mindspore 2.2.11__cp37-none-any.whl → 2.2.14__cp37-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of mindspore might be problematic. Click here for more details.

Files changed (118) hide show
  1. mindspore/.commit_id +1 -1
  2. mindspore/__init__.py +2 -1
  3. mindspore/_akg/akg/topi/cpp/impl.py +1 -1
  4. mindspore/_akg/akg/tvm/_ffi/base.py +1 -1
  5. mindspore/_c_dataengine.cpython-37m-aarch64-linux-gnu.so +0 -0
  6. mindspore/_c_expression.cpython-37m-aarch64-linux-gnu.so +0 -0
  7. mindspore/_c_mindrecord.cpython-37m-aarch64-linux-gnu.so +0 -0
  8. mindspore/_mindspore_offline_debug.cpython-37m-aarch64-linux-gnu.so +0 -0
  9. mindspore/bin/cache_admin +0 -0
  10. mindspore/bin/cache_server +0 -0
  11. mindspore/common/tensor.py +0 -2
  12. mindspore/communication/management.py +3 -0
  13. mindspore/context.py +34 -4
  14. mindspore/dataset/engine/datasets.py +23 -0
  15. mindspore/dataset/engine/validators.py +1 -1
  16. mindspore/dataset/vision/py_transforms_util.py +2 -2
  17. mindspore/experimental/optim/lr_scheduler.py +5 -6
  18. mindspore/lib/libdnnl.so.2 +0 -0
  19. mindspore/lib/libmindspore.so +0 -0
  20. mindspore/lib/libmindspore_backend.so +0 -0
  21. mindspore/lib/libmindspore_common.so +0 -0
  22. mindspore/lib/libmindspore_core.so +0 -0
  23. mindspore/lib/libmindspore_glog.so.0 +0 -0
  24. mindspore/lib/libmindspore_gpr.so.15 +0 -0
  25. mindspore/lib/libmindspore_grpc.so.15 +0 -0
  26. mindspore/lib/libmindspore_shared_lib.so +0 -0
  27. mindspore/lib/libopencv_core.so.4.5 +0 -0
  28. mindspore/lib/plugin/ascend/custom_aicpu_ops/op_impl/cpu/aicpu_kernel/impl/libcust_aicpu_kernels.so +0 -0
  29. mindspore/lib/plugin/ascend/custom_aicpu_ops/op_impl/cpu/aicpu_kernel/impl/libcust_cpu_kernels.so +0 -0
  30. mindspore/lib/plugin/ascend/custom_aicpu_ops/op_impl/cpu/config/cust_aicpu_kernel.json +48 -0
  31. mindspore/lib/plugin/ascend/custom_aicpu_ops/op_proto/libcust_op_proto.so +0 -0
  32. mindspore/lib/plugin/ascend/libakg.so +0 -0
  33. mindspore/lib/plugin/ascend/libascend_collective.so +0 -0
  34. mindspore/lib/plugin/ascend/libdvpp_utils.so +0 -0
  35. mindspore/lib/plugin/ascend/libmindspore_aicpu_kernels.so +0 -0
  36. mindspore/lib/plugin/ascend/libmindspore_cpu_kernels.so +0 -0
  37. mindspore/lib/plugin/libmindspore_ascend.so.1 +0 -0
  38. mindspore/mindrecord/tools/cifar100_to_mr.py +49 -57
  39. mindspore/mindrecord/tools/cifar10_to_mr.py +46 -55
  40. mindspore/mindrecord/tools/csv_to_mr.py +3 -8
  41. mindspore/mindrecord/tools/mnist_to_mr.py +4 -9
  42. mindspore/mindrecord/tools/tfrecord_to_mr.py +1 -4
  43. mindspore/nn/layer/activation.py +1 -1
  44. mindspore/nn/layer/embedding.py +2 -2
  45. mindspore/nn/loss/loss.py +1 -1
  46. mindspore/nn/optim/ada_grad.py +2 -2
  47. mindspore/nn/optim/sgd.py +3 -2
  48. mindspore/numpy/math_ops.py +1 -1
  49. mindspore/ops/__init__.py +3 -0
  50. mindspore/ops/_grad_experimental/grad_array_ops.py +0 -31
  51. mindspore/ops/_grad_experimental/grad_comm_ops.py +4 -2
  52. mindspore/ops/_grad_experimental/grad_inner_ops.py +8 -0
  53. mindspore/ops/_grad_experimental/grad_math_ops.py +37 -17
  54. mindspore/ops/_op_impl/aicpu/__init__.py +1 -0
  55. mindspore/ops/_op_impl/aicpu/generate_eod_mask.py +38 -0
  56. mindspore/ops/function/array_func.py +6 -5
  57. mindspore/ops/function/debug_func.py +1 -1
  58. mindspore/ops/function/linalg_func.py +21 -11
  59. mindspore/ops/function/math_func.py +3 -0
  60. mindspore/ops/function/nn_func.py +13 -11
  61. mindspore/ops/function/parameter_func.py +2 -0
  62. mindspore/ops/function/sparse_unary_func.py +2 -2
  63. mindspore/ops/function/vmap_func.py +1 -0
  64. mindspore/ops/operations/_embedding_cache_ops.py +1 -1
  65. mindspore/ops/operations/_inner_ops.py +56 -1
  66. mindspore/ops/operations/_quant_ops.py +4 -4
  67. mindspore/ops/operations/_rl_inner_ops.py +1 -1
  68. mindspore/ops/operations/array_ops.py +15 -4
  69. mindspore/ops/operations/custom_ops.py +1 -1
  70. mindspore/ops/operations/debug_ops.py +1 -1
  71. mindspore/ops/operations/image_ops.py +3 -3
  72. mindspore/ops/operations/inner_ops.py +49 -0
  73. mindspore/ops/operations/math_ops.py +62 -0
  74. mindspore/ops/operations/nn_ops.py +7 -3
  75. mindspore/ops/operations/random_ops.py +2 -0
  76. mindspore/ops/operations/sparse_ops.py +4 -4
  77. mindspore/ops/silent_check.py +162 -0
  78. mindspore/parallel/__init__.py +3 -2
  79. mindspore/parallel/_auto_parallel_context.py +82 -3
  80. mindspore/parallel/_parallel_serialization.py +34 -2
  81. mindspore/parallel/_tensor.py +3 -1
  82. mindspore/parallel/_transformer/transformer.py +8 -8
  83. mindspore/parallel/checkpoint_transform.py +191 -45
  84. mindspore/profiler/parser/ascend_cluster_generator.py +111 -0
  85. mindspore/profiler/parser/ascend_communicate_generator.py +315 -0
  86. mindspore/profiler/parser/ascend_flops_generator.py +8 -2
  87. mindspore/profiler/parser/ascend_fpbp_generator.py +8 -2
  88. mindspore/profiler/parser/ascend_hccl_generator.py +2 -2
  89. mindspore/profiler/parser/ascend_msprof_exporter.py +30 -6
  90. mindspore/profiler/parser/ascend_msprof_generator.py +16 -5
  91. mindspore/profiler/parser/ascend_op_generator.py +15 -7
  92. mindspore/profiler/parser/ascend_timeline_generator.py +5 -2
  93. mindspore/profiler/parser/base_timeline_generator.py +11 -3
  94. mindspore/profiler/parser/cpu_gpu_timeline_generator.py +2 -1
  95. mindspore/profiler/parser/framework_parser.py +8 -2
  96. mindspore/profiler/parser/memory_usage_parser.py +8 -2
  97. mindspore/profiler/parser/minddata_analyzer.py +8 -2
  98. mindspore/profiler/parser/minddata_parser.py +1 -1
  99. mindspore/profiler/parser/msadvisor_analyzer.py +4 -2
  100. mindspore/profiler/parser/msadvisor_parser.py +9 -3
  101. mindspore/profiler/profiling.py +97 -25
  102. mindspore/rewrite/api/node.py +1 -1
  103. mindspore/rewrite/api/symbol_tree.py +2 -2
  104. mindspore/train/callback/_checkpoint.py +8 -8
  105. mindspore/train/callback/_landscape.py +2 -3
  106. mindspore/train/callback/_summary_collector.py +6 -7
  107. mindspore/train/dataset_helper.py +6 -0
  108. mindspore/train/model.py +17 -5
  109. mindspore/train/serialization.py +6 -1
  110. mindspore/train/summary/_writer_pool.py +1 -1
  111. mindspore/train/summary/summary_record.py +5 -6
  112. mindspore/version.py +1 -1
  113. {mindspore-2.2.11.dist-info → mindspore-2.2.14.dist-info}/METADATA +1 -1
  114. {mindspore-2.2.11.dist-info → mindspore-2.2.14.dist-info}/RECORD +117 -114
  115. mindspore/lib/plugin/libmindspore_ascend.so.2 +0 -0
  116. {mindspore-2.2.11.dist-info → mindspore-2.2.14.dist-info}/WHEEL +0 -0
  117. {mindspore-2.2.11.dist-info → mindspore-2.2.14.dist-info}/entry_points.txt +0 -0
  118. {mindspore-2.2.11.dist-info → mindspore-2.2.14.dist-info}/top_level.txt +0 -0
@@ -22,10 +22,6 @@ from mindspore import log as logger
22
22
  from ..filewriter import FileWriter
23
23
  from ..shardutils import check_filename, ExceptionThread
24
24
 
