspore/nn/optim/optimizer.py +6 -3
  247. mindspore/nn/optim/proximal_ada_grad.py +4 -2
  248. mindspore/nn/optim/rmsprop.py +9 -3
  249. mindspore/nn/optim/rprop.py +4 -2
  250. mindspore/nn/optim/sgd.py +6 -5
  251. mindspore/nn/optim/thor.py +2 -2
  252. mindspore/nn/probability/distribution/_utils/custom_ops.py +2 -2
  253. mindspore/nn/probability/distribution/beta.py +2 -2
  254. mindspore/nn/probability/distribution/categorical.py +4 -6
  255. mindspore/nn/probability/distribution/cauchy.py +2 -2
  256. mindspore/nn/probability/distribution/exponential.py +1 -1
  257. mindspore/nn/probability/distribution/gumbel.py +2 -2
  258. mindspore/nn/probability/distribution/poisson.py +2 -2
  259. mindspore/nn/probability/distribution/uniform.py +2 -2
  260. mindspore/nn/reinforcement/_tensors_queue.py +13 -1
  261. mindspore/nn/wrap/__init__.py +2 -1
  262. mindspore/nn/wrap/cell_wrapper.py +33 -12
  263. mindspore/nn/wrap/grad_reducer.py +148 -8
  264. mindspore/nn/wrap/loss_scale.py +7 -7
  265. mindspore/numpy/__init__.py +2 -0
  266. mindspore/numpy/array_creations.py +2 -0
  267. mindspore/numpy/array_ops.py +1 -5
  268. mindspore/numpy/fft.py +431 -0
  269. mindspore/numpy/math_ops.py +54 -60
  270. mindspore/numpy/utils.py +3 -0
  271. mindspore/ops/__init__.py +5 -4
  272. mindspore/ops/_grad_experimental/grad_array_ops.py +4 -129
  273. mindspore/ops/_grad_experimental/grad_comm_ops.py +14 -18
  274. mindspore/ops/_grad_experimental/grad_math_ops.py +68 -283
  275. mindspore/ops/_grad_experimental/grad_nn_ops.py +0 -53
  276. mindspore/ops/_grad_experimental/grad_quant_ops.py +3 -3
  277. mindspore/ops/_grad_experimental/grad_sparse.py +1 -1
  278. mindspore/ops/_grad_experimental/grad_sparse_ops.py +3 -3
  279. mindspore/ops/_op_impl/__init__.py +0 -1
  280. mindspore/ops/_op_impl/aicpu/gamma.py +2 -0
  281. mindspore/ops/_op_impl/aicpu/generate_eod_mask.py +1 -1
  282. mindspore/ops/_op_impl/aicpu/log_uniform_candidate_sampler.py +1 -3
  283. mindspore/ops/_op_impl/aicpu/poisson.py +2 -0
  284. mindspore/ops/_op_impl/cpu/__init__.py +1 -3
  285. mindspore/ops/_op_impl/cpu/adam.py +2 -2
  286. mindspore/ops/_op_impl/cpu/adam_weight_decay.py +3 -2
  287. mindspore/ops/_op_impl/cpu/maximum_grad.py +16 -14
  288. mindspore/ops/_op_impl/cpu/minimum_grad.py +8 -0
  289. mindspore/ops/_vmap/vmap_array_ops.py +137 -101
  290. mindspore/ops/_vmap/vmap_base.py +8 -1
  291. mindspore/ops/_vmap/vmap_grad_math_ops.py +95 -9
  292. mindspore/ops/_vmap/vmap_grad_nn_ops.py +143 -58
  293. mindspore/ops/_vmap/vmap_image_ops.py +70 -13
  294. mindspore/ops/_vmap/vmap_math_ops.py +101 -57
  295. mindspore/ops/_vmap/vmap_nn_ops.py +230 -97
  296. mindspore/ops/_vmap/vmap_other_ops.py +1 -1
  297. mindspore/ops/auto_generate/__init__.py +31 -0
  298. mindspore/ops/auto_generate/cpp_create_prim_instance_helper.py +205 -0
  299. mindspore/ops/auto_generate/gen_arg_dtype_cast.py +257 -0
  300. mindspore/ops/auto_generate/gen_arg_handler.py +171 -0
  301. mindspore/ops/auto_generate/gen_extend_func.py +404 -0
  302. mindspore/ops/auto_generate/gen_ops_def.py +5653 -0
  303. mindspore/ops/auto_generate/gen_ops_prim.py +11623 -0
  304. mindspore/ops/auto_generate/pyboost_inner_prim.py +359 -0
  305. mindspore/ops/composite/__init__.py +5 -2
  306. mindspore/ops/composite/base.py +118 -17
  307. mindspore/ops/composite/math_ops.py +9 -48
  308. mindspore/ops/composite/multitype_ops/_compile_utils.py +168 -602
  309. mindspore/ops/composite/multitype_ops/_constexpr_utils.py +24 -133
  310. mindspore/ops/composite/multitype_ops/add_impl.py +6 -0
  311. mindspore/ops/composite/multitype_ops/bitwise_and_impl.py +6 -0
  312. mindspore/ops/composite/multitype_ops/bitwise_or_impl.py +6 -0
  313. mindspore/ops/composite/multitype_ops/bitwise_xor_impl.py +6 -0
  314. mindspore/ops/composite/multitype_ops/div_impl.py +8 -0
  315. mindspore/ops/composite/multitype_ops/equal_impl.py +6 -0
  316. mindspore/ops/composite/multitype_ops/floordiv_impl.py +8 -0
  317. mindspore/ops/composite/multitype_ops/getitem_impl.py +6 -0
  318. mindspore/ops/composite/multitype_ops/greater_equal_impl.py +6 -0
  319. mindspore/ops/composite/multitype_ops/greater_impl.py +6 -0
  320. mindspore/ops/composite/multitype_ops/in_impl.py +8 -2
  321. mindspore/ops/composite/multitype_ops/left_shift_impl.py +6 -0
  322. mindspore/ops/composite/multitype_ops/less_equal_impl.py +6 -0
  323. mindspore/ops/composite/multitype_ops/less_impl.py +6 -0
  324. mindspore/ops/composite/multitype_ops/logic_not_impl.py +6 -0
  325. mindspore/ops/composite/multitype_ops/logical_and_impl.py +6 -0
  326. mindspore/ops/composite/multitype_ops/logical_or_impl.py +6 -0
  327. mindspore/ops/composite/multitype_ops/mod_impl.py +6 -0
  328. mindspore/ops/composite/multitype_ops/mul_impl.py +6 -0
  329. mindspore/ops/composite/multitype_ops/negative_impl.py +9 -3
  330. mindspore/ops/composite/multitype_ops/not_equal_impl.py +6 -0
  331. mindspore/ops/composite/multitype_ops/not_in_impl.py +6 -1
  332. mindspore/ops/composite/multitype_ops/ones_like_impl.py +2 -2
  333. mindspore/ops/composite/multitype_ops/pow_impl.py +6 -0
  334. mindspore/ops/composite/multitype_ops/right_shift_impl.py +6 -0
  335. mindspore/ops/composite/multitype_ops/setitem_impl.py +32 -21
  336. mindspore/ops/composite/multitype_ops/sub_impl.py +6 -0
  337. mindspore/ops/composite/multitype_ops/zeros_like_impl.py +6 -3
  338. mindspore/ops/deprecated.py +14 -3
  339. mindspore/ops/extend/__init__.py +54 -0
  340. mindspore/ops/extend/array_func.py +259 -0
  341. mindspore/ops/extend/math_func.py +76 -0
  342. mindspore/ops/extend/nn_func.py +384 -0
  343. mindspore/ops/function/__init__.py +37 -12
  344. mindspore/ops/function/array_func.py +702 -1867
  345. mindspore/ops/function/clip_func.py +19 -31
  346. mindspore/ops/function/debug_func.py +1 -4
  347. mindspore/ops/function/fft_func.py +31 -0
  348. mindspore/ops/function/grad/grad_func.py +24 -17
  349. mindspore/ops/function/image_func.py +27 -21
  350. mindspore/ops/function/linalg_func.py +35 -68
  351. mindspore/ops/function/math_func.py +639 -2531
  352. mindspore/ops/function/nn_func.py +1274 -832
  353. mindspore/ops/function/other_func.py +4 -5
  354. mindspore/ops/function/parameter_func.py +5 -93
  355. mindspore/ops/function/random_func.py +84 -71
  356. mindspore/ops/function/sparse_unary_func.py +9 -16
  357. mindspore/ops/function/spectral_func.py +1 -1
  358. mindspore/ops/function/vmap_func.py +14 -14
  359. mindspore/ops/functional.py +57 -63
  360. mindspore/ops/op_info_register.py +16 -43
  361. mindspore/ops/operations/__init__.py +19 -20
  362. mindspore/ops/operations/_grad_ops.py +20 -828
  363. mindspore/ops/operations/_inner_ops.py +180 -288
  364. mindspore/ops/operations/_scalar_ops.py +5 -480
  365. mindspore/ops/operations/_sequence_ops.py +6 -36
  366. mindspore/ops/operations/array_ops.py +83 -2697
  367. mindspore/ops/operations/comm_ops.py +38 -46
  368. mindspore/ops/operations/custom_ops.py +14 -96
  369. mindspore/ops/operations/debug_ops.py +100 -31
  370. mindspore/ops/operations/image_ops.py +1 -217
  371. mindspore/ops/operations/inner_ops.py +3 -38
  372. mindspore/ops/operations/linalg_ops.py +1 -49
  373. mindspore/{rewrite/ast_transformers → ops/operations/manually_defined}/__init__.py +11 -4
  374. mindspore/ops/operations/manually_defined/_inner.py +61 -0
  375. mindspore/ops/operations/manually_defined/ops_def.py +1716 -0
  376. mindspore/ops/operations/math_ops.py +581 -4629
  377. mindspore/ops/operations/nn_ops.py +260 -1941
  378. mindspore/ops/operations/other_ops.py +50 -42
  379. mindspore/ops/operations/random_ops.py +3 -52
  380. mindspore/ops/operations/sparse_ops.py +3 -3
  381. mindspore/ops/primitive.py +196 -96
  382. mindspore/ops_generate/__init__.py +27 -0
  383. mindspore/ops_generate/arg_dtype_cast.py +257 -0
  384. mindspore/ops_generate/arg_handler.py +171 -0
  385. mindspore/ops_generate/gen_aclnn_implement.py +266 -0
  386. mindspore/ops_generate/gen_ops.py +1062 -0
  387. mindspore/ops_generate/gen_ops_inner_prim.py +131 -0
  388. mindspore/ops_generate/gen_pyboost_func.py +939 -0
  389. mindspore/ops_generate/gen_utils.py +188 -0
  390. mindspore/ops_generate/op_proto.py +138 -0
  391. mindspore/ops_generate/pyboost_utils.py +349 -0
  392. mindspore/ops_generate/template.py +238 -0
  393. mindspore/parallel/__init__.py +6 -4
  394. mindspore/parallel/_auto_parallel_context.py +52 -2
  395. mindspore/parallel/_cell_wrapper.py +16 -9
  396. mindspore/parallel/_cost_model_context.py +1 -1
  397. mindspore/parallel/_dp_allreduce_fusion.py +159 -159
  398. mindspore/parallel/_parallel_serialization.py +29 -13
  399. mindspore/parallel/_ps_context.py +1 -1
  400. mindspore/parallel/_recovery_context.py +1 -1
  401. mindspore/parallel/_tensor.py +19 -7
  402. mindspore/parallel/_transformer/__init__.py +1 -1
  403. mindspore/parallel/_transformer/layers.py +1 -1
  404. mindspore/parallel/_transformer/loss.py +1 -1
  405. mindspore/parallel/_transformer/moe.py +1 -1
  406. mindspore/parallel/_transformer/op_parallel_config.py +1 -1
  407. mindspore/parallel/_transformer/transformer.py +1 -1
  408. mindspore/parallel/_utils.py +147 -6
  409. mindspore/parallel/algo_parameter_config.py +6 -6
  410. mindspore/parallel/checkpoint_transform.py +180 -24
  411. mindspore/parallel/cluster/__init__.py +15 -0
  412. mindspore/parallel/cluster/process_entity/__init__.py +18 -0
  413. mindspore/parallel/cluster/process_entity/_api.py +345 -0
  414. mindspore/parallel/cluster/process_entity/_utils.py +116 -0
  415. mindspore/parallel/cluster/run.py +139 -0
  416. mindspore/parallel/mpi/__init__.py +1 -1
  417. mindspore/parallel/mpi/_mpi_config.py +1 -1
  418. mindspore/parallel/parameter_broadcast.py +152 -0
  419. mindspore/parallel/shard.py +99 -2
  420. mindspore/profiler/common/util.py +20 -0
  421. mindspore/profiler/envprofiling.py +1 -1
  422. mindspore/{_extends/parallel_compile/tbe_compiler → profiler/parser/ascend_analysis}/__init__.py +1 -1
  423. mindspore/profiler/parser/ascend_analysis/constant.py +66 -0
  424. mindspore/profiler/parser/ascend_analysis/file_manager.py +77 -0
  425. mindspore/profiler/parser/ascend_analysis/function_event.py +146 -0
  426. mindspore/profiler/parser/ascend_analysis/fwk_cann_parser.py +109 -0
  427. mindspore/profiler/parser/ascend_analysis/fwk_file_parser.py +80 -0
  428. mindspore/profiler/parser/ascend_analysis/msprof_timeline_parser.py +52 -0
  429. mindspore/profiler/parser/ascend_analysis/profiler_info_parser.py +116 -0
  430. mindspore/profiler/parser/ascend_analysis/tlv_decoder.py +86 -0
  431. mindspore/profiler/parser/ascend_analysis/trace_event_manager.py +59 -0
  432. mindspore/profiler/parser/ascend_cluster_generator.py +14 -9
  433. mindspore/profiler/parser/ascend_communicate_generator.py +0 -1
  434. mindspore/profiler/parser/ascend_flops_generator.py +20 -4
  435. mindspore/profiler/parser/ascend_hccl_generator.py +25 -277
  436. mindspore/profiler/parser/ascend_msprof_exporter.py +112 -132
  437. mindspore/profiler/parser/ascend_msprof_generator.py +73 -283
  438. mindspore/profiler/parser/ascend_op_generator.py +92 -42
  439. mindspore/profiler/parser/ascend_timeline_generator.py +294 -133
  440. mindspore/profiler/parser/base_timeline_generator.py +6 -0
  441. mindspore/profiler/parser/framework_parser.py +3 -2
  442. mindspore/profiler/parser/integrator.py +3 -1
  443. mindspore/profiler/parser/msadvisor_analyzer.py +1 -1
  444. mindspore/profiler/parser/msadvisor_parser.py +1 -1
  445. mindspore/profiler/parser/profiler_info.py +16 -1
  446. mindspore/profiler/profiling.py +305 -167
  447. mindspore/rewrite/__init__.py +2 -13
  448. mindspore/rewrite/api/node.py +121 -35
  449. mindspore/rewrite/api/pattern_engine.py +2 -3
  450. mindspore/rewrite/api/scoped_value.py +16 -15
  451. mindspore/rewrite/api/symbol_tree.py +45 -29
  452. mindspore/rewrite/ast_helpers/__init__.py +3 -6
  453. mindspore/rewrite/ast_helpers/ast_converter.py +143 -0
  454. mindspore/rewrite/ast_helpers/ast_finder.py +48 -0
  455. mindspore/rewrite/ast_helpers/ast_flattener.py +268 -0
  456. mindspore/rewrite/ast_helpers/ast_modifier.py +160 -92
  457. mindspore/rewrite/common/__init__.py +1 -2
  458. mindspore/rewrite/common/config.py +24 -0
  459. mindspore/rewrite/common/{rewrite_elog.py → error_log.py} +39 -39
  460. mindspore/rewrite/{namer.py → common/namer.py} +63 -18
  461. mindspore/rewrite/common/namespace.py +118 -0
  462. mindspore/rewrite/node/__init__.py +5 -5
  463. mindspore/rewrite/node/call_function.py +23 -7
  464. mindspore/rewrite/node/cell_container.py +7 -3
  465. mindspore/rewrite/node/control_flow.py +53 -28
  466. mindspore/rewrite/node/node.py +212 -196
  467. mindspore/rewrite/node/node_manager.py +51 -22
  468. mindspore/rewrite/node/node_topological_manager.py +3 -23
  469. mindspore/rewrite/parsers/__init__.py +12 -0
  470. mindspore/rewrite/parsers/arguments_parser.py +8 -9
  471. mindspore/rewrite/parsers/assign_parser.py +635 -413
  472. mindspore/rewrite/parsers/attribute_parser.py +3 -4
  473. mindspore/rewrite/parsers/class_def_parser.py +107 -144
  474. mindspore/rewrite/parsers/constant_parser.py +5 -5
  475. mindspore/rewrite/parsers/container_parser.py +4 -6
  476. mindspore/rewrite/parsers/expr_parser.py +55 -0
  477. mindspore/rewrite/parsers/for_parser.py +31 -98
  478. mindspore/rewrite/parsers/function_def_parser.py +13 -5
  479. mindspore/rewrite/parsers/if_parser.py +28 -10
  480. mindspore/rewrite/parsers/module_parser.py +8 -182
  481. mindspore/rewrite/parsers/parser.py +1 -5
  482. mindspore/rewrite/parsers/parser_register.py +1 -1
  483. mindspore/rewrite/parsers/return_parser.py +5 -10
  484. mindspore/rewrite/parsers/while_parser.py +59 -0
  485. mindspore/rewrite/sparsify/utils.py +1 -1
  486. mindspore/rewrite/symbol_tree/__init__.py +20 -0
  487. mindspore/rewrite/{symbol_tree.py → symbol_tree/symbol_tree.py} +704 -185
  488. mindspore/rewrite/{symbol_tree_builder.py → symbol_tree/symbol_tree_builder.py} +8 -8
  489. mindspore/rewrite/{symbol_tree_dumper.py → symbol_tree/symbol_tree_dumper.py} +4 -4
  490. mindspore/run_check/_check_version.py +6 -14
  491. mindspore/run_check/run_check.py +1 -1
  492. mindspore/safeguard/rewrite_obfuscation.py +9 -19
  493. mindspore/scipy/__init__.py +2 -1
  494. mindspore/scipy/fft.py +133 -0
  495. mindspore/scipy/linalg.py +140 -55
  496. mindspore/scipy/ops.py +15 -71
  497. mindspore/scipy/ops_grad.py +5 -34
  498. mindspore/scipy/optimize/line_search.py +2 -2
  499. mindspore/scipy/optimize/minimize.py +1 -1
  500. mindspore/train/__init__.py +3 -2
  501. mindspore/train/_utils.py +178 -4
  502. mindspore/train/amp.py +167 -245
  503. mindspore/train/anf_ir_pb2.py +8 -2
  504. mindspore/train/callback/_backup_and_restore.py +4 -4
  505. mindspore/train/callback/_callback.py +4 -4
  506. mindspore/train/callback/_checkpoint.py +39 -13
  507. mindspore/train/callback/_early_stop.py +2 -2
  508. mindspore/train/callback/_landscape.py +14 -8
  509. mindspore/train/callback/_loss_monitor.py +2 -2
  510. mindspore/train/callback/_on_request_exit.py +2 -2
  511. mindspore/train/callback/_reduce_lr_on_plateau.py +2 -2
  512. mindspore/train/callback/_summary_collector.py +7 -7
  513. mindspore/train/callback/_time_monitor.py +2 -2
  514. mindspore/train/data_sink.py +1 -1
  515. mindspore/train/dataset_helper.py +18 -4
  516. mindspore/train/loss_scale_manager.py +2 -2
  517. mindspore/train/metrics/accuracy.py +7 -7
  518. mindspore/train/metrics/confusion_matrix.py +8 -6
  519. mindspore/train/metrics/cosine_similarity.py +6 -4
  520. mindspore/train/metrics/error.py +2 -2
  521. mindspore/train/metrics/metric.py +3 -3
  522. mindspore/train/metrics/perplexity.py +2 -1
  523. mindspore/train/metrics/topk.py +2 -2
  524. mindspore/train/mind_ir_pb2.py +89 -15
  525. mindspore/train/model.py +24 -22
  526. mindspore/train/serialization.py +257 -133
  527. mindspore/train/summary/summary_record.py +51 -28
  528. mindspore/train/train_thor/convert_utils.py +3 -3
  529. mindspore/version.py +1 -1
  530. {mindspore-2.2.14.dist-info → mindspore-2.3.0rc2.dist-info}/METADATA +2 -2
  531. {mindspore-2.2.14.dist-info → mindspore-2.3.0rc2.dist-info}/RECORD +534 -1066
  532. {mindspore-2.2.14.dist-info → mindspore-2.3.0rc2.dist-info}/entry_points.txt +1 -0
  533. mindspore/_extends/parallel_compile/tbe_compiler/tbe_adapter.py +0 -662
  534. mindspore/_extends/parallel_compile/tbe_compiler/tbe_helper.py +0 -377
  535. mindspore/_extends/parallel_compile/tbe_compiler/tbe_job.py +0 -201
  536. mindspore/_extends/parallel_compile/tbe_compiler/tbe_job_manager.py +0 -515
  537. mindspore/config/super_bar_config.json +0 -544
  538. mindspore/gen_ops.py +0 -273
  539. mindspore/lib/plugin/ascend/custom_aicpu_ops/op_impl/cpu/aicpu_kernel/impl/libcust_aicpu_kernels.so +0 -0
  540. mindspore/lib/plugin/ascend/libmindspore_aicpu_kernels.so +0 -0
  541. mindspore/nn/layer/flash_attention.py +0 -189
  542. mindspore/ops/_op_impl/cpu/concat.py +0 -39
  543. mindspore/ops/_op_impl/cpu/tensor_shape.py +0 -42
  544. mindspore/ops/_op_impl/tbe/__init__.py +0 -47
  545. mindspore/ops/_op_impl/tbe/abs.py +0 -38
  546. mindspore/ops/_op_impl/tbe/abs_ds.py +0 -39
  547. mindspore/ops/_op_impl/tbe/abs_grad.py +0 -43
  548. mindspore/ops/_op_impl/tbe/abs_grad_ds.py +0 -44
  549. mindspore/ops/_op_impl/tbe/accumulate_n_v2.py +0 -41
  550. mindspore/ops/_op_impl/tbe/accumulate_n_v2_ds.py +0 -42
  551. mindspore/ops/_op_impl/tbe/acos.py +0 -37
  552. mindspore/ops/_op_impl/tbe/acos_ds.py +0 -38
  553. mindspore/ops/_op_impl/tbe/acos_grad.py +0 -43
  554. mindspore/ops/_op_impl/tbe/acos_grad_ds.py +0 -44
  555. mindspore/ops/_op_impl/tbe/acosh.py +0 -37
  556. mindspore/ops/_op_impl/tbe/acosh_ds.py +0 -38
  557. mindspore/ops/_op_impl/tbe/acosh_grad.py +0 -43
  558. mindspore/ops/_op_impl/tbe/acosh_grad_ds.py +0 -44
  559. mindspore/ops/_op_impl/tbe/act_ulq_clamp_max_grad.py +0 -38
  560. mindspore/ops/_op_impl/tbe/act_ulq_clamp_min_grad.py +0 -38
  561. mindspore/ops/_op_impl/tbe/acts_ulq.py +0 -45
  562. mindspore/ops/_op_impl/tbe/acts_ulq_input_grad.py +0 -38
  563. mindspore/ops/_op_impl/tbe/adam_apply_one.py +0 -50
  564. mindspore/ops/_op_impl/tbe/adam_apply_one_assign.py +0 -53
  565. mindspore/ops/_op_impl/tbe/adam_apply_one_ds.py +0 -51
  566. mindspore/ops/_op_impl/tbe/adam_apply_one_with_decay.py +0 -54
  567. mindspore/ops/_op_impl/tbe/adam_apply_one_with_decay_assign.py +0 -54
  568. mindspore/ops/_op_impl/tbe/adam_apply_one_with_decay_ds.py +0 -55
  569. mindspore/ops/_op_impl/tbe/adaptive_max_pool2d.py +0 -37
  570. mindspore/ops/_op_impl/tbe/add.py +0 -42
  571. mindspore/ops/_op_impl/tbe/add_ds.py +0 -43
  572. mindspore/ops/_op_impl/tbe/add_n.py +0 -39
  573. mindspore/ops/_op_impl/tbe/add_n_ds.py +0 -40
  574. mindspore/ops/_op_impl/tbe/addcdiv.py +0 -41
  575. mindspore/ops/_op_impl/tbe/addcdiv_ds.py +0 -42
  576. mindspore/ops/_op_impl/tbe/addcmul.py +0 -43
  577. mindspore/ops/_op_impl/tbe/addcmul_ds.py +0 -44
  578. mindspore/ops/_op_impl/tbe/apply_ada_max.py +0 -68
  579. mindspore/ops/_op_impl/tbe/apply_ada_max_ds.py +0 -69
  580. mindspore/ops/_op_impl/tbe/apply_adadelta.py +0 -66
  581. mindspore/ops/_op_impl/tbe/apply_adadelta_ds.py +0 -67
  582. mindspore/ops/_op_impl/tbe/apply_adagrad.py +0 -55
  583. mindspore/ops/_op_impl/tbe/apply_adagrad_d_a.py +0 -67
  584. mindspore/ops/_op_impl/tbe/apply_adagrad_ds.py +0 -56
  585. mindspore/ops/_op_impl/tbe/apply_adagrad_v2.py +0 -48
  586. mindspore/ops/_op_impl/tbe/apply_adagrad_v2_ds.py +0 -49
  587. mindspore/ops/_op_impl/tbe/apply_adam.py +0 -79
  588. mindspore/ops/_op_impl/tbe/apply_adam_ds.py +0 -80
  589. mindspore/ops/_op_impl/tbe/apply_adam_with_amsgrad.py +0 -60
  590. mindspore/ops/_op_impl/tbe/apply_adam_with_amsgrad_ds.py +0 -61
  591. mindspore/ops/_op_impl/tbe/apply_add_sign.py +0 -65
  592. mindspore/ops/_op_impl/tbe/apply_add_sign_ds.py +0 -66
  593. mindspore/ops/_op_impl/tbe/apply_centered_rms_prop.py +0 -77
  594. mindspore/ops/_op_impl/tbe/apply_centered_rms_prop_ds.py +0 -78
  595. mindspore/ops/_op_impl/tbe/apply_ftrl.py +0 -67
  596. mindspore/ops/_op_impl/tbe/apply_ftrl_ds.py +0 -68
  597. mindspore/ops/_op_impl/tbe/apply_gradient_descent.py +0 -44
  598. mindspore/ops/_op_impl/tbe/apply_gradient_descent_ds.py +0 -45
  599. mindspore/ops/_op_impl/tbe/apply_keras_momentum.py +0 -49
  600. mindspore/ops/_op_impl/tbe/apply_momentum.py +0 -64
  601. mindspore/ops/_op_impl/tbe/apply_momentum_ds.py +0 -65
  602. mindspore/ops/_op_impl/tbe/apply_power_sign.py +0 -65
  603. mindspore/ops/_op_impl/tbe/apply_power_sign_ds.py +0 -66
  604. mindspore/ops/_op_impl/tbe/apply_proximal_adagrad.py +0 -57
  605. mindspore/ops/_op_impl/tbe/apply_proximal_adagrad_ds.py +0 -58
  606. mindspore/ops/_op_impl/tbe/apply_proximal_gradient_descent.py +0 -54
  607. mindspore/ops/_op_impl/tbe/apply_proximal_gradient_descent_ds.py +0 -55
  608. mindspore/ops/_op_impl/tbe/apply_rms_prop.py +0 -52
  609. mindspore/ops/_op_impl/tbe/approximate_equal.py +0 -39
  610. mindspore/ops/_op_impl/tbe/approximate_equal_ds.py +0 -40
  611. mindspore/ops/_op_impl/tbe/arg_max.py +0 -38
  612. mindspore/ops/_op_impl/tbe/arg_max_with_value.py +0 -38
  613. mindspore/ops/_op_impl/tbe/arg_max_with_value_ds.py +0 -39
  614. mindspore/ops/_op_impl/tbe/arg_min.py +0 -38
  615. mindspore/ops/_op_impl/tbe/arg_min_v2_ds.py +0 -40
  616. mindspore/ops/_op_impl/tbe/arg_min_with_value.py +0 -38
  617. mindspore/ops/_op_impl/tbe/arg_min_with_value_ds.py +0 -39
  618. mindspore/ops/_op_impl/tbe/asin.py +0 -37
  619. mindspore/ops/_op_impl/tbe/asin_ds.py +0 -38
  620. mindspore/ops/_op_impl/tbe/asin_grad.py +0 -43
  621. mindspore/ops/_op_impl/tbe/asin_grad_ds.py +0 -44
  622. mindspore/ops/_op_impl/tbe/asinh.py +0 -37
  623. mindspore/ops/_op_impl/tbe/asinh_ds.py +0 -38
  624. mindspore/ops/_op_impl/tbe/asinh_grad.py +0 -43
  625. mindspore/ops/_op_impl/tbe/asinh_grad_ds.py +0 -44
  626. mindspore/ops/_op_impl/tbe/assign.py +0 -79
  627. mindspore/ops/_op_impl/tbe/assign_add.py +0 -59
  628. mindspore/ops/_op_impl/tbe/assign_add_ds.py +0 -60
  629. mindspore/ops/_op_impl/tbe/assign_ds.py +0 -80
  630. mindspore/ops/_op_impl/tbe/assign_sub.py +0 -55
  631. mindspore/ops/_op_impl/tbe/assign_sub_ds.py +0 -56
  632. mindspore/ops/_op_impl/tbe/atan.py +0 -37
  633. mindspore/ops/_op_impl/tbe/atan2.py +0 -38
  634. mindspore/ops/_op_impl/tbe/atan2_ds.py +0 -39
  635. mindspore/ops/_op_impl/tbe/atan_ds.py +0 -38
  636. mindspore/ops/_op_impl/tbe/atan_grad.py +0 -43
  637. mindspore/ops/_op_impl/tbe/atan_grad_ds.py +0 -44
  638. mindspore/ops/_op_impl/tbe/atanh.py +0 -37
  639. mindspore/ops/_op_impl/tbe/atanh_ds.py +0 -38
  640. mindspore/ops/_op_impl/tbe/avg_pool.py +0 -43
  641. mindspore/ops/_op_impl/tbe/avg_pool_3d.py +0 -44
  642. mindspore/ops/_op_impl/tbe/avg_pool_3d_grad.py +0 -45
  643. mindspore/ops/_op_impl/tbe/avg_pool_ds.py +0 -44
  644. mindspore/ops/_op_impl/tbe/avg_pool_grad.py +0 -42
  645. mindspore/ops/_op_impl/tbe/avg_pool_grad_vm.py +0 -42
  646. mindspore/ops/_op_impl/tbe/basic_lstm_cell.py +0 -57
  647. mindspore/ops/_op_impl/tbe/basic_lstm_cell_c_state_grad.py +0 -50
  648. mindspore/ops/_op_impl/tbe/basic_lstm_cell_c_state_grad_v2.py +0 -51
  649. mindspore/ops/_op_impl/tbe/basic_lstm_cell_input_grad.py +0 -42
  650. mindspore/ops/_op_impl/tbe/basic_lstm_cell_weight_grad.py +0 -41
  651. mindspore/ops/_op_impl/tbe/batch_matmul.py +0 -42
  652. mindspore/ops/_op_impl/tbe/batch_matmul_ds.py +0 -41
  653. mindspore/ops/_op_impl/tbe/batch_matmul_v2.py +0 -47
  654. mindspore/ops/_op_impl/tbe/batch_to_space.py +0 -38
  655. mindspore/ops/_op_impl/tbe/batch_to_space_nd.py +0 -38
  656. mindspore/ops/_op_impl/tbe/batch_to_space_nd_ds.py +0 -39
  657. mindspore/ops/_op_impl/tbe/batch_to_space_nd_v2.py +0 -41
  658. mindspore/ops/_op_impl/tbe/batchnorm.py +0 -58
  659. mindspore/ops/_op_impl/tbe/batchnorm_grad.py +0 -58
  660. mindspore/ops/_op_impl/tbe/bce_with_logits_loss.py +0 -42
  661. mindspore/ops/_op_impl/tbe/bessel_i0e.py +0 -37
  662. mindspore/ops/_op_impl/tbe/bessel_i0e_ds.py +0 -38
  663. mindspore/ops/_op_impl/tbe/bessel_i1e.py +0 -37
  664. mindspore/ops/_op_impl/tbe/bessel_i1e_ds.py +0 -38
  665. mindspore/ops/_op_impl/tbe/bias_add.py +0 -38
  666. mindspore/ops/_op_impl/tbe/bias_add_ds.py +0 -39
  667. mindspore/ops/_op_impl/tbe/bias_add_grad.py +0 -53
  668. mindspore/ops/_op_impl/tbe/binary_cross_entropy.py +0 -39
  669. mindspore/ops/_op_impl/tbe/binary_cross_entropy_ds.py +0 -40
  670. mindspore/ops/_op_impl/tbe/binary_cross_entropy_grad.py +0 -44
  671. mindspore/ops/_op_impl/tbe/binary_cross_entropy_grad_ds.py +0 -45
  672. mindspore/ops/_op_impl/tbe/bitwise_and.py +0 -39
  673. mindspore/ops/_op_impl/tbe/bitwise_and_ds.py +0 -40
  674. mindspore/ops/_op_impl/tbe/bitwise_or.py +0 -39
  675. mindspore/ops/_op_impl/tbe/bitwise_or_ds.py +0 -40
  676. mindspore/ops/_op_impl/tbe/bitwise_xor.py +0 -39
  677. mindspore/ops/_op_impl/tbe/bitwise_xor_ds.py +0 -40
  678. mindspore/ops/_op_impl/tbe/bn_infer.py +0 -43
  679. mindspore/ops/_op_impl/tbe/bn_infer_ds.py +0 -45
  680. mindspore/ops/_op_impl/tbe/bn_infer_grad.py +0 -41
  681. mindspore/ops/_op_impl/tbe/bn_infer_grad_ds.py +0 -40
  682. mindspore/ops/_op_impl/tbe/bn_inference.py +0 -50
  683. mindspore/ops/_op_impl/tbe/bn_training_reduce.py +0 -38
  684. mindspore/ops/_op_impl/tbe/bn_training_reduce_ds.py +0 -39
  685. mindspore/ops/_op_impl/tbe/bn_training_reduce_grad.py +0 -46
  686. mindspore/ops/_op_impl/tbe/bn_training_reduce_grad_ds.py +0 -47
  687. mindspore/ops/_op_impl/tbe/bn_training_update.py +0 -52
  688. mindspore/ops/_op_impl/tbe/bn_training_update_ds.py +0 -53
  689. mindspore/ops/_op_impl/tbe/bn_training_update_grad.py +0 -44
  690. mindspore/ops/_op_impl/tbe/bn_training_update_grad_ds.py +0 -45
  691. mindspore/ops/_op_impl/tbe/bn_training_update_v2.py +0 -48
  692. mindspore/ops/_op_impl/tbe/bn_training_update_v3.py +0 -51
  693. mindspore/ops/_op_impl/tbe/bounding_box_decode.py +0 -41
  694. mindspore/ops/_op_impl/tbe/bounding_box_decode_ds.py +0 -42
  695. mindspore/ops/_op_impl/tbe/bounding_box_encode.py +0 -38
  696. mindspore/ops/_op_impl/tbe/broadcast_to.py +0 -40
  697. mindspore/ops/_op_impl/tbe/broadcast_to_ds.py +0 -44
  698. mindspore/ops/_op_impl/tbe/cast.py +0 -55
  699. mindspore/ops/_op_impl/tbe/cast_ds.py +0 -58
  700. mindspore/ops/_op_impl/tbe/cdist.py +0 -38
  701. mindspore/ops/_op_impl/tbe/cdist_grad.py +0 -42
  702. mindspore/ops/_op_impl/tbe/ceil.py +0 -37
  703. mindspore/ops/_op_impl/tbe/ceil_ds.py +0 -38
  704. mindspore/ops/_op_impl/tbe/celu.py +0 -39
  705. mindspore/ops/_op_impl/tbe/centralization.py +0 -39
  706. mindspore/ops/_op_impl/tbe/check_valid.py +0 -38
  707. mindspore/ops/_op_impl/tbe/check_valid_ds.py +0 -39
  708. mindspore/ops/_op_impl/tbe/clip_by_norm_no_div_sum.py +0 -41
  709. mindspore/ops/_op_impl/tbe/clip_by_norm_no_div_sum_ds.py +0 -42
  710. mindspore/ops/_op_impl/tbe/clip_by_value.py +0 -41
  711. mindspore/ops/_op_impl/tbe/clip_by_value_ds.py +0 -42
  712. mindspore/ops/_op_impl/tbe/concat.py +0 -40
  713. mindspore/ops/_op_impl/tbe/concat_ds.py +0 -38
  714. mindspore/ops/_op_impl/tbe/confusion_matrix.py +0 -63
  715. mindspore/ops/_op_impl/tbe/confusion_mul_grad.py +0 -40
  716. mindspore/ops/_op_impl/tbe/confusion_softmax_grad.py +0 -41
  717. mindspore/ops/_op_impl/tbe/confusion_transpose_d.py +0 -39
