mindspore 2.2.11__cp37-cp37m-manylinux1_x86_64.whl → 2.3.0rc1__cp37-cp37m-manylinux1_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of mindspore might be problematic. Click here for more details.

Files changed (1171) hide show
  1. mindspore/.commit_id +1 -1
  2. mindspore/__init__.py +5 -4
  3. mindspore/_akg/akg/composite/build_module.py +155 -11
  4. mindspore/_akg/akg/config/repository.json +38 -0
  5. mindspore/_akg/akg/ms/info_version_adapt.py +29 -0
  6. mindspore/_akg/akg/topi/cpp/impl.py +1 -1
  7. mindspore/_akg/akg/tvm/_ffi/base.py +1 -1
  8. mindspore/_akg/akg/tvm/contrib/nvcc.py +4 -1
  9. mindspore/_akg/akg/utils/ascend_profilier/path_manager.py +2 -1
  10. mindspore/_akg/akg/utils/composite_op_helper.py +4 -2
  11. mindspore/_akg/akg/utils/dump_ascend_meta.py +2 -2
  12. mindspore/_akg/akg/utils/gen_random.py +14 -8
  13. mindspore/_akg/akg/utils/op_dsl.py +11 -0
  14. mindspore/_akg/akg/utils/tbe_codegen_utils.py +5 -5
  15. mindspore/_c_dataengine.cpython-37m-x86_64-linux-gnu.so +0 -0
  16. mindspore/_c_expression.cpython-37m-x86_64-linux-gnu.so +0 -0
  17. mindspore/_c_mindrecord.cpython-37m-x86_64-linux-gnu.so +0 -0
  18. mindspore/_checkparam.py +58 -0
  19. mindspore/_extends/builtin_operations.py +2 -1
  20. mindspore/_extends/graph_kernel/model/graph_parallel.py +16 -6
  21. mindspore/_extends/parallel_compile/akg_compiler/akg_process.py +3 -16
  22. mindspore/_extends/parallel_compile/akg_compiler/build_tbe_kernel.py +16 -4
  23. mindspore/_extends/parallel_compile/akg_compiler/compiler.py +1 -0
  24. mindspore/_extends/parallel_compile/akg_compiler/gen_custom_op_files.py +96 -0
  25. mindspore/_extends/parallel_compile/akg_compiler/tbe_topi.py +2 -1
  26. mindspore/_extends/parallel_compile/akg_compiler/util.py +5 -2
  27. mindspore/_extends/parse/__init__.py +18 -14
  28. mindspore/_extends/parse/compile_config.py +229 -0
  29. mindspore/_extends/parse/parser.py +155 -59
  30. mindspore/_extends/parse/resources.py +40 -7
  31. mindspore/_extends/parse/standard_method.py +124 -204
  32. mindspore/_extends/remote/kernel_build_server.py +2 -0
  33. mindspore/_mindspore_offline_debug.cpython-37m-x86_64-linux-gnu.so +0 -0
  34. mindspore/_profiler.py +30 -0
  35. mindspore/amp.py +24 -18
  36. mindspore/bin/cache_admin +0 -0
  37. mindspore/bin/cache_server +0 -0
  38. mindspore/boost/boost_cell_wrapper.py +1 -1
  39. mindspore/boost/group_loss_scale_manager.py +1 -1
  40. mindspore/common/__init__.py +3 -1
  41. mindspore/common/_jit_fallback_utils.py +2 -3
  42. mindspore/common/_register_for_adapter.py +7 -0
  43. mindspore/common/_stub_tensor.py +6 -1
  44. mindspore/common/_utils.py +5 -17
  45. mindspore/common/api.py +91 -48
  46. mindspore/common/auto_dynamic_shape.py +27 -14
  47. mindspore/common/dtype.py +5 -4
  48. mindspore/common/dump.py +5 -4
  49. mindspore/common/initializer.py +1 -1
  50. mindspore/common/jit_config.py +20 -11
  51. mindspore/common/lazy_inline.py +58 -17
  52. mindspore/common/mindir_util.py +12 -2
  53. mindspore/common/mutable.py +79 -14
  54. mindspore/common/parameter.py +19 -4
  55. mindspore/common/seed.py +9 -9
  56. mindspore/common/sparse_tensor.py +251 -18
  57. mindspore/common/symbol.py +122 -0
  58. mindspore/common/tensor.py +321 -435
  59. mindspore/communication/__init__.py +3 -3
  60. mindspore/communication/_comm_helper.py +5 -0
  61. mindspore/communication/management.py +56 -38
  62. mindspore/config/op_info.config +22 -54
  63. mindspore/context.py +192 -54
  64. mindspore/dataset/__init__.py +5 -5
  65. mindspore/dataset/audio/__init__.py +6 -6
  66. mindspore/dataset/audio/transforms.py +711 -158
  67. mindspore/dataset/callback/ds_callback.py +2 -2
  68. mindspore/dataset/engine/cache_client.py +2 -2
  69. mindspore/dataset/engine/datasets.py +95 -38
  70. mindspore/dataset/engine/datasets_audio.py +14 -14
  71. mindspore/dataset/engine/datasets_standard_format.py +33 -3
  72. mindspore/dataset/engine/datasets_text.py +38 -38
  73. mindspore/dataset/engine/datasets_user_defined.py +7 -7
  74. mindspore/dataset/engine/datasets_vision.py +75 -71
  75. mindspore/dataset/engine/offload.py +5 -7
  76. mindspore/dataset/engine/validators.py +1 -1
  77. mindspore/dataset/text/__init__.py +3 -3
  78. mindspore/dataset/text/transforms.py +408 -121
  79. mindspore/dataset/text/utils.py +9 -9
  80. mindspore/dataset/transforms/__init__.py +1 -1
  81. mindspore/dataset/transforms/transforms.py +261 -76
  82. mindspore/dataset/utils/browse_dataset.py +9 -9
  83. mindspore/dataset/vision/__init__.py +3 -3
  84. mindspore/dataset/vision/c_transforms.py +5 -5
  85. mindspore/dataset/vision/py_transforms_util.py +2 -2
  86. mindspore/dataset/vision/transforms.py +2264 -514
  87. mindspore/dataset/vision/utils.py +40 -9
  88. mindspore/dataset/vision/validators.py +7 -1
  89. mindspore/experimental/optim/__init__.py +12 -2
  90. mindspore/experimental/optim/adadelta.py +161 -0
  91. mindspore/experimental/optim/adagrad.py +168 -0
  92. mindspore/experimental/optim/adam.py +35 -34
  93. mindspore/experimental/optim/adamax.py +170 -0
  94. mindspore/experimental/optim/adamw.py +40 -16
  95. mindspore/experimental/optim/asgd.py +153 -0
  96. mindspore/experimental/optim/lr_scheduler.py +65 -125
  97. mindspore/experimental/optim/nadam.py +157 -0
  98. mindspore/experimental/optim/optimizer.py +15 -8
  99. mindspore/experimental/optim/radam.py +194 -0
  100. mindspore/experimental/optim/rmsprop.py +154 -0
  101. mindspore/experimental/optim/rprop.py +164 -0
  102. mindspore/experimental/optim/sgd.py +28 -19
  103. mindspore/hal/__init__.py +34 -0
  104. mindspore/hal/_ascend.py +57 -0
  105. mindspore/hal/_base.py +57 -0
  106. mindspore/hal/_cpu.py +56 -0