25
- try:
26
- pd = import_module("pandas")
27
- except ModuleNotFoundError:
28
- pd = None
29
25
 
30
26
  __all__ = ['CsvToMR']
31
27
 
@@ -55,8 +51,7 @@ class CsvToMR:
55
51
  """
56
52
 
57
53
  def __init__(self, source, destination, columns_list=None, partition_number=1):
58
- if not pd:
59
- raise Exception("Module pandas is not found, please use pip install it.")
54
+ self.pd = import_module("pandas")
60
55
  if isinstance(source, str):
61
56
  check_filename(source)
62
57
  self.source = source
@@ -135,8 +130,8 @@ class CsvToMR:
135
130
  if not os.path.exists(self.source):
136
131
  raise IOError("Csv file {} do not exist.".format(self.source))
137
132
 
138
- pd.set_option('display.max_columns', None)
139
- df = pd.read_csv(self.source)
133
+ self.pd.set_option('display.max_columns', None)
134
+ df = self.pd.read_csv(self.source)
140
135
 
141
136
  csv_schema = self._get_schema(df)
142
137
 
@@ -25,10 +25,6 @@ from mindspore import log as logger
25
25
  from ..filewriter import FileWriter
26
26
  from ..shardutils import check_filename, ExceptionThread, SUCCESS, FAILED
27
27
 
28
- try:
29
- cv_import = import_module("cv2")
30
- except ModuleNotFoundError:
31
- cv_import = None
32
28
 
33
29
  __all__ = ['MnistToMR']
34
30
 
@@ -58,6 +54,8 @@ class MnistToMR:
58
54
  """
59
55
 
60
56
  def __init__(self, source, destination, partition_number=1):
57
+ self.cv_import = import_module("cv2")
58
+
61
59
  self.image_size = 28
62
60
  self.num_channels = 1
63
61
 