  718. mindspore/ops/_op_impl/tbe/conv2d.py +0 -47
  719. mindspore/ops/_op_impl/tbe/conv2d_backprop_filter.py +0 -42
  720. mindspore/ops/_op_impl/tbe/conv2d_backprop_filter_ds.py +0 -43
  721. mindspore/ops/_op_impl/tbe/conv2d_backprop_input.py +0 -42
  722. mindspore/ops/_op_impl/tbe/conv2d_backprop_input_ds.py +0 -44
  723. mindspore/ops/_op_impl/tbe/conv2d_ds.py +0 -47
  724. mindspore/ops/_op_impl/tbe/conv2d_transpose.py +0 -48
  725. mindspore/ops/_op_impl/tbe/conv3d.py +0 -45
  726. mindspore/ops/_op_impl/tbe/conv3d_backprop_filter.py +0 -42
  727. mindspore/ops/_op_impl/tbe/conv3d_backprop_input.py +0 -42
  728. mindspore/ops/_op_impl/tbe/conv3d_transpose.py +0 -47
  729. mindspore/ops/_op_impl/tbe/conv3d_transpose_ds.py +0 -48
  730. mindspore/ops/_op_impl/tbe/cos.py +0 -37
  731. mindspore/ops/_op_impl/tbe/cos_ds.py +0 -38
  732. mindspore/ops/_op_impl/tbe/cosh.py +0 -37
  733. mindspore/ops/_op_impl/tbe/cosh_ds.py +0 -38
  734. mindspore/ops/_op_impl/tbe/ctc_loss_v2.py +0 -42
  735. mindspore/ops/_op_impl/tbe/ctc_loss_v2_grad.py +0 -44
  736. mindspore/ops/_op_impl/tbe/cum_sum.py +0 -42
  737. mindspore/ops/_op_impl/tbe/cum_sum_ds.py +0 -44
  738. mindspore/ops/_op_impl/tbe/cummin.py +0 -41
  739. mindspore/ops/_op_impl/tbe/cumprod.py +0 -42
  740. mindspore/ops/_op_impl/tbe/data_format_dim_map.py +0 -38
  741. mindspore/ops/_op_impl/tbe/data_format_dim_map_ds.py +0 -40
  742. mindspore/ops/_op_impl/tbe/deformable_offsets.py +0 -45
  743. mindspore/ops/_op_impl/tbe/deformable_offsets_grad.py +0 -48
  744. mindspore/ops/_op_impl/tbe/depth_to_space_ds.py +0 -49
  745. mindspore/ops/_op_impl/tbe/depthwise_conv2d.py +0 -44
  746. mindspore/ops/_op_impl/tbe/depthwise_conv2d_backprop_filter.py +0 -41
  747. mindspore/ops/_op_impl/tbe/depthwise_conv2d_backprop_input.py +0 -41
  748. mindspore/ops/_op_impl/tbe/diag.py +0 -38
  749. mindspore/ops/_op_impl/tbe/diag_part.py +0 -38
  750. mindspore/ops/_op_impl/tbe/dilation.py +0 -40
  751. mindspore/ops/_op_impl/tbe/div.py +0 -41
  752. mindspore/ops/_op_impl/tbe/div_ds.py +0 -42
  753. mindspore/ops/_op_impl/tbe/div_no_nan.py +0 -41
  754. mindspore/ops/_op_impl/tbe/div_no_nan_ds.py +0 -42
  755. mindspore/ops/_op_impl/tbe/dropout_do_mask.py +0 -38
  756. mindspore/ops/_op_impl/tbe/dropout_do_mask_ds.py +0 -39
  757. mindspore/ops/_op_impl/tbe/dropout_do_mask_v3.py +0 -39
  758. mindspore/ops/_op_impl/tbe/dynamic_atomic_addr_clean.py +0 -34
  759. mindspore/ops/_op_impl/tbe/dynamic_gru_v2.py +0 -95
  760. mindspore/ops/_op_impl/tbe/dynamic_rnn.py +0 -82
  761. mindspore/ops/_op_impl/tbe/elu.py +0 -38
  762. mindspore/ops/_op_impl/tbe/elu_ds.py +0 -39
  763. mindspore/ops/_op_impl/tbe/elu_grad.py +0 -43
  764. mindspore/ops/_op_impl/tbe/elu_grad_ds.py +0 -44
  765. mindspore/ops/_op_impl/tbe/equal.py +0 -42
  766. mindspore/ops/_op_impl/tbe/equal_ds.py +0 -42
  767. mindspore/ops/_op_impl/tbe/erf.py +0 -37
  768. mindspore/ops/_op_impl/tbe/erf_ds.py +0 -38
  769. mindspore/ops/_op_impl/tbe/erfc.py +0 -37
  770. mindspore/ops/_op_impl/tbe/erfc_ds.py +0 -38
  771. mindspore/ops/_op_impl/tbe/erfinv.py +0 -36
  772. mindspore/ops/_op_impl/tbe/exp.py +0 -40
  773. mindspore/ops/_op_impl/tbe/exp_ds.py +0 -41
  774. mindspore/ops/_op_impl/tbe/expand_dims.py +0 -38
  775. mindspore/ops/_op_impl/tbe/expm1.py +0 -37
  776. mindspore/ops/_op_impl/tbe/expm1_ds.py +0 -38
  777. mindspore/ops/_op_impl/tbe/extract_image_patches.py +0 -41
  778. mindspore/ops/_op_impl/tbe/extract_volume_patches.py +0 -39
  779. mindspore/ops/_op_impl/tbe/fake_quant_with_min_max_vars.py +0 -39
  780. mindspore/ops/_op_impl/tbe/fake_quant_with_min_max_vars_gradient.py +0 -43
  781. mindspore/ops/_op_impl/tbe/fake_quant_with_min_max_vars_per_channel.py +0 -39
  782. mindspore/ops/_op_impl/tbe/fake_quant_with_min_max_vars_per_channel_gradient.py +0 -43
  783. mindspore/ops/_op_impl/tbe/fast_gelu.py +0 -37
  784. mindspore/ops/_op_impl/tbe/fast_gelu_ds.py +0 -38
  785. mindspore/ops/_op_impl/tbe/fast_gelu_grad.py +0 -41
  786. mindspore/ops/_op_impl/tbe/fast_gelu_grad_ds.py +0 -42
  787. mindspore/ops/_op_impl/tbe/fill.py +0 -56
  788. mindspore/ops/_op_impl/tbe/fill_ds.py +0 -42
  789. mindspore/ops/_op_impl/tbe/flatten.py +0 -48
  790. mindspore/ops/_op_impl/tbe/floor.py +0 -37
  791. mindspore/ops/_op_impl/tbe/floor_div.py +0 -41
  792. mindspore/ops/_op_impl/tbe/floor_div_ds.py +0 -42
  793. mindspore/ops/_op_impl/tbe/floor_ds.py +0 -38
  794. mindspore/ops/_op_impl/tbe/floor_mod.py +0 -39
  795. mindspore/ops/_op_impl/tbe/floor_mod_ds.py +0 -40
  796. mindspore/ops/_op_impl/tbe/fused_dbn_dw.py +0 -52
  797. mindspore/ops/_op_impl/tbe/fused_mul_add.py +0 -38
  798. mindspore/ops/_op_impl/tbe/fused_mul_add_n.py +0 -48
  799. mindspore/ops/_op_impl/tbe/fused_mul_add_n_l2loss.py +0 -53
  800. mindspore/ops/_op_impl/tbe/fused_mul_apply_momentum.py +0 -57
  801. mindspore/ops/_op_impl/tbe/fused_mul_apply_momentum_extern.py +0 -67
  802. mindspore/ops/_op_impl/tbe/gather_nd.py +0 -52
  803. mindspore/ops/_op_impl/tbe/gather_nd_ds.py +0 -48
  804. mindspore/ops/_op_impl/tbe/gather_v2.py +0 -56
  805. mindspore/ops/_op_impl/tbe/gather_v2_ds.py +0 -68
  806. mindspore/ops/_op_impl/tbe/gelu.py +0 -37
  807. mindspore/ops/_op_impl/tbe/gelu_ds.py +0 -38
  808. mindspore/ops/_op_impl/tbe/gelu_grad.py +0 -42
  809. mindspore/ops/_op_impl/tbe/gelu_grad_ds.py +0 -43
  810. mindspore/ops/_op_impl/tbe/ger.py +0 -43
  811. mindspore/ops/_op_impl/tbe/ger_ds.py +0 -44
  812. mindspore/ops/_op_impl/tbe/greater.py +0 -43
  813. mindspore/ops/_op_impl/tbe/greater_equal.py +0 -41
  814. mindspore/ops/_op_impl/tbe/greater_equal_ds.py +0 -42
  815. mindspore/ops/_op_impl/tbe/gru_v2_hidden_grad.py +0 -51
  816. mindspore/ops/_op_impl/tbe/gru_v2_hidden_grad_cell.py +0 -52
  817. mindspore/ops/_op_impl/tbe/hard_swish.py +0 -37
  818. mindspore/ops/_op_impl/tbe/hard_swish_ds.py +0 -38
  819. mindspore/ops/_op_impl/tbe/hard_swish_grad.py +0 -41
  820. mindspore/ops/_op_impl/tbe/hard_swish_grad_ds.py +0 -42
  821. mindspore/ops/_op_impl/tbe/histogram_fixed_width.py +0 -40
  822. mindspore/ops/_op_impl/tbe/hshrink.py +0 -33
  823. mindspore/ops/_op_impl/tbe/hshrink_grad.py +0 -37
  824. mindspore/ops/_op_impl/tbe/hsigmoid.py +0 -45
  825. mindspore/ops/_op_impl/tbe/hsigmoid_grad.py +0 -39
  826. mindspore/ops/_op_impl/tbe/ifmr.py +0 -47
  827. mindspore/ops/_op_impl/tbe/ifmr_ds.py +0 -48
  828. mindspore/ops/_op_impl/tbe/im2col.py +0 -42
  829. mindspore/ops/_op_impl/tbe/in_top_k.py +0 -37
  830. mindspore/ops/_op_impl/tbe/inplace_add.py +0 -39
  831. mindspore/ops/_op_impl/tbe/inplace_index_add.py +0 -46
  832. mindspore/ops/_op_impl/tbe/inplace_sub.py +0 -39
  833. mindspore/ops/_op_impl/tbe/inplace_update.py +0 -39
  834. mindspore/ops/_op_impl/tbe/inplace_update_ds.py +0 -40
  835. mindspore/ops/_op_impl/tbe/inv.py +0 -38
  836. mindspore/ops/_op_impl/tbe/inv_ds.py +0 -39
  837. mindspore/ops/_op_impl/tbe/inv_grad.py +0 -40
  838. mindspore/ops/_op_impl/tbe/inv_grad_ds.py +0 -41
  839. mindspore/ops/_op_impl/tbe/invert.py +0 -37
  840. mindspore/ops/_op_impl/tbe/invert_ds.py +0 -38
  841. mindspore/ops/_op_impl/tbe/iou.py +0 -38
  842. mindspore/ops/_op_impl/tbe/iou_ds.py +0 -39
  843. mindspore/ops/_op_impl/tbe/is_close.py +0 -40
  844. mindspore/ops/_op_impl/tbe/kl_div_loss.py +0 -38
  845. mindspore/ops/_op_impl/tbe/kl_div_loss_ds.py +0 -39
  846. mindspore/ops/_op_impl/tbe/kl_div_loss_grad.py +0 -40
  847. mindspore/ops/_op_impl/tbe/l2_loss.py +0 -36
  848. mindspore/ops/_op_impl/tbe/l2_loss_ds.py +0 -37
  849. mindspore/ops/_op_impl/tbe/l2_normalize.py +0 -38
  850. mindspore/ops/_op_impl/tbe/l2_normalize_grad.py +0 -40
  851. mindspore/ops/_op_impl/tbe/lamb_apply_optimizer_assign.py +0 -55
  852. mindspore/ops/_op_impl/tbe/lamb_apply_weight_assign.py +0 -42
  853. mindspore/ops/_op_impl/tbe/lamb_next_mv.py +0 -59
  854. mindspore/ops/_op_impl/tbe/lamb_next_mv_with_decay.py +0 -59
  855. mindspore/ops/_op_impl/tbe/lamb_next_right.py +0 -44
  856. mindspore/ops/_op_impl/tbe/lamb_update_with_lr.py +0 -48
  857. mindspore/ops/_op_impl/tbe/lamb_update_with_lr_v2.py +0 -44
  858. mindspore/ops/_op_impl/tbe/lars_update.py +0 -50
  859. mindspore/ops/_op_impl/tbe/lars_update_ds.py +0 -51
  860. mindspore/ops/_op_impl/tbe/layer_norm.py +0 -46
  861. mindspore/ops/_op_impl/tbe/layer_norm_beta_gamma_backprop.py +0 -44
  862. mindspore/ops/_op_impl/tbe/layer_norm_beta_gamma_backprop_ds.py +0 -45
  863. mindspore/ops/_op_impl/tbe/layer_norm_beta_gamma_backprop_v2.py +0 -40
  864. mindspore/ops/_op_impl/tbe/layer_norm_beta_gamma_backprop_v2_ds.py +0 -41
  865. mindspore/ops/_op_impl/tbe/layer_norm_ds.py +0 -47
  866. mindspore/ops/_op_impl/tbe/layer_norm_grad.py +0 -48
  867. mindspore/ops/_op_impl/tbe/layer_norm_x_backprop.py +0 -43
  868. mindspore/ops/_op_impl/tbe/layer_norm_x_backprop_ds.py +0 -44
  869. mindspore/ops/_op_impl/tbe/layer_norm_x_backprop_v2.py +0 -45
  870. mindspore/ops/_op_impl/tbe/layer_norm_x_backprop_v2_ds.py +0 -45
  871. mindspore/ops/_op_impl/tbe/lerp.py +0 -38
  872. mindspore/ops/_op_impl/tbe/less.py +0 -41
  873. mindspore/ops/_op_impl/tbe/less_ds.py +0 -42
  874. mindspore/ops/_op_impl/tbe/less_equal.py +0 -41
  875. mindspore/ops/_op_impl/tbe/less_equal_ds.py +0 -42
  876. mindspore/ops/_op_impl/tbe/log.py +0 -40
  877. mindspore/ops/_op_impl/tbe/log1p.py +0 -37
  878. mindspore/ops/_op_impl/tbe/log1p_ds.py +0 -38
  879. mindspore/ops/_op_impl/tbe/log_ds.py +0 -41
  880. mindspore/ops/_op_impl/tbe/logical_and.py +0 -37
  881. mindspore/ops/_op_impl/tbe/logical_and_ds.py +0 -38
  882. mindspore/ops/_op_impl/tbe/logical_not.py +0 -36
  883. mindspore/ops/_op_impl/tbe/logical_not_ds.py +0 -37
  884. mindspore/ops/_op_impl/tbe/logical_or.py +0 -37
  885. mindspore/ops/_op_impl/tbe/logical_or_ds.py +0 -38
  886. mindspore/ops/_op_impl/tbe/logsoftmax.py +0 -37
  887. mindspore/ops/_op_impl/tbe/logsoftmax_ds.py +0 -38
  888. mindspore/ops/_op_impl/tbe/logsoftmax_grad.py +0 -38
  889. mindspore/ops/_op_impl/tbe/logsoftmax_grad_ds.py +0 -39
  890. mindspore/ops/_op_impl/tbe/lp_norm.py +0 -40
  891. mindspore/ops/_op_impl/tbe/lp_norm_ds.py +0 -41
  892. mindspore/ops/_op_impl/tbe/lrn.py +0 -41
  893. mindspore/ops/_op_impl/tbe/lrn_grad.py +0 -42
  894. mindspore/ops/_op_impl/tbe/lstm_input_grad.py +0 -51
  895. mindspore/ops/_op_impl/tbe/masked_fill.py +0 -40
  896. mindspore/ops/_op_impl/tbe/masked_fill_ds.py +0 -41
  897. mindspore/ops/_op_impl/tbe/matmul.py +0 -53
  898. mindspore/ops/_op_impl/tbe/matmul_ds.py +0 -47
  899. mindspore/ops/_op_impl/tbe/matmul_v2.py +0 -50
  900. mindspore/ops/_op_impl/tbe/matrix_diag.py +0 -45
  901. mindspore/ops/_op_impl/tbe/matrix_diag_part.py +0 -45
  902. mindspore/ops/_op_impl/tbe/matrix_set_diag.py +0 -46
  903. mindspore/ops/_op_impl/tbe/max_pool.py +0 -39
  904. mindspore/ops/_op_impl/tbe/max_pool3d.py +0 -44
  905. mindspore/ops/_op_impl/tbe/max_pool3d_grad.py +0 -43
  906. mindspore/ops/_op_impl/tbe/max_pool3d_grad_grad.py +0 -44
  907. mindspore/ops/_op_impl/tbe/max_pool_ds.py +0 -40
  908. mindspore/ops/_op_impl/tbe/max_pool_grad.py +0 -43
  909. mindspore/ops/_op_impl/tbe/max_pool_grad_grad.py +0 -41
  910. mindspore/ops/_op_impl/tbe/max_pool_grad_grad_with_argmax.py +0 -41
  911. mindspore/ops/_op_impl/tbe/max_pool_grad_with_argmax.py +0 -42
  912. mindspore/ops/_op_impl/tbe/max_pool_with_argmax.py +0 -40
  913. mindspore/ops/_op_impl/tbe/maximum.py +0 -39
  914. mindspore/ops/_op_impl/tbe/maximum_ds.py +0 -40
  915. mindspore/ops/_op_impl/tbe/maximum_grad.py +0 -46
  916. mindspore/ops/_op_impl/tbe/maximum_grad_ds.py +0 -47
  917. mindspore/ops/_op_impl/tbe/mem_set.py +0 -38
  918. mindspore/ops/_op_impl/tbe/minimum.py +0 -40
  919. mindspore/ops/_op_impl/tbe/minimum_ds.py +0 -41
  920. mindspore/ops/_op_impl/tbe/minimum_grad.py +0 -46
  921. mindspore/ops/_op_impl/tbe/minimum_grad_ds.py +0 -47
  922. mindspore/ops/_op_impl/tbe/mish.py +0 -37
  923. mindspore/ops/_op_impl/tbe/mod.py +0 -41
  924. mindspore/ops/_op_impl/tbe/mod_ds.py +0 -42
  925. mindspore/ops/_op_impl/tbe/mul.py +0 -37
  926. mindspore/ops/_op_impl/tbe/mul_ds.py +0 -38
  927. mindspore/ops/_op_impl/tbe/mul_no_nan.py +0 -39
  928. mindspore/ops/_op_impl/tbe/mul_no_nan_ds.py +0 -40
  929. mindspore/ops/_op_impl/tbe/multilabel_margin_loss.py +0 -39
  930. mindspore/ops/_op_impl/tbe/neg.py +0 -39
  931. mindspore/ops/_op_impl/tbe/neg_ds.py +0 -40
  932. mindspore/ops/_op_impl/tbe/new_im2col.py +0 -40
  933. mindspore/ops/_op_impl/tbe/nll_loss.py +0 -41
  934. mindspore/ops/_op_impl/tbe/nll_loss_grad.py +0 -44
  935. mindspore/ops/_op_impl/tbe/nms_with_mask.py +0 -39
  936. mindspore/ops/_op_impl/tbe/not_equal.py +0 -41
  937. mindspore/ops/_op_impl/tbe/not_equal_ds.py +0 -42
  938. mindspore/ops/_op_impl/tbe/npu_alloc_float_status.py +0 -34
  939. mindspore/ops/_op_impl/tbe/npu_clear_float_status.py +0 -35
  940. mindspore/ops/_op_impl/tbe/npu_clear_float_status_v2.py +0 -35
  941. mindspore/ops/_op_impl/tbe/npu_get_float_status.py +0 -35
  942. mindspore/ops/_op_impl/tbe/npu_get_float_status_v2.py +0 -35
  943. mindspore/ops/_op_impl/tbe/one_hot.py +0 -48
  944. mindspore/ops/_op_impl/tbe/one_hot_ds.py +0 -45
  945. mindspore/ops/_op_impl/tbe/ones_like.py +0 -40
  946. mindspore/ops/_op_impl/tbe/ones_like_ds.py +0 -41
  947. mindspore/ops/_op_impl/tbe/p_s_r_o_i_pooling.py +0 -40
  948. mindspore/ops/_op_impl/tbe/p_s_r_o_i_pooling_grad.py +0 -40
  949. mindspore/ops/_op_impl/tbe/pack.py +0 -58
  950. mindspore/ops/_op_impl/tbe/pack_ds.py +0 -59
  951. mindspore/ops/_op_impl/tbe/pad_d.py +0 -40
  952. mindspore/ops/_op_impl/tbe/pad_d_ds.py +0 -41
  953. mindspore/ops/_op_impl/tbe/parallel_concat.py +0 -70
  954. mindspore/ops/_op_impl/tbe/parallel_resize_bilinear.py +0 -45
  955. mindspore/ops/_op_impl/tbe/parallel_resize_bilinear_grad.py +0 -44
  956. mindspore/ops/_op_impl/tbe/pdist.py +0 -36
  957. mindspore/ops/_op_impl/tbe/pooling.py +0 -46
  958. mindspore/ops/_op_impl/tbe/population_count.py +0 -38
  959. mindspore/ops/_op_impl/tbe/pow.py +0 -41
  960. mindspore/ops/_op_impl/tbe/pow_ds.py +0 -42
  961. mindspore/ops/_op_impl/tbe/prelu.py +0 -37
  962. mindspore/ops/_op_impl/tbe/prelu_ds.py +0 -38
  963. mindspore/ops/_op_impl/tbe/prelu_grad.py +0 -40
  964. mindspore/ops/_op_impl/tbe/range.py +0 -39
  965. mindspore/ops/_op_impl/tbe/real_div.py +0 -38
  966. mindspore/ops/_op_impl/tbe/real_div_ds.py +0 -39
  967. mindspore/ops/_op_impl/tbe/reciprocal.py +0 -36
  968. mindspore/ops/_op_impl/tbe/reciprocal_ds.py +0 -37
  969. mindspore/ops/_op_impl/tbe/reciprocal_grad.py +0 -38
  970. mindspore/ops/_op_impl/tbe/reciprocal_grad_ds.py +0 -39
  971. mindspore/ops/_op_impl/tbe/reduce_all.py +0 -38
  972. mindspore/ops/_op_impl/tbe/reduce_all_ds.py +0 -39
  973. mindspore/ops/_op_impl/tbe/reduce_any.py +0 -38
  974. mindspore/ops/_op_impl/tbe/reduce_any_ds.py +0 -39
  975. mindspore/ops/_op_impl/tbe/reduce_max.py +0 -43
  976. mindspore/ops/_op_impl/tbe/reduce_max_ds.py +0 -41
  977. mindspore/ops/_op_impl/tbe/reduce_mean.py +0 -40
  978. mindspore/ops/_op_impl/tbe/reduce_mean_ds.py +0 -42
  979. mindspore/ops/_op_impl/tbe/reduce_min.py +0 -41
  980. mindspore/ops/_op_impl/tbe/reduce_min_ds.py +0 -41
  981. mindspore/ops/_op_impl/tbe/reduce_prod.py +0 -42
  982. mindspore/ops/_op_impl/tbe/reduce_prod_ds.py +0 -41
  983. mindspore/ops/_op_impl/tbe/reduce_std.py +0 -44
  984. mindspore/ops/_op_impl/tbe/reduce_sum.py +0 -39
  985. mindspore/ops/_op_impl/tbe/reduce_sum_ds.py +0 -41
  986. mindspore/ops/_op_impl/tbe/relu.py +0 -39
  987. mindspore/ops/_op_impl/tbe/relu6.py +0 -38
  988. mindspore/ops/_op_impl/tbe/relu6_ds.py +0 -39
  989. mindspore/ops/_op_impl/tbe/relu6_grad.py +0 -43
  990. mindspore/ops/_op_impl/tbe/relu6_grad_ds.py +0 -44
  991. mindspore/ops/_op_impl/tbe/relu_ds.py +0 -40
  992. mindspore/ops/_op_impl/tbe/relu_grad.py +0 -41
  993. mindspore/ops/_op_impl/tbe/relu_grad_ds.py +0 -42
  994. mindspore/ops/_op_impl/tbe/relu_grad_v2.py +0 -40
  995. mindspore/ops/_op_impl/tbe/relu_grad_v2_ds.py +0 -41
  996. mindspore/ops/_op_impl/tbe/relu_v2.py +0 -40
  997. mindspore/ops/_op_impl/tbe/relu_v2_ds.py +0 -41
  998. mindspore/ops/_op_impl/tbe/renorm.py +0 -39
  999. mindspore/ops/_op_impl/tbe/resize_bilinear.py +0 -40
  1000. mindspore/ops/_op_impl/tbe/resize_bilinear_grad.py +0 -41
  1001. mindspore/ops/_op_impl/tbe/resize_bilinear_v2.py +0 -43
  1002. mindspore/ops/_op_impl/tbe/resize_nearest_neighbor.py +0 -40
  1003. mindspore/ops/_op_impl/tbe/resize_nearest_neighbor_ds.py +0 -40
  1004. mindspore/ops/_op_impl/tbe/resize_nearest_neighbor_grad.py +0 -39
  1005. mindspore/ops/_op_impl/tbe/resize_nearest_neighbor_grad_ds.py +0 -42
  1006. mindspore/ops/_op_impl/tbe/reverse_v2_d.py +0 -37
  1007. mindspore/ops/_op_impl/tbe/rint.py +0 -37
  1008. mindspore/ops/_op_impl/tbe/rint_ds.py +0 -38
  1009. mindspore/ops/_op_impl/tbe/roi_align.py +0 -43
  1010. mindspore/ops/_op_impl/tbe/roi_align_ds.py +0 -44
  1011. mindspore/ops/_op_impl/tbe/roi_align_grad.py +0 -43
  1012. mindspore/ops/_op_impl/tbe/roi_align_grad_ds.py +0 -44
  1013. mindspore/ops/_op_impl/tbe/roll.py +0 -42
  1014. mindspore/ops/_op_impl/tbe/round.py +0 -38
  1015. mindspore/ops/_op_impl/tbe/round_ds.py +0 -39
  1016. mindspore/ops/_op_impl/tbe/rsqrt.py +0 -37
  1017. mindspore/ops/_op_impl/tbe/rsqrt_ds.py +0 -38
  1018. mindspore/ops/_op_impl/tbe/rsqrt_grad.py +0 -40
  1019. mindspore/ops/_op_impl/tbe/rsqrt_grad_ds.py +0 -41
  1020. mindspore/ops/_op_impl/tbe/scatter_add.py +0 -44
  1021. mindspore/ops/_op_impl/tbe/scatter_div.py +0 -46
  1022. mindspore/ops/_op_impl/tbe/scatter_max.py +0 -45
  1023. mindspore/ops/_op_impl/tbe/scatter_min.py +0 -45
  1024. mindspore/ops/_op_impl/tbe/scatter_mul.py +0 -44
  1025. mindspore/ops/_op_impl/tbe/scatter_nd.py +0 -41
  1026. mindspore/ops/_op_impl/tbe/scatter_nd_add.py +0 -45
  1027. mindspore/ops/_op_impl/tbe/scatter_nd_d.py +0 -41
  1028. mindspore/ops/_op_impl/tbe/scatter_nd_ds.py +0 -49
  1029. mindspore/ops/_op_impl/tbe/scatter_nd_sub.py +0 -47
  1030. mindspore/ops/_op_impl/tbe/scatter_nd_sub_ds.py +0 -48
  1031. mindspore/ops/_op_impl/tbe/scatter_nd_update.py +0 -47
  1032. mindspore/ops/_op_impl/tbe/scatter_nd_update_ds.py +0 -48
  1033. mindspore/ops/_op_impl/tbe/scatter_non_aliasing_add.py +0 -39
  1034. mindspore/ops/_op_impl/tbe/scatter_non_aliasing_add_ds.py +0 -40
  1035. mindspore/ops/_op_impl/tbe/scatter_sub.py +0 -47
  1036. mindspore/ops/_op_impl/tbe/scatter_sub_ds.py +0 -48
  1037. mindspore/ops/_op_impl/tbe/scatter_update.py +0 -43
  1038. mindspore/ops/_op_impl/tbe/select.py +0 -38
  1039. mindspore/ops/_op_impl/tbe/select_ds.py +0 -39
  1040. mindspore/ops/_op_impl/tbe/selu.py +0 -39
  1041. mindspore/ops/_op_impl/tbe/selu_ds.py +0 -40
  1042. mindspore/ops/_op_impl/tbe/sgd.py +0 -62
  1043. mindspore/ops/_op_impl/tbe/sigmoid.py +0 -37
  1044. mindspore/ops/_op_impl/tbe/sigmoid_cross_entropy_with_logits.py +0 -41
  1045. mindspore/ops/_op_impl/tbe/sigmoid_cross_entropy_with_logits_ds.py +0 -42
  1046. mindspore/ops/_op_impl/tbe/sigmoid_cross_entropy_with_logits_grad.py +0 -42
  1047. mindspore/ops/_op_impl/tbe/sigmoid_cross_entropy_with_logits_grad_ds.py +0 -43
  1048. mindspore/ops/_op_impl/tbe/sigmoid_ds.py +0 -38
  1049. mindspore/ops/_op_impl/tbe/sigmoid_grad.py +0 -39
  1050. mindspore/ops/_op_impl/tbe/sigmoid_grad_ds.py +0 -40
  1051. mindspore/ops/_op_impl/tbe/sign.py +0 -38
  1052. mindspore/ops/_op_impl/tbe/sign_ds.py +0 -39
  1053. mindspore/ops/_op_impl/tbe/sin.py +0 -37
  1054. mindspore/ops/_op_impl/tbe/sin_ds.py +0 -38
  1055. mindspore/ops/_op_impl/tbe/sinh.py +0 -37
  1056. mindspore/ops/_op_impl/tbe/sinh_ds.py +0 -38
  1057. mindspore/ops/_op_impl/tbe/slice.py +0 -58
  1058. mindspore/ops/_op_impl/tbe/smooth_l1_loss.py +0 -45
  1059. mindspore/ops/_op_impl/tbe/smooth_l1_loss_ds.py +0 -46
  1060. mindspore/ops/_op_impl/tbe/smooth_l1_loss_grad.py +0 -46
  1061. mindspore/ops/_op_impl/tbe/smooth_l1_loss_grad_ds.py +0 -47
  1062. mindspore/ops/_op_impl/tbe/soft_margin_loss.py +0 -38
  1063. mindspore/ops/_op_impl/tbe/soft_margin_loss_grad.py +0 -39
  1064. mindspore/ops/_op_impl/tbe/soft_shrink.py +0 -36
  1065. mindspore/ops/_op_impl/tbe/soft_shrink_grad.py +0 -38
  1066. mindspore/ops/_op_impl/tbe/softmax.py +0 -37
  1067. mindspore/ops/_op_impl/tbe/softmax_cross_entropy_with_logits.py +0 -38
  1068. mindspore/ops/_op_impl/tbe/softmax_cross_entropy_with_logits_ds.py +0 -39
  1069. mindspore/ops/_op_impl/tbe/softmax_ds.py +0 -38
  1070. mindspore/ops/_op_impl/tbe/softmax_grad_ext.py +0 -42
  1071. mindspore/ops/_op_impl/tbe/softmax_v2_with_dropout_do_mask_v3.py +0 -39
  1072. mindspore/ops/_op_impl/tbe/softplus.py +0 -37
  1073. mindspore/ops/_op_impl/tbe/softplus_ds.py +0 -38
  1074. mindspore/ops/_op_impl/tbe/softplus_grad.py +0 -38
  1075. mindspore/ops/_op_impl/tbe/softplus_grad_ds.py +0 -38
  1076. mindspore/ops/_op_impl/tbe/softsign.py +0 -37
  1077. mindspore/ops/_op_impl/tbe/softsign_ds.py +0 -38
  1078. mindspore/ops/_op_impl/tbe/sort.py +0 -38
  1079. mindspore/ops/_op_impl/tbe/sort_ds.py +0 -39
  1080. mindspore/ops/_op_impl/tbe/space_to_batch.py +0 -38
  1081. mindspore/ops/_op_impl/tbe/space_to_batch_nd.py +0 -38
  1082. mindspore/ops/_op_impl/tbe/space_to_depth.py +0 -47
  1083. mindspore/ops/_op_impl/tbe/sparse_apply_adadelta.py +0 -56
  1084. mindspore/ops/_op_impl/tbe/sparse_apply_adagrad.py +0 -45
  1085. mindspore/ops/_op_impl/tbe/sparse_apply_adagrad_ds.py +0 -46
  1086. mindspore/ops/_op_impl/tbe/sparse_apply_adagrad_v2.py +0 -46
  1087. mindspore/ops/_op_impl/tbe/sparse_apply_adagrad_v2_ds.py +0 -47
  1088. mindspore/ops/_op_impl/tbe/sparse_apply_ftrl_d.py +0 -53
  1089. mindspore/ops/_op_impl/tbe/sparse_apply_ftrl_d_ds.py +0 -50
  1090. mindspore/ops/_op_impl/tbe/sparse_apply_ftrl_v2.py +0 -50
  1091. mindspore/ops/_op_impl/tbe/sparse_apply_proximal_adagrad.py +0 -66
  1092. mindspore/ops/_op_impl/tbe/sparse_apply_proximal_adagrad_ds.py +0 -67
  1093. mindspore/ops/_op_impl/tbe/sparse_apply_r_m_s_prop.py +0 -57
  1094. mindspore/ops/_op_impl/tbe/sparse_apply_r_m_s_prop_ds.py +0 -58
  1095. mindspore/ops/_op_impl/tbe/sparse_gather_v2.py +0 -56
  1096. mindspore/ops/_op_impl/tbe/sparse_gather_v2_ds.py +0 -58
  1097. mindspore/ops/_op_impl/tbe/split_d.py +0 -38
  1098. mindspore/ops/_op_impl/tbe/split_d_ds.py +0 -39
  1099. mindspore/ops/_op_impl/tbe/split_v.py +0 -39
  1100. mindspore/ops/_op_impl/tbe/splitv.py +0 -39
  1101. mindspore/ops/_op_impl/tbe/sqrt.py +0 -37
  1102. mindspore/ops/_op_impl/tbe/sqrt_ds.py +0 -38
  1103. mindspore/ops/_op_impl/tbe/sqrt_grad.py +0 -43
  1104. mindspore/ops/_op_impl/tbe/sqrt_grad_ds.py +0 -44
  1105. mindspore/ops/_op_impl/tbe/square.py +0 -38
  1106. mindspore/ops/_op_impl/tbe/square_ds.py +0 -39
  1107. mindspore/ops/_op_impl/tbe/square_sum_all.py +0 -40
  1108. mindspore/ops/_op_impl/tbe/square_sum_all_ds.py +0 -41
  1109. mindspore/ops/_op_impl/tbe/square_sum_v1.py +0 -38
  1110. mindspore/ops/_op_impl/tbe/square_sum_v1_ds.py +0 -39
  1111. mindspore/ops/_op_impl/tbe/square_sum_v2.py +0 -39
  1112. mindspore/ops/_op_impl/tbe/squared_difference.py +0 -39
  1113. mindspore/ops/_op_impl/tbe/squared_difference_ds.py +0 -41
  1114. mindspore/ops/_op_impl/tbe/squeeze.py +0 -37
  1115. mindspore/ops/_op_impl/tbe/strided_read.py +0 -38
  1116. mindspore/ops/_op_impl/tbe/strided_slice_d.py +0 -44
  1117. mindspore/ops/_op_impl/tbe/strided_slice_ds.py +0 -71
  1118. mindspore/ops/_op_impl/tbe/strided_slice_grad_d.py +0 -51
  1119. mindspore/ops/_op_impl/tbe/strided_slice_grad_ds.py +0 -57
  1120. mindspore/ops/_op_impl/tbe/strided_write.py +0 -38
  1121. mindspore/ops/_op_impl/tbe/sub.py +0 -39
  1122. mindspore/ops/_op_impl/tbe/sub_ds.py +0 -40
  1123. mindspore/ops/_op_impl/tbe/tan.py +0 -38
  1124. mindspore/ops/_op_impl/tbe/tan_ds.py +0 -39
  1125. mindspore/ops/_op_impl/tbe/tanh.py +0 -37
  1126. mindspore/ops/_op_impl/tbe/tanh_ds.py +0 -38
  1127. mindspore/ops/_op_impl/tbe/tanh_grad.py +0 -39
  1128. mindspore/ops/_op_impl/tbe/tanh_grad_ds.py +0 -40
  1129. mindspore/ops/_op_impl/tbe/tensor_move.py +0 -49
  1130. mindspore/ops/_op_impl/tbe/tensor_move_ds.py +0 -50
  1131. mindspore/ops/_op_impl/tbe/tensor_scatter_update.py +0 -41
  1132. mindspore/ops/_op_impl/tbe/tile.py +0 -37
  1133. mindspore/ops/_op_impl/tbe/tile_ds.py +0 -42
  1134. mindspore/ops/_op_impl/tbe/top_k.py +0 -42
  1135. mindspore/ops/_op_impl/tbe/top_k_ds.py +0 -43
  1136. mindspore/ops/_op_impl/tbe/trans_data.py +0 -167
  1137. mindspore/ops/_op_impl/tbe/trans_data_ds.py +0 -180
  1138. mindspore/ops/_op_impl/tbe/trans_data_rnn.py +0 -44
  1139. mindspore/ops/_op_impl/tbe/transpose.py +0 -60
  1140. mindspore/ops/_op_impl/tbe/transpose_d.py +0 -47
  1141. mindspore/ops/_op_impl/tbe/transpose_nod.py +0 -60
  1142. mindspore/ops/_op_impl/tbe/trunc.py +0 -39
  1143. mindspore/ops/_op_impl/tbe/truncate_div.py +0 -41
  1144. mindspore/ops/_op_impl/tbe/truncate_div_ds.py +0 -42
  1145. mindspore/ops/_op_impl/tbe/truncate_mod.py +0 -41
  1146. mindspore/ops/_op_impl/tbe/truncate_mod_ds.py +0 -42
  1147. mindspore/ops/_op_impl/tbe/unpack.py +0 -38
  1148. mindspore/ops/_op_impl/tbe/unpack_ds.py +0 -39
  1149. mindspore/ops/_op_impl/tbe/unsorted_segment_max.py +0 -49
  1150. mindspore/ops/_op_impl/tbe/unsorted_segment_max_ds.py +0 -40
  1151. mindspore/ops/_op_impl/tbe/unsorted_segment_min.py +0 -49
  1152. mindspore/ops/_op_impl/tbe/unsorted_segment_min_ds.py +0 -40
  1153. mindspore/ops/_op_impl/tbe/unsorted_segment_prod.py +0 -49
  1154. mindspore/ops/_op_impl/tbe/unsorted_segment_prod_ds.py +0 -38
  1155. mindspore/ops/_op_impl/tbe/unsorted_segment_sum.py +0 -38
  1156. mindspore/ops/_op_impl/tbe/unsorted_segment_sum_ds.py +0 -41
  1157. mindspore/ops/_op_impl/tbe/wts_arq.py +0 -40
  1158. mindspore/ops/_op_impl/tbe/xdivy.py +0 -38
  1159. mindspore/ops/_op_impl/tbe/xdivy_ds.py +0 -39
  1160. mindspore/ops/_op_impl/tbe/xlogy.py +0 -38
  1161. mindspore/ops/_op_impl/tbe/xlogy_ds.py +0 -39
  1162. mindspore/ops/_op_impl/tbe/zeros_like.py +0 -41
  1163. mindspore/ops/_op_impl/tbe/zeros_like_ds.py +0 -42
  1164. mindspore/ops/_tracefunc.py +0 -241
  1165. mindspore/ops/arg_dtype_cast.py +0 -54
  1166. mindspore/rewrite/api/tree_node_helper.py +0 -60
  1167. mindspore/rewrite/ast_helpers/ast_creator.py +0 -115
  1168. mindspore/rewrite/ast_transformers/flatten_recursive_stmt.py +0 -267
  1169. mindspore/rewrite/ast_transformers/remove_return_out_of_if.py +0 -228
  1170. mindspore/rewrite/namespace.py +0 -53
  1171. {mindspore-2.2.14.dist-info → mindspore-2.3.0rc2.dist-info}/WHEEL +0 -0
  1172. {mindspore-2.2.14.dist-info → mindspore-2.3.0rc2.dist-info}/top_level.txt +0 -0
@@ -30,6 +30,15 @@ from mindspore.ops.primitive import Primitive
30
30
  from mindspore.ops.primitive import PrimitiveWithInfer
31
31
  from mindspore.ops.primitive import PrimitiveWithCheck
32
32
  from mindspore.ops.primitive import prim_attr_register
33
+ from ..auto_generate import (CeLU, Flatten, LogSoftmax, ReLU, ReLU6, Dense,
34
+ Elu, Sigmoid, Softmax, SoftplusExt, HSwish, HSigmoid, AvgPool, BiasAdd,
35
+ NLLLoss, OneHot, GeLU, FastGeLU, PReLU,
36
+ GridSampler3D, GridSampler2D, LayerNorm, LayerNormExt, HShrink, AdamWeightDecay, Dropout,
37
+ ApplyRotaryPosEmb, PagedAttention, PagedAttentionMask, ReshapeAndCache,
38
+ FlashAttentionScore, Embedding, UpsampleNearest1D, UpsampleNearest2D,
39
+ UpsampleNearest3D, UpsampleTrilinear3D,
40
+ UpsampleBilinear2D, UpsampleLinear1D)
41
+ from .manually_defined import BatchNorm
33
42
 