  107. mindspore/hal/_gpu.py +57 -0
  108. mindspore/hal/device.py +356 -0
  109. mindspore/hal/event.py +179 -0
  110. mindspore/hal/stream.py +337 -0
  111. mindspore/include/api/data_type.h +2 -2
  112. mindspore/include/api/dual_abi_helper.h +16 -3
  113. mindspore/include/api/model.h +1 -3
  114. mindspore/include/api/status.h +14 -0
  115. mindspore/include/c_api/model_c.h +173 -0
  116. mindspore/include/c_api/ms/base/types.h +1 -0
  117. mindspore/include/c_api/types_c.h +19 -0
  118. mindspore/include/dataset/execute.h +1 -3
  119. mindspore/include/mindapi/base/format.h +125 -23
  120. mindspore/include/mindapi/base/types.h +7 -0
  121. mindspore/lib/libdnnl.so.2 +0 -0
  122. mindspore/lib/libmindspore.so +0 -0
  123. mindspore/lib/libmindspore_backend.so +0 -0
  124. mindspore/lib/libmindspore_common.so +0 -0
  125. mindspore/lib/libmindspore_core.so +0 -0
  126. mindspore/lib/libmindspore_glog.so.0 +0 -0
  127. mindspore/lib/libmindspore_gpr.so.15 +0 -0
  128. mindspore/lib/libmindspore_grpc++.so.1 +0 -0
  129. mindspore/lib/libmindspore_grpc.so.15 +0 -0
  130. mindspore/lib/libmindspore_shared_lib.so +0 -0
  131. mindspore/lib/libmpi_adapter.so +0 -0
  132. mindspore/lib/libmpi_collective.so +0 -0
  133. mindspore/lib/libnnacl.so +0 -0
  134. mindspore/lib/libopencv_core.so.4.5 +0 -0
  135. mindspore/lib/libopencv_imgcodecs.so.4.5 +0 -0
  136. mindspore/lib/libopencv_imgproc.so.4.5 +0 -0
  137. mindspore/lib/libps_cache.so +0 -0
  138. mindspore/lib/plugin/ascend/custom_aicore_ops/op_impl/ai_core/tbe/config/ascend910/aic-ascend910-ops-info.json +2044 -154
  139. mindspore/lib/plugin/ascend/custom_aicore_ops/op_impl/ai_core/tbe/config/ascend910b/aic-ascend910b-ops-info.json +2044 -33
  140. mindspore/lib/plugin/ascend/custom_aicore_ops/op_impl/ai_core/tbe/custom_aicore_ops_impl/build_tbe_kernel.py +529 -0
  141. mindspore/lib/plugin/ascend/custom_aicore_ops/op_impl/ai_core/tbe/custom_aicore_ops_impl/compiler.py +56 -0
  142. mindspore/lib/plugin/ascend/custom_aicore_ops/op_impl/ai_core/tbe/custom_aicore_ops_impl/custom.py +1109 -0
  143. mindspore/lib/plugin/ascend/custom_aicore_ops/op_impl/ai_core/tbe/custom_aicore_ops_impl/get_file_path.py +36 -0
  144. mindspore/lib/plugin/ascend/custom_aicore_ops/op_impl/ai_core/tbe/custom_aicore_ops_impl/kv_cache_mgr.py +0 -2
  145. mindspore/lib/plugin/ascend/custom_aicore_ops/op_impl/ai_core/tbe/custom_aicore_ops_impl/tbe_topi.py +556 -0
  146. mindspore/lib/plugin/ascend/custom_aicore_ops/op_impl/vector_core/tbe/custom_aicore_ops_impl/kv_cache_mgr.py +0 -2
  147. mindspore/lib/plugin/ascend/custom_aicpu_ops/op_impl/cpu/aicpu_kernel/impl/libcust_cpu_kernels.so +0 -0
  148. mindspore/lib/plugin/ascend/custom_aicpu_ops/op_impl/cpu/config/cust_aicpu_kernel.json +6365 -1759
  149. mindspore/lib/plugin/ascend/custom_aicpu_ops/op_proto/libcust_op_proto.so +0 -0
  150. mindspore/lib/plugin/ascend/custom_ascendc_ops/op_api/include/aclnn_add_custom.h +49 -0
  151. mindspore/lib/plugin/ascend/custom_ascendc_ops/op_api/include/aclnn_decoder_kv_cache.h +59 -0
  152. mindspore/lib/plugin/ascend/custom_ascendc_ops/op_api/include/aclnn_prompt_kv_cache.h +59 -0
  153. mindspore/lib/plugin/ascend/custom_ascendc_ops/op_api/lib/libcust_opapi.so +0 -0
  154. mindspore/lib/plugin/ascend/custom_ascendc_ops/op_impl/ai_core/tbe/config/ascend310p/aic-ascend310p-ops-info.json +52 -0
  155. mindspore/lib/plugin/ascend/custom_ascendc_ops/op_impl/ai_core/tbe/config/ascend910/aic-ascend910-ops-info.json +232 -0
  156. mindspore/lib/plugin/ascend/custom_ascendc_ops/op_impl/ai_core/tbe/config/ascend910b/aic-ascend910b-ops-info.json +232 -0
  157. mindspore/lib/plugin/ascend/custom_ascendc_ops/op_impl/ai_core/tbe/custom_ascendc_ops_impl/dynamic/add_custom.cpp +81 -0
  158. mindspore/lib/plugin/ascend/custom_ascendc_ops/op_impl/ai_core/tbe/custom_ascendc_ops_impl/dynamic/add_custom.py +134 -0
  159. mindspore/lib/plugin/ascend/custom_ascendc_ops/op_impl/ai_core/tbe/custom_ascendc_ops_impl/dynamic/decoder_kv_cache.cpp +192 -0
  160. mindspore/lib/plugin/ascend/custom_ascendc_ops/op_impl/ai_core/tbe/custom_ascendc_ops_impl/dynamic/decoder_kv_cache.py +134 -0
  161. mindspore/lib/plugin/ascend/custom_ascendc_ops/op_impl/ai_core/tbe/custom_ascendc_ops_impl/dynamic/prompt_kv_cache.cpp +274 -0
  162. mindspore/lib/plugin/ascend/custom_ascendc_ops/op_impl/ai_core/tbe/custom_ascendc_ops_impl/dynamic/prompt_kv_cache.py +134 -0
  163. mindspore/lib/plugin/ascend/custom_ascendc_ops/op_impl/ai_core/tbe/op_tiling/lib/linux/x86_64/libcust_opmaster_rt2.0.so +0 -0
  164. mindspore/lib/plugin/ascend/custom_ascendc_ops/op_impl/ai_core/tbe/op_tiling/liboptiling.so +0 -0
  165. mindspore/lib/plugin/ascend/custom_ascendc_ops/op_proto/inc/op_proto.h +39 -0
  166. mindspore/lib/plugin/ascend/custom_ascendc_ops/op_proto/lib/linux/x86_64/libcust_opsproto_rt2.0.so +0 -0
  167. mindspore/lib/plugin/ascend/libakg.so +0 -0
  168. mindspore/lib/plugin/ascend/libascend_collective.so +0 -0
  169. mindspore/lib/plugin/ascend/libdvpp_utils.so +0 -0
  170. mindspore/lib/plugin/ascend/libhccl_plugin.so +0 -0
  171. mindspore/lib/plugin/ascend/libmindspore_cpu_kernels.so +0 -0
  172. mindspore/lib/plugin/cpu/libakg.so +0 -0
  173. mindspore/lib/plugin/gpu/libcuda_ops.so.10 +0 -0
  174. mindspore/lib/plugin/gpu/libcuda_ops.so.11 +0 -0
  175. mindspore/lib/plugin/gpu10.1/libakg.so +0 -0
  176. mindspore/lib/plugin/gpu10.1/libnccl.so.2 +0 -0
  177. mindspore/lib/plugin/gpu10.1/libnvidia_collective.so +0 -0
  178. mindspore/lib/plugin/gpu11.1/libakg.so +0 -0
  179. mindspore/lib/plugin/gpu11.1/libnccl.so.2 +0 -0
  180. mindspore/lib/plugin/gpu11.1/libnvidia_collective.so +0 -0
  181. mindspore/lib/plugin/gpu11.6/libakg.so +0 -0