@@ -89,9 +87,6 @@ class MnistToMR:
89
87
 
90
88
  # pylint: disable=missing-docstring
91
89
  def run(self):
92
- if not cv_import:
93
- raise ModuleNotFoundError("opencv-python module not found, please use pip install it.")
94
-
95
90
  if self._transform_train() == FAILED:
96
91
  return FAILED
97
92
  if self._transform_test() == FAILED:
@@ -155,7 +150,7 @@ class MnistToMR:
155
150
  train_data = self._extract_images(self.train_data_filename_)
156
151
  train_labels = self._extract_labels(self.train_labels_filename_)
157
152
  for data, label in zip(train_data, train_labels):
158
- _, img = cv_import.imencode(".jpeg", data)
153
+ _, img = self.cv_import.imencode(".jpeg", data)
159
154
  yield {"label": int(label), "data": img.tobytes()}
160
155
 
161
156
  def _mnist_test_iterator(self):
@@ -168,7 +163,7 @@ class MnistToMR:
168
163
  test_data = self._extract_images(self.test_data_filename_)
169
164
  test_labels = self._extract_labels(self.test_labels_filename_)
170
165
  for data, label in zip(test_data, test_labels):
171
- _, img = cv_import.imencode(".jpeg", data)
166
+ _, img = self.cv_import.imencode(".jpeg", data)
172
167
  yield {"label": int(label), "data": img.tobytes()}
173
168
 
174
169
  def _transform_train(self):
@@ -97,10 +97,7 @@ class TFRecordToMR:
97
97
  """
98
98
 
99
99
  def __init__(self, source, destination, feature_dict, bytes_fields=None):
100
- try:
101
- self.tf = import_module("tensorflow") # just used to convert tfrecord to mindrecord
102
- except ModuleNotFoundError:
103
- raise Exception("Module tensorflow is not found, please use pip install it.")
100
+ self.tf = import_module("tensorflow") # just used to convert tfrecord to mindrecord
104
101
 
105
102
  if self.tf.__version__ < SupportedTensorFlowVersion:
106
103
  raise Exception("Module tensorflow version must be greater or equal {}.".format(SupportedTensorFlowVersion))
@@ -782,7 +782,7 @@ class Tanhshrink(Cell):
782
782
  ``Ascend`` ``GPU`` ``CPU``
783
783
 
784
784
  Examples:
785
- >>> import mindspore
785
+ >>> import mindspore as ms
786
786
  >>> from mindspore import Tensor, nn
787
787
  >>> import numpy as np
788
788
  >>> x = Tensor(np.array([1, 2, 3, 2, 1]), ms.float16)
@@ -522,12 +522,12 @@ class MultiFieldEmbeddingLookup(EmbeddingLookup):
522
522
  this interface. Type is Int32, Int64.
523
523
  - **input_values** (Tensor) - The shape of tensor is :math:`(batch\_size, seq\_length)`.
524
524
  Specifies the weights of elements of the input_indices. The lookout vector will multiply with
525
- the input_values. Type is Float32.
525
+ the input_values. Type is float32.
526
526
  - **field_ids** (Tensor) - The shape of tensor is :math:`(batch\_size, seq\_length)`.
527
527
  Specifies the field id of elements of the input_indices. Type is Int32.
528
528
 
529
529
  Outputs:
530
- Tensor, the shape of tensor is :math:`(batch\_size, field\_size, embedding\_size)`. Type is Float32.
530
+ Tensor, the shape of tensor is :math:`(batch\_size, field\_size, embedding\_size)`. Type is float32.
531
531
 
532
532
  Raises:
533
533
  TypeError: If `vocab_size` or `embedding_size` or `field_size` is not an int.
mindspore/nn/loss/loss.py CHANGED
@@ -1996,7 +1996,7 @@ class FocalLoss(LossBase):
1996
1996
  >>> import mindspore.nn as nn
1997
1997
  >>> logits = ms.Tensor([[0.8, 1.4], [0.5, 0.9], [1.2, 0.9]], ms.float32)
1998
1998
  >>> labels = ms.Tensor([[1], [1], [0]], ms.int32)
1999
- >>> focalloss = nn.FocalLoss(weight=Tensor([1, 2]), gamma=2.0, reduction='mean')
1999
+ >>> focalloss = nn.FocalLoss(weight=ms.Tensor([1, 2]), gamma=2.0, reduction='mean')
2000
2000
  >>> output = focalloss(logits, labels)
2001
2001
  >>> print(output)
2002
2002
  0.12516622
@@ -162,7 +162,7 @@ class Adagrad(Optimizer):
162
162
  ``Ascend`` ``GPU`` ``CPU``
163
163
 
164
164
  Examples:
165
- >>> import mindspore
165
+ >>> from mindspore import train
166
166
  >>> import mindspore.nn as nn
167
167
  >>>
168
168
  >>> # Define the network structure of LeNet5. Refer to
@@ -185,7 +185,7 @@ class Adagrad(Optimizer):
185
185
  >>> # The final parameters order in which the optimizer will be followed is the value of 'order_params'.
186
186
  >>>
187
187
  >>> loss = nn.SoftmaxCrossEntropyWithLogits()
188
- >>> model = ms.Model(net, loss_fn=loss, optimizer=optim)
188
+ >>> model = train.Model(net, loss_fn=loss, optimizer=optim)
189
189
  """
190
190
 
191
191
  @opt_init_args_register
mindspore/nn/optim/sgd.py CHANGED
@@ -193,9 +193,9 @@ class SGD(Optimizer):
193
193
  "or 'weight_decay' set in grouped 'params' must be float or int type.")
194
194
 
195
195
  if hasattr(self, "group_weight_decay") and self.group_weight_decay:
196
- self.opt = tuple(P.SGD(dampening, wd, nesterov) for wd in self.group_weight_decay)
196
+ self.opt = tuple(P.SGD(dampening, 0.0, nesterov) for _ in self.group_weight_decay)
197
197
  else:
198
- self.opt = tuple([P.SGD(dampening, float(weight_decay), nesterov)] * len(self._parameters))
198
+ self.opt = tuple([P.SGD(dampening, 0.0, nesterov)] * len(self._parameters))
199
199
 