34
43
 
35
44
  def _check_positive_int_or_tuple(arg_name, arg_value, prim_name, allow_four=False,
@@ -95,83 +104,6 @@ def _update_attr_by_format(arg_value, arg_format):
95
104
  return ret
96
105
 
97
106
 
98
- class CeLU(Primitive):
99
- r"""
100
- Computes CeLU (Continuously differentiable exponential linear units) of input tensors element-wise.
101
-
102
- Refer to :func:`mindspore.ops.celu` for more details.
103
-
104
- .. warning::
105
- This is an experimental API that is subject to change or deletion.
106
-
107
- Args:
108
- alpha (float, optional): The :math:`\alpha` value for the Celu formulation. Default: ``1.0`` .
109
-
110
- Inputs:
111
- - **input_x** (Tensor) - The input tensor with a dtype of float16 or float32.
112
-
113
- Outputs:
114
- Tensor, with the same type and shape as the `input_x`.
115
-
116
- Supported Platforms:
117
- ``Ascend`` ``GPU`` ``CPU``
118
-
119
- Examples:
120
- >>> import mindspore
121
- >>> import numpy as np
122
- >>> from mindspore import Tensor, ops
123
- >>> input_x = Tensor(np.array([-2.0, -1.0, 1.0, 2.0]), mindspore.float32)
124
- >>> celu = ops.CeLU(alpha=1.0)
125
- >>> output = celu(input_x)
126
- >>> print(output)
127
- [-0.86466473 -0.63212055 1. 2. ]
128
- >>> input_x = Tensor(2.1, mindspore.float32)
129
- >>> output = celu(input_x)
130
- >>> print(output)
131
- 2.1
132
- """
133
-
134
- @prim_attr_register
135
- def __init__(self, alpha=1.0):
136
- """Initialize CeLU"""
137
- validator.check_value_type("alpha", alpha, [float], self.name)
138
- validator.check_float(alpha, 0.0, validator.NE, "alpha", self.name)
139
- self.alpha = alpha
140
- self.add_prim_attr('alpha', self.alpha)
141
-
142
-
143
- class Flatten(Primitive):
144
- r"""
145
- Flattens a tensor without changing its batch size on the 0-th axis.
146
-
147
- Refer to :func:`mindspore.ops.flatten` for more details.
148
-
149
- Inputs:
150
- - **input_x** (Tensor) - Tensor of shape :math:`(N, \ldots)` to be flattened, where :math:`N` is batch size.
151
-
152
- Outputs:
153
- Tensor, the shape of the output tensor is :math:`(N, X)`, where :math:`X` is
154
- the product of the remaining dimension.
155
-
156
- Supported Platforms:
157
- ``Ascend`` ``GPU`` ``CPU``
158
-
159
- Examples:
160
- >>> import mindspore
161
- >>> import numpy as np
162
- >>> from mindspore import Tensor, ops
163
- >>> input_x = Tensor(np.ones(shape=[1, 2, 3, 4]), mindspore.float32)
164
- >>> flatten = ops.Flatten()
165
- >>> output = flatten(input_x)
166
- >>> print(output.shape)
167
- (1, 24)
168
- """
169
-
170
- @prim_attr_register
171
- def __init__(self):
172
- pass
173
-
174
-
175
107
  class AdaptiveAvgPool3D(Primitive):
176
108
  r"""
177
109
  AdaptiveAvgPool3D operation.
@@ -427,86 +359,6 @@ class AdaptiveMaxPool3D(Primitive):
427
359
  self.init_prim_io_names(inputs=['x', 'output_size'], outputs=['y', 'argmax'])
428
360
 
429
361
 
430
- class Softmax(Primitive):
431
- r"""
432
- Applies the Softmax operation to the input tensor on the specified axis.
433
-
434
- Refer to :func:`mindspore.ops.softmax` for more details.
435
-
436
- Args:
437
- axis (Union[int, tuple]): The axis to perform the Softmax operation. Default: ``-1`` .
438
-
439
- Inputs:
440
- - **logits** (Tensor) - Tensor of shape :math:`(N, *)`, where :math:`*` means, any number of
441
- additional dimensions. Supported dtypes:
442
-
443
- - Ascend: float16, float32.
444
- - GPU/CPU: float16, float32, float64.
445
-
446
- Outputs:
447
- Tensor, with the same type and shape as the logits.
448
-
449
- Supported Platforms:
450
- ``Ascend`` ``GPU`` ``CPU``
451
-
452
- Examples:
453
- >>> import mindspore
454
- >>> import numpy as np
455
- >>> from mindspore import Tensor, ops
456
- >>> logits = Tensor(np.array([1, 2, 3, 4, 5]), mindspore.float32)
457
- >>> softmax = ops.Softmax()
458
- >>> output = softmax(logits)
459
- >>> print(output)
460
- [0.01165623 0.03168492 0.08612854 0.23412167 0.6364086 ]
461
- """
462
-
463
- @prim_attr_register
464
- def __init__(self, axis=-1):
465
- """Initialize Softmax."""
466
- self.init_prim_io_names(inputs=['x'], outputs=['output'])
467
- validator.check_value_type("axis", axis, [int, tuple], self.name)
468
- if isinstance(axis, int):
469
- self.add_prim_attr('axis', (axis,))
470
- for item in self.axis:
471
- validator.check_value_type("item of axis", item, [int], self.name)
472
-
473
-
474
- class LogSoftmax(Primitive):
475
- r"""
476
- Log Softmax activation function.
477
-
478
- Refer to :func:`mindspore.ops.log_softmax` for more details.
479
-
480
- Args:
481
- axis (int, optional): The axis to perform the Log softmax operation. Default: ``-1`` .
482
-
483
- Inputs:
484
- - **logits** (Tensor) - Tensor of shape :math:`(N, *)`, where :math:`*` means, any number of
485
- additional dimensions, with float16 or float32 data type.
486
-
487
- Outputs:
488
- Tensor, with the same type and shape as the `logits`.
489
-
490
- Supported Platforms:
491
- ``Ascend`` ``GPU`` ``CPU``
492
-
493
- Examples:
494
- >>> import mindspore
495
- >>> import numpy as np
496
- >>> from mindspore import Tensor, ops
497
- >>> logits = Tensor(np.array([1, 2, 3, 4, 5]), mindspore.float32)
498
- >>> log_softmax = ops.LogSoftmax()
499
- >>> output = log_softmax(logits)
500
- >>> print(output)
501
- [-4.4519143 -3.4519143 -2.4519143 -1.4519144 -0.4519144]
502
- """
503
-
504
- @prim_attr_register
505
- def __init__(self, axis=-1):
506
- """Initialize LogSoftmax."""
507
- validator.check_value_type("axis", axis, [int], self.name)
508
-
509
-
510
362
  class Softplus(Primitive):
511
363
  r"""
512
364
  Softplus activation function.
@@ -586,39 +438,6 @@ class Softsign(Primitive):
586
438
  self.init_prim_io_names(inputs=['x'], outputs=['output'])
587
439
 
588
440
 
589
- class ReLU(Primitive):
590
- r"""
591
- Computes ReLU (Rectified Linear Unit activation function) of input tensors element-wise.
592
-
593
- Refer to :func:`mindspore.ops.relu` for more details.
594
-
595
- Inputs:
596
- - **input_x** (Tensor) - Input Tensor of numeric types.
597
-
598
- Outputs:
599
- Tensor, has the same dtype and shape as `input_x`.
600
-
601
- Supported Platforms:
602
- ``Ascend`` ``GPU`` ``CPU``
603
-
604
- Examples:
605
- >>> import mindspore
606
- >>> import numpy as np
607
- >>> from mindspore import Tensor, ops
608
- >>> input_x = Tensor(np.array([[-1.0, 4.0, -8.0], [2.0, -5.0, 9.0]]), mindspore.float32)
609
- >>> relu = ops.ReLU()
610
- >>> output = relu(input_x)
611
- >>> print(output)
612
- [[0. 4. 0.]
613
- [2. 0. 9.]]
614
- """
615
-
616
- @prim_attr_register
617
- def __init__(self):
618
- """Initialize ReLU"""
619
- self.init_prim_io_names(inputs=['x'], outputs=['output'])
620
-
621
-
622
441
  class ReLUV3(Primitive):
623
442
  r"""
624
443
  Computes ReLUV3 (Rectified Linear Unit activation function) of input tensors element-wise.
@@ -633,7 +452,7 @@ class ReLUV3(Primitive):
633
452
  Inputs:
634
453
  - **input_x** (Tensor) - Tensor of shape :math:`(N, *)`, where :math:`*` means, any number of
635
454
  additional dimensions, data type is
636
- `number <https://www.mindspore.cn/docs/en/r2.2/api_python/mindspore.html#mindspore.dtype>`_.
455
+ `number <https://www.mindspore.cn/docs/en/master/api_python/mindspore.html#mindspore.dtype>`_.
637
456
 