  182. mindspore/lib/plugin/gpu11.6/libnccl.so.2 +0 -0
  183. mindspore/lib/plugin/gpu11.6/libnvidia_collective.so +0 -0
  184. mindspore/lib/plugin/libmindspore_ascend.so.2 +0 -0
  185. mindspore/lib/plugin/libmindspore_gpu.so.10.1 +0 -0
  186. mindspore/lib/plugin/libmindspore_gpu.so.11.1 +0 -0
  187. mindspore/lib/plugin/libmindspore_gpu.so.11.6 +0 -0
  188. mindspore/mindrecord/__init__.py +5 -1
  189. mindspore/mindrecord/config.py +809 -0
  190. mindspore/mindrecord/filereader.py +25 -0
  191. mindspore/mindrecord/filewriter.py +74 -56
  192. mindspore/mindrecord/mindpage.py +40 -6
  193. mindspore/mindrecord/shardutils.py +3 -2
  194. mindspore/mindrecord/shardwriter.py +7 -0
  195. mindspore/mindrecord/tools/cifar100_to_mr.py +53 -66
  196. mindspore/mindrecord/tools/cifar10_to_mr.py +48 -63
  197. mindspore/mindrecord/tools/csv_to_mr.py +7 -17
  198. mindspore/mindrecord/tools/imagenet_to_mr.py +3 -8
  199. mindspore/mindrecord/tools/mnist_to_mr.py +11 -21
  200. mindspore/mindrecord/tools/tfrecord_to_mr.py +2 -10
  201. mindspore/multiprocessing/__init__.py +68 -0
  202. mindspore/nn/cell.py +86 -133
  203. mindspore/nn/dynamic_lr.py +2 -2
  204. mindspore/nn/layer/activation.py +80 -91
  205. mindspore/nn/layer/basic.py +4 -80
  206. mindspore/nn/layer/channel_shuffle.py +3 -16
  207. mindspore/nn/layer/container.py +3 -3
  208. mindspore/nn/layer/conv.py +71 -71
  209. mindspore/nn/layer/embedding.py +107 -46
  210. mindspore/nn/layer/image.py +4 -7
  211. mindspore/nn/layer/normalization.py +46 -38
  212. mindspore/nn/layer/padding.py +26 -39
  213. mindspore/nn/layer/pooling.py +13 -9
  214. mindspore/nn/layer/rnn_cells.py +5 -15
  215. mindspore/nn/layer/rnns.py +6 -5
  216. mindspore/nn/layer/thor_layer.py +1 -2
  217. mindspore/nn/layer/timedistributed.py +1 -1
  218. mindspore/nn/layer/transformer.py +52 -50
  219. mindspore/nn/learning_rate_schedule.py +6 -5
  220. mindspore/nn/loss/loss.py +44 -65
  221. mindspore/nn/optim/ada_grad.py +6 -4
  222. mindspore/nn/optim/adadelta.py +3 -1
  223. mindspore/nn/optim/adafactor.py +1 -1
  224. mindspore/nn/optim/adam.py +102 -181
  225. mindspore/nn/optim/adamax.py +4 -2
  226. mindspore/nn/optim/adasum.py +2 -2
  227. mindspore/nn/optim/asgd.py +4 -2
  228. mindspore/nn/optim/ftrl.py +31 -61
  229. mindspore/nn/optim/lamb.py +5 -3
  230. mindspore/nn/optim/lars.py +2 -2
  231. mindspore/nn/optim/lazyadam.py +6 -4
  232. mindspore/nn/optim/momentum.py +13 -25
  233. mindspore/nn/optim/optimizer.py +6 -3
  234. mindspore/nn/optim/proximal_ada_grad.py +4 -2
  235. mindspore/nn/optim/rmsprop.py +9 -3
  236. mindspore/nn/optim/rprop.py +4 -2
  237. mindspore/nn/optim/sgd.py +4 -2
  238. mindspore/nn/optim/thor.py +2 -2
  239. mindspore/nn/probability/distribution/_utils/custom_ops.py +2 -2
  240. mindspore/nn/probability/distribution/beta.py +2 -2
  241. mindspore/nn/probability/distribution/categorical.py +4 -6
  242. mindspore/nn/probability/distribution/cauchy.py +2 -2
  243. mindspore/nn/probability/distribution/exponential.py +1 -1
  244. mindspore/nn/probability/distribution/gumbel.py +2 -2
  245. mindspore/nn/probability/distribution/poisson.py +2 -2
  246. mindspore/nn/probability/distribution/uniform.py +2 -2
  247. mindspore/nn/reinforcement/_tensors_queue.py +13 -1
  248. mindspore/nn/wrap/__init__.py +2 -1
  249. mindspore/nn/wrap/cell_wrapper.py +33 -12
  250. mindspore/nn/wrap/grad_reducer.py +148 -8
  251. mindspore/nn/wrap/loss_scale.py +7 -7
  252. mindspore/numpy/__init__.py +2 -0
  253. mindspore/numpy/array_creations.py +2 -0
  254. mindspore/numpy/array_ops.py +1 -5
  255. mindspore/numpy/fft.py +431 -0
  256. mindspore/numpy/math_ops.py +53 -59
  257. mindspore/numpy/utils.py +3 -0
  258. mindspore/ops/__init__.py +7 -3
  259. mindspore/ops/_grad_experimental/grad_array_ops.py +4 -160
  260. mindspore/ops/_grad_experimental/grad_comm_ops.py +14 -18
  261. mindspore/ops/_grad_experimental/grad_inner_ops.py +8 -0
  262. mindspore/ops/_grad_experimental/grad_math_ops.py +92 -287
  263. mindspore/ops/_grad_experimental/grad_nn_ops.py +0 -53
  264. mindspore/ops/_grad_experimental/grad_quant_ops.py +3 -3
  265. mindspore/ops/_grad_experimental/grad_sparse.py +1 -1
  266. mindspore/ops/_grad_experimental/grad_sparse_ops.py +3 -3
  267. mindspore/ops/_op_impl/__init__.py +0 -1
  268. mindspore/ops/_op_impl/aicpu/__init__.py +1 -0
  269. mindspore/ops/_op_impl/aicpu/gamma.py +2 -0
  270. mindspore/ops/_op_impl/{cpu/concat.py → aicpu/generate_eod_mask.py} +16 -17
  271. mindspore/ops/_op_impl/aicpu/log_uniform_candidate_sampler.py +1 -3
  272. mindspore/ops/_op_impl/aicpu/poisson.py +2 -0
  273. mindspore/ops/_op_impl/cpu/__init__.py +1 -3
  274. mindspore/ops/_op_impl/cpu/adam.py +2 -2
  275. mindspore/ops/_op_impl/cpu/adam_weight_decay.py +3 -2
  276. mindspore/ops/_op_impl/cpu/maximum_grad.py +16 -14
  277. mindspore/ops/_op_impl/cpu/minimum_grad.py +8 -0
  278. mindspore/ops/_vmap/vmap_array_ops.py +137 -101
  279. mindspore/ops/_vmap/vmap_base.py +8 -1
  280. mindspore/ops/_vmap/vmap_grad_math_ops.py +95 -9
  281. mindspore/ops/_vmap/vmap_grad_nn_ops.py +102 -56
  282. mindspore/ops/_vmap/vmap_image_ops.py +70 -13
  283. mindspore/ops/_vmap/vmap_math_ops.py +74 -49
  284. mindspore/ops/_vmap/vmap_nn_ops.py +164 -89
  285. mindspore/ops/_vmap/vmap_other_ops.py +1 -1
  286. mindspore/ops/auto_generate/__init__.py +31 -0
  287. mindspore/ops/auto_generate/cpp_create_prim_instance_helper.py +133 -0
  288. mindspore/ops/auto_generate/gen_arg_dtype_cast.py +248 -0
  289. mindspore/ops/auto_generate/gen_arg_handler.py +147 -0
  290. mindspore/ops/auto_generate/gen_extend_func.py +130 -0
  291. mindspore/ops/auto_generate/gen_ops_def.py +4786 -0