200
200
  self.momentum = Parameter(Tensor(momentum, mstype.float32), name="momentum")
201
201
 
@@ -220,6 +220,7 @@ class SGD(Optimizer):
220
220
  params = self._parameters
221
221
  accum = self.accum
222
222
  stat = self.stat
223
+ gradients = self.decay_weight(gradients)
223
224
  gradients = self.flatten_gradients(gradients)
224
225
  gradients = self.gradients_centralization(gradients)
225
226
  gradients = self.scale_grad(gradients)
@@ -4285,7 +4285,7 @@ def argmin(a, axis=None):
4285
4285
 
4286
4286
  Examples:
4287
4287
  >>> import mindspore.numpy as np
4288
- >>> a = np.arange(10, 16).reshape(2, 3)
4288
+ >>> a = np.arange(10, 16).reshape(2, 3).astype(np.float32)
4289
4289
  >>> print(np.argmin(a))
4290
4290
  0
4291
4291
  >>> print(np.argmin(a, axis=0))
mindspore/ops/__init__.py CHANGED
@@ -34,6 +34,7 @@ from mindspore.ops.composite import *
34
34
  from mindspore.ops.operations import *
35
35
  from mindspore.ops.function import *
36
36
  from mindspore.ops.functional import *
37
+ from mindspore.ops.silent_check import _silent_check
37
38
 
38
39
  __primitive__ = [
39
40
  "prim_attr_register", "Primitive", "PrimitiveWithInfer", "PrimitiveWithCheck", "signature"
@@ -48,3 +49,5 @@ __all__.extend(composite.__all__)
48
49
  __all__.extend(operations.__all__)
49
50
  __all__.extend(functional.__all__)
50
51
  __all__.extend(function.__all__)
52
+
53
+ _silent_check()
@@ -36,8 +36,6 @@ from mindspore.ops.operations.array_ops import ScatterAddWithAxis
36
36
  from mindspore.ops.operations.array_ops import Expand
37
37
  from mindspore.ops.operations.array_ops import SegmentMean
38
38
  from mindspore.ops.operations.array_ops import AffineGrid
39
- from mindspore.ops.operations.array_ops import Im2Col
40
- from mindspore.ops.operations.array_ops import Col2Im
41
39
  from mindspore.ops.operations.array_ops import MaskedScatter
42
40
  from mindspore.ops.operations.array_ops import MaskedSelect
43
41
  from mindspore.ops.operations.array_ops import CountNonZero
@@ -360,35 +358,6 @@ def get_bprop_resize_nearest_neighbor_v2(self):
360
358
  return bprop
361
359
 
362
360
 
363
- @bprop_getters.register(Im2Col)
364
- def get_bprop_im2col(self):
365
- """
366
- Generate bprop for Im2Col
367
-
368
- Im2Col, corresponding to torch's UnFold operator.
369
- The Unfold operator has no `padding_mode` attribute,
370
- and it's implementation corresponds to the mindspore
371
- implementation with `padding_mode=CALCULATED` .
372
- So, currently the bprop function of Im2Col only supports
373
- the CALCULATED mode.
374
- """
375
- kernel_size = self.ksizes
376
- dilation = self.dilations
377
- stride = self.strides
378
- padding = (self.pads[0], self.pads[-1])
379
- col2im = Col2Im(kernel_size=kernel_size,
380
- dilation=dilation,
381
- stride=stride,
382
- padding=padding)
383
-
384
- def bprop(x, out, dout):
385
- x_shape = P.TensorShape()(x)[2:]
386
- dx = col2im(dout, x_shape)
387
- return (dx,)
388
-
389
- return bprop
390
-
391
-
392
361
  @bprop_getters.register(P.ExtractVolumePatches)
393
362
  def get_bprop_extract_volume_patches(self):
394
363
  """Generate bprop for ExtractVolumePatches"""
@@ -92,7 +92,8 @@ def get_bprop_send(self):
92
92
  """Generate bprop for Send."""
93
93
  shape = self.get_attr_dict()["shape"]
94
94
  dtype = self.get_attr_dict()["dtype"]
95
- send_grad = Receive(self.sr_tag, self.rank, shape, dtype, self.group_back)
95
+ tag = self.get_attr_dict()["sr_tag"]
96
+ send_grad = Receive(tag, self.rank, shape, dtype, self.group_back)
96
97
  virtual_input = Tensor(0.0, dtype)
97
98
 
98
99
  def bprop(x, out, dout):
@@ -105,7 +106,8 @@ def get_bprop_send(self):
105
106
  @bprop_getters.register(Receive)
106
107
  def get_bprop_receive(self):
107
108
  """Generate bprop for Receive."""
108
- receive_grad = Send(self.tag, self.rank, self.group_back)
109
+ tag = self.get_attr_dict()["sr_tag"]
110
+ receive_grad = Send(tag, self.rank, self.group_back)
109
111
  depend = P.Depend()
110
112
  cast = P.Cast()
111
113
  out_tensor = Tensor(0.0, mstype.float16)
@@ -36,6 +36,14 @@ def get_bprop_parallel_resize_bilinear(self):
36
36
  return bprop
37
37
 