638
457
  Outputs:
639
458
  Tensor of shape :math:`(N, *)`, with the same type and shape as the `input_x`.
@@ -749,243 +568,6 @@ class SeLU(Primitive):
749
568
  self.init_prim_io_names(inputs=['input_x'], outputs=['output'])
750
569
 
751
570
 
752
- class ReLU6(PrimitiveWithCheck):
753
- r"""
754
- Computes ReLU (Rectified Linear Unit) upper bounded by 6 of input tensors element-wise.
755
-
756
- Refer to :func:`mindspore.ops.relu6` for more details.
757
-
758
- Inputs:
759
- - **input_x** (Tensor) - Tensor of shape :math:`(N, *)`,
760
- where :math:`*` means any number of additional dimensions.
761
- Data type must be float16, float32.
762
-
763
- Outputs:
764
- Tensor, with the same type and shape as the `input_x`.
765
-
766
- Supported Platforms:
767
- ``Ascend`` ``GPU`` ``CPU``
768
-
769
- Examples:
770
- >>> import mindspore
771
- >>> import numpy as np
772
- >>> from mindspore import Tensor, ops
773
- >>> input_x = Tensor(np.array([[-1.0, 4.0, -8.0], [2.0, -5.0, 9.0]]), mindspore.float32)
774
- >>> relu6 = ops.ReLU6()
775
- >>> result = relu6(input_x)
776
- >>> print(result)
777
- [[0. 4. 0.]
778
- [2. 0. 6.]]
779
- """
780
-
781
- @prim_attr_register
782
- def __init__(self):
783
- """Initialize ReLU6"""
784
- self.init_prim_io_names(inputs=['x'], outputs=['output'])
785
-
786
- def check_shape(self, input_x):
787
- pass
788
-
789
- def check_dtype(self, input_x):
790
- validator.check_tensor_dtype_valid('input_x', input_x, (mstype.float16, mstype.float32), self.name)
791
-
792
-
793
- class ReLUV2(Primitive):
794
- r"""
795
- The ReLUV2 interface is deprecated, please use the :class:`mindspore.ops.ReLU` instead.
796
-
797
- Rectified Linear Unit activation function.
798
-
799
- It returns element-wise :math:`\max(0, x)`, specially, the neurons with the negative output
800
- will be suppressed and the active neurons will stay the same.
801
-
802
- .. math::
803
-
804
- \text{ReLU}(x) = (x)^+ = \max(0, x)
805
-
806
- Inputs:
807
- - **input_x** (Tensor) - The input tensor must be a 4-D tensor.
808
-
809
- Outputs:
810
- - **output** (Tensor) - Has the same type and shape as the `input_x`.
811
- - **mask** (Tensor) - A tensor, but it is meaningless.
812
-
813
- Raises:
814
- TypeError: If `input_x` is not a Tensor.
815
- ValueError: If shape of `input_x` is not 4-D.
816
-
817
- Supported Platforms:
818
- deprecated
819
-
820
- Examples:
821
- >>> input_x = Tensor(np.array([[[[1, -2], [-3, 4]], [[-5, 6], [7, -8]]]]), mindspore.float32)
822
- >>> relu_v2 = ops.ReLUV2()
823
- >>> output, _= relu_v2(input_x)
824
- >>> print(output)
825
- [[[[1. 0.]
826
- [0. 4.]]
827
- [[0. 6.]
828
- [7. 0.]]]]
829
- """
830
-
831
- @prim_attr_register
832
- def __init__(self):
833
- """Initialize ReLUV2"""
834
- self.init_prim_io_names(inputs=['x'], outputs=['output', 'mask'])
835
-
836
-
837
- class Elu(Primitive):
838
- r"""
839
- Exponential Linear Uint activation function.
840
-
841
- Applies the exponential linear unit function element-wise.
842
- The activation function is defined as:
843
-
844
- .. math::
845
-
846
- \text{ELU}(x)= \left\{
847
- \begin{array}{align}
848
- \alpha(e^{x} - 1) & \text{if } x \le 0\\
849
- x & \text{if } x \gt 0\\
850
- \end{array}\right.
851
-
852
- The picture about ELU looks like this `ELU <https://en.wikipedia.org/wiki/
853
- Activation_function#/media/File:Activation_elu.svg>`_ .
854
-
855
- Args:
856
- alpha (float): The alpha value of ELU, the data type is float. Only support '1.0' currently. Default: ``1.0`` .
857
-
858
- Inputs:
859
- - **input_x** (Tensor) - The input of ELU is a Tensor of any dimension with data type of
860
- float16, float32 or float64.
861
-
862
- Outputs:
863
- Tensor, has the same shape and data type as `input_x`.
864
-
865
- Raises:
866
- TypeError: If `alpha` is not a float.
867
- TypeError: If dtype of `input_x` is neither float16, float32 nor float64.
868
- ValueError: If `alpha` is not equal to 1.0.
869
-
870
- Supported Platforms:
871
- ``Ascend`` ``GPU`` ``CPU``
872
-
873
- Examples:
874
- >>> import mindspore
875
- >>> import numpy as np
876
- >>> from mindspore import Tensor, ops
877
- >>> input_x = Tensor(np.array([[-1.0, 4.0, -8.0], [2.0, -5.0, 9.0]]), mindspore.float32)
878
- >>> elu = ops.Elu()
879
- >>> output = elu(input_x)
880
- >>> print(output)
881
- [[-0.63212055 4. -0.99966455]
882
- [ 2. -0.99326205 9. ]]
883
- """
884
-
885
- @prim_attr_register
886
- def __init__(self, alpha=1.0):
887
- """Initialize Elu"""
888
- validator.check_value_type("alpha", alpha, [float], self.name)
889
- validator.check_number("alpha", alpha, 1.0, validator.EQ, self.name)
890
- self.init_prim_io_names(inputs=['x'], outputs=['output', 'mask'])
891
-
892
-
893
- class HSwish(Primitive):
894
- r"""
895
- Hard swish activation function.
896
-
897
- Refer to :func:`mindspore.ops.hardswish` for more details.
898
-
899
- Inputs:
900
- - **input_x** (Tensor) - The input Tensor.
901
-
902
- Outputs:
903
- Tensor, with the same type and shape as the `input_x`.
904
-
905
- Supported Platforms:
906
- ``Ascend`` ``GPU`` ``CPU``
907
-
908
- Examples:
909
- >>> import mindspore
910
- >>> import numpy as np
911
- >>> from mindspore import Tensor, ops
912
- >>> hswish = ops.HSwish()
913
- >>> input_x = Tensor(np.array([-1, -2, 0, 2, 1]), mindspore.float16)
914
- >>> result = hswish(input_x)
915
- >>> print(result)
916
- [-0.3333 -0.3333 0 1.666 0.6665]
917
- """
918
-
919
- @prim_attr_register
920
- def __init__(self):
921
- """Initialize HSwish."""
922
- self.init_prim_io_names(inputs=['x'], outputs=['output'])
923
-
924
-
925
- class Sigmoid(Primitive):
926
- r"""
927
- Sigmoid activation function.
928
-
929
- Refer to :func:`mindspore.ops.sigmoid` for more details.
930
-
931
- Inputs:
932
- - **input_x** (Tensor) - Tensor of any dimension.
933
-
934
- Outputs:
935
- Tensor, with the same type and shape as the input_x.
936
-
937
- Supported Platforms:
938
- ``Ascend`` ``GPU`` ``CPU``
939
-
940
- Examples:
941
- >>> import mindspore
942
- >>> import numpy as np
943
- >>> from mindspore import Tensor, ops
944
- >>> input_x = Tensor(np.array([1, 2, 3, 4, 5]), mindspore.float32)
945
- >>> sigmoid = ops.Sigmoid()
946
- >>> output = sigmoid(input_x)
947
- >>> print(output)
948
- [0.7310586 0.880797 0.95257413 0.98201376 0.9933072 ]
949
- """
950
-
951
- @prim_attr_register
952
- def __init__(self):
953
- """Initialize Sigmoid."""
954
- self.init_prim_io_names(inputs=['x'], outputs=['output'])
955
-
956
-
957
- class HSigmoid(Primitive):
958
- r"""
959
- Hard sigmoid activation function.
960
-
961
- Refer to :func:`mindspore.ops.hardsigmoid` for more details.
962
-
963
- Inputs:
964
- - **input_x** (Tensor) - The input Tensor.
965
-
966
- Outputs:
967
- Tensor, with the same type and shape as the `input_x`.
968
-
969
- Supported Platforms:
970
- ``Ascend`` ``GPU`` ``CPU``
971
-
972
- Examples:
973
- >>> import mindspore
974
- >>> import numpy as np
975
- >>> from mindspore import Tensor, ops
976
- >>> hsigmoid = ops.HSigmoid()
977
- >>> input_x = Tensor(np.array([-1, -2, 0, 2, 1]), mindspore.float16)
978
- >>> result = hsigmoid(input_x)
979
- >>> print(result)
980
- [0.3333 0.1666 0.5 0.8335 0.6665]
981
- """
982
-
983
- @prim_attr_register
984
- def __init__(self):
985
- """Initialize HSigmoid."""
986
- self.init_prim_io_names(inputs=['input_x'], outputs=['output'])
987
-
988
-
989
571
  class Tanh(Primitive):
990
572
  r"""
991
573
  Computes hyperbolic tangent of input element-wise.
@@ -1192,172 +774,41 @@ class InstanceNormV2(Primitive):
1192
774
  ValueError: If `momentum` is not in the range of [0, 1].
1193
775
 
1194
776
  Examples:
1195
- >>> x = Tensor(input_data=np.random.randn(128, 48, 32, 64, 12), dtype=mindspore.float32)
1196
- >>> gamma = Tensor(input_data=np.random.randn(128, 48, 1, 1, 12), dtype=mstype.float32)
1197
- >>> beta = Tensor(input_data=np.random.randn(128, 48, 1, 1, 12), dtype=mstype.float32)
1198
- >>> mean = Tensor(input_data=np.random.randn(128, 48, 1, 1, 12), dtype=mstype.float32)
1199
- >>> var = Tensor(input_data=np.random.randn(128, 48, 1, 1, 12), dtype=mstype.float32)
1200
- >>> ops = P.InstanceNormV2()
1201
- >>> output = ops(x, gamma, beta, mean, var)
1202
- >>> y_shape = output[0].shape
1203
- >>> print(y_shape)
1204
- (128, 48, 32, 64, 12)
1205
- >>> batch_mean_shape = output[1].shape
1206
- >>> print(batch_mean_shape)
1207
- (128, 48, 1, 1, 12)
1208
- >>> batch_var_shape = output[2].shape
1209
- >>> print(batch_var_shape)
1210
- (128, 48, 1, 1, 12)
1211
- """
1212
- __mindspore_signature__ = (
1213
- sig.make_sig('x', dtype=sig.sig_dtype.T1),
1214
- sig.make_sig('gamma', dtype=sig.sig_dtype.T),
1215
- sig.make_sig('beta', dtype=sig.sig_dtype.T),
1216
- sig.make_sig('mean', dtype=sig.sig_dtype.T),
1217
- sig.make_sig('variance', dtype=sig.sig_dtype.T),
1218
- )
1219
-
1220
- @prim_attr_register
1221
- def __init__(self, is_training=True, momentum=0.1, epsilon=1e-5):
1222
- """Initialize InstanceNormV2."""
1223
- self.init_prim_io_names(inputs=['x', 'gamma', 'beta', 'mean', 'variance'],
1224
- outputs=['y', 'batch_mean', 'batch_variance'])
1225
- validator.check_is_float(epsilon, 'epsilon', self.name)
1226
- validator.check_is_float(momentum, 'momentum', self.name)
1227
- validator.check_float_range(epsilon, 0, 1, validator.INC_RIGHT, 'epsilon', self.name)
1228
- validator.check_float_range(momentum, 0, 1, validator.INC_BOTH, 'momentum', self.name)
1229
- validator.check_bool(is_training, "is_training", self.name)
1230
-
1231
-
1232
- class BatchNorm(PrimitiveWithInfer):
1233
- r"""
1234
- Batch Normalization for input data and updated parameters.
1235
-
1236
- Batch Normalization is widely used in convolutional neural networks. This operation
1237
- applies Batch Normalization over inputs to avoid internal covariate shift as described
1238
- in the paper `Batch Normalization: Accelerating Deep Network Training by Reducing Internal
1239
- Covariate Shift <https://arxiv.org/abs/1502.03167>`_. It rescales and recenters the
1240
- features using a mini-batch of data and the learned parameters can be described
1241
- in the following formula,
1242
-
1243
- .. math::
1244
-
1245
- y = \frac{x - mean}{\sqrt{variance + \epsilon}} * \gamma + \beta
1246
-
1247
- where :math:`\gamma` is scale, :math:`\beta` is bias, :math:`\epsilon` is epsilon,
1248
- :math:`mean` is the mean of :math:`x`,
1249
- :math:`variance` is the variance of :math:`x`.
1250
-
1251
- .. warning::
1252
- - If the operation is used for inference, and outputs "reserve_space_1" and "reserve_space_2" are available,
1253
- then "reserve_space_1" has the same value as "mean" and "reserve_space_2" has the same value as "variance".
1254
- - For Ascend 310, the result accuracy fails to reach 1‰ due to the square root instruction.
1255
-
1256
- Args:
1257
- is_training (bool): If `is_training` is ``True`` , `mean` and `variance` are computed during training.
1258
- If `is_training` is ``False`` , they're loaded from checkpoint during inference. Default: ``False`` .
1259
- epsilon (float): A small value added for numerical stability. Default: ``1e-5``, value must be (0, 1] .
1260
- momentum (float): The hyper parameter to compute moving average for running_mean and running_var
1261
- (e.g. :math:`new\_running\_mean = (1 - momentum) * running\_mean + momentum * current\_mean`).
1262
- Momentum value must be [0, 1]. Default: ``0.1`` .
1263
- data_format (str): The optional value for data format, is ``'NHWC'`` or ``'NCHW'``, and the ``'NHWC'`` format
1264
- is only supported in GPU target. Default: ``"NCHW"`` .
1265
-
1266
- Inputs:
1267
- If `is_training` is ``False`` , inputs are Tensors.
1268
-
1269
- - **input_x** (Tensor) - Tensor of shape :math:`(N, C)`, with float16 or float32 data type.
1270
- - **scale** (Tensor) - Tensor of shape :math:`(C,)`, with float16 or float32 data type.
1271
- - **bias** (Tensor) - Tensor of shape :math:`(C,)`, has the same data type with `scale`.
1272
- - **mean** (Tensor) - Tensor of shape :math:`(C,)`, has the same data type with `scale`.
1273
- - **variance** (Tensor) - Tensor of shape :math:`(C,)`, has the same data type with `scale`.
1274
-
1275
- If `is_training` is ``True`` , `scale`, `bias`, `mean` and `variance` are Parameters.
1276
-
1277
- - **input_x** (Tensor) - Tensor of shape :math:`(N, C)`, with float16 or float32 data type.
1278
- - **scale** (Parameter) - Parameter of shape :math:`(C,)`, with float16 or float32 data type.
1279
- - **bias** (Parameter) - Parameter of shape :math:`(C,)`, has the same data type with `scale`.
1280
- - **mean** (Parameter) - Parameter of shape :math:`(C,)`, has the same data type with `scale`.
1281
- - **variance** (Parameter) - Parameter of shape :math:`(C,)`, has the same data type with `scale`.
1282
-
1283
- Outputs:
1284
- Tuple of 5 Tensors, the normalized inputs and the updated parameters.
1285
-
1286
- - **output_x** (Tensor) - The same type and shape as the input_x. The shape is :math:`(N, C)`.
1287
- - **batch_mean** (Tensor) - Tensor of shape :math:`(C,)`.
1288
- - **batch_variance** (Tensor) - Tensor of shape :math:`(C,)`.
1289
- - **reserve_space_1** (Tensor) - Tensor of shape :math:`(C,)`.
1290
- - **reserve_space_2** (Tensor) - Tensor of shape :math:`(C,)`.
1291
-
1292
- Raises:
1293
- TypeError: If `is_training` is not a bool.
1294
- TypeError: If dtype of `epsilon` or `momentum` is not float.
1295
- TypeError: If `data_format` is not a str.
1296
- TypeError: If `input_x`, `scale`, `bias`, `mean` or `variance` is not a Tensor.
1297
- TypeError: If dtype of `input_x`, `scale` is neither float16 nor float32.
1298
-
1299
- Supported Platforms:
1300
- ``Ascend`` ``GPU`` ``CPU``
1301
-
1302
- Examples:
1303
- >>> import mindspore
1304
- >>> import numpy as np
1305
- >>> from mindspore import Tensor, ops
1306
- >>> input_x = Tensor(np.ones([2, 2]), mindspore.float32)
1307
- >>> scale = Tensor(np.ones([2]), mindspore.float32)
1308
- >>> bias = Tensor(np.ones([2]), mindspore.float32)
1309
- >>> mean = Tensor(np.ones([2]), mindspore.float32)
1310
- >>> variance = Tensor(np.ones([2]), mindspore.float32)
1311
- >>> batch_norm = ops.BatchNorm()
1312
- >>> output = batch_norm(input_x, scale, bias, mean, variance)
1313
- >>> print(output[0])
1314
- [[1. 1.]
1315
- [1. 1.]]
777
+ >>> x = Tensor(input_data=np.random.randn(128, 48, 32, 64, 12), dtype=mindspore.float32)
778
+ >>> gamma = Tensor(input_data=np.random.randn(128, 48, 1, 1, 12), dtype=mstype.float32)
779
+ >>> beta = Tensor(input_data=np.random.randn(128, 48, 1, 1, 12), dtype=mstype.float32)
780
+ >>> mean = Tensor(input_data=np.random.randn(128, 48, 1, 1, 12), dtype=mstype.float32)
781
+ >>> var = Tensor(input_data=np.random.randn(128, 48, 1, 1, 12), dtype=mstype.float32)
782
+ >>> ops = P.InstanceNormV2()
783
+ >>> output = ops(x, gamma, beta, mean, var)
784
+ >>> y_shape = output[0].shape
785
+ >>> print(y_shape)
786
+ (128, 48, 32, 64, 12)
787
+ >>> batch_mean_shape = output[1].shape
788
+ >>> print(batch_mean_shape)
789
+ (128, 48, 1, 1, 12)
790
+ >>> batch_var_shape = output[2].shape
791
+ >>> print(batch_var_shape)
792
+ (128, 48, 1, 1, 12)
1316
793
  """
1317
-
1318
794
  __mindspore_signature__ = (
1319
- sig.make_sig('input_x', dtype=sig.sig_dtype.T1),
1320
- sig.make_sig('scale', sig.sig_rw.RW_WRITE, dtype=sig.sig_dtype.T2),
1321
- sig.make_sig('bias', sig.sig_rw.RW_WRITE, dtype=sig.sig_dtype.T2),
1322
- sig.make_sig('mean', sig.sig_rw.RW_WRITE, dtype=sig.sig_dtype.T3),
1323
- sig.make_sig('variance', sig.sig_rw.RW_WRITE, dtype=sig.sig_dtype.T3)
795
+ sig.make_sig('x', dtype=sig.sig_dtype.T1),
796
+ sig.make_sig('gamma', dtype=sig.sig_dtype.T),
797
+ sig.make_sig('beta', dtype=sig.sig_dtype.T),
798
+ sig.make_sig('mean', dtype=sig.sig_dtype.T),
799
+ sig.make_sig('variance', dtype=sig.sig_dtype.T),
1324
800
  )
1325
801
 
1326
802
  @prim_attr_register
1327
- def __init__(self, is_training=False, epsilon=1e-5, momentum=0.1, data_format="NCHW"):
1328
- """Initialize BatchNorm."""
1329
- if is_training is False:
1330
- self.set_signatures(tuple())
1331
- else:
1332
- self.add_prim_attr('side_effect_mem', True)
1333
- validator.check_value_type('is_training', is_training, (bool,), self.name)
803
+ def __init__(self, is_training=True, momentum=0.1, epsilon=1e-5):
804
+ """Initialize InstanceNormV2."""
805
+ self.init_prim_io_names(inputs=['x', 'gamma', 'beta', 'mean', 'variance'],
806
+ outputs=['y', 'batch_mean', 'batch_variance'])
807
+ validator.check_is_float(epsilon, 'epsilon', self.name)
808
+ validator.check_is_float(momentum, 'momentum', self.name)
1334
809
  validator.check_float_range(epsilon, 0, 1, validator.INC_RIGHT, 'epsilon', self.name)
1335
810
  validator.check_float_range(momentum, 0, 1, validator.INC_BOTH, 'momentum', self.name)
1336
- self.format = validator.check_string(data_format, ['NCHW', 'NHWC'], 'format', self.name)
1337
- if context.get_context("device_target") != "GPU" and self.format == "NHWC":
1338
- raise ValueError(f"For '{self.name}', the 'NHWC' format is only supported in GPU target, "
1339
- f"but got the 'data_format' is {self.format} and "
1340
- f"the platform is {context.get_context('device_target')}.")
1341
- self.add_prim_attr('data_format', self.format)
1342
- self.init_prim_io_names(inputs=['x', 'scale', 'offset', 'mean', 'variance'],
1343
- outputs=['y', 'batch_mean', 'batch_variance', 'reserve_space_1', 'reserve_space_2'])
1344
-
1345
- def infer_shape(self, input_x, scale, bias, mean, variance):
1346
- input_x_channel = input_x[-1] if self.format == "NHWC" else input_x[1]
1347
- validator.check_equal_int(len(scale), 1, "scale rank", self.name)
1348
- validator.check("scale shape", scale, "bias shape", bias, validator.EQ, self.name)
1349
- validator.check("scale shape[0]", scale[0], "input_x channel", input_x_channel, validator.EQ, self.name)
1350
- if not self.is_training:
1351
- validator.check_equal_int(len(mean), 1, "mean rank", self.name)
1352
- validator.check("mean shape", mean, "variance shape", variance, validator.EQ, self.name)
1353
- validator.check("mean shape", mean, "scale shape", scale, validator.EQ, self.name)
1354
- return input_x, scale, scale, scale, scale
1355
-
1356
- def infer_dtype(self, input_x, scale, bias, mean, variance):
1357
- validator.check_tensor_dtype_valid("input_x", input_x, [mstype.float16, mstype.float32], self.name)
1358
- args = {"scale": scale, "bias": bias, "mean": mean, "variance": variance}
1359
- validator.check_tensors_dtypes_same_and_valid(args, [mstype.float16, mstype.float32], self.name)
1360
- return input_x, mstype.float32, mstype.float32, mstype.float32, mstype.float32
811
+ validator.check_bool(is_training, "is_training", self.name)
1361
812
 
1362
813
 
1363
814
  class Conv2D(Primitive):
@@ -1379,21 +830,26 @@ class Conv2D(Primitive):
1379
830
  , :math:`weight` is the convolution kernel value and :math:`X` represents the input feature map.
1380
831
 
1381
832
  Here are the indices' meanings:
1382
- - :math:`i` corresponds to the batch number, ranging from 0 to N-1, where N is the batch size of the input.
1383
833
 
1384
- - :math:`j` corresponds to the output channel, ranging from 0 to C_{out}-1, where C_{out} is the number of
834
+ - :math:`i` corresponds to the batch number, the range is :math:`[0, N-1]`,
835
+ where :math:`N` is the batch size of the input.
836
+
837
+ - :math:`j` corresponds to the output channel, the range is :math:`[0, C_{out}-1]`,
838
+ where :math:`C_{out}` is the number of
1385
839
  output channels, which is also equal to the number of kernels.
1386
840
 
1387
- - :math:`k` corresponds to the input channel, ranging from 0 to C_{in}-1, where C_{in} is the number of
841
+ - :math:`k` corresponds to the input channel, the range is :math:`[0, C_{in}-1]`,
842
+ where :math:`C_{in}` is the number of
1388
843
  input channels, which is also equal to the number of channels in the convolutional kernels.
1389
844
 
1390
- Therefore, in the above formula, :math:`{bias}(C_{out_j})` represents the bias of the :math:`j`-th
1391
- output channel, :math:`{weight}(C_{out_j}, k)` represents the slice of the :math:`j`-th convolutional
845
+ Therefore, in the above formula, :math:`{bias}(C_{\text{out}_j})` represents the bias of the :math:`j`-th
846
+ output channel, :math:`{weight}(C_{\text{out}_j}, k)` represents the slice of the :math:`j`-th convolutional
1392
847
  kernel in the :math:`k`-th channel, and :math:`{X}(N_i, k)` represents the slice of the :math:`k`-th input
1393
848
  channel in the :math:`i`-th batch of the input feature map.
1394
849
 
1395
- The shape of the convolutional kernel is given by :math:`(kernel\_size[0], kernel\_size[1])`,
1396
- where :math:`kernel\_size[0]` and :math:`kernel\_size[1]` are the height and width of the kernel, respectively.
850
+ The shape of the convolutional kernel is given by :math:`(\text{kernel_size[0]},\text{kernel_size[1]})`,
851
+ where :math:`\text{kernel_size[0]}`
852
+ and :math:`\text{kernel_size[1]}` are the height and width of the kernel, respectively.
1397
853
  If we consider the input and output channels as well as the `group` parameter, the complete kernel shape
1398
854
  will be :math:`(C_{out}, C_{in} / \text{group}, \text{kernel_size[0]}, \text{kernel_size[1]})`,
1399
855
  where `group` is the number of groups dividing `x`'s input channel when applying group convolution.
@@ -1450,7 +906,7 @@ class Conv2D(Primitive):
1450
906
  group (int, optional): Specifies the number of groups dividing `x`'s input channel when applying
1451
907
  group convolution. Default: ``1`` .
1452
908
  data_format (str, optional): The optional value for data format, is ``'NHWC'`` or ``'NCHW'`` .
1453
- Default: ``"NCHW"`` .
909
+ Default: ``"NCHW"``. (NHWC is only supported in GPU now.)
1454
910
 
1455
911
  Inputs:
1456
912
  - **x** (Tensor) - Input tensor of shape :math:`(N, C_{in}, H_{in}, W_{in})` or
@@ -1844,13 +1300,13 @@ class MaxPool(_Pool):
1844
1300
  not only the height of movement but also the width of movement, or a tuple of two int numbers that
1845
1301
  represent height and width of movement respectively. Default: ``1`` .
1846
1302
  pad_mode (str, optional): Specifies the padding mode with a padding value of 0. It can be set to:
1847
- ``"same"`` or ``"valid"`` . Default: ``"valid"`` .
1303
+ ``'same'`` or ``'valid'`` . Default: ``'valid'`` .
1848
1304
 
1849
- - ``"same"``: Pad the input around its edges so that the shape of input and output
1305
+ - ``'same'``: Pad the input around its edges so that the shape of input and output
1850
1306
  are the same when `stride` is set to ``1``.
1851
1307
  The amount of padding to is calculated by the operator internally, If the amount is even, it is
1852
1308
  uniformly distributed around the input, if it is odd, the excess amount goes to the right/bottom side.
1853
- - ``"valid"``: No padding is applied to the input, and the output returns the maximum
1309
+ - ``'valid'``: No padding is applied to the input, and the output returns the maximum
1854
1310
  possible height and width. Extra pixels that could not complete a full stride will
1855
1311
  be discarded.
1856
1312
 
@@ -1869,8 +1325,8 @@ class MaxPool(_Pool):
1869
1325
 
1870
1326
  Raises:
1871
1327
  TypeError: If `kernel_size` or `strides` is neither int nor tuple.
1872
- ValueError: If `pad_mode` is neither 'valid' nor 'same' with not case sensitive.
1873
- ValueError: If `data_format` is neither 'NCHW' nor 'NHWC'.
1328
+ ValueError: If `pad_mode` is neither ``'valid'`` nor ``'same'`` with not case sensitive.
1329
+ ValueError: If `data_format` is neither ``'NCHW'`` nor ``'NHWC'``.
1874
1330
  ValueError: If `kernel_size` or `strides` is less than 1.
1875
1331
  ValueError: If length of shape of `input` is not equal to 4.
1876
1332
 