  292. mindspore/ops/auto_generate/gen_ops_prim.py +8335 -0
  293. mindspore/ops/auto_generate/pyboost_inner_prim.py +77 -0
  294. mindspore/ops/composite/__init__.py +5 -2
  295. mindspore/ops/composite/base.py +118 -17
  296. mindspore/ops/composite/math_ops.py +9 -48
  297. mindspore/ops/composite/multitype_ops/_compile_utils.py +166 -601
  298. mindspore/ops/composite/multitype_ops/_constexpr_utils.py +15 -133
  299. mindspore/ops/composite/multitype_ops/add_impl.py +6 -0
  300. mindspore/ops/composite/multitype_ops/bitwise_and_impl.py +6 -0
  301. mindspore/ops/composite/multitype_ops/bitwise_or_impl.py +6 -0
  302. mindspore/ops/composite/multitype_ops/bitwise_xor_impl.py +6 -0
  303. mindspore/ops/composite/multitype_ops/div_impl.py +8 -0
  304. mindspore/ops/composite/multitype_ops/equal_impl.py +6 -0
  305. mindspore/ops/composite/multitype_ops/floordiv_impl.py +8 -0
  306. mindspore/ops/composite/multitype_ops/getitem_impl.py +6 -0
  307. mindspore/ops/composite/multitype_ops/greater_equal_impl.py +6 -0
  308. mindspore/ops/composite/multitype_ops/greater_impl.py +6 -0
  309. mindspore/ops/composite/multitype_ops/in_impl.py +8 -2
  310. mindspore/ops/composite/multitype_ops/left_shift_impl.py +6 -0
  311. mindspore/ops/composite/multitype_ops/less_equal_impl.py +6 -0
  312. mindspore/ops/composite/multitype_ops/less_impl.py +6 -0
  313. mindspore/ops/composite/multitype_ops/logic_not_impl.py +6 -0
  314. mindspore/ops/composite/multitype_ops/logical_and_impl.py +6 -0
  315. mindspore/ops/composite/multitype_ops/logical_or_impl.py +6 -0
  316. mindspore/ops/composite/multitype_ops/mod_impl.py +6 -0
  317. mindspore/ops/composite/multitype_ops/mul_impl.py +6 -0
  318. mindspore/ops/composite/multitype_ops/negative_impl.py +9 -3
  319. mindspore/ops/composite/multitype_ops/not_equal_impl.py +6 -0
  320. mindspore/ops/composite/multitype_ops/not_in_impl.py +6 -1
  321. mindspore/ops/composite/multitype_ops/ones_like_impl.py +2 -2
  322. mindspore/ops/composite/multitype_ops/pow_impl.py +6 -0
  323. mindspore/ops/composite/multitype_ops/right_shift_impl.py +6 -0
  324. mindspore/ops/composite/multitype_ops/setitem_impl.py +32 -21
  325. mindspore/ops/composite/multitype_ops/sub_impl.py +6 -0
  326. mindspore/ops/composite/multitype_ops/zeros_like_impl.py +6 -3
  327. mindspore/ops/deprecated.py +14 -3
  328. mindspore/ops/extend/__init__.py +46 -0
  329. mindspore/ops/extend/array_func.py +152 -0
  330. mindspore/ops/extend/math_func.py +76 -0
  331. mindspore/ops/{_op_impl/tbe/atomic_addr_clean.py → extend/nn_func.py} +5 -15
  332. mindspore/ops/function/__init__.py +19 -11
  333. mindspore/ops/function/array_func.py +248 -1436
  334. mindspore/ops/function/clip_func.py +12 -13
  335. mindspore/ops/function/debug_func.py +2 -5
  336. mindspore/ops/function/fft_func.py +31 -0
  337. mindspore/ops/function/grad/grad_func.py +24 -17
  338. mindspore/ops/function/image_func.py +27 -21
  339. mindspore/ops/function/linalg_func.py +30 -53
  340. mindspore/ops/function/math_func.py +450 -2356
  341. mindspore/ops/function/nn_func.py +470 -789
  342. mindspore/ops/function/other_func.py +4 -5
  343. mindspore/ops/function/parameter_func.py +6 -92
  344. mindspore/ops/function/random_func.py +24 -80
  345. mindspore/ops/function/sparse_unary_func.py +11 -18
  346. mindspore/ops/function/spectral_func.py +1 -1
  347. mindspore/ops/function/vmap_func.py +15 -14
  348. mindspore/ops/functional.py +56 -62
  349. mindspore/ops/op_info_register.py +22 -19
  350. mindspore/ops/operations/__init__.py +19 -19
  351. mindspore/ops/operations/_embedding_cache_ops.py +1 -1
  352. mindspore/ops/operations/_grad_ops.py +20 -723
  353. mindspore/ops/operations/_inner_ops.py +233 -286
  354. mindspore/ops/operations/_quant_ops.py +4 -4
  355. mindspore/ops/operations/_rl_inner_ops.py +1 -1
  356. mindspore/ops/operations/_scalar_ops.py +5 -480
  357. mindspore/ops/operations/_sequence_ops.py +4 -34
  358. mindspore/ops/operations/array_ops.py +100 -2481
  359. mindspore/ops/operations/comm_ops.py +38 -46
  360. mindspore/ops/operations/custom_ops.py +9 -9
  361. mindspore/ops/operations/debug_ops.py +101 -32
  362. mindspore/ops/operations/image_ops.py +3 -219
  363. mindspore/ops/operations/inner_ops.py +52 -38
  364. mindspore/ops/operations/linalg_ops.py +1 -49
  365. mindspore/{rewrite/ast_transformers → ops/operations/manually_defined}/__init__.py +11 -4
  366. mindspore/ops/operations/manually_defined/_inner.py +61 -0
  367. mindspore/ops/operations/manually_defined/ops_def.py +1391 -0
  368. mindspore/ops/operations/math_ops.py +752 -4588
  369. mindspore/ops/operations/nn_ops.py +380 -1750
  370. mindspore/ops/operations/other_ops.py +50 -42
  371. mindspore/ops/operations/random_ops.py +3 -50
  372. mindspore/ops/operations/sparse_ops.py +4 -4
  373. mindspore/ops/primitive.py +196 -96
  374. mindspore/ops/silent_check.py +162 -0
  375. mindspore/ops_generate/__init__.py +27 -0
  376. mindspore/ops_generate/arg_dtype_cast.py +248 -0
  377. mindspore/ops_generate/arg_handler.py +147 -0
  378. mindspore/ops_generate/gen_aclnn_implement.py +266 -0
  379. mindspore/ops_generate/gen_ops.py +1062 -0
  380. mindspore/ops_generate/gen_ops_inner_prim.py +129 -0
  381. mindspore/ops_generate/gen_pyboost_func.py +932 -0
  382. mindspore/ops_generate/gen_utils.py +188 -0
  383. mindspore/ops_generate/op_proto.py +138 -0
  384. mindspore/ops_generate/pyboost_utils.py +364 -0
  385. mindspore/ops_generate/template.py +238 -0
  386. mindspore/parallel/__init__.py +6 -4
  387. mindspore/parallel/_auto_parallel_context.py +28 -4
  388. mindspore/parallel/_cell_wrapper.py +16 -9
  389. mindspore/parallel/_cost_model_context.py +1 -1