38
38
 
39
+ @bprop_getters.register(P.inner_ops.GenerateEodMask)
40
+ def get_bprop_generate_eod_mask(self):
41
+
42
+ def bprop(x, out, dout):
43
+ return dout, dout
44
+ return bprop
45
+
46
+
39
47
  @bprop_getters.register(inner.PsROIPooling)
40
48
  def get_bprop_ps_roi_pooling(self):
41
49
  """Grad definition for `PsROIPooling` operation."""
@@ -18,11 +18,13 @@
18
18
  import numpy as np
19
19
  import mindspore.numpy as mnp
20
20
  from mindspore.common import dtype as mstype
21
+ import mindspore.ops as ops
21
22
  from mindspore.ops import functional as F
22
23
  from mindspore.ops import operations as P
23
24
  from mindspore import Tensor
24
25
  from mindspore.ops.operations.math_ops import Real, Imag, Complex, Angle
25
- from mindspore.ops.operations.math_ops import Polar
26
+ from mindspore.ops.operations.math_ops import Polar, SilentCheck
27
+ from mindspore.ops.operations._inner_ops import _MirrorSilentCheck
26
28
  from mindspore.ops.operations import _grad_ops as G
27
29
  from mindspore.ops.operations.math_ops import Lgamma
28
30
  from mindspore.ops.operations.math_ops import Digamma
@@ -763,6 +765,7 @@ def get_bprop_fft_with_size(self):
763
765
  to_tensor_op = P.ScalarToTensor()
764
766
  type_op = P.DType()
765
767
  concat_op = P.Concat()
768
+ concat_op_last = P.Concat(axis=-1)
766
769
  ones_op = P.Ones()
767
770
  zeros_op = P.Zeros()
768
771
  real_op = P.Real()
@@ -794,8 +797,7 @@ def get_bprop_fft_with_size(self):
794
797
  signal_sizes=offset_shape[-1:])
795
798
  irfft2d_ = FFTWithSize(signal_ndim=2, inverse=True, real=True, norm="backward", onesided=onesided,
796
799
  signal_sizes=offset_shape[-2:])
797
- irfft3d_ = FFTWithSize(signal_ndim=3, inverse=True, real=True, norm="backward", onesided=onesided,
798
- signal_sizes=offset_shape[-3:])
800
+ irfft3d_ = FFTWithSize(signal_ndim=3, inverse=True, real=False, norm="backward", onesided=onesided)
799
801
  if inverse is False:
800
802
  if onesided is True:
801
803
  terms = 0
@@ -811,6 +813,7 @@ def get_bprop_fft_with_size(self):
811
813
  vec_mask = complex_op(1 - 2 * (mnp.arange(0, input_shape[-1], 1, input_type) % 2),
812
814
  zeros_op(input_shape[-1], input_type))
813
815
  terms = real_op(dout_first) + is_even * real_op(dout_last * vec_mask)
816
+ dx = to_tensor_op(0.5, input_type) * (dx * rfft_offset_size + terms) * rfft_norm_offset
814
817
  elif signal_ndim == 2:
815
818
  dx = irfft2d_(dout)
816
819
  arange_inner = mnp.arange(0, input_shape[-2], 1, input_type)
@@ -852,26 +855,27 @@ def get_bprop_fft_with_size(self):
852
855
  dout_shape, [input_shape[-1]])))
853
856
  dout_last_term = dout_last_term * vec_mask
854
857
  terms = real_op(dout_first_term) + is_even * real_op(dout_last_term)
858
+ dx = to_tensor_op(0.5, input_type) * (dx * rfft_offset_size + terms) * rfft_norm_offset
855
859
  elif signal_ndim == 3:
856
- dx = irfft3d_(dout) * real_op(offset_size)
857
- dx = to_tensor_op(0.5, input_type) * (dx * rfft_offset_size + terms) * rfft_norm_offset
860
+ zeros_shape = offset_shape[:-1] + (offset_shape[-1] - dout_shape[-1],)
861
+ zeros_values = zeros_op(zeros_shape, input_type)
862
+ zeros_padding = complex_op(zeros_values, zeros_values)
863
+ dout = concat_op_last((dout, zeros_padding))
864
+ dx = real_op(irfft3d_(dout)) * real_op(offset_size)
858
865
  else:
859
866
  dx = irfft_fn(dout) * real_op(offset_size)
860
867
  else:
861
868
  dx = rfft_fn(dout)
862
869
  if onesided is True:
863
- if signal_ndim != 3:
864
- is_odd = dout_shape[-1] % 2
865
- last_shape = offset_shape[-1]
866
- mask = concat_op((ones_op(1, output_type), 2.0 * ones_op(
867
- (last_shape - 2 + is_odd,), output_type), ones_op((1 - is_odd,), output_type)))
868
- dx = dx * complex_op(mask, zeros_op(shape_op(mask), output_type))
869
- irfft_offset_size = to_tensor_op(
870
- _fft_with_size_back_norm(shape_op(dout), norm, inverse, signal_ndim),
871
- output_type)
872
- dx = dx * complex_op(irfft_offset_size, zeros_op(1, output_type))
873
- else:
874
- dx = dx * complex_op(offset_size, zeros_op(1, output_type))
870
+ is_odd = dout_shape[-1] % 2
871
+ last_shape = offset_shape[-1]
872
+ mask = concat_op((ones_op(1, output_type), 2.0 * ones_op(
873
+ (last_shape - 2 + is_odd,), output_type), ones_op((1 - is_odd,), output_type)))
874
+ dx = dx * complex_op(mask, zeros_op(shape_op(mask), output_type))
875
+ irfft_offset_size = to_tensor_op(
876
+ _fft_with_size_back_norm(shape_op(dout), norm, inverse, signal_ndim),
877
+ output_type)
878
+ dx = dx * complex_op(irfft_offset_size, zeros_op(1, output_type))
875
879
  else:
876
880
  dx = dx * complex_op(offset_size, zeros_op(1, output_type))
877
881
  return (dx,)
@@ -1017,3 +1021,19 @@ def get_bprop_tensor_add(self):
1017
1021
  return binop_grad_common(x, y, dout, dout)
1018
1022
 