@@ -2033,10 +1489,10 @@ class MaxPool3D(Primitive):
2033
1489
  pad[3], pad[4] and pad[5] correspondingly.
2034
1490
  ceil_mode (Union[bool, None]): Whether to use ceil instead of floor to calculate output shape.
2035
1491
  Only effective in "pad" mode.
2036
- When "pad_mode" is ``"pad"`` and "ceil_mode" is ``"None"`` , "ceil_mode" will be set as ``"False"``.
1492
+ When `pad_mode` is ``"pad"`` and "ceil_mode" is ``None`` , `ceil_mode` will be set as ``False``.
2037
1493
  Default: ``None`` .
2038
- data_format (str) : The optional value for data format. Currently only support ``'NCDHW'`` .
2039
- Default: ``'NCDHW'`` .
1494
+ data_format (str) : The optional value for data format. Currently only support ``"NCDHW"`` .
1495
+ Default: ``"NCDHW"`` .
2040
1496
 
2041
1497
  Inputs:
2042
1498
  - **x** (Tensor) - Tensor of shape :math:`(N, C, D_{in}, H_{in}, W_{in})`.
@@ -2049,10 +1505,10 @@ class MaxPool3D(Primitive):
2049
1505
  TypeError: If `kernel_size` or `strides` is neither an int nor a tuple.
2050
1506
  TypeError: If `pad_mode` or `data_format` is not a string.
2051
1507
  ValueError: If numbers in `kernel_size` or `strides` are not positive.
2052
- ValueError: If `pad_mode` is not one of 'SAME', 'VALID' or 'PAD'.
2053
- ValueError: If `pad_mode` is 'SAME' or 'VALID', 'ceil_mode' is not None.
1508
+ ValueError: If `pad_mode` is not one of ``"SAME"``, ``"VALID"`` or ``"PAD"``.
1509
+ ValueError: If `pad_mode` is ``"SAME"`` or ``"VALID"``, `ceil_mode` is not ``None``.
2054
1510
  ValueError: If `kernel_size` or `strides` is a tuple whose length is not equal to 3.
2055
- ValueError: If `data_format` is not 'NCDHW'.
1511
+ ValueError: If `data_format` is not ``"NCDHW"``.
2056
1512
 
2057
1513
  Supported Platforms:
2058
1514
  ``Ascend`` ``GPU`` ``CPU``
@@ -2278,7 +1734,7 @@ class MaxUnpool3D(Primitive):
2278
1734
  ValueError: If numbers in `strides` or `ksize` is negative.
2279
1735
  ValueError: If numbers in `pads` is negative.
2280
1736
  ValueError: If `ksize`, `strides` or `pads` is a tuple whose length is not equal to 3.
2281
- ValueError: If `data_format` is not a str or is neither `NCDHW` nor `NDHWC`.
1737
+ ValueError: If `data_format` is not a str or is neither ``'NCDHW'`` nor ``'NDHWC'``.
2282
1738
  ValueError: If `output_shape` whose length is neither 0 or 5.
2283
1739
  ValueError: If `output_shape` is not close to output size range
2284
1740
  computed by attr `ksize, strides, pads`.
@@ -2321,98 +1777,6 @@ class MaxUnpool3D(Primitive):
2321
1777
  self.output_shape = output_shape
2322
1778
 
2323
1779
 
2324
- class AvgPool(Primitive):
2325
- r"""
2326
- Average pooling operation.
2327
-
2328
- Refer to :func:`mindspore.ops.avg_pool2d` for more details.
2329
-
2330
- Args:
2331
- kernel_size (Union[int, tuple[int]]): The size of kernel used to take the average value,
2332
- is an int number that represents height and width of the kernel, or a tuple
2333
- of two int numbers that represent height and width respectively. Default: ``1`` .
2334
- strides (Union[int, tuple[int]]): The distance of kernel moving, an int number that represents
2335
- the height and width of movement are both strides, or a tuple of two int numbers that
2336
- represent height and width of movement respectively. Default: ``1`` .
2337
- pad_mode (str, optional): Specifies the padding mode with a padding value of 0. It can be set to:
2338
- ``"same"`` or ``"valid"`` . Default: ``"valid"`` .
2339
-
2340
- - ``"same"``: Pad the input around its edges so that the shape of input and output
2341
- are the same when `stride` is set to ``1``.
2342
- The amount of padding to is calculated by the operator internally, If the amount is even, it is
2343
- uniformly distributed around the input, if it is odd, the excess amount goes to the right/bottom side.
2344
- - ``"valid"``: No padding is applied to the input, and the output returns the maximum
2345
- possible height and width. Extra pixels that could not complete a full stride will
2346
- be discarded.
2347
-
2348
- data_format (str, optional): The format of input and output data. It should be ``'NHWC'`` or ``'NCHW'`` .
2349
- Default: ``'NCHW'`` .
2350
-
2351
- Inputs:
2352
- - **x** (Tensor) - Tensor of shape :math:`(N, C_{in}, H_{in}, W_{in})`.
2353
- Supported dtypes: float16, float32, float64.
2354
-
2355
- Outputs:
2356
- Tensor, with shape :math:`(N, C_{out}, H_{out}, W_{out})`.
2357
-
2358
- Raises:
2359
- TypeError: If `kernel_size` or `strides` is neither int nor tuple.
2360
- TypeError: If dtype of `x` is not float16, float32 or float64.
2361
- ValueError: If `kernel_size` or `strides` is less than 1.
2362
- ValueError: If `pad_mode` is neither 'valid' nor 'same' with not case sensitive.
2363
- ValueError: If `data_format` is neither 'NCHW' nor 'NHWC'.
2364
- ValueError: If length of shape of `x` is not equal to 4.
2365
-
2366
- Supported Platforms:
2367
- ``Ascend`` ``GPU`` ``CPU``
2368
-
2369
- Examples:
2370
- >>> import mindspore
2371
- >>> import numpy as np
2372
- >>> from mindspore import Tensor, ops, nn
2373
- >>> class Net(nn.Cell):
2374
- ... def __init__(self):
2375
- ... super(Net, self).__init__()
2376
- ... self.avgpool_op = ops.AvgPool(pad_mode="VALID", kernel_size=2, strides=1)
2377
- ...
2378
- ... def construct(self, x):
2379
- ... result = self.avgpool_op(x)
2380
- ... return result
2381
- ...
2382
- >>> x = Tensor(np.arange(1 * 3 * 3 * 4).reshape(1, 3, 3, 4), mindspore.float32)
2383
- >>> net = Net()
2384
- >>> output = net(x)
2385
- >>> print(output)
2386
- [[[[ 2.5 3.5 4.5]
2387
- [ 6.5 7.5 8.5]]
2388
- [[14.5 15.5 16.5]
2389
- [18.5 19.5 20.5]]
2390
- [[26.5 27.5 28.5]
2391
- [30.5 31.5 32.5]]]]
2392
- """
2393
-
2394
- @prim_attr_register
2395
- def __init__(self, kernel_size=1, strides=1, pad_mode="valid", data_format="NCHW"):
2396
- """Initialize AvgPool."""
2397
- self.init_prim_io_names(inputs=['x'], outputs=['output'])
2398
- validator.check_value_type('kernel_size', kernel_size, [int, tuple], self.name)
2399
- validator.check_value_type('strides', strides, [int, tuple], self.name)
2400
- validator.check_value_type('pad_mode', pad_mode, [str], self.name)
2401
- self.pad_mode = validator.check_string(pad_mode.upper(), ['VALID', 'SAME'], 'pad_mode', self.name)
2402
- self.add_prim_attr("pad_mode", self.pad_mode)
2403
- self.format = validator.check_string(data_format, ['NCHW', 'NHWC'], 'format', self.name)
2404
- if context.get_context("device_target") != "GPU" and self.format == "NHWC":
2405
- raise ValueError(f"For '{self.name}', the 'NHWC' format is only supported in GPU target, "
2406
- f"but got the 'data_format' is {self.format} and "
2407
- f"the platform is {context.get_context('device_target')}.")
2408
- self.add_prim_attr('data_format', self.format)
2409
- self.kernel_size = _check_positive_int_or_tuple(
2410
- "kernel_size", kernel_size, self.name, allow_four=False, ret_four=True)
2411
- self.add_prim_attr("kernel_size", self.kernel_size)
2412
- self.strides = _check_positive_int_or_tuple("strides", strides, self.name, allow_four=False, ret_four=True)
2413
- self.add_prim_attr("strides", self.strides)
2414
-
2415
-
2416
1780
  class AvgPoolV1(Primitive):
2417
1781
  r"""
2418
1782
  Average-pooling operation.
@@ -2641,7 +2005,7 @@ class MaxPool3DWithArgmax(Primitive):
2641
2005
  TypeError: If `ksize` , `strides` , `pads` or `dilation` is not int or tuple.
2642
2006
  ValueError: If `ksize` or `strides` is less than 1.
2643
2007
  ValueError: If `pads` is less than 0.
2644
- ValueError: If `data_format` is not 'NCDHW'.
2008
+ ValueError: If `data_format` is not ``'NCDHW'``.
2645
2009
  ValueError: If `argmax_type` is not mindspore.int64 or mindspore.int32.
2646
2010
 
2647
2011
  Supported Platforms:
@@ -2743,10 +2107,10 @@ class Conv2DTranspose(Conv2DBackpropInput):
2743
2107
  TypeError: If `kernel_size`, `stride`, `pad` or `dilation` is neither an int nor a tuple.
2744
2108
  TypeError: If `out_channel` or `group` is not an int.
2745
2109
  ValueError: If `kernel_size`, `stride` or `dilation` is less than 1.
2746
- ValueError: If `pad_mode` is not one of 'same', 'valid' or 'pad'.
2110
+ ValueError: If `pad_mode` is not one of ``'same'``, ``'valid'`` or ``'pad'``.
2747
2111
  ValueError: If `padding` is a tuple whose length is not equal to 4.
2748
- ValueError: If `pad_mode` it not equal to 'pad' and `pad` is not equal to (0, 0, 0, 0).
2749
- ValueError: If `data_format` is neither 'NCHW' nor 'NHWC'.
2112
+ ValueError: If `pad_mode` it not equal to ``'pad'`` and `pad` is not equal to (0, 0, 0, 0).
2113
+ ValueError: If `data_format` is neither ``'NCHW'`` nor ``'NHWC'``.
2750
2114
 
2751
2115
  Supported Platforms:
2752
2116
  ``Ascend`` ``GPU`` ``CPU``
@@ -2772,146 +2136,6 @@ class Conv2DTranspose(Conv2DBackpropInput):
2772
2136
  pad_list, mode, stride, dilation, group, data_format)
2773
2137
 
2774
2138
 
2775
- class BiasAdd(Primitive):
2776
- r"""
2777
- Returns the sum of the input Tensor and the bias Tensor. Before adding, the bias Tensor will be broadcasted to be
2778
- consistent with the shape of the input Tensor.
2779
-
2780
- Args:
2781
- data_format (str, optional): The format of input and output data.
2782
- It should be ``"NHWC"`` , ``"NCHW"`` or ``"NCDHW"`` .
2783
- Default is ``"NCHW"`` .
2784
-
2785
- Inputs:
2786
- - **input_x** (Tensor) - The input tensor. The shape can be 2-5 dimensions. Supported dtypes:
2787
-
2788
- - Ascend/CPU: all Number type.
2789
- - GPU: float16, float32, int8.
2790
-
2791
- - **bias** (Tensor) - The bias tensor, with shape :math:`(C)`. C must be the same as channel dimension C of
2792
- `input_x`. It has the same type as `input_x`.
2793
-
2794
- Outputs:
2795
- Tensor, with the same shape and data type as `input_x`.
2796
-
2797
- Raises:
2798
- TypeError: If `data_format` is not a str.
2799
- ValueError: If value of `data_format` is not in the range of ['NHWC','NCHW','NCDHW'].
2800
- TypeError: If `input_x` or `bias` is not a Tensor.
2801
- TypeError: If dtype of `input_x` and `bias` is inconsistent.
2802
- TypeError: If dimension of `input_x` is not in the range [2, 5].
2803
-
2804
- Supported Platforms:
2805
- ``Ascend`` ``GPU`` ``CPU``
2806
-
2807
- Examples:
2808
- >>> import mindspore
2809
- >>> import numpy as np
2810
- >>> from mindspore import Tensor, ops
2811
- >>> input_x = Tensor(np.arange(6).reshape((2, 3)), mindspore.float32)
2812
- >>> bias = Tensor(np.random.random(3).reshape((3,)), mindspore.float32)
2813
- >>> bias_add = ops.BiasAdd()
2814
- >>> output = bias_add(input_x, bias)
2815
- >>> print(output.shape)
2816
- (2, 3)
2817
- """
2818
-
2819
- @prim_attr_register
2820
- def __init__(self, data_format="NCHW"):
2821
- """Initialize BiasAdd."""
2822
- self.init_prim_io_names(inputs=['x', 'b'], outputs=['output'])
2823
- self.format = validator.check_string(data_format, ['NCHW', 'NHWC', 'NCDHW'], 'format', self.name)
2824
- self.add_prim_attr('data_format', self.format)
2825
-
2826
-
2827
- class NLLLoss(Primitive):
2828
- r"""
2829
- Gets the negative log likelihood loss between logits and labels.
2830
-
2831
- The nll loss with :math:`reduction = none` can be described as:
2832
-
2833
- .. math::
2834
-
2835
- \ell(x, t)=L=\left\{l_{1}, \ldots, l_{N}\right\}^{\top},
2836
- \quad l_{n}=-w_{t_{n}} x_{n, t_{n}},
2837
- \quad w_{c}=\text { weight }[c] \cdot 1
2838
-
2839
- where :math:`x` is the logits, :math:`t` is the labels, :math:`w` is the weight,
2840
- N is the batch size, :math:`c` belonging to [0, C-1] is class index, where :math:`C` is the number of classes.
2841
-
2842
- If :math:`reduction \neq none` (default ``'mean'`` ), then
2843
-
2844
- .. math::
2845
-
2846
- \ell(x, t)=\left\{\begin{array}{ll}
2847
- \sum_{n=1}^{N} \frac{1}{\sum_{n=1}^{N} w_{t n}} l_{n}, & \text { if reduction }=\text { 'mean'; } \\
2848
- \sum_{n=1}^{N} l_{n}, & \text { if reduction }=\text { 'sum' }
2849
- \end{array}\right.
2850
-
2851
- Args:
2852
- reduction (str, optional): Apply specific reduction method to the output: ``'none'`` , ``'mean'`` ,
2853
- ``'sum'`` . Default: ``'mean'`` .
2854
-
2855
- - ``'none'``: no reduction will be applied.
2856
- - ``'mean'``: compute and return the weighted mean of elements in the output.
2857
- - ``'sum'``: the output elements will be summed.
2858
-
2859
- ignore_index (int): Specifies a target value that is ignored
2860
- and does not contribute to the input gradient. Default: ``-100`` .
2861
-
2862
- Inputs:
2863
- - **logits** (Tensor) - Input logits, with shape :math:`(N, C)`. Data type only supports float32 or float16.
2864
- - **labels** (Tensor) - Ground truth labels, with shape :math:`(N,)`, where each value belong to
2865
- :math:`[0, C-1]`. Data type only supports int32 or int64.
2866
- - **weight** (Tensor) - The rescaling weight to each class, with shape :math:`(C,)` and data type only
2867
- supports float32 or float16.
2868
-
2869
- Outputs:
2870
- Tuple of 2 tensors composed with `loss` and `total_weight`.
2871
-
2872
- - **loss** (Tensor) - When `reduction` is ``'none'`` and `logits` is a 2D tensor,
2873
- the `loss` shape is :math:`(N,)`. Otherwise, the `loss` is a scalar.
2874
- The data type is the same with `input's`.
2875
- - **total_weight** (Tensor) - The `total_weight` is a scalar. The data type is the same with `weight's`.
2876
-
2877
- Raises:
2878
- TypeError: If dtype of `logits` or `weight` is neither float16 nor float32.
2879
- TypeError: If dtype of `labels` is neither int32 nor int64.
2880
- ValueError: If `logits` is not a one or two dimension tensor, `labels` and `weight` are not
2881
- one dimension tensors.
2882
- When `logits` is a two dimension tensor, the first dimension of `logits` is not equal to `labels`,
2883
- and second dimension of `logits` is not equal to `weight`.
2884
- When `logits` is a one dimension tensor, the dimensions of `logits`, `labels`
2885
- and `weight` should be equal to each other.
2886
- ValueError: If the value of `labels` exceed :math:`[0, C-1]`, where :math:`C` is the number of classes.
2887
-
2888
- Supported Platforms:
2889
- ``Ascend`` ``GPU`` ``CPU``
2890
-
2891
- Examples:
2892
- >>> import numpy as np
2893
- >>> from mindspore import Tensor, ops
2894
- >>> logits = Tensor(np.array([[0.5488135, 0.71518934],
2895
- ... [0.60276335, 0.5448832],
2896
- ... [0.4236548, 0.6458941]]).astype(np.float32))
2897
- >>> labels = Tensor(np.array([0, 0, 0]).astype(np.int32))
2898
- >>> weight = Tensor(np.array([0.3834415, 0.79172504]).astype(np.float32))
2899
- >>> nll_loss = ops.NLLLoss(reduction="mean")
2900
- >>> loss, weight = nll_loss(logits, labels, weight)
2901
- >>> print(loss)
2902
- -0.52507716
2903
- >>> print(weight)
2904
- 1.1503246
2905
- """
2906
-
2907
- @prim_attr_register
2908
- def __init__(self, reduction="mean", ignore_index=-100):
2909
- """Initialize NLLLoss"""
2910
- self.init_prim_io_names(inputs=['x', 'target', "weight"], outputs=['loss', 'total_weight'])
2911
- self.reduction = validator.check_string(reduction, ['none', 'sum', 'mean'], 'reduction', self.name)
2912
- validator.check_value_type('ignore_index', ignore_index, [int], self.name)
2913
-
2914
-
2915
2139
  class SoftmaxCrossEntropyWithLogits(Primitive):
2916
2140
  r"""
2917
2141
  Gets the softmax cross-entropy value between logits and labels with one-hot encoding.
@@ -3232,7 +2456,7 @@ class MultiMarginLoss(Primitive):
3232
2456
  or float64.
3233
2457
  - **target** (Tensor) - Ground truth labels, with shape :math:`(N,)`. Data type only support int64. The
3234
2458
  value of target should be non-negative, less than C.
3235
- - **weight** (Tensor) - The rescaling weight to each class with shape :math:`(C,)`. Data type only
2459
+ - **weight** (Tensor, optional) - The rescaling weight to each class with shape :math:`(C,)`. Data type only
3236
2460
  support float16, float32 or float64.
3237
2461
 
3238
2462
  Outputs:
@@ -3254,6 +2478,11 @@ class MultiMarginLoss(Primitive):
3254
2478
  >>> print(output)
3255
2479
  0.6666667
3256
2480
  """
2481
+ __mindspore_signature__ = (
2482
+ sig.make_sig('x'),
2483
+ sig.make_sig('target'),
2484
+ sig.make_sig('weight', default=None)
2485
+ )
3257
2486
 
3258
2487
  @prim_attr_register
3259
2488
  def __init__(self, p=1, margin=1.0, reduction="mean"):
@@ -3264,6 +2493,9 @@ class MultiMarginLoss(Primitive):
3264
2493
  self.reduction = validator.check_string(reduction, ['none', 'sum', 'mean'], 'reduction', self.name)
3265
2494
  self.init_prim_io_names(inputs=['x', 'target', 'weight'], outputs=['y'])
3266
2495
 
2496
+ def __call__(self, x, target, weight=None):
2497
+ return super().__call__(x, target, weight)
2498
+
3267
2499
 
3268
2500
  class SoftMarginLoss(Primitive):
3269
2501
  r"""
@@ -3412,7 +2644,9 @@ class RNNTLoss(PrimitiveWithInfer):
3412
2644
  blank_label (int): blank label. Default: ``0`` .
3413
2645
 
3414
2646
  Inputs:
3415
- - **acts** (Tensor) - Tensor of shape :math:`(B, T, U, V)`. Data type must be float16 or float32.
2647
+ - **acts** (Tensor) - Tensor of shape :math:`(B, T, U, V)`, where :math:`B` is batch,
2648
+ :math:`T` is sequence length, :math:`U` is label length and :math:`V` is output dim.
2649
+ Data type must be float16 or float32.
3416
2650
  - **labels** (Tensor) - Tensor of shape :math:`(B, U-1)`. Data type is int32.
3417
2651
  - **input_lengths** (Tensor) - Tensor of shape :math:`(B,)`. Data type is int32.
3418
2652
  - **label_lengths** (Tensor) - Tensor of shape :math:`(B,)`. Data type is int32.
@@ -3716,105 +2950,32 @@ class ApplyCenteredRMSProp(Primitive):
3716
2950
  >>> import numpy as np
3717
2951
  >>> from mindspore import Tensor, nn, ops, Parameter
3718
2952
  >>> class Net(nn.Cell):
3719
- ... def __init__(self):
3720
- ... super(Net, self).__init__()
3721
- ... self.apply_centerd_rms_prop = ops.ApplyCenteredRMSProp()
3722
- ... self.var = Parameter(Tensor(np.ones([2, 2]).astype(np.float32)), name="var")
3723
- ...
3724
- ... def construct(self, mean_grad, mean_square, moment, grad, decay, momentum, epsilon, lr):
3725
- ... out = self.apply_centerd_rms_prop(self.var, mean_grad, mean_square, moment, grad,
3726
- ... lr, decay, momentum, epsilon)
3727
- ... return out
3728
- ...
3729
- >>> net = Net()
3730
- >>> mean_grad = Tensor(np.ones([2, 2]).astype(np.float32))
3731
- >>> mean_square = Tensor(np.ones([2, 2]).astype(np.float32))
3732
- >>> moment = Tensor(np.ones([2, 2]).astype(np.float32))
3733
- >>> grad = Tensor(np.ones([2, 2]).astype(np.float32))
3734
- >>> output = net(mean_grad, mean_square, moment, grad, 0.0, 1e-10, 0.001, 0.01)
3735
- >>> print(net.var.asnumpy())
3736
- [[0.68377227 0.68377227]
3737
- [0.68377227 0.68377227]]
3738
- """
3739
-
3740
- @prim_attr_register
3741
- def __init__(self, use_locking=False):
3742
- """Initialize ApplyCenteredRMSProp."""
3743
- self.use_locking = validator.check_value_type("use_locking", use_locking, [bool], self.name)
3744
- self.add_prim_attr('side_effect_mem', True)
3745
-
3746
-
3747
- class LayerNorm(Primitive):
3748
- r"""
3749
- Applies the Layer Normalization to the input tensor.
3750
-
3751
- This operator will normalize the input tensor on given axis. LayerNorm is described in the paper
3752
- `Layer Normalization <https://arxiv.org/abs/1607.06450>`_.
3753
-
3754
- .. math::
3755
- y = \frac{x - mean}{\sqrt{variance + \epsilon}} * \gamma + \beta
3756
-
3757
- where :math:`\gamma` is scale, :math:`\beta` is bias, :math:`\epsilon` is epsilon.
3758
-
3759
- Args:
3760
- begin_norm_axis (int): The begin axis of the `input_x` to apply LayerNorm,
3761
- the value must be in [-1, rank(input_x)). Default: ``1`` .
3762
- begin_params_axis (int): The begin axis of the parameter input (`gamma`, `beta`) to
3763
- apply LayerNorm, the value must be in [-1, rank(input_x)). Default: ``1`` .
3764
- epsilon (float): A value added to the denominator for numerical stability(:math:`\epsilon`). Default: ``1e-7`` .
3765
-
3766
- Inputs:
3767
- - **input_x** (Tensor) - Tensor of shape :math:`(N, \ldots)`.
3768
- The input of LayerNorm. Supported dtypes: float16, float32, float64.
3769
- - **gamma** (Tensor) - Tensor of shape :math:`(P_\text{begin_params_axis}, \ldots, P_\text{rank(input_x)-1})`.
3770
- The learnable parameter :math:`\gamma` as the scale on norm. Supported dtypes: float16, float32, float64.
3771
- - **beta** (Tensor) - Tensor of shape :math:`(P_\text{begin_params_axis}, \ldots, P_\text{rank(input_x)-1})`.
3772
- The learnable parameter :math:`\beta` as the scale on norm. Supported dtypes: float16, float32, float64.
3773
-
3774
- Outputs:
3775
- tuple[Tensor], tuple of 3 tensors, the normalized input and the updated parameters.
3776
-
3777
- - **output_x** (Tensor) - The normalized input, has the same type and shape as the `input_x`.
3778
- - **mean** (Tensor) - The first `begin_norm_axis` dimensions of `mean` shape is the same as `input_x`,
3779
- and the remaining dimensions are 1. Suppose the shape of the `input_x` is :math:`(x_1, x_2, \ldots, x_R)`,
3780
- the shape of the `mean` is :math:`(x_1, \ldots, x_{begin\_params\_axis}, 1, \ldots, 1)`
3781
- (when `begin_params_axis=0`, the shape of `mean` is :math:`(1, \ldots, 1)` ).
3782
- - **variance** (Tensor) - Shape is the same as `mean` .
3783
-
3784
- Raises:
3785
- TypeError: If `begin_norm_axis` or `begin_params_axis` is not an int.
3786
- TypeError: If `epsilon` is not a float.
3787
- TypeError: If `input_x`, `gamma` or `beta` is not a Tensor.
3788
-
3789
- Supported Platforms:
3790
- ``Ascend`` ``GPU`` ``CPU``
3791
-
3792
- Examples:
3793
- >>> import mindspore
3794
- >>> import numpy as np
3795
- >>> from mindspore import Tensor, ops
3796
- >>> input_x = Tensor(np.array([[1, 2, 3], [1, 2, 3]]), mindspore.float32)
3797
- >>> gamma = Tensor(np.ones([3]), mindspore.float32)
3798
- >>> beta = Tensor(np.ones([3]), mindspore.float32)
3799
- >>> layer_norm = ops.LayerNorm()
3800
- >>> output, mean, variance = layer_norm(input_x, gamma, beta)
3801
- >>> print(output)
3802
- [[-0.2247448 1. 2.2247448]
3803
- [-0.2247448 1. 2.2247448]]
3804
- >>> print(mean)
3805
- [[2.]
3806
- [2.]]
3807
- >>> print(variance)
3808
- [[0.6666667]
3809
- [0.6666667]]
2953
+ ... def __init__(self):
2954
+ ... super(Net, self).__init__()
2955
+ ... self.apply_centerd_rms_prop = ops.ApplyCenteredRMSProp()
2956
+ ... self.var = Parameter(Tensor(np.ones([2, 2]).astype(np.float32)), name="var")
2957
+ ...
2958
+ ... def construct(self, mean_grad, mean_square, moment, grad, decay, momentum, epsilon, lr):
2959
+ ... out = self.apply_centerd_rms_prop(self.var, mean_grad, mean_square, moment, grad,
2960
+ ... lr, decay, momentum, epsilon)
2961
+ ... return out
2962
+ ...
2963
+ >>> net = Net()
2964
+ >>> mean_grad = Tensor(np.ones([2, 2]).astype(np.float32))
2965
+ >>> mean_square = Tensor(np.ones([2, 2]).astype(np.float32))
2966
+ >>> moment = Tensor(np.ones([2, 2]).astype(np.float32))
2967
+ >>> grad = Tensor(np.ones([2, 2]).astype(np.float32))
2968
+ >>> output = net(mean_grad, mean_square, moment, grad, 0.0, 1e-10, 0.001, 0.01)
2969
+ >>> print(net.var.asnumpy())
2970
+ [[0.68377227 0.68377227]
2971
+ [0.68377227 0.68377227]]
3810
2972
  """
3811
2973
 
3812
2974
  @prim_attr_register
3813
- def __init__(self, begin_norm_axis=1, begin_params_axis=1, epsilon=1e-7):
3814
- """Initialize LayerNorm."""
3815
- validator.check_value_type('begin_norm_axis', begin_norm_axis, [int], self.name)
3816
- validator.check_value_type('begin_params_axis', begin_params_axis, [int], self.name)
3817
- validator.check_value_type('epsilon', epsilon, [float], self.name)
2975
+ def __init__(self, use_locking=False):
2976
+ """Initialize ApplyCenteredRMSProp."""
2977
+ self.use_locking = validator.check_value_type("use_locking", use_locking, [bool], self.name)
2978
+ self.add_prim_attr('side_effect_mem', True)
3818
2979
 
3819
2980
 
3820
2981
  class L2Normalize(Primitive):
@@ -3833,8 +2994,9 @@ class L2Normalize(Primitive):
3833
2994
  On Ascend, input data type of float64 is currently not supported.
3834
2995
 
3835
2996
  Args:
3836
- axis (Union[list(int), tuple(int), int]): Specify the axis for calculating the L2 norm. Default: ``0`` .
3837
- epsilon (float): A small value added for numerical stability. Default: ``1e-4`` .
2997
+ axis (Union[list(int), tuple(int), int], optional): Specify the axis for calculating the L2 norm.
2998
+ Default: ``0`` .
2999
+ epsilon (float, optional): A small value added for numerical stability. Default: ``1e-4`` .
3838
3000
 