  390. mindspore/parallel/_dp_allreduce_fusion.py +159 -159
  391. mindspore/parallel/_parallel_serialization.py +28 -12
  392. mindspore/parallel/_ps_context.py +1 -1
  393. mindspore/parallel/_recovery_context.py +1 -1
  394. mindspore/parallel/_tensor.py +22 -8
  395. mindspore/parallel/_transformer/__init__.py +1 -1
  396. mindspore/parallel/_transformer/layers.py +1 -1
  397. mindspore/parallel/_transformer/loss.py +1 -1
  398. mindspore/parallel/_transformer/moe.py +1 -1
  399. mindspore/parallel/_transformer/op_parallel_config.py +1 -1
  400. mindspore/parallel/_transformer/transformer.py +9 -9
  401. mindspore/parallel/_utils.py +131 -6
  402. mindspore/parallel/algo_parameter_config.py +6 -6
  403. mindspore/parallel/checkpoint_transform.py +156 -26
  404. mindspore/parallel/cluster/__init__.py +15 -0
  405. mindspore/parallel/cluster/process_entity/__init__.py +18 -0
  406. mindspore/parallel/cluster/process_entity/_api.py +345 -0
  407. mindspore/parallel/cluster/process_entity/_utils.py +116 -0
  408. mindspore/parallel/cluster/run.py +139 -0
  409. mindspore/parallel/mpi/__init__.py +1 -1
  410. mindspore/parallel/mpi/_mpi_config.py +1 -1
  411. mindspore/parallel/parameter_broadcast.py +152 -0
  412. mindspore/parallel/shard.py +99 -2
  413. mindspore/profiler/common/util.py +20 -0
  414. mindspore/profiler/envprofiling.py +1 -1
  415. mindspore/{_extends/parallel_compile/tbe_compiler → profiler/parser/ascend_analysis}/__init__.py +1 -1
  416. mindspore/profiler/parser/ascend_analysis/constant.py +66 -0
  417. mindspore/profiler/parser/ascend_analysis/file_manager.py +77 -0
  418. mindspore/profiler/parser/ascend_analysis/function_event.py +146 -0
  419. mindspore/profiler/parser/ascend_analysis/fwk_cann_parser.py +108 -0
  420. mindspore/profiler/parser/ascend_analysis/fwk_file_parser.py +80 -0
  421. mindspore/profiler/parser/ascend_analysis/msprof_timeline_parser.py +52 -0
  422. mindspore/profiler/parser/ascend_analysis/profiler_info_parser.py +104 -0
  423. mindspore/profiler/parser/ascend_analysis/tlv_decoder.py +86 -0
  424. mindspore/profiler/parser/ascend_analysis/trace_event_manager.py +59 -0
  425. mindspore/profiler/parser/ascend_cluster_generator.py +116 -0
  426. mindspore/profiler/parser/ascend_communicate_generator.py +314 -0
  427. mindspore/profiler/parser/ascend_flops_generator.py +27 -5
  428. mindspore/profiler/parser/ascend_fpbp_generator.py +8 -2
  429. mindspore/profiler/parser/ascend_hccl_generator.py +27 -279
  430. mindspore/profiler/parser/ascend_msprof_exporter.py +122 -118
  431. mindspore/profiler/parser/ascend_msprof_generator.py +67 -273
  432. mindspore/profiler/parser/ascend_op_generator.py +68 -27
  433. mindspore/profiler/parser/ascend_timeline_generator.py +292 -131
  434. mindspore/profiler/parser/base_timeline_generator.py +17 -3
  435. mindspore/profiler/parser/cpu_gpu_timeline_generator.py +2 -1
  436. mindspore/profiler/parser/framework_parser.py +11 -4
  437. mindspore/profiler/parser/integrator.py +3 -1
  438. mindspore/profiler/parser/memory_usage_parser.py +8 -2
  439. mindspore/profiler/parser/minddata_analyzer.py +8 -2
  440. mindspore/profiler/parser/minddata_parser.py +1 -1
  441. mindspore/profiler/parser/msadvisor_analyzer.py +5 -3
  442. mindspore/profiler/parser/msadvisor_parser.py +10 -4
  443. mindspore/profiler/parser/profiler_info.py +5 -0
  444. mindspore/profiler/profiling.py +373 -171
  445. mindspore/rewrite/__init__.py +2 -13
  446. mindspore/rewrite/api/node.py +122 -36
  447. mindspore/rewrite/api/pattern_engine.py +2 -3
  448. mindspore/rewrite/api/scoped_value.py +16 -15
  449. mindspore/rewrite/api/symbol_tree.py +46 -30
  450. mindspore/rewrite/ast_helpers/__init__.py +3 -6
  451. mindspore/rewrite/ast_helpers/ast_converter.py +143 -0
  452. mindspore/rewrite/ast_helpers/ast_finder.py +48 -0
  453. mindspore/rewrite/ast_helpers/ast_flattener.py +268 -0
  454. mindspore/rewrite/ast_helpers/ast_modifier.py +160 -92
  455. mindspore/rewrite/common/__init__.py +1 -2
  456. mindspore/rewrite/common/config.py +24 -0
  457. mindspore/rewrite/common/{rewrite_elog.py → error_log.py} +39 -39
  458. mindspore/rewrite/{namer.py → common/namer.py} +63 -18
  459. mindspore/rewrite/common/namespace.py +118 -0
  460. mindspore/rewrite/node/__init__.py +5 -5
  461. mindspore/rewrite/node/call_function.py +23 -7
  462. mindspore/rewrite/node/cell_container.py +7 -3
  463. mindspore/rewrite/node/control_flow.py +53 -28
  464. mindspore/rewrite/node/node.py +212 -196
  465. mindspore/rewrite/node/node_manager.py +51 -22
  466. mindspore/rewrite/node/node_topological_manager.py +3 -23
  467. mindspore/rewrite/parsers/__init__.py +12 -0
  468. mindspore/rewrite/parsers/arguments_parser.py +8 -9
  469. mindspore/rewrite/parsers/assign_parser.py +635 -413
  470. mindspore/rewrite/parsers/attribute_parser.py +3 -4
  471. mindspore/rewrite/parsers/class_def_parser.py +107 -144
  472. mindspore/rewrite/parsers/constant_parser.py +5 -5
  473. mindspore/rewrite/parsers/container_parser.py +4 -6
  474. mindspore/rewrite/parsers/expr_parser.py +55 -0
  475. mindspore/rewrite/parsers/for_parser.py +31 -98
  476. mindspore/rewrite/parsers/function_def_parser.py +13 -5
  477. mindspore/rewrite/parsers/if_parser.py +28 -10
  478. mindspore/rewrite/parsers/module_parser.py +8 -182
  479. mindspore/rewrite/parsers/parser.py +1 -5
  480. mindspore/rewrite/parsers/parser_register.py +1 -1
  481. mindspore/rewrite/parsers/return_parser.py +5 -10
  482. mindspore/rewrite/parsers/while_parser.py +59 -0
  483. mindspore/rewrite/sparsify/utils.py +1 -1
  484. mindspore/rewrite/symbol_tree/__init__.py +20 -0