1019
1023
  return bprop
1024
+
1025
+
1026
+ @bprop_getters.register(_MirrorSilentCheck)
1027
+ def get_bprop_mirror_silent_check(self):
1028
+ """Grad definition for '_MirrorSilentCheck' op"""
1029
+ silent_check = SilentCheck(self.min_steps, self.thresh_l1, self.coeff_l1, self.thresh_l2, self.coeff_l2)
1030
+ out_tensor = Tensor([0.0], mstype.float32)
1031
+
1032
+ def bporp(x, pre_val, min_val, max_val, n_step, loss_scale, out, dout):
1033
+ if loss_scale is not None:
1034
+ dout = dout / loss_scale
1035
+ grad = ops.norm(dout)
1036
+ dx, _, _, _, _ = silent_check(grad, dout, pre_val, min_val, max_val, n_step)
1037
+ return (dx, out_tensor, out_tensor, out_tensor, out_tensor, out_tensor)
1038
+
1039
+ return bporp
@@ -60,6 +60,7 @@ from .init_data_set_queue import _init_data_set_queue_aicpu
60
60
  from .embedding_lookup import _embedding_lookup_aicpu
61
61
  from .padding import _padding_aicpu
62
62
  from .gather import _gather_aicpu
63
+ from .generate_eod_mask import _generate_eod_mask_aicpu
63
64
  from .gather_grad import _gather_grad_aicpu
64
65
  from .gather_d_grad_v2 import _gather_d_grad_v2_aicpu
65
66
  from .gather_d import _gather_d_aicpu
@@ -0,0 +1,38 @@
1
+ # Copyright 2023 Huawei Technologies Co., Ltd
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ============================================================================
15
+
16
+ """GenerateEodMask op"""
17
+ from mindspore.ops.op_info_register import op_info_register, AiCPURegOp, DataType
18
+
19
+ generate_eod_mask_op_info = AiCPURegOp("GenerateEodMask") \
20
+ .fusion_type("OPAQUE") \
21
+ .attr("eod_token_id", "int") \
22
+ .attr("n_pos", "int") \
23
+ .attr("n_step", "listint") \
24
+ .attr("n_error_mode", "str") \
25
+ .input(0, "inputs_ids", "required") \
26
+ .output(0, "position_ids", "required") \
27
+ .dtype_format(DataType.U16_Default, DataType.U16_Default) \
28
+ .dtype_format(DataType.U32_Default, DataType.U32_Default) \
29
+ .dtype_format(DataType.U64_Default, DataType.U64_Default) \
30
+ .dtype_format(DataType.I32_Default, DataType.I32_Default) \
31
+ .dtype_format(DataType.I64_Default, DataType.I64_Default) \
32
+ .get_op_info()
33
+
34
+
35
+ @op_info_register(generate_eod_mask_op_info)
36
+ def _generate_eod_mask_aicpu():
37
+ """GenerateEodMask AiCPU register"""
38
+ return
@@ -268,7 +268,7 @@ def cat(tensors, axis=0):
268
268
 
269
269
  Returns:
270
270
  Tensor, the shape is :math:`(x_1, x_2, ..., \sum_{i=1}^Nx_{mi}, ..., x_R)`.
271
- The data type is the same with `tensors`.
271
+ The data type is the same with `tensors`.
272
272
 
273
273
  Raises:
274
274
  TypeError: If `axis` is not an int.
@@ -660,7 +660,7 @@ def one_hot(indices, depth, on_value=1, off_value=0, axis=-1):
660
660
 
661
661
  Note:
662
662
  If the input indices is rank `N`, the output will have rank `N+1`. The new axis is created at dimension `axis`.
663
- On Ascend, if `on_value` is Int64 dtype, `indices` must be Int64 dtype.
663
+ On Ascend, if `on_value` is int64 dtype, `indices` must be int64 dtype.
664
664
 
665
665
  Args:
666
666
  indices(Tensor): A tensor of indices. Tensor of shape :math:`(X_0, \ldots, X_n)`.
@@ -4228,6 +4228,7 @@ def space_to_batch_nd(input_x, block_size, paddings):
4228
4228
 
4229
4229
  Examples:
4230
4230
  >>> import numpy as np
4231
+ >>> import mindspore
4231
4232
  >>> from mindspore import Tensor, ops
4232
4233
  >>> block_size = [2, 2]
4233
4234
  >>> paddings = [[0, 0], [0, 0]]
@@ -5395,8 +5396,8 @@ def masked_select(input, mask):
5395
5396
 
5396
5397
  Examples:
5397
5398
  >>> import numpy as np
5398
- >>> import mindspore.ops as ops
5399
- >>> from mindspore import Tensor
5399
+ >>> import mindspore
5400
+ >>> from mindspore import Tensor, ops
5400
5401
  >>> x = Tensor(np.array([1, 2, 3, 4]), mindspore.int64)
5401
5402
  >>> mask = Tensor(np.array([1, 0, 1, 0]), mindspore.bool_)
5402
5403
  >>> output = ops.masked_select(x, mask)
@@ -6520,7 +6521,7 @@ def topk(input, k, dim=None, largest=True, sorted=True):
6520
6521
 
6521
6522
  Args:
6522
6523
  input (Tensor): Input to be computed, data type must be float16, float32 or int32.
6523
- k (int): The number of top or bottom elements to be computed along the last dimension, constant input is needed.
6524
+ k (int): The number of top or bottom elements to be computed along the last dimension.
6524
6525
  dim (int, optional): The dimension to sort along. Default: ``None`` .
6525
6526
  largest (bool, optional): If largest is ``False`` then the k smallest elements are returned.
6526
6527
  Default: ``True`` .
@@ -51,7 +51,7 @@ def print_(*input_x):
51
51
 