3839
3001
  Inputs:
3840
3002
  - **x** (Tensor) - Input to compute the normalization. Tensor of shape :math:`(N, *)`,
@@ -3879,266 +3041,6 @@ class L2Normalize(Primitive):
3879
3041
  self.axis = axis
3880
3042
 
3881
3043
 
3882
- class ResizeBilinear(PrimitiveWithInfer):
3883
- r"""
3884
- This API is deprecated, please use the :class:`mindspore.ops.ResizeBilinearV2` instead.
3885
- For general resizing with other interpolation methods, refer to :func:`mindspore.ops.interpolate` for more details.
3886
-
3887
- Note:
3888
- Dynamic shape feature is not supported for now.
3889
-
3890
- Supported Platforms:
3891
- Deprecated
3892
- """
3893
-
3894
- @prim_attr_register
3895
- def __init__(self, size, align_corners=False, half_pixel_centers=False):
3896
- """Initialize ResizeBilinear."""
3897
- validator.check_value_type("size", size, [tuple, list], self.name)
3898
- validator.check_equal_int(len(size), 2, "size len", self.name)
3899
- for item in size:
3900
- validator.check_positive_int(item, 'size item', self.name)
3901
- validator.check_value_type("size item", item, int, self.name)
3902
- self.align_corners = validator.check_value_type("align_corners", align_corners, [bool], self.name)
3903
- self.half_pixel_centers = validator.check_value_type("half_pixel_centers",
3904
- half_pixel_centers, [bool], self.name)
3905
- if half_pixel_centers and align_corners:
3906
- raise ValueError(f"If half_pixel_centers is True, align_corners must be False, but got {align_corners}")
3907
- for i, value in enumerate(size):
3908
- validator.check_positive_int(value, f'{i}th value of size', self.name)
3909
-
3910
- def infer_shape(self, input_shape):
3911
- validator.check("dimension of input", len(input_shape), "", 4, validator.EQ, self.name)
3912
- input_shape = list(input_shape)
3913
- batch, channel, _, _ = input_shape
3914
- out_shape = [batch, channel]
3915
- for i in self.size:
3916
- out_shape.append(int(i))
3917
- return out_shape
3918
-
3919
- def infer_dtype(self, input_dtype):
3920
- validator.check_tensor_dtype_valid('input_dtype', input_dtype, [mstype.float16, mstype.float32],
3921
- self.name)
3922
- return input_dtype
3923
-
3924
-
3925
- class UpsampleTrilinear3D(Primitive):
3926
- r"""
3927
- Performs upsampling with trilinear interpolation across 3dims for 5dim input Tensor.
3928
-
3929
- This operator scale up the volumetric input with specified `output_size` or `scales` factors,
3930
- using trilinear upscaling algorithm.
3931
-
3932
- Note:
3933
- One of `scales` and `output_size` must be specified. And it is an error if both are specified.
3934
-
3935
- Args:
3936
- align_corners (bool, optional): An optional bool. Default: ``False``.
3937
- If ``True``, the input and output tensors are aligned by the center points of their corner pixels,
3938
- preserving the values at the corner pixels.
3939
- If ``False`` , the input and output tensors are aligned by the corner points of their corner pixels,
3940
- and the interpolation use edge value padding for out of boundary values.
3941
-
3942
- Inputs:
3943
- - **x** (Tensor) - 5D tensor of shape :math:`(N, C, D_{in}, H_{in}, W_{in})`. Supporting types:
3944
- [float16, float32, float64].
3945
- - **output_size** (Union[tuple[int], list[int]]): A tuple or list of 3 int elements
3946
- :math:`(output\_depth, output\_height, output\_width)`. Default: ``None``.
3947
- - **scales** (Union[tuple[float], list[float]]): A tuple or list of 3 float
3948
- elements :math:`(scale\_depth, scale\_height, scale\_width)`. Default: ``None``.
3949
-
3950
- Outputs:
3951
- - **y** (Tensor) - Upsampled output with the same data type as `x`, whose shape is
3952
- :math:`(N, C, D_{out}, H_{out}, W_{out})`.
3953
-
3954
- Raises:
3955
- TypeError: When `output_size` is not ``None`` and `output_size` is not list[int] or tuple[int].
3956
- TypeError: When `scales` is not ``None`` and `scales` is not list[float] or tuple[float].
3957
- TypeError: If dtype of `x` is not in [float16, float32, float64].
3958
- TypeError: If type of `align_corners` is not bool.
3959
- ValueError: If any value of `output_size` is negative or zero when `output_size` is not ``None``.
3960
- ValueError: If any value of `scales` is negative or zero when `scales` is not ``None``.
3961
- ValueError: If shape of `x` is not 5D.
3962
- ValueError: If none of `scales` and `output_size` is specified or both specified.
3963
- ValueError: If size of `scales` is not equal 3 when `scales` is specified.
3964
- ValueError: If size of `output_size` is not equal 3 when `output_size` is specified.
3965
-
3966
- Supported Platforms:
3967
- ``Ascend`` ``GPU`` ``CPU``
3968
-
3969
- Examples:
3970
- >>> import numpy as np
3971
- >>> from mindspore import Tensor, ops
3972
- >>> net = ops.UpsampleTrilinear3D()
3973
- >>> in_x = Tensor(input_data=np.random.randn(2, 3, 4, 512, 256))
3974
- >>> output_size=[4, 64, 48]
3975
- >>> out = net(in_x, output_size, None)
3976
- >>> print(out.shape)
3977
- (2, 3, 4, 64, 48)
3978
- >>>
3979
- >>> net = ops.UpsampleTrilinear3D()
3980
- >>> in_x = Tensor(np.arange(1, 5, dtype=np.float32).reshape((1, 1, 1, 2, 2)))
3981
- >>> output_size=[2, 4, 4]
3982
- >>> out = net(in_x, output_size, None)
3983
- >>> print(out)
3984
- [[[[[1. 1.25 1.75 2. ]
3985
- [1.5 1.75 2.25 2.5 ]
3986
- [2.5 2.75 3.25 3.5 ]
3987
- [3. 3.25 3.75 4. ]]
3988
- [[1. 1.25 1.75 2. ]
3989
- [1.5 1.75 2.25 2.5 ]
3990
- [2.5 2.75 3.25 3.5 ]
3991
- [3. 3.25 3.75 4. ]]]]]
3992
- """
3993
-
3994
- @prim_attr_register
3995
- def __init__(self, align_corners=False):
3996
- """Initialize UpsampleTrilinear3D."""
3997
- self.init_prim_io_names(inputs=['x', 'output_size', 'scales'], outputs=['y'])
3998
- self.align_corners = align_corners
3999
- validator.check_bool(self.align_corners, "align_corners", self.name)
4000
- self.add_prim_attr('align_corners', self.align_corners)
4001
-
4002
-
4003
- class OneHot(Primitive):
4004
- r"""
4005
- Computes a one-hot tensor.
4006
-
4007
- The locations represented by indices in `indices` take value `on_value`, while all
4008
- other locations take value `off_value`.
4009
-
4010
- Note:
4011
- If the input indices is rank `N`, the output will have rank `N+1`. The new axis is created at dimension `axis`.
4012
- On Ascend, if `on_value` is Int64 dtype, `indices` must be Int64 dtype.
4013
-
4014
- Args:
4015
- axis (int): Position to insert the value. e.g. If shape of `indices` is :math:`(N, C)`, and `axis` is -1,
4016
- the output shape will be :math:`(N, C, D)`, If `axis` is 0, the output shape will be :math:`(D, N, C)`.
4017
- Default: ``-1`` .
4018
-
4019
- Inputs:
4020
- - **indices** (Tensor) - A tensor of indices. Tensor of shape :math:`(X_0, \ldots, X_n)`.
4021
- Data type must be int32 or int64.
4022
- - **depth** (int) - A scalar defining the depth of the one-hot dimension.
4023
- - **on_value** (Tensor) - A value to fill in output when `indices[j] = i`. Data type must be int32, int64,
4024
- float16 or float32.
4025
- - **off_value** (Tensor) - A value to fill in output when `indices[j] != i`.
4026
- It has the same data type as `on_value`.
4027
-
4028
- Outputs:
4029
- Tensor, one-hot tensor. Tensor of shape :math:`(X_0, \ldots, X_{axis}, \text{depth} ,X_{axis+1}, \ldots, X_n)`,
4030
- and it has the same data type as `on_value`.
4031
-
4032
- Raises:
4033
- TypeError: If `axis` or `depth` is not an int.
4034
- TypeError: If dtype of `indices` is not int32 or int64.
4035
- TypeError: If `indices`, `on_value` or `off_value` is not a Tensor.
4036
- ValueError: If `axis` is not in range [-1, len(indices_shape)].
4037
- ValueError: If `depth` is less than 0.
4038
-
4039
- Supported Platforms:
4040
- ``Ascend`` ``GPU`` ``CPU``
4041
-
4042
- Examples:
4043
- >>> import mindspore
4044
- >>> import numpy as np
4045
- >>> from mindspore import Tensor, ops
4046
- >>> indices = Tensor(np.array([0, 1, 2]), mindspore.int32)
4047
- >>> depth, on_value, off_value = 3, Tensor(1.0, mindspore.float32), Tensor(0.0, mindspore.float32)
4048
- >>> onehot = ops.OneHot()
4049
- >>> output = onehot(indices, depth, on_value, off_value)
4050
- >>> print(output)
4051
- [[1. 0. 0.]
4052
- [0. 1. 0.]
4053
- [0. 0. 1.]]
4054
- """
4055
-
4056
- @prim_attr_register
4057
- def __init__(self, axis=-1):
4058
- """Initialize OneHot."""
4059
- self.init_prim_io_names(inputs=['indices', 'depth', 'on_value', 'off_value'], outputs=['output'])
4060
- validator.check_value_type("axis", axis, [int], self.name)
4061
-
4062
-
4063
- class GeLU(Primitive):
4064
- r"""
4065
- Gaussian Error Linear Units activation function.
4066
-
4067
- GeLU is described in the paper `Gaussian Error Linear Units (GELUs) <https://arxiv.org/abs/1606.08415>`_.
4068
- And also please refer to `BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
4069
- <https://arxiv.org/abs/1810.04805>`_.
4070
-
4071
- GeLU is defined as follows:
4072
-
4073
- .. math::
4074
- GELU(x_i) = x_i*P(X < x_i)
4075
-
4076
- where :math:`P` is the cumulative distribution function of the standard Gaussian distribution,
4077
- :math:`x_i` is the input element.
4078
-
4079
- Inputs:
4080
- - **x** (Tensor) - The input of the activation function GeLU, the data type is float16, float32 or float64.
4081
-
4082
- Outputs:
4083
- Tensor, with the same type and shape as `x`.
4084
-
4085
- Raises:
4086
- TypeError: If `x` is not a Tensor.
4087
- TypeError: If dtype of `x` is not float16, float32 or float64.
4088
-
4089
- Supported Platforms:
4090
- ``Ascend`` ``GPU`` ``CPU``
4091
-
4092
- Examples:
4093
- >>> import mindspore
4094
- >>> import numpy as np
4095
- >>> from mindspore import Tensor, ops
4096
- >>> x = Tensor(np.array([1.0, 2.0, 3.0]), mindspore.float32)
4097
- >>> gelu = ops.GeLU()
4098
- >>> result = gelu(x)
4099
- >>> print(result)
4100
- [0.841192 1.9545976 2.9963627]
4101
- """
4102
-
4103
- @prim_attr_register
4104
- def __init__(self):
4105
- """Initialize GeLU"""
4106
- self.init_prim_io_names(inputs=['x'], outputs=['output'])
4107
-
4108
-
4109
- class FastGeLU(Primitive):
4110
- r"""
4111
- Fast Gaussian Error Linear Units activation function.
4112
-
4113
- Refer to :func:`mindspore.ops.fast_gelu` for more details.
4114
-
4115
- Inputs:
4116
- - **x** (Tensor) - Input to compute the FastGeLU with data type of float16 or float32.
4117
-
4118
- Outputs:
4119
- Tensor, with the same type and shape as `x`.
4120
-
4121
- Supported Platforms:
4122
- ``Ascend`` ``GPU`` ``CPU``
4123
-
4124
- Examples:
4125
- >>> import mindspore
4126
- >>> import numpy as np
4127
- >>> from mindspore import Tensor, ops
4128
- >>> x = Tensor(np.array([[-1.0, 4.0, -8.0], [2.0, -5.0, 9.0]]), mindspore.float32)
4129
- >>> fast_gelu = ops.FastGeLU()
4130
- >>> output = fast_gelu(x)
4131
- >>> print(output)
4132
- [[-1.5418735e-01 3.9921875e+00 -9.7473649e-06]
4133
- [ 1.9375000e+00 -1.0052517e-03 8.9824219e+00]]
4134
- """
4135
-
4136
- @prim_attr_register
4137
- def __init__(self):
4138
- """Initialize FastGeLU."""
4139
- self.init_prim_io_names(inputs=['x'], outputs=['output'])
4140
-
4141
-
4142
3044
  class GetNext(Primitive):
4143
3045
  """
4144
3046
  Returns the next element in the dataset queue.
@@ -4193,55 +3095,6 @@ class GetNext(Primitive):
4193
3095
  validator.check_value_type("output_num", output_num, [int], self.name)
4194
3096
 
4195
3097
 
4196
- class PReLU(PrimitiveWithInfer):
4197
- r"""
4198
- Parametric Rectified Linear Unit activation function.
4199
-
4200
- Refer to :func:`mindspore.ops.prelu` for more details.
4201
-
4202
- Inputs:
4203
- - **x** (Tensor) - The input Tensor of the activation function. The data type is float16 or float32.
4204
- The shape is :math:`(N, C, *)` where :math:`*` means, any number of additional dimensions.
4205
- - **weight** (Tensor) - Weight Tensor. The data type is float16 or float32.
4206
- The weight can only be a vector, and the length is the same as the number of channels C of the `input_x`.
4207
- On GPU devices, when the input is a scalar, the shape is 1.
4208
-
4209
- Outputs:
4210
- Tensor, with the same type as `x`.
4211
-
4212
- Supported Platforms:
4213
- ``Ascend`` ``GPU`` ``CPU``
4214
-
4215
- Examples:
4216
- >>> import mindspore
4217
- >>> import numpy as np
4218
- >>> from mindspore import Tensor, nn, ops
4219
- >>> class Net(nn.Cell):
4220
- ... def __init__(self):
4221
- ... super(Net, self).__init__()
4222
- ... self.prelu = ops.PReLU()
4223
- ... def construct(self, x, weight):
4224
- ... result = self.prelu(x, weight)
4225
- ... return result
4226
- ...
4227
- >>> x = Tensor(np.arange(-6, 6).reshape((2, 3, 2)), mindspore.float32)
4228
- >>> weight = Tensor(np.array([0.1, 0.6, -0.3]), mindspore.float32)
4229
- >>> net = Net()
4230
- >>> output = net(x, weight)
4231
- >>> print(output)
4232
- [[[-0.60 -0.50]
4233
- [-2.40 -1.80]
4234
- [ 0.60 0.30]]
4235
- [[ 0.00 1.00]
4236
- [ 2.00 3.00]
4237
- [ 4.0 5.00]]]
4238
- """
4239
-
4240
- @prim_attr_register
4241
- def __init__(self):
4242
- self.init_prim_io_names(inputs=['x', 'weight'], outputs=['output'])
4243
-
4244
-
4245
3098
  class LSTM(Primitive):
4246
3099
  r"""
4247
3100
  Performs the Long Short-Term Memory (LSTM) on the input.
@@ -4729,18 +3582,18 @@ class ComputeAccidentalHits(Primitive):
4729
3582
  num_true (int): The number of target classes per training example. Default: ``1`` .
4730
3583
 
4731
3584
  Inputs:
4732
- - **true_classes** (Tensor) - The target classes. With data type of int32 or int64
3585
+ - **true_classes** (Tensor) - The target classes. With data type of int64
4733
3586
  and shape :math:`(batch\_size, num\_true)`.
4734
3587
  - **sampled_candidates** (Tensor) - The Candidate sampling results of operators, types of training samples,
4735
- with data type of int32 or int64 and shape :math:`(num\_sampled, )`.
3588
+ with data type of int64 and shape :math:`(num\_sampled, )`.
4736
3589
 
4737
3590
  Outputs:
4738
3591
  Tuple of 3 Tensors.
4739
3592
 
4740
3593
  - **indices** (Tensor) - A Tensor with shape :math:`(num\_accidental\_hits, )`,
4741
- with the same type as `true_classes`.
3594
+ with data type of int32.
4742
3595
  - **ids** (Tensor) - A Tensor with shape :math:`(num\_accidental\_hits, )`,
4743
- with the same type as `true_classes`.
3596
+ with data type of int64.
4744
3597
  - **weights** (Tensor) - A Tensor with shape :math:`(num\_accidental\_hits, )`, with the type float32.
4745
3598
 
4746
3599
  Raises:
@@ -4926,150 +3779,36 @@ class Adam(Primitive):
4926
3779
  ... self.m = Parameter(Tensor(np.ones([2, 2]).astype(np.float32)), name="m")
4927
3780
  ... self.v = Parameter(Tensor(np.ones([2, 2]).astype(np.float32)), name="v")
4928
3781
  ... def construct(self, beta1_power, beta2_power, lr, beta1, beta2, epsilon, grad):
4929
- ... out = self.apply_adam(self.var, self.m, self.v, beta1_power, beta2_power, lr, beta1, beta2,
4930
- ... epsilon, grad)
4931
- ... return out
4932
- ...
4933
- >>> net = Net()
4934
- >>> gradient = Tensor(np.ones([2, 2]).astype(np.float32))
4935
- >>> output = net(0.9, 0.999, 0.001, 0.9, 0.999, 1e-8, gradient)
4936
- >>> print(net.var.asnumpy())
4937
- [[0.9996838 0.9996838]
4938
- [0.9996838 0.9996838]]
4939
- """
4940
- __mindspore_signature__ = (
4941
- sig.make_sig('var', sig.sig_rw.RW_WRITE, dtype=sig.sig_dtype.T),
4942
- sig.make_sig('m', sig.sig_rw.RW_WRITE, dtype=sig.sig_dtype.T1),
4943
- sig.make_sig('v', sig.sig_rw.RW_WRITE, dtype=sig.sig_dtype.T2),
4944
- sig.make_sig('beta1_power', dtype=sig.sig_dtype.T3),
4945
- sig.make_sig('beta2_power', dtype=sig.sig_dtype.T4),
4946
- sig.make_sig('lr', dtype=sig.sig_dtype.T5),
4947
- sig.make_sig('beta1', dtype=sig.sig_dtype.T6),
4948
- sig.make_sig('beta2', dtype=sig.sig_dtype.T7),
4949
- sig.make_sig('epsilon', dtype=sig.sig_dtype.T8),
4950
- sig.make_sig('gradient', dtype=sig.sig_dtype.T)
4951
- )
4952
-
4953
- @prim_attr_register
4954
- def __init__(self, use_locking=False, use_nesterov=False):
4955
- """Initialize Adam."""
4956
- validator.check_value_type("use_locking", use_locking, [bool], self.name)
4957
- validator.check_value_type("use_nesterov", use_nesterov, [bool], self.name)
4958
- self.add_prim_attr('side_effect_mem', True)
4959
-
4960
-
4961
- class AdamWeightDecay(Primitive):
4962
- r"""
4963
- Updates gradients by the Adaptive Moment Estimation algorithm with weight decay (AdamWeightDecay).
4964
-
4965
- The Adam algorithm is proposed in `Adam: A Method for Stochastic Optimization <https://arxiv.org/abs/1412.6980>`_.
4966
- The AdamWeightDecay variant was proposed in `Decoupled Weight Decay Regularization
4967
- <https://arxiv.org/abs/1711.05101>`_.
4968
-
4969
- The updating formulas are as follows,
4970
-
4971
- .. math::
4972
- \begin{array}{ll} \\
4973
- m = \beta_1 * m + (1 - \beta_1) * g \\
4974
- v = \beta_2 * v + (1 - \beta_2) * g * g \\
4975
- update = \frac{m}{\sqrt{v} + \epsilon} \\
4976
- update =
4977
- \begin{cases}
4978
- update + weight\_decay * w
4979
- & \text{ if } weight\_decay > 0 \\
4980
- update
4981
- & \text{ otherwise }
4982
- \end{cases} \\
4983
- w = w - lr * update
4984
- \end{array}
4985
-
4986
- :math:`m` represents the 1st moment vector, :math:`v` represents the 2nd moment vector, :math:`g` represents
4987
- `gradient`, :math:`\beta_1, \beta_2` represent `beta1` and `beta2`,
4988
- :math:`lr` represents `learning_rate`, :math:`w` represents `var`, :math:`decay` represents `weight_decay`,
4989
- :math:`\epsilon` represents `epsilon`.
4990
-
4991
- Args:
4992
- use_locking (bool): Whether to enable a lock to protect variable tensors from being updated.
4993
- If ``True`` , updates of the var, m, and v tensors will be protected by a lock.
4994
- If ``False`` , the result is unpredictable. Default: ``False`` .
4995
-
4996
- Inputs:
4997
- - **var** (Parameter) - Weights to be updated. The shape is :math:`(N, *)` where :math:`*` means,
4998
- any number of additional dimensions. The data type can be float16 or float32.
4999
- - **m** (Parameter) - The 1st moment vector in the updating formula,
5000
- it should have the the shape as `var`. The data type can be float16 or float32.
5001
- - **v** (Parameter) - The 2nd moment vector in the updating formula,
5002
- it should have the same shape as `m`.
5003
- - **lr** (float) - :math:`lr` in the updating formula. The paper suggested value is :math:`10^{-8}`,
5004
- the data type should be float32.
5005
- - **beta1** (float) - The exponential decay rate for the 1st moment estimations,
5006
- the data type should be float32. The paper suggested value is :math:`0.9`
5007
- - **beta2** (float) - The exponential decay rate for the 2nd moment estimations,
5008
- the data type should be float32. The paper suggested value is :math:`0.999`
5009
- - **epsilon** (float) - Term added to the denominator to improve numerical stability,
5010
- the data type should be float32.
5011
- - **decay** (float) - The weight decay value, must be a scalar tensor with float32 data type.
5012
- Default: ``0.0`` .
5013
- - **gradient** (Tensor) - Gradient, has the same shape as `var`.
5014
-
5015
- Outputs:
5016
- Tuple of 3 Tensor, the updated parameters.
5017
-
5018
- - **var** (Tensor) - The same shape and data type as `var`.
5019
- - **m** (Tensor) - The same shape and data type as `m`.
5020
- - **v** (Tensor) - The same shape and data type as `v`.
5021
-
5022
- Raises:
5023
- TypeError: If `use_locking` is not a bool.
5024
- TypeError: If `lr`, `beta1`, `beta2`, `epsilon` or `decay` is not a float32.
5025
- TypeError: If `var`, `m` or `v` is not a Parameter with dtype float16 or float32.
5026
- TypeError: If `gradient` is not a Tensor.
5027
- ValueError: If `eps` <= 0.
5028
- ValueError: If `beta1`, `beta2` is not in range (0.0,1.0).
5029
- ValueError: If `decay` < 0.
5030
-
5031
- Supported Platforms:
5032
- ``Ascend`` ``GPU`` ``CPU``
5033
-
5034
- Examples:
5035
- >>> import numpy as np
5036
- >>> import mindspore.nn as nn
5037
- >>> from mindspore import Tensor, Parameter, ops
5038
- >>> class Net(nn.Cell):
5039
- ... def __init__(self):
5040
- ... super(Net, self).__init__()
5041
- ... self.adam_weight_decay = ops.AdamWeightDecay()
5042
- ... self.var = Parameter(Tensor(np.ones([2, 2]).astype(np.float32)), name="var")
5043
- ... self.m = Parameter(Tensor(np.ones([2, 2]).astype(np.float32)), name="m")
5044
- ... self.v = Parameter(Tensor(np.ones([2, 2]).astype(np.float32)), name="v")
5045
- ... def construct(self, lr, beta1, beta2, epsilon, decay, grad):
5046
- ... out = self.adam_weight_decay(self.var, self.m, self.v, lr, beta1, beta2,
5047
- ... epsilon, decay, grad)
3782
+ ... out = self.apply_adam(self.var, self.m, self.v, beta1_power, beta2_power, lr, beta1, beta2,
3783
+ ... epsilon, grad)
5048
3784
  ... return out
3785
+ ...
5049
3786
  >>> net = Net()
5050
3787
  >>> gradient = Tensor(np.ones([2, 2]).astype(np.float32))
5051
- >>> output = net(0.001, 0.9, 0.999, 1e-8, 0.0, gradient)
3788
+ >>> output = net(0.9, 0.999, 0.001, 0.9, 0.999, 1e-8, gradient)
5052
3789
  >>> print(net.var.asnumpy())
5053
- [[0.999 0.999]
5054
- [0.999 0.999]]
3790
+ [[0.9996838 0.9996838]
3791
+ [0.9996838 0.9996838]]
5055
3792
  """
5056
3793
  __mindspore_signature__ = (
5057
3794
  sig.make_sig('var', sig.sig_rw.RW_WRITE, dtype=sig.sig_dtype.T),
5058
- sig.make_sig('m', sig.sig_rw.RW_WRITE, dtype=sig.sig_dtype.T2),
3795
+ sig.make_sig('m', sig.sig_rw.RW_WRITE, dtype=sig.sig_dtype.T1),
5059
3796
  sig.make_sig('v', sig.sig_rw.RW_WRITE, dtype=sig.sig_dtype.T2),
5060
- sig.make_sig('lr', dtype=sig.sig_dtype.T1),
5061
- sig.make_sig('beta1', dtype=sig.sig_dtype.T1),
5062
- sig.make_sig('beta2', dtype=sig.sig_dtype.T1),
5063
- sig.make_sig('epsilon', dtype=sig.sig_dtype.T1),
5064
- sig.make_sig('decay', dtype=sig.sig_dtype.T1),
3797
+ sig.make_sig('beta1_power', dtype=sig.sig_dtype.T3),
3798
+ sig.make_sig('beta2_power', dtype=sig.sig_dtype.T4),
3799
+ sig.make_sig('lr', dtype=sig.sig_dtype.T5),
3800
+ sig.make_sig('beta1', dtype=sig.sig_dtype.T6),
3801
+ sig.make_sig('beta2', dtype=sig.sig_dtype.T7),
3802
+ sig.make_sig('epsilon', dtype=sig.sig_dtype.T8),
5065
3803
  sig.make_sig('gradient', dtype=sig.sig_dtype.T)
5066
3804
  )
5067
3805
 
5068
3806
  @prim_attr_register
5069
- def __init__(self, use_locking=False):
5070
- """Initialize AdamWeightDecay."""
5071
- self.add_prim_attr('side_effect_mem', True)
3807
+ def __init__(self, use_locking=False, use_nesterov=False):
3808
+ """Initialize Adam."""
5072
3809
  validator.check_value_type("use_locking", use_locking, [bool], self.name)
3810
+ validator.check_value_type("use_nesterov", use_nesterov, [bool], self.name)
3811
+ self.add_prim_attr('side_effect_mem', True)
5073
3812
 
5074
3813
 
5075
3814
  class AdamNoUpdateParam(Primitive):
@@ -5632,16 +4371,20 @@ class KLDivLoss(Primitive):
5632
4371
  Note:
5633
4372
  - On Ascend, float64 dtype is not currently supported.
5634
4373
  - The output aligns with the mathematical definition of Kullback-Leibler divergence
5635
- only when `reduction` is set to 'batchmean'.
4374
+ only when `reduction` is set to ``'batchmean'``.
4375
+ - On Ascend, the value of `reduction` must be one of ``'batchmean'``, ``'none'`` or ``'sum'``.
4376
+ - On GPU, the value of `reduction` must be one of ``'mean'``, ``'none'`` or ``'sum'``.
4377
+ - On CPU, the value of `reduction` must be one of ``'mean'``, ``'batchmean'``, ``'none'``
4378
+ or ``'sum'``.
5636
4379
 
5637
4380
  Args:
5638
4381
  reduction (str): Specifies the reduction to be applied to the output.
5639
4382
  Default: ``'mean'`` .
5640
4383
 
5641
- - On Ascend, the value of `reduction` must be one of ``'batchmean'``, ``'none'`` or ``'sum'``.
5642
- - On GPU, the value of `reduction` must be one of ``'mean'``, ``'none'`` or ``'sum'``.
5643
- - On CPU, the value of `reduction` must be one of ``'mean'``, ``'batchmean'``, ``'none'``
5644
- or ``'sum'``.
4384
+ - ``'none'``: no reduction will be applied.
4385
+ - ``'mean'``: compute and return the mean of elements in the output.
4386
+ - ``'sum'``: the output elements will be summed.
4387
+ - ``'batchmean'``: average loss is taken over the batch, similar to the mean mode.
5645
4388
 