  485. mindspore/rewrite/{symbol_tree.py → symbol_tree/symbol_tree.py} +704 -185
  486. mindspore/rewrite/{symbol_tree_builder.py → symbol_tree/symbol_tree_builder.py} +8 -8
  487. mindspore/rewrite/{symbol_tree_dumper.py → symbol_tree/symbol_tree_dumper.py} +4 -4
  488. mindspore/run_check/_check_version.py +6 -14
  489. mindspore/run_check/run_check.py +1 -1
  490. mindspore/safeguard/rewrite_obfuscation.py +9 -19
  491. mindspore/scipy/__init__.py +2 -1
  492. mindspore/scipy/fft.py +133 -0
  493. mindspore/scipy/linalg.py +140 -55
  494. mindspore/scipy/ops.py +15 -71
  495. mindspore/scipy/ops_grad.py +5 -34
  496. mindspore/scipy/optimize/line_search.py +2 -2
  497. mindspore/scipy/optimize/minimize.py +1 -1
  498. mindspore/train/__init__.py +3 -2
  499. mindspore/train/_utils.py +178 -4
  500. mindspore/train/amp.py +167 -245
  501. mindspore/train/callback/_backup_and_restore.py +4 -4
  502. mindspore/train/callback/_callback.py +4 -4
  503. mindspore/train/callback/_checkpoint.py +47 -21
  504. mindspore/train/callback/_early_stop.py +2 -2
  505. mindspore/train/callback/_landscape.py +15 -10
  506. mindspore/train/callback/_loss_monitor.py +2 -2
  507. mindspore/train/callback/_on_request_exit.py +2 -2
  508. mindspore/train/callback/_reduce_lr_on_plateau.py +2 -2
  509. mindspore/train/callback/_summary_collector.py +13 -14
  510. mindspore/train/callback/_time_monitor.py +2 -2
  511. mindspore/train/data_sink.py +1 -1
  512. mindspore/train/dataset_helper.py +19 -4
  513. mindspore/train/loss_scale_manager.py +2 -2
  514. mindspore/train/metrics/accuracy.py +7 -7
  515. mindspore/train/metrics/confusion_matrix.py +8 -6
  516. mindspore/train/metrics/cosine_similarity.py +6 -4
  517. mindspore/train/metrics/error.py +2 -2
  518. mindspore/train/metrics/metric.py +3 -3
  519. mindspore/train/metrics/perplexity.py +2 -1
  520. mindspore/train/metrics/topk.py +2 -2
  521. mindspore/train/mind_ir_pb2.py +75 -6
  522. mindspore/train/model.py +41 -27
  523. mindspore/train/serialization.py +262 -133
  524. mindspore/train/summary/_writer_pool.py +1 -1
  525. mindspore/train/summary/summary_record.py +56 -34
  526. mindspore/train/train_thor/convert_utils.py +3 -3
  527. mindspore/version.py +1 -1
  528. {mindspore-2.2.11.dist-info → mindspore-2.3.0rc1.dist-info}/METADATA +2 -2
  529. {mindspore-2.2.11.dist-info → mindspore-2.3.0rc1.dist-info}/RECORD +532 -1075
  530. {mindspore-2.2.11.dist-info → mindspore-2.3.0rc1.dist-info}/entry_points.txt +1 -0
  531. mindspore/_extends/parallel_compile/tbe_compiler/tbe_adapter.py +0 -662
  532. mindspore/_extends/parallel_compile/tbe_compiler/tbe_helper.py +0 -377
  533. mindspore/_extends/parallel_compile/tbe_compiler/tbe_job.py +0 -201
  534. mindspore/_extends/parallel_compile/tbe_compiler/tbe_job_manager.py +0 -515
  535. mindspore/config/super_bar_config.json +0 -544
  536. mindspore/gen_ops.py +0 -273
  537. mindspore/lib/plugin/ascend/custom_aicpu_ops/op_impl/cpu/aicpu_kernel/impl/libcust_aicpu_kernels.so +0 -0
  538. mindspore/lib/plugin/ascend/libmindspore_aicpu_kernels.so +0 -0
  539. mindspore/lib/plugin/libmindspore_ascend.so.1 +0 -0
  540. mindspore/nn/layer/flash_attention.py +0 -189
  541. mindspore/ops/_op_impl/cpu/tensor_shape.py +0 -42
  542. mindspore/ops/_op_impl/tbe/__init__.py +0 -47
  543. mindspore/ops/_op_impl/tbe/abs.py +0 -38
  544. mindspore/ops/_op_impl/tbe/abs_ds.py +0 -39
  545. mindspore/ops/_op_impl/tbe/abs_grad.py +0 -43
  546. mindspore/ops/_op_impl/tbe/abs_grad_ds.py +0 -44
  547. mindspore/ops/_op_impl/tbe/accumulate_n_v2.py +0 -41
  548. mindspore/ops/_op_impl/tbe/accumulate_n_v2_ds.py +0 -42
  549. mindspore/ops/_op_impl/tbe/acos.py +0 -37
  550. mindspore/ops/_op_impl/tbe/acos_ds.py +0 -38
  551. mindspore/ops/_op_impl/tbe/acos_grad.py +0 -43
  552. mindspore/ops/_op_impl/tbe/acos_grad_ds.py +0 -44
  553. mindspore/ops/_op_impl/tbe/acosh.py +0 -37
  554. mindspore/ops/_op_impl/tbe/acosh_ds.py +0 -38
  555. mindspore/ops/_op_impl/tbe/acosh_grad.py +0 -43
  556. mindspore/ops/_op_impl/tbe/acosh_grad_ds.py +0 -44
  557. mindspore/ops/_op_impl/tbe/act_ulq_clamp_max_grad.py +0 -38
  558. mindspore/ops/_op_impl/tbe/act_ulq_clamp_min_grad.py +0 -38
  559. mindspore/ops/_op_impl/tbe/acts_ulq.py +0 -45
  560. mindspore/ops/_op_impl/tbe/acts_ulq_input_grad.py +0 -38
  561. mindspore/ops/_op_impl/tbe/adam_apply_one.py +0 -50
  562. mindspore/ops/_op_impl/tbe/adam_apply_one_assign.py +0 -53
  563. mindspore/ops/_op_impl/tbe/adam_apply_one_ds.py +0 -51
  564. mindspore/ops/_op_impl/tbe/adam_apply_one_with_decay.py +0 -54
  565. mindspore/ops/_op_impl/tbe/adam_apply_one_with_decay_assign.py +0 -54
  566. mindspore/ops/_op_impl/tbe/adam_apply_one_with_decay_ds.py +0 -55
  567. mindspore/ops/_op_impl/tbe/adaptive_max_pool2d.py +0 -37
  568. mindspore/ops/_op_impl/tbe/add.py +0 -42
  569. mindspore/ops/_op_impl/tbe/add_ds.py +0 -43
  570. mindspore/ops/_op_impl/tbe/add_n.py +0 -39
  571. mindspore/ops/_op_impl/tbe/add_n_ds.py +0 -40
  572. mindspore/ops/_op_impl/tbe/addcdiv.py +0 -41
  573. mindspore/ops/_op_impl/tbe/addcdiv_ds.py +0 -42
  574. mindspore/ops/_op_impl/tbe/addcmul.py +0 -43
  575. mindspore/ops/_op_impl/tbe/addcmul_ds.py +0 -44
  576. mindspore/ops/_op_impl/tbe/apply_ada_max.py +0 -68
  577. mindspore/ops/_op_impl/tbe/apply_ada_max_ds.py +0 -69
  578. mindspore/ops/_op_impl/tbe/apply_adadelta.py +0 -66
  579. mindspore/ops/_op_impl/tbe/apply_adadelta_ds.py +0 -67
  580. mindspore/ops/_op_impl/tbe/apply_adagrad.py +0 -55
  581. mindspore/ops/_op_impl/tbe/apply_adagrad_d_a.py +0 -67
  582. mindspore/ops/_op_impl/tbe/apply_adagrad_ds.py +0 -56
  583. mindspore/ops/_op_impl/tbe/apply_adagrad_v2.py +0 -48
  584. mindspore/ops/_op_impl/tbe/apply_adagrad_v2_ds.py +0 -49