52
52
  Examples:
53
53
  >>> import numpy as np
54
- >>> from mindspore import Tensor
54
+ >>> from mindspore import Tensor, ops
55
55
  >>> x = Tensor(np.ones([2, 1]).astype(np.int32))
56
56
  >>> y = Tensor(np.ones([2, 2]).astype(np.int32))
57
57
  >>> result = ops.print_('Print Tensor x and Tensor y:', x, y)
@@ -59,6 +59,8 @@ def cond(A, p=None):
59
59
 
60
60
  Args:
61
61
  A (Tensor): Tensor of shape :math:`(*, n)` or :math:`(*, m, n)` where * is zero or more batch dimensions.
62
+ If `p` is one of Union[1, -1, inf, -inf, 'fro', 'nuc'], the function uses
63
+ :class:`mindspore.ops.MatrixInverse` , therefore, :math:`(*, m, n)` has to be square and ivertible.
62
64
  p (Union[int, float, inf, -inf, 'fro', 'nuc'], optional): norm's mode. Refer to the table above for
63
65
  behavior. Default: ``None``.
64
66
 
@@ -84,8 +86,8 @@ def cond(A, p=None):
84
86
  matrix_inverse = _get_cache_prim(P.MatrixInverse)(adjoint=False)
85
87
  if p is None:
86
88
  p = 2
87
- norm_a = F.norm(A, p)
88
- norm_inv_a = F.norm(matrix_inverse(A), p)
89
+ norm_a = F.matrix_norm(A, p)
90
+ norm_inv_a = F.matrix_norm(matrix_inverse(A), p)
89
91
  return norm_a * norm_inv_a
90
92
 
91
93
 
@@ -194,6 +196,8 @@ def geqrf(input):
194
196
  ``Ascend`` ``GPU`` ``CPU``
195
197
 
196
198
  Examples:
199
+ >>> from mindspore import Tensor, ops
200
+ >>> import numpy as np
197
201
  >>> input_x = Tensor(np.array([[-2.0, -1.0], [1.0, 2.0]]).astype(np.float32))
198
202
  >>> y, tau = ops.geqrf(input_x)
199
203
  >>> print(y)
@@ -266,6 +270,16 @@ def svd(input, full_matrices=False, compute_uv=True):
266
270
  return s
267
271
 
268
272
 
273
+ def _check_pinv_shape(x):
274
+ if not isinstance(x, (Tensor, Tensor_)):
275
+ raise TypeError("The input x must be tensor")
276
+ if x.shape == ():
277
+ raise TypeError("For pinv, the 0-D input is not supported")
278
+ x_shape = F.shape(x)
279
+ if len(x_shape) < 2:
280
+ raise ValueError("input x should have 2 or more dimensions, " f"but got {len(x_shape)}.")
281
+
282
+
269
283
  def pinv(x, *, atol=None, rtol=None, hermitian=False):
270
284
  r"""
271
285
  Computes the (Moore-Penrose) pseudo-inverse of a matrix.
@@ -318,19 +332,15 @@ def pinv(x, *, atol=None, rtol=None, hermitian=False):
318
332
  ``CPU``
319
333
 
320
334
  Examples:
335
+ >>> import mindspore
336
+ >>> from mindspore import Tensor, ops
321
337
  >>> x = Tensor([[4., 0.], [0., 5.]], mindspore.float32)
322
338
  >>> output = ops.pinv(x)
323
339
  >>> print(output)
324
- [[0.25 0. ]
325
- [0. 0.2 ]]
340
+ [[0.25 0. ]
341
+ [0. 0.2 ]]
326
342
  """
327
- if not isinstance(x, (Tensor, Tensor_)):
328
- raise TypeError("The input x must be tensor")
329
- if x.shape == ():
330
- raise TypeError("For pinv, the 0-D input is not supported")
331
- x_shape = F.shape(x)
332
- if len(x_shape) < 2:
333
- raise ValueError("input x should have 2 or more dimensions, " f"but got {len(x_shape)}.")
343
+ _check_pinv_shape(x)
334
344
  x_dtype = _get_cache_prim(P.DType)()(x)
335
345
  _check_input_dtype("x", x_dtype, [mstype.float32, mstype.float64], "pinv")
336
346
  _check_attr_dtype("hermitian", hermitian, [bool], "pinv")
@@ -343,6 +343,7 @@ def add(input, other):
343
343
 
344
344
  Examples:
345
345
  >>> import numpy as np
346
+ >>> import mindspore
346
347
  >>> from mindspore import Tensor, ops
347
348
  >>> # case 1: x and y are both Tensor.
348
349
  >>> x = Tensor(np.array([1, 2, 3]).astype(np.float32))
@@ -12784,6 +12785,7 @@ def count_nonzero(x, axis=(), keep_dims=False, dtype=mstype.int32):
12784
12785
  Examples:
12785
12786
  >>> from mindspore import Tensor, ops
12786
12787
  >>> import numpy as np
12788
+ >>> import mindspore
12787
12789
  >>> # case 1: each value specified.
12788
12790
  >>> x = Tensor(np.array([[0, 1, 0], [1, 1, 0]]).astype(np.float32))
12789
12791
  >>> nonzero_num = ops.count_nonzero(x=x, axis=[0, 1], keep_dims=True, dtype=mindspore.int32)
@@ -13392,6 +13394,7 @@ def batch_dot(x1, x2, axes=None):
13392
13394
  ``Ascend`` ``GPU`` ``CPU``
13393
13395
 
13394
13396
  Examples:
13397
+ >>> import mindspore
13395
13398
  >>> from mindspore import Tensor, ops
13396
13399
  >>> import numpy as np
13397
13400
  >>> x1 = Tensor(np.ones(shape=[2, 2, 3]), mindspore.float32)
@@ -2748,6 +2748,7 @@ def softshrink(x, lambd=0.5):
2748
2748
  ``Ascend`` ``GPU`` ``CPU``
2749
2749
 