5646
4389
  Inputs:
5647
4390
  - **logits** (Tensor) - The input Tensor. The data type must be float16, float32 or float64.
@@ -6497,22 +5240,21 @@ class ApplyAddSign(Primitive):
6497
5240
  is the last moment of :math:`m_{t+1}`, :math:`lr` represents scaling factor `lr`, :math:`g` represents `grad`,
6498
5241
  :math:`\alpha` represents `alpha`, :math:`\beta` represents `beta`.
6499
5242
 
6500
- Inputs of `var`, `accum` and `grad` comply with the implicit type conversion rules
5243
+ The data type of all inputs must be float16 or float32 on Ascend and float16, float32 or float64 on CPU and GPU.
5244
+
5245
+ Inputs of `var`, `accum` and `grad` , `sign_decay` and `beta` comply with the implicit type conversion rules
6501
5246
  to make the data types consistent.
6502
5247
  If they have different data types, the lower priority data type will be converted to
6503
5248
  the relatively highest priority data type.
6504
- The data type of inputs must be float16 or float32 on Ascend and float16, float32 or float64 on CPU and GPU.
6505
5249
 
6506
5250
  Inputs:
6507
- - **var** (Parameter) - Variable tensor to be updated. With float16, float32 or float64 data type.
5251
+ - **var** (Parameter) - Variable tensor to be updated.
6508
5252
  The shape is :math:`(N, *)` where :math:`*` means, any number of additional dimensions.
6509
5253
  - **m** (Parameter) - Variable tensor to be updated, has the same data type as `var`.
6510
5254
  - **lr** (Union[Number, Tensor]) - The learning rate value, must be a scalar.
6511
- With float16, float32 or float64 data type.
6512
- - **alpha** (Union[Number, Tensor]) - Must be a scalar. With float16, float32 or float64 data type.
6513
- - **sign_decay** (Union[Number, Tensor]) - Must be a scalar. With float16, float32 or float64 data type.
5255
+ - **alpha** (Union[Number, Tensor]) - Must be a scalar.
5256
+ - **sign_decay** (Union[Number, Tensor]) - Must be a scalar.
6514
5257
  - **beta** (Union[Number, Tensor]) - The exponential decay rate, must be a scalar.
6515
- With float16, float32 or float64 data type.
6516
5258
  - **grad** (Tensor) - A tensor of the same shape as `var`, for the gradient.
6517
5259
 
6518
5260
  Outputs:
@@ -6522,7 +5264,8 @@ class ApplyAddSign(Primitive):
6522
5264
  - **m** (Tensor) - The same shape and data type as `m`.
6523
5265
 
6524
5266
  Raises:
6525
- TypeError: If dtype of `var`, `lr`, `alpha`, `sign_decay` or `beta` is not float16, float32 or float64.
5267
+ TypeError: If dtype of `var`, `lr` and `alpha` is not float16, float32 or float64.
5268
+ TypeError: If dtype of `sign_decay` and `beta` are both not float16, float32 or float64.
6526
5269
  TypeError: If `lr`, `alpha` or `sign_decay` is neither a Number nor a Tensor.
6527
5270
  TypeError: If `grad` is not a Tensor.
6528
5271
  TypeError: If the data type of `var`, `accum` and `grad` conversion of Parameter is not supported.
@@ -6829,9 +5572,12 @@ class LARSUpdate(PrimitiveWithInfer):
6829
5572
  For more details, please refer to :class:`mindspore.nn.LARS`.
6830
5573
 
6831
5574
  Args:
6832
- epsilon (float): Term added to the denominator to improve numerical stability. Default: ``1e-05`` .
6833
- hyperpara (float): Trust coefficient for calculating the local learning rate. Default: ``0.001`` .
6834
- use_clip (bool): Whether to use clip operation for calculating the local learning rate. Default: ``False`` .
5575
+ epsilon (float, optional): Term added to the denominator to improve numerical stability.
5576
+ Default: ``1e-05`` .
5577
+ hyperpara (float, optional): Trust coefficient for calculating the local learning rate.
5578
+ Default: ``0.001`` .
5579
+ use_clip (bool, optional): Whether to use clip operation for calculating the local learning rate.
5580
+ Default: ``False`` .
6835
5581
 
6836
5582
  Inputs:
6837
5583
  - **weight** (Tensor) - A tensor, representing the weight.
@@ -7033,7 +5779,7 @@ class SparseApplyFtrl(Primitive):
7033
5779
  Examples:
7034
5780
  >>> import mindspore
7035
5781
  >>> import numpy as np
7036
- >>> from mindspore import Tensor, nn, Parameter
5782
+ >>> from mindspore import Tensor, nn, Parameter, ops
7037
5783
  >>> class SparseApplyFtrlNet(nn.Cell):
7038
5784
  ... def __init__(self):
7039
5785
  ... super(SparseApplyFtrlNet, self).__init__()
@@ -7131,69 +5877,6 @@ class SparseApplyFtrlV2(PrimitiveWithInfer):
7131
5877
  return var_dtype, accum_dtype, linear_dtype
7132
5878
 
7133
5879
 
7134
- class Dropout(PrimitiveWithCheck):
7135
- r"""
7136
- During training, randomly zeroes some of the elements of the input tensor
7137
- with probability :math:`1 - keep\_prob` from a Bernoulli distribution. It plays the
7138
- role of reducing neuron correlation and avoid overfitting.
7139
-
7140
- Refer to :func:`mindspore.ops.dropout` for more details.
7141
-
7142
- Args:
7143
- keep_prob (float, optional): The keep rate, between 0 and 1, e.g. keep_prob = 0.9,
7144
- means dropping out 10% of input units. Default: ``0.5`` .
7145
- Seed0 (int, optional): Seed0 value for random generating. Default: ``0`` .
7146
- Seed1 (int, optional): Seed1 value for random generating. Default: ``0`` .
7147
-
7148
- Inputs:
7149
- - **x** (Tensor) - The input Tensor of shape :math:`(*, N)`, with data type of float16, float32 or float64.
7150
-
7151
- Outputs:
7152
- - **output** (Tensor) - With the same shape and data type as `x`.
7153
- - **mask** (Tensor) - The mask applied to `x`.
7154
-
7155
- - On GPU and CPU, `mask` has the same shape and data type as `x`.
7156
- - On Ascend, to achieve a better performance, it is denoted as a 1-D Tensor
7157
- with Uint8 data type. It has shape :math:`(byte\_counts, )` where :math:`byte\_counts` is the
7158
- number of bytes needed to mask the input `x`, :math:`byte\_counts` is calculated using the
7159
- following formula:
7160
-
7161
- .. math::
7162
-
7163
- byte\_counts = \text{ceil}(\text{cumprod}(x.shape) / 128) * 16
7164
-
7165
- If shape of `x` is :math:`(2, 3, 4, 5, 6)`, the shape of `mask` will be :math:`(96, )`.
7166
-
7167
- Supported Platforms:
7168
- ``Ascend`` ``GPU`` ``CPU``
7169
-
7170
- Examples:
7171
- >>> import mindspore
7172
- >>> import numpy as np
7173
- >>> from mindspore import Tensor, ops
7174
- >>> dropout = ops.Dropout(keep_prob=0.5)
7175
- >>> x = Tensor(np.ones([1, 2, 3, 4, 5]), mindspore.float32)
7176
- >>> output, mask = dropout(x)
7177
- >>> print(output.shape, mask.shape, mask.dtype)
7178
- (1, 2, 3, 4, 5) (16,) UInt8
7179
- """
7180
-
7181
- @prim_attr_register
7182
- def __init__(self, keep_prob=0.5, Seed0=0, Seed1=0):
7183
- """Initialize Dropout."""
7184
- self.seed0 = validator.check_value_type("Seed0", Seed0, [int], self.name)
7185
- self.seed1 = validator.check_value_type("Seed1", Seed1, [int], self.name)
7186
- self.keep_prob = validator.check_float_range(keep_prob, 0, 1, validator.INC_RIGHT, "keep_prob", self.name)
7187
- self.add_prim_attr("side_effect_hidden", True)
7188
-
7189
- def check_shape(self, x_shape):
7190
- validator.check_int(len(x_shape), 1, validator.GE, "x_shape", self.name)
7191
-
7192
- def check_dtype(self, x_dtype):
7193
- valid_dtypes = (mstype.float16, mstype.float32, mstype.float64)
7194
- validator.check_tensor_dtype_valid("x", x_dtype, valid_dtypes, self.name)
7195
-
7196
-
7197
5880
  class Dropout2D(PrimitiveWithInfer):
7198
5881
  r"""
7199
5882
  During training, randomly zeroes some channels of the input tensor with probability :math:`1-keep\_prob`
@@ -7545,7 +6228,7 @@ class DynamicRNN(Primitive):
7545
6228
  - **w** (Tensor) - Weight. Tensor of shape :math:`(input\_size + hidden\_size, 4 * hidden\_size)`.
7546
6229
  The data type must be float16.
7547
6230
  - **b** (Tensor) - Bias. Tensor of shape :math:`(4 * hidden\_size)`.
7548
- The data type must be float16 or float32.
6231
+ The data type must be float16.
7549
6232
  - **seq_length** (Tensor) - The length of each batch. Tensor of shape :math:`(batch\_size, )`.
7550
6233
  Only `None` is currently supported.
7551
6234
  - **init_h** (Tensor) - Hidden state of initial time. Tensor of shape :math:`(1, batch\_size, hidden\_size)`.
@@ -7614,11 +6297,13 @@ class DynamicRNN(Primitive):
7614
6297
  self.forget_bias = validator.check_value_type("forget_bias", forget_bias, [float], self.name)
7615
6298
  self.cell_depth = validator.check_value_type("cell_depth", cell_depth, [int], self.name)
7616
6299
  self.keep_prob = validator.check_value_type("keep_prob", keep_prob, [float], self.name)
6300
+ validator.check_number_range(keep_prob, 0.0, 1.0, validator.INC_BOTH, float, "keep_prob")
7617
6301
  self.cell_clip = validator.check_value_type("cell_clip", cell_clip, [float], self.name)
7618
6302
  self.num_proj = validator.check_non_negative_int(num_proj, "num_proj", self.name)
7619
6303
  self.forget_bias = validator.check_value_type("forget_bias", forget_bias, [float], self.name)
7620
6304
  self.use_peephole = validator.check_value_type("use_peephole", use_peephole, [bool], self.name)
7621
6305
  self.time_major = validator.check_value_type("time_major", time_major, [bool], self.name)
6306
+ validator.check("time_major", time_major, "the supported value", True, validator.EQ, self.name)
7622
6307
  self.is_training = validator.check_value_type("is_training", is_training, [bool], self.name)
7623
6308
  validator.check_value_type("cell_type", cell_type, [str], self.name)
7624
6309
  self.cell_type = validator.check_string(cell_type, ['LSTM'], "cell_type", self.name)
@@ -7649,21 +6334,21 @@ class DynamicGRUV2(Primitive):
7649
6334
  :math:`\sigma` is the sigmoid function, and :math:`*` is the Hadamard product.
7650
6335
 
7651
6336
  Args:
7652
- direction (str): A string identifying the direction in the operator. Default: ``'UNIDIRECTIONAL'`` .
6337
+ direction (str, optional): A string identifying the direction in the operator. Default: ``'UNIDIRECTIONAL'`` .
7653
6338
  Only ``'UNIDIRECTIONAL'`` is currently supported.
7654
- cell_depth (int): An integer identifying the cell depth in the operator. Default: ``1`` .
7655
- keep_prob (float): A float identifying the keep prob in the operator. Default: ``1.0`` .
7656
- cell_clip (float): A float identifying the cell clip in the operator. Default: ``-1.0`` .
7657
- num_proj (int): An integer identifying the number projection in the operator. Default: ``0`` .
7658
- time_major (bool): A bool identifying the time major in the operator. Default: ``True`` .
7659
- activation (str) : A string identifying the type of activation function in the operator.
6339
+ cell_depth (int, optional): An integer identifying the cell depth in the operator. Default: ``1`` .
6340
+ keep_prob (float, optional): A float identifying the keep prob in the operator. Default: ``1.0`` .
6341
+ cell_clip (float, optional): A float identifying the cell clip in the operator. Default: ``-1.0`` .
6342
+ num_proj (int, optional): An integer identifying the number projection in the operator. Default: ``0`` .
6343
+ time_major (bool, optional): A bool identifying the time major in the operator. Default: ``True`` .
6344
+ activation (str, optional) : A string identifying the type of activation function in the operator.
7660
6345
  Default: ``'tanh'`` . Only ``'tanh'`` is currently supported.
7661
- gate_order (str): A string identifying the gate order in weight and bias. Default: ``'rzh'`` .
6346
+ gate_order (str, optional): A string identifying the gate order in weight and bias. Default: ``'rzh'`` .
7662
6347
  ``'zrh'`` is another option. Here, ``'rzh'`` means the gate order is: reset gate, update gate, hidden gate.
7663
6348
  ``'zrh'`` means the gate order is: update gate, reset gate, hidden gate.
7664
- reset_after (bool): A bool identifying whether to apply reset gate after matrix multiplication.
6349
+ reset_after (bool, optional): A bool identifying whether to apply reset gate after matrix multiplication.
7665
6350
  Default: ``True`` .
7666
- is_training (bool): A bool identifying is training in the operator. Default: ``True`` .
6351
+ is_training (bool, optional): A bool identifying is training in the operator. Default: ``True`` .
7667
6352
 
7668
6353
  Inputs:
7669
6354
  - **x** (Tensor) - Current words.
@@ -8007,8 +6692,9 @@ class Conv3D(Primitive):
8007
6692
 
8008
6693
  Applies a 3D convolution over an input tensor which is typically of shape
8009
6694
  :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`,
8010
- where :math:`N` is batch size, :math:`C` is channel number, :math:`D` is feature depth,
8011
- :math:`H` is feature height, :math:`W` is feature width.
6695
+ where :math:`N` is batch size, :math:`C` is channel number,
6696
+ :math:`D, H, W`
6697
+ are the depth, height and width of the feature map, respectively.
8012
6698
 
8013
6699
  The output is calculated based on formula:
8014
6700
 
@@ -8019,25 +6705,30 @@ class Conv3D(Primitive):
8019
6705
 
8020
6706
  where :math:`bias` is the output channel bias, :math:`ccor` is
8021
6707
  the `cross-correlation <https://en.wikipedia.org/wiki/Cross-correlation>`_,
8022
- , :math:`weight` is the convolution kernel value and :math:`X` represents the input feature map.
6708
+ :math:`weight` is the convolution kernel value and :math:`X` represents the input feature map.
8023
6709
 
8024
6710
  Here are the indices' meanings:
8025
- - :math:`i` corresponds to the batch number, ranging from 0 to N-1, where N is the batch size of the input.
8026
6711
 
8027
- - :math:`j` corresponds to the output channel, ranging from 0 to C_{out}-1, where C_{out} is the number of
6712
+ - :math:`i` corresponds to the batch number, the range is :math:`[0, N-1]`,
6713
+ where :math:`N` is the batch size of the input.
6714
+
6715
+ - :math:`j` corresponds to the output channel, the range is :math:`[0, C_{out}-1]`,
6716
+ where :math:`C_{out}` is the number of
8028
6717
  output channels, which is also equal to the number of kernels.
8029
6718
 
8030
- - :math:`k` corresponds to the input channel, ranging from 0 to C_{in}-1, where C_{in} is the number of
6719
+ - :math:`k` corresponds to the input channel, the range is :math:`[0, C_{in}-1]`,
6720
+ where :math:`C_{in}` is the number of
8031
6721
  input channels, which is also equal to the number of channels in the convolutional kernels.
8032
6722
 
8033
- Therefore, in the above formula, :math:`{bias}(C_{out_j})` represents the bias of the :math:`j`-th
8034
- output channel, :math:`{weight}(C_{out_j}, k)` represents the slice of the :math:`j`-th convolutional
6723
+ Therefore, in the above formula, :math:`{bias}(C_{\text{out}_j})` represents the bias of the :math:`j`-th
6724
+ output channel, :math:`{weight}(C_{\text{out}_j}, k)`represents the slice of the :math:`j`-th convolutional
8035
6725
  kernel in the :math:`k`-th channel, and :math:`{X}(N_i, k)` represents the slice of the :math:`k`-th input
8036
6726
  channel in the :math:`i`-th batch of the input feature map.
8037
6727
 
8038
6728
  The shape of the convolutional kernel is given by
8039
6729
  :math:`(\text{kernel_size[0]}, \text{kernel_size[1]}, \text{kernel_size[2]})`
8040
- where :math:`kernel\_size[0]` , :math:`kernel\_size[1]` and :math:`kernel\_size[2]` are the depth,
6730
+ where :math:`\text{kernel_size[0]}` ,
6731
+ :math:`\text{kernel_size[1]}` and :math:`\text{kernel_size[2]}` are the depth,
8041
6732
  height and width of the kernel, respectively.
8042
6733
  If we consider the input and output channels as well as the `group` parameter, the complete kernel shape
8043
6734
  will be :math:`(C_{out}, C_{in} / \text{group}, \text{kernel_size[0]},
@@ -8048,8 +6739,8 @@ class Conv3D(Primitive):
8048
6739
  <http://vision.stanford.edu/cs598_spring07/papers/Lecun98.pdf>`_.
8049
6740
 
8050
6741
  Note:
8051
- 1. On Ascend platform, `groups = 1` must be satisfied.
8052
- 2. On Ascend `dilation` on depth only supports the case of 1.
6742
+ 1. On Ascend platform, :math:`groups=1` must be satisfied.
6743
+ 2. On Ascend :math:`dilation` on depth only supports the case of 1.
8053
6744
 
8054
6745
  Args:
8055
6746
  out_channel (int): Specifies output channel :math:`C_{out}`.
@@ -8671,7 +7362,7 @@ class Conv3DTranspose(Primitive):
8671
7362
  \times (\text{kernel_size}[2] - 1) + \text{output_padding}[2] + 1
8672
7363
 
8673
7364
  Note:
8674
- In Ascend, `group` must be equal to 1.
7365
+ In Ascend, only support :math:`group=1`.
8675
7366
 
8676
7367
  Args:
8677
7368
  in_channel (int): The channel of the input x.
@@ -8739,7 +7430,7 @@ class Conv3DTranspose(Primitive):
8739
7430
  ValueError: If `pad` is a tuple whose length is not equal to 6.
8740
7431
  ValueError: If `pad_mode` is not equal to 'pad' and `pad` is not equal to (0, 0, 0, 0, 0, 0).
8741
7432
  ValueError: If `data_format` is not 'NCDHW'.
8742
- TypeError: If data type of dout and weight is not float16.
7433
+ TypeError: If data type of dout and weight is neither float16 nor float32.
8743
7434
  ValueError: If bias is not none. The rank of dout and weight is not 5.
8744
7435
 
8745
7436
  Supported Platforms:
@@ -9014,46 +7705,6 @@ class SoftShrink(Primitive):
9014
7705
  validator.check_number("lambd", lambd, 0, validator.GE, self.name)
9015
7706
 
9016
7707
 
9017
- class HShrink(Primitive):
9018
- r"""
9019
- Hard Shrink activation function.
9020
-
9021
- Refer to :func:`mindspore.ops.hardshrink` for more details.
9022
-
9023
- Args:
9024
- lambd (float, optional): The threshold :math:`\lambda` defined by the Hard Shrink formula. Default: ``0.5`` .
9025
-
9026
- Inputs:
9027
- - **input_x** (Tensor) - The input of Hard Shrink with data type of float16 or float32.
9028
-
9029
- Outputs:
9030
- Tensor, the same shape and data type as the input.
9031
-
9032
- Supported Platforms:
9033
- ``Ascend`` ``GPU`` ``CPU``
9034
-
9035
- Examples:
9036
- >>> import mindspore as ms
9037
- >>> import mindspore.ops as ops
9038
- >>> from mindspore import Tensor, nn
9039
- >>> import numpy as np
9040
- >>> input_x = Tensor(np.array([[0.5, 1, 2.0], [0.0533, 0.0776, -2.1233]]), ms.float32)
9041
- >>> hshrink = ops.HShrink()
9042
- >>> output = hshrink(input_x)
9043
- >>> print(output)
9044
- [[ 0. 1. 2. ]
9045
- [ 0. 0. -2.1233]]
9046
- """
9047
-
9048
- @prim_attr_register
9049
- def __init__(self, lambd=0.5):
9050
- """Initialize HShrink"""
9051
- validator.check_value_type('lambd', lambd, [float], self.name)
9052
- if lambd < 0.0:
9053
- lambd = 0.0
9054
- self.add_prim_attr('lambd', lambd)
9055
-
9056
-
9057
7708
  class ApplyAdagradDA(Primitive):
9058
7709
  r"""
9059
7710
  Update `var` according to the proximal adagrad scheme.
@@ -9098,11 +7749,9 @@ class ApplyAdagradDA(Primitive):
9098
7749
  - **global_step** ([Number, Tensor]) - Training step number. Must be a scalar. With int32 or int64 data type.
9099
7750
 
9100
7751
  Outputs:
9101
- Tuple of 3 Tensors, the updated parameters.
7752
+ Tuple of 1 Tensors, the updated parameters.
9102
7753
 
9103
7754
  - **var** (Tensor) - The same shape and data type as `var`.
9104
- - **gradient_accumulator** (Tensor) - The same shape and data type as `gradient_accumulator`.
9105
- - **gradient_squared_accumulator** (Tensor) - The same shape and data type as `gradient_squared_accumulator`.
9106
7755
 
9107
7756
  Raises:
9108
7757
  TypeError: If `var`, `gradient_accumulator` or `gradient_squared_accumulator` is not a Parameter.
@@ -9153,11 +7802,7 @@ class ApplyAdagradDA(Primitive):
9153
7802
  >>> print(output)
9154
7803
  (Tensor(shape=[2, 2], dtype=Float32, value=
9155
7804
  [[-7.39064650e-04, -1.36888528e-03],
9156
- [-5.96988888e-04, -1.42478070e-03]]), Tensor(shape=[2, 2], dtype=Float32, value=
9157
- [[ 4.00000006e-01, 7.00000048e-01],
9158
- [ 2.00000003e-01, 6.99999988e-01]]), Tensor(shape=[2, 2], dtype=Float32, value=
9159
- [[ 2.90000021e-01, 2.60000020e-01],
9160
- [ 1.09999999e-01, 2.40000010e-01]]))
7805
+ [-5.96988888e-04, -1.42478070e-03]]))
9161
7806
  """
9162
7807
 
9163
7808
  __mindspore_signature__ = (
@@ -9669,6 +8314,14 @@ class ApplyAdamWithAmsgradV2(Primitive):
9669
8314
  var:=var-lr_t*m_t/(\sqrt{\hat v_t}+\epsilon) \\
9670
8315
  \end{array}
9671
8316
 
8317
+ :math:`t` represents updating step while :math:`m` represents the 1st moment vector,
8318
+ :math:`v` represents the 2nd moment vector, :math:`\hat v_t` represents `vhat`,
8319
+ :math:`lr` represents learning rate,
8320
+ :math:`g` represents `grad`, :math:`\beta_1, \beta_2` represent `beta1` and `beta2`,
8321
+ :math:`\beta_1^{t}` represents `beta1_power`, :math:`\beta_2^{t}` represents `beta2_power`,
8322
+ :math:`var` represents the variable to be updated,
8323
+ :math:`\epsilon` represents `epsilon`.
8324
+
9672
8325
  All of the inputs are consistent with implicit type conversion rules,
9673
8326
  which ensure that the data types are the same. If they have different data types, the lower precision data type
9674
8327
  will be converted to the data type with relatively higher precision.
@@ -9770,83 +8423,6 @@ class ApplyAdamWithAmsgradV2(Primitive):
9770
8423
  self.add_prim_attr("side_effect_mem", True)
9771
8424
 
9772
8425
 
9773
- class GridSampler3D(Primitive):
9774
- """
9775
- Given an input and a grid, the output is calculated using the input values
9776
- and pixel positions in the grid. Only volume (5-D) input is supported.
9777
-
9778
- .. warning::
9779
- This is an experimental API that is subject to change or deletion.
9780
-
9781
- Refer to :func:`mindspore.ops.grid_sample` for more details.
9782
-
9783
- Args:
9784
- interpolation_mode (str, optional): An optional string specifying the interpolation method.
9785
- The optional values are ``"bilinear"`` or ``"nearest"`` . Default: ``"bilinear"`` .
9786
-
9787
- - ``"nearest"``: Nearest neighbor interpolation. Each output pixel is assigned the value of the
9788
- nearest input pixel. This method is simple and fast but can result in blocky or pixelated outputs.
9789
- - ``"bilinear"``: Bilinear interpolation. Each output pixel is a weighted average of the four nearest input
9790
- pixels, computed using bilinear interpolation. This method produces smoother results compared
9791
- to nearest neighbor interpolation.
9792
-
9793
- padding_mode (str, optional): An optional string specifying the pad method.
9794
- The optional values are ``"zeros"`` , ``"border"`` or ``"reflection"`` . Default: ``"zeros"`` .
9795
- When the sampling grid is outside input's bounds, effects of various padding modes are as follows:
9796
-
9797
- - ``"zeros"``: Pads the input tensor with zeros.
9798
- - ``"border"``: Pads the input tensor with the values of the pixels on the border of the tensor.
9799
- - ``"reflection"``: Pads the input tensor by reflecting the values of the pixels at the
9800
- boundary of the tensor.
9801
-
9802
- align_corners (bool, optional): An optional bool specifying alignment method. If set to ``True`` ,
9803
- the extrema (-1 and 1) are considered as referring to
9804
- the center points of the input’s corner pixels. If set to ``False`` , they are instead considered as
9805
- referring to the corner points of the input’s corner pixels, making the sampling more resolution agnostic.
9806
- Default: ``False`` .
9807
-
9808
- Inputs:
9809
- - **input_x** (Tensor) - A 5-D tensor with dtype of float16, float32 or float64
9810
- and shape of :math:`(N, C, D_{in}, H_{in}, W_{in})`.
9811
- - **grid** (Tensor) - A 5-D tensor whose dtype is the same as `input_x` and whose shape is :math:`(N, D_{out},
9812
- H_{out}, W_{out}, 3)`.
9813
-
9814
- Outputs:
9815
- A 5-D Tensor whose dtype is the same as `input_x` and whose shape is :math:`(N, C, D_{out}, H_{out}, W_{out})`.
9816
-
9817
- Supported Platforms:
9818
- ``Ascend`` ``GPU`` ``CPU``
9819
-
9820
- Examples:
9821
- >>> import numpy as np
9822
- >>> from mindspore import Tensor, ops
9823
- >>> gridsampler = ops.GridSampler3D(interpolation_mode='bilinear', padding_mode='zeros', align_corners=True)
9824
- >>> input_x = Tensor(np.arange(32).reshape((2, 2, 2, 2, 2)).astype(np.float32))
9825
- >>> grid = Tensor(np.arange(-0.2, 1, 0.1).reshape((2, 2, 1, 1, 3)).astype(np.float32))
9826
- >>> output = gridsampler(input_x, grid)
9827
- >>> print(output)
9828
- [[[[[ 3.3 ]]
9829
- [[ 4.35 ]]]
9830
- [[[11.300001]]
9831
- [[12.349999]]]]
9832
- [[[[21.4 ]]
9833
- [[22.449999]]]
9834
- [[[29.4 ]]
9835
- [[30.449999]]]]]
9836
- """
9837
-
9838
- @prim_attr_register
9839
- def __init__(self, interpolation_mode='bilinear', padding_mode='zeros', align_corners=False):
9840
- """Initialize GridSampler3D."""
9841
- validator.check_string(interpolation_mode, ['bilinear', 'nearest'], 'interpolation_mode', self.name)
9842
- validator.check_string(padding_mode, ['zeros', 'border', 'reflection'], 'padding_mode', self.name)
9843
- validator.check_bool(align_corners, 'align_corners', self.name)
9844
- self.init_prim_io_names(inputs=['input_x', 'grid'], outputs=['output'])
9845
- self.add_prim_attr('interpolation_mode', interpolation_mode)
9846
- self.add_prim_attr('padding_mode', padding_mode)
9847
- self.add_prim_attr('align_corners', align_corners)
9848
-
9849
-
9850
8426
  class FractionalMaxPool(Primitive):
9851
8427
  r"""
9852
8428
  Performs fractional max pooling on the input.
@@ -10399,104 +8975,21 @@ class DeformableOffsets(Primitive):
10399
8975
  self.add_prim_attr('modulated', self.modulated)
10400
8976
 