  585. mindspore/ops/_op_impl/tbe/apply_adam.py +0 -79
  586. mindspore/ops/_op_impl/tbe/apply_adam_ds.py +0 -80
  587. mindspore/ops/_op_impl/tbe/apply_adam_with_amsgrad.py +0 -60
  588. mindspore/ops/_op_impl/tbe/apply_adam_with_amsgrad_ds.py +0 -61
  589. mindspore/ops/_op_impl/tbe/apply_add_sign.py +0 -65
  590. mindspore/ops/_op_impl/tbe/apply_add_sign_ds.py +0 -66
  591. mindspore/ops/_op_impl/tbe/apply_centered_rms_prop.py +0 -77
  592. mindspore/ops/_op_impl/tbe/apply_centered_rms_prop_ds.py +0 -78
  593. mindspore/ops/_op_impl/tbe/apply_ftrl.py +0 -67
  594. mindspore/ops/_op_impl/tbe/apply_ftrl_ds.py +0 -68
  595. mindspore/ops/_op_impl/tbe/apply_gradient_descent.py +0 -44
  596. mindspore/ops/_op_impl/tbe/apply_gradient_descent_ds.py +0 -45
  597. mindspore/ops/_op_impl/tbe/apply_keras_momentum.py +0 -49
  598. mindspore/ops/_op_impl/tbe/apply_momentum.py +0 -64
  599. mindspore/ops/_op_impl/tbe/apply_momentum_ds.py +0 -65
  600. mindspore/ops/_op_impl/tbe/apply_power_sign.py +0 -65
  601. mindspore/ops/_op_impl/tbe/apply_power_sign_ds.py +0 -66
  602. mindspore/ops/_op_impl/tbe/apply_proximal_adagrad.py +0 -57
  603. mindspore/ops/_op_impl/tbe/apply_proximal_adagrad_ds.py +0 -58
  604. mindspore/ops/_op_impl/tbe/apply_proximal_gradient_descent.py +0 -54
  605. mindspore/ops/_op_impl/tbe/apply_proximal_gradient_descent_ds.py +0 -55
  606. mindspore/ops/_op_impl/tbe/apply_rms_prop.py +0 -52
  607. mindspore/ops/_op_impl/tbe/approximate_equal.py +0 -39
  608. mindspore/ops/_op_impl/tbe/approximate_equal_ds.py +0 -40
  609. mindspore/ops/_op_impl/tbe/arg_max.py +0 -38
  610. mindspore/ops/_op_impl/tbe/arg_max_with_value.py +0 -38
  611. mindspore/ops/_op_impl/tbe/arg_max_with_value_ds.py +0 -39
  612. mindspore/ops/_op_impl/tbe/arg_min.py +0 -38
  613. mindspore/ops/_op_impl/tbe/arg_min_v2_ds.py +0 -40
  614. mindspore/ops/_op_impl/tbe/arg_min_with_value.py +0 -38
  615. mindspore/ops/_op_impl/tbe/arg_min_with_value_ds.py +0 -39
  616. mindspore/ops/_op_impl/tbe/asin.py +0 -37
  617. mindspore/ops/_op_impl/tbe/asin_ds.py +0 -38
  618. mindspore/ops/_op_impl/tbe/asin_grad.py +0 -43
  619. mindspore/ops/_op_impl/tbe/asin_grad_ds.py +0 -44
  620. mindspore/ops/_op_impl/tbe/asinh.py +0 -37
  621. mindspore/ops/_op_impl/tbe/asinh_ds.py +0 -38
  622. mindspore/ops/_op_impl/tbe/asinh_grad.py +0 -43
  623. mindspore/ops/_op_impl/tbe/asinh_grad_ds.py +0 -44
  624. mindspore/ops/_op_impl/tbe/assign.py +0 -79
  625. mindspore/ops/_op_impl/tbe/assign_add.py +0 -59
  626. mindspore/ops/_op_impl/tbe/assign_add_ds.py +0 -60
  627. mindspore/ops/_op_impl/tbe/assign_ds.py +0 -80
  628. mindspore/ops/_op_impl/tbe/assign_sub.py +0 -55
  629. mindspore/ops/_op_impl/tbe/assign_sub_ds.py +0 -56
  630. mindspore/ops/_op_impl/tbe/atan.py +0 -37
  631. mindspore/ops/_op_impl/tbe/atan2.py +0 -38
  632. mindspore/ops/_op_impl/tbe/atan2_ds.py +0 -39
  633. mindspore/ops/_op_impl/tbe/atan_ds.py +0 -38
  634. mindspore/ops/_op_impl/tbe/atan_grad.py +0 -43
  635. mindspore/ops/_op_impl/tbe/atan_grad_ds.py +0 -44
  636. mindspore/ops/_op_impl/tbe/atanh.py +0 -37
  637. mindspore/ops/_op_impl/tbe/atanh_ds.py +0 -38
  638. mindspore/ops/_op_impl/tbe/avg_pool.py +0 -43
  639. mindspore/ops/_op_impl/tbe/avg_pool_3d.py +0 -44
  640. mindspore/ops/_op_impl/tbe/avg_pool_3d_grad.py +0 -45
  641. mindspore/ops/_op_impl/tbe/avg_pool_ds.py +0 -44
  642. mindspore/ops/_op_impl/tbe/avg_pool_grad.py +0 -42
  643. mindspore/ops/_op_impl/tbe/avg_pool_grad_vm.py +0 -42
  644. mindspore/ops/_op_impl/tbe/basic_lstm_cell.py +0 -57
  645. mindspore/ops/_op_impl/tbe/basic_lstm_cell_c_state_grad.py +0 -50
  646. mindspore/ops/_op_impl/tbe/basic_lstm_cell_c_state_grad_v2.py +0 -51
  647. mindspore/ops/_op_impl/tbe/basic_lstm_cell_input_grad.py +0 -42
  648. mindspore/ops/_op_impl/tbe/basic_lstm_cell_weight_grad.py +0 -41
  649. mindspore/ops/_op_impl/tbe/batch_matmul.py +0 -42
  650. mindspore/ops/_op_impl/tbe/batch_matmul_ds.py +0 -41
  651. mindspore/ops/_op_impl/tbe/batch_matmul_v2.py +0 -47
  652. mindspore/ops/_op_impl/tbe/batch_to_space.py +0 -38
  653. mindspore/ops/_op_impl/tbe/batch_to_space_nd.py +0 -38
  654. mindspore/ops/_op_impl/tbe/batch_to_space_nd_ds.py +0 -39
  655. mindspore/ops/_op_impl/tbe/batch_to_space_nd_v2.py +0 -41
  656. mindspore/ops/_op_impl/tbe/batchnorm.py +0 -58
  657. mindspore/ops/_op_impl/tbe/batchnorm_grad.py +0 -58
  658. mindspore/ops/_op_impl/tbe/bce_with_logits_loss.py +0 -42
  659. mindspore/ops/_op_impl/tbe/bessel_i0e.py +0 -37
  660. mindspore/ops/_op_impl/tbe/bessel_i0e_ds.py +0 -38
  661. mindspore/ops/_op_impl/tbe/bessel_i1e.py +0 -37
  662. mindspore/ops/_op_impl/tbe/bessel_i1e_ds.py +0 -38
  663. mindspore/ops/_op_impl/tbe/bias_add.py +0 -38
  664. mindspore/ops/_op_impl/tbe/bias_add_ds.py +0 -39
  665. mindspore/ops/_op_impl/tbe/bias_add_grad.py +0 -53
  666. mindspore/ops/_op_impl/tbe/binary_cross_entropy.py +0 -39
  667. mindspore/ops/_op_impl/tbe/binary_cross_entropy_ds.py +0 -40
  668. mindspore/ops/_op_impl/tbe/binary_cross_entropy_grad.py +0 -44
  669. mindspore/ops/_op_impl/tbe/binary_cross_entropy_grad_ds.py +0 -45
  670. mindspore/ops/_op_impl/tbe/bitwise_and.py +0 -39
  671. mindspore/ops/_op_impl/tbe/bitwise_and_ds.py +0 -40
  672. mindspore/ops/_op_impl/tbe/bitwise_or.py +0 -39
  673. mindspore/ops/_op_impl/tbe/bitwise_or_ds.py +0 -40
  674. mindspore/ops/_op_impl/tbe/bitwise_xor.py +0 -39
  675. mindspore/ops/_op_impl/tbe/bitwise_xor_ds.py +0 -40
  676. mindspore/ops/_op_impl/tbe/bn_infer.py +0 -43
  677. mindspore/ops/_op_impl/tbe/bn_infer_ds.py +0 -45
  678. mindspore/ops/_op_impl/tbe/bn_infer_grad.py +0 -41
  679. mindspore/ops/_op_impl/tbe/bn_infer_grad_ds.py +0 -40