2750
2750
  Examples:
2751
+ >>> import mindspore
2751
2752
  >>> from mindspore import Tensor
2752
2753
  >>> from mindspore import ops
2753
2754
  >>> import numpy as np
@@ -3000,11 +3001,12 @@ def dense(input, weight, bias=None):
3000
3001
 
3001
3002
  Examples:
3002
3003
  >>> import numpy as np
3004
+ >>> import mindspore
3003
3005
  >>> from mindspore import Tensor, ops
3004
- >>> input = mindspore.Tensor([[-1., 1., 2.], [-3., -3., 1.]], mindspore.float32)
3005
- >>> weight = mindspore.Tensor([[-2., -2., -2.], [0., -1., 0.]], mindspore.float32)
3006
- >>> bias = mindspore.Tensor([0., 1.], mindspore.float32)
3007
- >>> output = mindspore.ops.dense(input, weight, bias)
3006
+ >>> input = Tensor([[-1., 1., 2.], [-3., -3., 1.]], mindspore.float32)
3007
+ >>> weight = Tensor([[-2., -2., -2.], [0., -1., 0.]], mindspore.float32)
3008
+ >>> bias = Tensor([0., 1.], mindspore.float32)
3009
+ >>> output = ops.dense(input, weight, bias)
3008
3010
  >>> print(output)
3009
3011
  [[-4. 0.]
3010
3012
  [10. 4.]]
@@ -3992,8 +3994,8 @@ def l1_loss(input, target, reduction='mean'):
3992
3994
  Examples:
3993
3995
  >>> from mindspore import Tensor, ops
3994
3996
  >>> from mindspore import dtype as mstype
3995
- >>> x = ms.Tensor([[1, 2, 3], [4, 5, 6]], mstype.float32)
3996
- >>> target = ms.Tensor([[6, 5, 4], [3, 2, 1]], mstype.float32)
3997
+ >>> x = Tensor([[1, 2, 3], [4, 5, 6]], mstype.float32)
3998
+ >>> target = Tensor([[6, 5, 4], [3, 2, 1]], mstype.float32)
3997
3999
  >>> output = ops.l1_loss(x, target, reduction="mean")
3998
4000
  >>> print(output)
3999
4001
  3.0
@@ -5342,7 +5344,7 @@ def conv1d(input, weight, bias=None, stride=1, pad_mode="valid", padding=0, dila
5342
5344
  >>> from mindspore import Tensor, ops
5343
5345
  >>> x = Tensor(np.arange(64).reshape((4, 4, 4)), mindspore.float32)
5344
5346
  >>> weight = Tensor(np.arange(8).reshape((2, 2, 2)), mindspore.float32)
5345
- >>> bias = Tensor([-0.12345, 2.7683], ms.float32)
5347
+ >>> bias = Tensor([-0.12345, 2.7683], mindspore.float32)
5346
5348
  >>> output = ops.conv1d(x, weight, pad_mode='pad', padding=(1,), bias=bias, groups=2)
5347
5349
  >>> print(output.shape)
5348
5350
  (4, 2, 5)
@@ -7444,8 +7446,8 @@ def max_pool2d(x, kernel_size, stride=None, padding=0, dilation=1, return_indice
7444
7446
  return out
7445
7447
 
7446
7448
 
7447
- def prompt_flash_attention(query, key, value, padding_mask, attn_mask, actual_seq_lengths,
7448
- actual_seq_lengths_kv, deq_scale1, quant_scale1,
7449
+ def prompt_flash_attention(query, key, value, attn_mask, actual_seq_lengths,
7450
+ actual_seq_lengths_kv, pse_shift, deq_scale1, quant_scale1,
7449
7451
  deq_scale2, quant_scale2, quant_offset2, num_heads, scale_value=1.0, pre_tokens=2147483547,
7450
7452
  next_tokens=0, input_layout='BSH',
7451
7453
  num_key_value_heads=0, sparse_mode=0):
@@ -7468,11 +7470,11 @@ def prompt_flash_attention(query, key, value, padding_mask, attn_mask, actual_se
7468
7470
  Input tensor of shape :math:`(B, S, H)` / `(B, N, S, D)`.
7469
7471
  value (Tensor) - The value tensor with data type of float16 or float32.
7470
7472
  Input tensor of shape :math:`(B, S, H)` / `(B, N, S, D)`.
7471
- padding_mask (Tensor) - The padding mask tensor with data type of float16 or float32
7472
7473
  attn_mask (Tensor) - The attention mask tensor with data type of float16 or float32.
7473
7474
  For each element, 0 indicates retention and 1 indicates discard. Input tensor of shape :math:`(B, 1, S, S)`.
7474
7475
  actual_seq_lengths (list[int]): Describe actual sequence length of each input with data type of int.
7475
7476
  actual_seq_lengths_kv (list[int]): Describe actual sequence length of each input with data type of int.
7477
+ pse_shift (Tensor) - The position encoding tensor with data type of float16 or float32.
7476
7478
  dep_scale1 (Tensor)
7477
7479
  quant_scale1 (Tensor)
7478
7480
  deq_scale2 (Tensor)
@@ -7516,7 +7518,7 @@ def prompt_flash_attention(query, key, value, padding_mask, attn_mask, actual_se
7516
7518
 
7517
7519
  pfa = _get_cache_prim(NN_OPS.PromptFlashAttention)(num_heads, scale_value, pre_tokens, next_tokens, input_layout,
7518
7520
  num_key_value_heads, sparse_mode)
7519
- return pfa(query, key, value, padding_mask, attn_mask, actual_seq_lengths, actual_seq_lengths_kv, deq_scale1,
7521
+ return pfa(query, key, value, attn_mask, actual_seq_lengths, actual_seq_lengths_kv, pse_shift, deq_scale1,
7520
7522
  quant_scale1, deq_scale2, quant_scale2, quant_offset2)
7521
7523
 
7522
7524