10401
8977
 
10402
- class GridSampler2D(Primitive):
10403
- """
10404
- This operation samples 2d `input_x` by using interpolation based on flow field grid,
10405
- which is usually gennerated by :func:`mindspore.ops.affine_grid`.
10406
-
10407
- .. warning::
10408
- This is an experimental API that is subject to change or deletion.
10409
-
10410
- Refer to :func:`mindspore.ops.grid_sample` for more details.
10411
-
10412
- Args:
10413
- interpolation_mode (str, optional): An optional string specifying the interpolation method.
10414
- The optional values are
10415
- ``"bilinear"`` or ``"nearest"`` . Default: ``"bilinear"`` .
10416
-
10417
- - ``"nearest"``: Nearest neighbor interpolation. Each output pixel is assigned the value of the
10418
- nearest input pixel. This method is simple and fast but can result in blocky or pixelated outputs.
10419
- - ``"bilinear"``: Bilinear interpolation. Each output pixel is a weighted average of the four nearest input
10420
- pixels, computed using bilinear interpolation. This method produces smoother results compared
10421
- to nearest neighbor interpolation.
10422
-
10423
- padding_mode (str, optional): An optional string specifying the pad method.
10424
- The optional values are ``"zeros"`` , ``"border"`` or ``"reflection"`` . Default: ``"zeros"`` .
10425
- When the sampling grid is outside input's bounds, effects of various padding modes are as follows:
10426
-
10427
- - ``"zeros"``: Pads the input tensor with zeros.
10428
- - ``"border"``: Pads the input tensor with the values of the pixels on the border of the tensor.
10429
- - ``"reflection"``: Pads the input tensor by reflecting the values of the pixels at the
10430
- boundary of the tensor.
10431
-
10432
- align_corners (bool, optional): An optional bool. When set to ``True`` ,
10433
- the centers of the corner pixels of the input
10434
- and output tensors are aligned. When set to ``False`` , it is not aligned. Default: ``False`` .
10435
-
10436
- Inputs:
10437
- - **input_x** (Tensor) - A 4-D tensor with shape
10438
- :math:`(N, C, H_{in}, W_{in})`. Supported dtypes:
10439
-
10440
- - Ascend: float16, float32.
10441
- - GPU/CPU: float16, float32, float64.
10442
-
10443
- - **grid** (Tensor) - A 4-D tensor whose dtype is the same as `input_x` and whose shape is
10444
- :math:`(N, H_{out}, W_{out}, 2)`.
10445
- Used to specify the sampling pixel locations normalized by the input spatial
10446
- dimensions.
10447
-
10448
- Outputs:
10449
- A 4-D Tensor whose dtype is the same as `input_x` and whose shape is :math:`(N, C, H_{out}, W_{out})`.
10450
-
10451
- Supported Platforms:
10452
- ``Ascend`` ``GPU`` ``CPU``
10453
-
10454
- Examples:
10455
- >>> import numpy as np
10456
- >>> from mindspore import Tensor, ops
10457
- >>> gridsampler = ops.GridSampler2D(interpolation_mode='bilinear', padding_mode='zeros', align_corners=True)
10458
- >>> input_x = Tensor(np.arange(16).reshape((2, 2, 2, 2)).astype(np.float32))
10459
- >>> grid = Tensor(np.arange(-9, 9, 0.5).reshape((2, 3, 3, 2)).astype(np.float32))
10460
- >>> output = gridsampler(input_x, grid)
10461
- >>> print(output)
10462
- [[[[ 0. 0. 0. ]
10463
- [ 0. 0. 0. ]
10464
- [ 0. 0. 0.5 ]]
10465
- [[ 0. 0. 0. ]
10466
- [ 0. 0. 0. ]
10467
- [ 0. 1.5 4.5 ]]]
10468
- [[[10. 8.25 1.375]
10469
- [ 0. 0. 0. ]
10470
- [ 0. 0. 0. ]]
10471
- [[14. 11.25 1.875]
10472
- [ 0. 0. 0. ]
10473
- [ 0. 0. 0. ]]]]
10474
- """
10475
-
10476
- @prim_attr_register
10477
- def __init__(self, interpolation_mode='bilinear', padding_mode='zeros', align_corners=False):
10478
- """Initialize GridSampler2D."""
10479
- validator.check_string(interpolation_mode, ['bilinear', 'nearest'], 'interpolation_mode', self.name)
10480
- validator.check_string(padding_mode, ['zeros', 'border', 'reflection'], 'padding_mode', self.name)
10481
- validator.check_bool(align_corners, 'align_corners', self.name)
10482
- self.init_prim_io_names(inputs=['input', 'grid'], outputs=['output'])
10483
- self.add_prim_attr('interpolation_mode', interpolation_mode)
10484
- self.add_prim_attr('padding_mode', padding_mode)
10485
- self.add_prim_attr('align_corners', align_corners)
10486
-
10487
-
10488
8978
  class Pdist(Primitive):
10489
8979
  r"""
10490
8980
  Computes the p-norm distance between each pair of row vectors in the input.
10491
8981
 
10492
8982
  Refer to :func:`mindspore.ops.pdist` for more details.
10493
8983
 
8984
+ Note:
8985
+ The pdist operator involves exponentiation, the inf/nan calculation result may be generated
8986
+ when the float16 input is used. The float32 input is recommended.
8987
+
10494
8988
  Args:
10495
8989
  p (float, optional): The order of norm distance, :math:`p∈[0, ∞)`. Default: ``2.0`` .
10496
8990
 
10497
8991
  Inputs:
10498
- - **x** (Tensor) - Input tensor of shape :math:`(*B, N, M)`. :math:`*B` is batch size,
10499
- one-dim or multi-dim. Supported dtypes: float16, float32 or float64.
8992
+ - **x** (Tensor) - Input tensor. Supported dtypes: float16, float32 or float64.
10500
8993
 
10501
8994
  Outputs:
10502
8995
  Tensor, has the same dtype as `x`.
@@ -10523,71 +9016,6 @@ class Pdist(Primitive):
10523
9016
  self.init_prim_io_names(inputs=['x'], outputs=['y'])
10524
9017
 
10525
9018
 
10526
- class UpsampleNearest3D(Primitive):
10527
- r"""
10528
- Performs nearest neighbor upsampling operation.
10529
-
10530
- This operator scale up the volumetric input with specified `output_size` or `scales` factors, using nearest
10531
- neighbor algorithm.
10532
-
10533
- One of `output_size` or `scales` must be given, and can not specified both at the same time.
10534
-
10535
- Inputs:
10536
- - **x** (Tensor) - 5D tensor of shape :math:`(N, C, D_{in}, H_{in}, W_{in})`.
10537
- Supporting types: [float16, float32, float64].
10538
- - **output_size** (Union[tuple[int], list[int]]): A tuple or list of int specifying the output volumetric size.
10539
- Default: ``None``.
10540
- - **scales** (Union[tuple[float], list[float]]): A tuple or list of float specifying the upsampling factors.
10541
- Default: ``None``.
10542
-
10543
- Outputs:
10544
- - **y** (Tensor) - Upsampled output with the same type as `x` , whose shape is
10545
- :math:`(N, C, D_{out}, H_{out}, W_{out})`.
10546
-
10547
- Raises:
10548
- TypeError: When `output_size` is not ``None`` and `output_size` is not list[int] or tuple[int].
10549
- TypeError: When `scales` is not ``None`` and `scales` is not list[float] or tuple[float].
10550
- TypeError: If dtype of `x` is not int [uint8, float16, float32, float64].
10551
- ValueError: If any value of `output_size` is negative or zero when `output_size` is not ``None``.
10552
- ValueError: If any value of `scales` is negative or zero when `scales` is not ``None``.
10553
- ValueError: If shape of `x` is not 5D.
10554
- ValueError: If none of `scales` and `output_size` is specified or both specified.
10555
- ValueError: If size of `scales` is not equal 3 when `scales` is specified.
10556
- ValueError: If size of `output_size` is not equal 3 when `output_size` is specified.
10557
-
10558
- Supported Platforms:
10559
- ``Ascend`` ``GPU`` ``CPU``
10560
-
10561
- Examples:
10562
- >>> import numpy as np
10563
- >>> from mindspore import Tensor, ops
10564
- >>> from mindspore import dtype as mstype
10565
- >>> x = Tensor(np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16])
10566
- ... .reshape([1, 1, 2, 2, 4]), mstype.float32)
10567
- >>> output_size = [3, 4, 5]
10568
- >>> net = ops.UpsampleNearest3D()
10569
- >>> output = net(x, output_size, None)
10570
- >>> print(output)
10571
- [[[[[ 1. 1. 2. 3. 4.]
10572
- [ 1. 1. 2. 3. 4.]
10573
- [ 5. 5. 6. 7. 8.]
10574
- [ 5. 5. 6. 7. 8.]]
10575
- [[ 1. 1. 2. 3. 4.]
10576
- [ 1. 1. 2. 3. 4.]
10577
- [ 5. 5. 6. 7. 8.]
10578
- [ 5. 5. 6. 7. 8.]]
10579
- [[ 9. 9. 10. 11. 12.]
10580
- [ 9. 9. 10. 11. 12.]
10581
- [13. 13. 14. 15. 16.]
10582
- [13. 13. 14. 15. 16.]]]]]
10583
- """
10584
-
10585
- @prim_attr_register
10586
- def __init__(self):
10587
- """Initialize UpsampleNearest3D."""
10588
- self.init_prim_io_names(inputs=['x', 'output_size', 'scales'], outputs=['y'])
10589
-
10590
-
10591
9019
  class SparseApplyAdagradDA(Primitive):
10592
9020
  r"""
10593
9021
  Update `var` according to the proximal adagrad scheme.
@@ -11230,54 +9658,6 @@ class MaxPoolWithArgmaxV2(Primitive):
11230
9658
  self.add_prim_attr("ceil_mode", self.ceil_mode)
11231
9659
 
11232
9660
 
11233
- class Dense(Primitive):
11234
- r"""
11235
- The dense connected fusion operator.
11236
-
11237
- Applies dense connected operator for the input. The implement of the operation is as:
11238
-
11239
- .. math::
11240
- output = x @ w ^ T + b,
11241
-
11242
- where :math:`x` is the input tensor, :math:`w` is a weight matrix with the same data type as the :math:`x` ,
11243
- and :math:`b` is a bias vector with the same data type as the :math:`x` (only if `b` is not ``None``).
11244
-
11245
- Inputs:
11246
- - **x** (Tensor) - The shape must meet the following requirement: :math:`len(x.shape)>0`.
11247
- - **w** (Tensor) - The shape must meet the following requirements:
11248
- If :math:`len(x.shape)>1`, :math:`len(w.shape)=2`. If :math:`len(x.shape)=1`, :math:`len(w.shape)=1`.
11249
- :math:`w.shape[-1]=x.shape[-1]`.
11250
- - **b** (Union[Tensor, None]) - If `b` is not ``None``, the shape must meet the following requirements:
11251
- If :math:`len(x.shape)>1`, :math:`len(b.shape)=0` or :math:`len(b.shape)=1` .
11252
- If :math:`len(b.shape)=1`, :math:`b.shape[0]=w.shape[0]`.
11253
- If :math:`len(x.shape)=1`, :math:`len(b.shape)=0`.
11254
-
11255
- Outputs:
11256
- If :math:`len(x.shape)>1`, Tensor of shape :math:`(*x.shape[:-1], w.shape[0])`.
11257
- If :math:`len(x.shape)=1`, Tensor of shape :math:`()`.
11258
-
11259
- Supported Platforms:
11260
- ``Ascend`` ``GPU`` ``CPU``
11261
-
11262
- Examples:
11263
- >>> import numpy as np
11264
- >>> from mindspore import Tensor, ops
11265
- >>> x = Tensor(np.random.random((4, 5, 6, 7)).astype(np.float32))
11266
- >>> weight = Tensor(np.random.random((6, 7)).astype(np.float32))
11267
- >>> bias = Tensor(np.random.random((6,)).astype(np.float32))
11268
- >>> dense = ops.Dense()
11269
- >>> output = dense(x, weight, bias)
11270
- >>> print(output.shape)
11271
- (4, 5, 6, 6)
11272
- """
11273
-
11274
- @prim_attr_register
11275
- def __init__(self):
11276
- """Initialize Dense."""
11277
- self.init_prim_io_names(inputs=['x', 'w', 'b'], outputs=["output"])
11278
- self.add_prim_attr("has_bias", True)
11279
-
11280
-
11281
9661
  class WKV(Primitive):
11282
9662
  r"""
11283
9663
  The WKV computation is similar to AFT(Zhai et al., 2021), but W is now a channel-wise vector multiplied
@@ -11338,7 +9718,8 @@ class PromptFlashAttention(Primitive):
11338
9718
  S -- Sequence length
11339
9719
  H -- Hidden size
11340
9720
 
11341
- Refer to :func:mindspore.ops.prompt_flash_attention for more detail.
9721
+ Note:
9722
+ experiment ops
11342
9723
 
11343
9724
  .. warning::
11344
9725
  This is an experimental API that is subject to change or deletion.
@@ -11355,6 +9736,7 @@ class PromptFlashAttention(Primitive):
11355
9736
  num_key_value_heads (int): head numbers of key/value which are used in GQA algorithm.
11356
9737
  The value o indicates if the key and value have the same head nums, use numHeads. Default: 0.
11357
9738
  sparse_mode (int): Default: 0
9739
+ inner_precise (int): 0, float16 high precision. 1, high performance. default 1
11358
9740
 
11359
9741
  Inputs:
11360
9742
  - **query** (Tensor) - The query tensor with data type of float16 or float32.
@@ -11365,8 +9747,8 @@ class PromptFlashAttention(Primitive):
11365
9747
  Input tensor of shape :math:`(B, S, H)` / `(B, N, S, D)`.
11366
9748
  - **attn_mask** (Tensor) - The attention mask tensor with data type of float16 or float32.
11367
9749
  For each element, 0 indicates retention and 1 indicates discard. Input tensor of shape :math:`(B, 1, S, S)`.
11368
- - **actual_seq_lengths** (Tensor): Describe actual sequence length of each input with data type of int.
11369
- - **actual_seq_lengths_kv** (Tensor): Describe actual sequence length of each input with data type of int.
9750
+ - **actual_seq_lengths** (Tensor): Describe actual sequence length of each input with data type of int64.
9751
+ - **actual_seq_lengths_kv** (Tensor): Describe actual sequence length of each input with data type of int64.
11370
9752
  - **pse_shift** (Tensor) - The position encoding tensor with data type of float16 or float32.
11371
9753
  - **dep_scale1** (Tensor)
11372
9754
  - **quant_scale1** (Tensor)
@@ -11374,11 +9756,10 @@ class PromptFlashAttention(Primitive):
11374
9756
  - **quant_scale2** (Tensor)
11375
9757
  - **quant_offset2** (Tensor)
11376
9758
 
11377
-
11378
9759
  Outputs:
11379
9760
  - **attention_out** (Tensor) - Input tensor of shape :math:`(B, S, H)` / `(B, N, S, D)`.
11380
9761
 
11381
- Supported Platforms:
9762
+ Supported Platforms:
11382
9763
  ``Ascend``
11383
9764
 
11384
9765
  Examples:
@@ -11392,15 +9773,16 @@ class PromptFlashAttention(Primitive):
11392
9773
  >>> query = Tensor(np.ones((B, N, S, D), dtype=np.float16))
11393
9774
  >>> key = Tensor(np.ones((B, N, S, D), dtype=np.float16))
11394
9775
  >>> value = Tensor(np.ones((B, N, S, D), dtype=np.float16))
9776
+ >>> attn_mask = Tensor(np.ones((B, 1, S, S), dtype=np.float16))
11395
9777
  >>> pfa = P.PromptFlashAttention(N, input_layout='BNSD')
11396
- >>> out = pfa(query, key, value, None, None, None, None, None, None, None, None, None)
11397
- >>> print(out[0].shape)
9778
+ >>> out = pfa(query, key, value, attn_mask, None, None, None, None, None, None, None, None)
9779
+ >>> print(out.shape)
11398
9780
  (1, 16, 256, 16)
11399
9781
  """
11400
9782
 
11401
9783
  @prim_attr_register
11402
- def __init__(self, num_heads, scale_value=1.0, pre_tokens=2147483547, next_tokens=0, input_layout='BSH',
11403
- num_key_value_heads=0, sparse_mode=0):
9784
+ def __init__(self, num_heads, scale_value=1.0, pre_tokens=214748647, next_tokens=0, input_layout='BSH',
9785
+ num_key_value_heads=0, sparse_mode=0, inner_precise=1):
11404
9786
  """Initialize PromptFlashAttention."""
11405
9787
  validator.check_value_type('num_heads', num_heads, [int], self.name)
11406
9788
  validator.check_value_type('scale_value', scale_value, [float], self.name)
@@ -11409,87 +9791,78 @@ class PromptFlashAttention(Primitive):
11409
9791
  validator.check_value_type('input_layout', input_layout, [str], self.name)
11410
9792
  validator.check_value_type('num_key_value_heads', num_key_value_heads, [int], self.name)
11411
9793
  validator.check_value_type('sparse_mode', sparse_mode, [int], self.name)
9794
+ validator.check_value_type('inner_precise', inner_precise, [int], self.name)
11412
9795
  self.init_prim_io_names(inputs=["query", "key", "value", "attn_mask", "actual_seq_lengths",
11413
9796
  "actual_seq_lengths_kv", "pse_shift", "deq_scale1", "quant_scale1",
11414
9797
  "deq_scale2", "quant_scale2", "quant_offset2"],
11415
9798
  outputs=["attention_out"])
11416
9799
 
11417
9800
 
11418
- class FlashAttentionScore(Primitive):
9801
+ class IncreFlashAttention(Primitive):
11419
9802
  r"""
11420
- FlashAttentionScore.
9803
+ The interface for fully inference.
9804
+
9805
+ B -- Batch size
9806
+
9807
+ S -- Sequence length
9808
+
9809
+ H -- Hidden size
9810
+
11421
9811
  .. warning::
11422
9812
  This is an experimental API that is subject to change or deletion.
11423
- B -- Batch size
11424
- S1 -- Sequence length of query
11425
- S2 -- Sequence length of key and value
11426
- N1 -- Num heads of query
11427
- N2 -- Num heads of key and value, and N2 must be a factor of N1
11428
- D -- head size
11429
- H1 -- Hidden size of query, which equals to N1 * D
11430
- H2 -- Hidden size of key and value, which equals to N2 * D
11431
- Args:
11432
- head_num (int): The head num of query.
11433
- keep_prob (float): The keep probability of dropout. Default: 1.0.
11434
- scale_value (float): The scale value. Default: 1.0.
11435
- pre_tokens (int): Previous tokens. Default: 65536.
11436
- next_tokens (int): Next tokens. Default: 65536.
11437
- inner_precise (int): Specify the execution mode, where 0 indicates high precision mode and 1 indicates high
11438
- performance mode. Only support 0 currently. Default: 0.
11439
- input_layout (str, optional): Specifies the layout of `query`, the value must be one of ["BSH", "BNSD"].
11440
- Default: "BSH".
11441
- sparse_mode (int): Default 0.
9813
+ If there is no input parameter and no default value, None needs to be passed.
11442
9814
 
11443
- Inputs:
11444
- - **query** (Tensor[float16, float32, bfloat16]) - The query tensor.
11445
- Input tensor of shape :math:`(B, S1, H1)` or `(B, N1, S1, D)`.
11446
- - **key** (Tensor[float16, float32, bfloat16]) - The key tensor.
11447
- Input tensor of shape :math:`(B, S2, H2)` or `(B, N2, S2, D)`.
11448
- - **value** (Tensor[float16, float32, bfloat16]) - The value tensor.
11449
- Input tensor of shape :math:`(B, S2, H2)` or `(B, N2, S2, D)`.
11450
- - **real_shift** (Tensor[float16, float32, bfloat16], None) - The position embedding code.
11451
- Input tensor of shape :math: `(B, N1, S1, S2)` or `(B, N1, 1, S2)`.
11452
- - **drop_mask** (Tensor[uint8], None) - The dropout mask tensor.
11453
- Input tensor of shape :math:`(B, N1, S1, S2 // 8) or None`.
11454
- - **padding_mask** (None) - The padding mask of float16 or float32, not implemented yet.
11455
- - **attn_mask** (Tensor[uint8], None) - The attention mask tensor.
11456
- For each element, 0 indicates retention and 1 indicates discard.
11457
- Input tensor of shape :math:`(B, N1, S1, S2)`, `(B, 1, S1, S2)` or `(S1, S2)`.
11458
- - **prefix** (Tensor[int64], None) - Not implemented yet.
11459
- Input tensor of shape :math:`(B,)`.
9815
+ Args:
9816
+ - **num_heads** (int) - The number of heads.
9817
+ - **input_layout** (str) - the data layout of the input qkv, support `(BSH)` and `(BNSD)`. Default `BSH`.
9818
+ - **scale_value** (double) - The scale value indicating the scale coefficient, which is used as the scalar of
9819
+ Muls in the calculation. Default: 1.0.
9820
+ - **num_key_value_heads** (int) - head numbers of key/value which are used in GQA algorithm.
9821
+ The value o indicates if the key and value have the same head nums, use numHeads. Default: 0.
9822
+ - **block_size** (int) - Default: 0.
9823
+ - **inner_precise** (int) - Default: 1.
9824
+
9825
+ Inputs:
9826
+ - **query** (Tensor) - The query tensor with data type of float16 or bfloat16.
9827
+ Input tensor of shape :math:`(B, 1, H)` / :math:`(B, N, 1, D)`.
9828
+ - **key** (TensorList) - The key tensor with data type of float16 or bfloat16.
9829
+ Input tensor of shape :math:`(B, S, H)` / :math:`(B, N, S, D)`.
9830
+ - **value** (TensorList) - The value tensor with data type of float16 or bfloat16.
9831
+ Input tensor of shape :math:`(B, S, H)` / :math:`(B, N, S, D)`.
9832
+ - **attn_mask** (Tensor) - The attention mask tensor with data type of float16 or bool.
9833
+ Input tensor of shape :math:`(B, S)` / :math:`(B, 1, S)` / :math:`(B, 1, 1, S)`.
9834
+ - **actual_seq_lengths** (Tensor) - Describe actual sequence length of each input with data type of int.
9835
+ - **pse_shift** (Tensor) - The position encoding tensor with data type of float16 or float32.
9836
+ - **dequant_scale1** (Tensor) - Quantitative parametor, the tensor with data type of uint64.
9837
+ - **quant_scale1** (Tensor) - Quantitative parametor, the tensor with data type of float.
9838
+ - **dequant_scale2** (Tensor) - Quantitative parametor, the tensor with data type of uint64.
9839
+ - **quant_scale2** (Tensor) - Quantitative parametor, the tensor with data type of float.
9840
+ - **quant_offset2** (Tensor) - Quantitative parametor, the tensor with data type of float.
9841
+ - **antiquant_scale** (Tensor) - Quantitative parametor, the tensor with data type of float.
9842
+ - **antiquant_offset** (Tensor) - Quantitative parametor, the tensor with data type of float.
9843
+ - **block_table** (Tensor) - The tensor with data type of float.
11460
9844
 
11461
9845
  Outputs:
11462
- - **softmax_max** (Tensor[float32]) - (B, N1, S1, 8)
11463
- - **softmax_sum** (Tensor[float32]) - (B, N1, S1, 8)
11464
- - **softmax_out** (Tensor[float32]) - Useless output, ignore it. Output tensor of shape : `()`
11465
- - **attention_out** (Tensor[float16, float32, bfloat16]) - The output of attention, its shape, and data type
11466
- are the same as the query.
9846
+ - **attention_out** (Tensor) - Input tensor of shape :math:`(B, 1, H)` / :math:`(B, N, 1, D)`.
11467
9847
 
11468
9848
  Supported Platforms:
11469
9849
  ``Ascend``
11470
9850
  """
11471
9851
 
11472
9852
  @prim_attr_register
11473
- def __init__(self, head_num, keep_prob=1.0, scale_value=1.0, pre_tokens=65536, next_tokens=65536, inner_precise=0,
11474
- input_layout="BSH", sparse_mode=0):
11475
- """Initialize FlashAttentionScore"""
11476
- validator.check_value_type('head_num', head_num, [int], self.name)
11477
- validator.check_value_type('keep_prob', keep_prob, [int, float], self.name)
11478
- validator.check_float(keep_prob, 0.0, validator.GE, "keep_prob", self.name)
11479
- validator.check_float(keep_prob, 1.0, validator.LE, "keep_prob", self.name)
9853
+ def __init__(self, num_heads, input_layout="BSH", scale_value=1.0, num_key_value_heads=0, block_size=0,
9854
+ inner_precise=1):
9855
+ """Initialize IncreFlashAttention."""
9856
+ validator.check_value_type('num_heads', num_heads, [int], self.name)
9857
+ validator.check_value_type('input_layout', input_layout, [str], self.name)
11480
9858
  validator.check_value_type('scale_value', scale_value, [float], self.name)
11481
- validator.check_value_type('pre_tokens', pre_tokens, [int], self.name)
11482
- validator.check_value_type('next_tokens', next_tokens, [int], self.name)
9859
+ validator.check_value_type('num_key_value_heads', num_key_value_heads, [int], self.name)
9860
+ validator.check_value_type('block_size', block_size, [int], self.name)
11483
9861
  validator.check_value_type('inner_precise', inner_precise, [int], self.name)
11484
- validator.check_value_type('sparse_mode', sparse_mode, [int], self.name)
11485
- if inner_precise not in [0]:
11486
- raise ValueError(f"Attribute 'inner_precise' must be 0, but got {inner_precise}")
11487
- validator.check_value_type('input_layout', input_layout, [str], self.name)
11488
- if input_layout not in ["BSH", "BNSD"]:
11489
- raise ValueError(f"Attribute 'input_layout' must be either 'BSH' or 'BNSD', but got {input_layout}")
11490
- self.init_prim_io_names(
11491
- inputs=['query', 'key', 'value', 'real_shift', 'drop_mask', 'padding_mask', 'attn_mask', 'prefix'],
11492
- outputs=['softmax_max', 'softmax_sum', 'softmax_out', 'attention_out'])
9862
+ self.init_prim_io_names(inputs=["query", "key", "value", "attn_mask", "actual_seq_lengths", "pse_shift",
9863
+ "dequant_scale1", "quant_scale1", "dequant_scale2", "quant_scale2",
9864
+ "quant_offset2", "antiquant_scale", "antiquant_offset", "block_table"],
9865
+ outputs=["attention_out"])
11493
9866
 
11494
9867
 
11495
9868
  class RmsNorm(Primitive):
@@ -11527,57 +9900,3 @@ class RmsNorm(Primitive):
11527
9900
  """Initialize Dense."""
11528
9901
  validator.check_value_type("epsilon", epsilon, [float], self.name)
11529
9902
  self.init_prim_io_names(inputs=['x', 'gamma'], outputs=["y", "rstd"])
11530
-
11531
-
11532
- class PagedAttention(Primitive):
11533
- r"""
11534
- .. warning::
11535
- This is an experimental API that is subject to change or deletion.
11536
- """
11537
- @prim_attr_register
11538
- def __init__(self, head_num, scale_value=1.0, kv_head_num=0):
11539
- """Initialize PagedAttention"""
11540
- validator.check_value_type('head_num', head_num, [int], self.name)
11541
- validator.check_value_type('scale_value', scale_value, [float], self.name) # scale after qkbmm
11542
- validator.check_value_type('kv_head_num', kv_head_num, [int], self.name) # for MQA
11543
- self.init_prim_io_names(
11544
- inputs=['query', 'key_cache', 'value_cache', 'block_tables', 'context_lens'],
11545
- outputs=['attention_out'])
11546
-
11547
-
11548
- class PagedAttentionMask(Primitive):
11549
- r"""
11550
- .. warning::
11551
- This is an experimental API that is subject to change or deletion.
11552
- """
11553
- @prim_attr_register
11554
- def __init__(self, head_num, scale_value=1.0, kv_head_num=0):
11555
- """Initialize PagedAttentionMask"""
11556
- validator.check_value_type('head_num', head_num, [int], self.name)
11557
- validator.check_value_type('scale_value', scale_value, [float], self.name) # scale after qkbmm
11558
- validator.check_value_type('kv_head_num', kv_head_num, [int], self.name) # for MQA
11559
- self.init_prim_io_names(
11560
- inputs=['query', 'key_cache', 'value_cache', 'block_tables', 'context_lens', 'alibi_mask'],
11561
- outputs=['attention_out'])
11562
-
11563
-
11564
- class ReshapeAndCache(Primitive):
11565
- r"""
11566
- .. warning::
11567
- This is an experimental API that is subject to change or deletion.
11568
- """
11569
- __mindspore_signature__ = (
11570
- sig.make_sig('key', dtype=sig.sig_dtype.T),
11571
- sig.make_sig('value', dtype=sig.sig_dtype.T),
11572
- sig.make_sig('key_cache', sig.sig_rw.RW_WRITE, dtype=sig.sig_dtype.T),
11573
- sig.make_sig('value_cache', sig.sig_rw.RW_WRITE, dtype=sig.sig_dtype.T),
11574
- sig.make_sig('slot_mapping', dtype=sig.sig_dtype.T1),
11575
- )
11576
-
11577
- @prim_attr_register
11578
- def __init__(self):
11579
- """Initialize ReshapeAndCache"""
11580
- self.init_prim_io_names(
11581
- inputs=['key', 'value', 'key_cache', 'value_cache', 'slot_mapping'],
11582
- outputs=['key_out'])
11583
- self.add_prim_attr('side_effect_mem', True)