  680. mindspore/ops/_op_impl/tbe/bn_inference.py +0 -50
  681. mindspore/ops/_op_impl/tbe/bn_training_reduce.py +0 -38
  682. mindspore/ops/_op_impl/tbe/bn_training_reduce_ds.py +0 -39
  683. mindspore/ops/_op_impl/tbe/bn_training_reduce_grad.py +0 -46
  684. mindspore/ops/_op_impl/tbe/bn_training_reduce_grad_ds.py +0 -47
  685. mindspore/ops/_op_impl/tbe/bn_training_update.py +0 -52
  686. mindspore/ops/_op_impl/tbe/bn_training_update_ds.py +0 -53
  687. mindspore/ops/_op_impl/tbe/bn_training_update_grad.py +0 -44
  688. mindspore/ops/_op_impl/tbe/bn_training_update_grad_ds.py +0 -45
  689. mindspore/ops/_op_impl/tbe/bn_training_update_v2.py +0 -48
  690. mindspore/ops/_op_impl/tbe/bn_training_update_v3.py +0 -51
  691. mindspore/ops/_op_impl/tbe/bounding_box_decode.py +0 -41
  692. mindspore/ops/_op_impl/tbe/bounding_box_decode_ds.py +0 -42
  693. mindspore/ops/_op_impl/tbe/bounding_box_encode.py +0 -38
  694. mindspore/ops/_op_impl/tbe/broadcast_to.py +0 -40
  695. mindspore/ops/_op_impl/tbe/broadcast_to_ds.py +0 -44
  696. mindspore/ops/_op_impl/tbe/cast.py +0 -55
  697. mindspore/ops/_op_impl/tbe/cast_ds.py +0 -58
  698. mindspore/ops/_op_impl/tbe/cdist.py +0 -38
  699. mindspore/ops/_op_impl/tbe/cdist_grad.py +0 -42
  700. mindspore/ops/_op_impl/tbe/ceil.py +0 -37
  701. mindspore/ops/_op_impl/tbe/ceil_ds.py +0 -38
  702. mindspore/ops/_op_impl/tbe/celu.py +0 -39
  703. mindspore/ops/_op_impl/tbe/centralization.py +0 -39
  704. mindspore/ops/_op_impl/tbe/check_valid.py +0 -38
  705. mindspore/ops/_op_impl/tbe/check_valid_ds.py +0 -39
  706. mindspore/ops/_op_impl/tbe/clip_by_norm_no_div_sum.py +0 -41
  707. mindspore/ops/_op_impl/tbe/clip_by_norm_no_div_sum_ds.py +0 -42
  708. mindspore/ops/_op_impl/tbe/clip_by_value.py +0 -41
  709. mindspore/ops/_op_impl/tbe/clip_by_value_ds.py +0 -42
  710. mindspore/ops/_op_impl/tbe/concat.py +0 -40
  711. mindspore/ops/_op_impl/tbe/concat_ds.py +0 -38
  712. mindspore/ops/_op_impl/tbe/confusion_matrix.py +0 -63
  713. mindspore/ops/_op_impl/tbe/confusion_mul_grad.py +0 -40
  714. mindspore/ops/_op_impl/tbe/confusion_softmax_grad.py +0 -41
  715. mindspore/ops/_op_impl/tbe/confusion_transpose_d.py +0 -39
  716. mindspore/ops/_op_impl/tbe/conv2d.py +0 -47
  717. mindspore/ops/_op_impl/tbe/conv2d_backprop_filter.py +0 -42
  718. mindspore/ops/_op_impl/tbe/conv2d_backprop_filter_ds.py +0 -43
  719. mindspore/ops/_op_impl/tbe/conv2d_backprop_input.py +0 -42
  720. mindspore/ops/_op_impl/tbe/conv2d_backprop_input_ds.py +0 -44
  721. mindspore/ops/_op_impl/tbe/conv2d_ds.py +0 -47
  722. mindspore/ops/_op_impl/tbe/conv2d_transpose.py +0 -48
  723. mindspore/ops/_op_impl/tbe/conv3d.py +0 -45
  724. mindspore/ops/_op_impl/tbe/conv3d_backprop_filter.py +0 -42
  725. mindspore/ops/_op_impl/tbe/conv3d_backprop_input.py +0 -42
  726. mindspore/ops/_op_impl/tbe/conv3d_transpose.py +0 -47
  727. mindspore/ops/_op_impl/tbe/conv3d_transpose_ds.py +0 -48
  728. mindspore/ops/_op_impl/tbe/cos.py +0 -37
  729. mindspore/ops/_op_impl/tbe/cos_ds.py +0 -38
  730. mindspore/ops/_op_impl/tbe/cosh.py +0 -37
  731. mindspore/ops/_op_impl/tbe/cosh_ds.py +0 -38
  732. mindspore/ops/_op_impl/tbe/ctc_loss_v2.py +0 -42
  733. mindspore/ops/_op_impl/tbe/ctc_loss_v2_grad.py +0 -44
  734. mindspore/ops/_op_impl/tbe/cum_sum.py +0 -42
  735. mindspore/ops/_op_impl/tbe/cum_sum_ds.py +0 -44
  736. mindspore/ops/_op_impl/tbe/cummin.py +0 -41
  737. mindspore/ops/_op_impl/tbe/cumprod.py +0 -42
  738. mindspore/ops/_op_impl/tbe/data_format_dim_map.py +0 -38
  739. mindspore/ops/_op_impl/tbe/data_format_dim_map_ds.py +0 -40
  740. mindspore/ops/_op_impl/tbe/deformable_offsets.py +0 -45
  741. mindspore/ops/_op_impl/tbe/deformable_offsets_grad.py +0 -48
  742. mindspore/ops/_op_impl/tbe/depth_to_space_ds.py +0 -49
  743. mindspore/ops/_op_impl/tbe/depthwise_conv2d.py +0 -44
  744. mindspore/ops/_op_impl/tbe/depthwise_conv2d_backprop_filter.py +0 -41
  745. mindspore/ops/_op_impl/tbe/depthwise_conv2d_backprop_input.py +0 -41
  746. mindspore/ops/_op_impl/tbe/diag.py +0 -38
  747. mindspore/ops/_op_impl/tbe/diag_part.py +0 -38
  748. mindspore/ops/_op_impl/tbe/dilation.py +0 -40
  749. mindspore/ops/_op_impl/tbe/div.py +0 -41
  750. mindspore/ops/_op_impl/tbe/div_ds.py +0 -42
  751. mindspore/ops/_op_impl/tbe/div_no_nan.py +0 -41
  752. mindspore/ops/_op_impl/tbe/div_no_nan_ds.py +0 -42
  753. mindspore/ops/_op_impl/tbe/dropout_do_mask.py +0 -38
  754. mindspore/ops/_op_impl/tbe/dropout_do_mask_ds.py +0 -39
  755. mindspore/ops/_op_impl/tbe/dropout_do_mask_v3.py +0 -39
  756. mindspore/ops/_op_impl/tbe/dynamic_atomic_addr_clean.py +0 -34
  757. mindspore/ops/_op_impl/tbe/dynamic_gru_v2.py +0 -95
  758. mindspore/ops/_op_impl/tbe/dynamic_rnn.py +0 -82
  759. mindspore/ops/_op_impl/tbe/elu.py +0 -38
  760. mindspore/ops/_op_impl/tbe/elu_ds.py +0 -39
  761. mindspore/ops/_op_impl/tbe/elu_grad.py +0 -43
  762. mindspore/ops/_op_impl/tbe/elu_grad_ds.py +0 -44
  763. mindspore/ops/_op_impl/tbe/equal.py +0 -42
  764. mindspore/ops/_op_impl/tbe/equal_ds.py +0 -42
  765. mindspore/ops/_op_impl/tbe/erf.py +0 -37
  766. mindspore/ops/_op_impl/tbe/erf_ds.py +0 -38
  767. mindspore/ops/_op_impl/tbe/erfc.py +0 -37
  768. mindspore/ops/_op_impl/tbe/erfc_ds.py +0 -38
  769. mindspore/ops/_op_impl/tbe/erfinv.py +0 -36
  770. mindspore/ops/_op_impl/tbe/exp.py +0 -40
  771. mindspore/ops/_op_impl/tbe/exp_ds.py +0 -41
  772. mindspore/ops/_op_impl/tbe/expand_dims.py +0 -38
  773. mindspore/ops/_op_impl/tbe/expm1.py +0 -37
  774. mindspore/ops/_op_impl/tbe/expm1_ds.py +0 -38
  775. mindspore/ops/_op_impl/tbe/extract_image_patches.py +0 -41
  776. mindspore/ops/_op_impl/tbe/extract_volume_patches.py +0 -39
  777. mindspore/ops/_op_impl/tbe/fake_quant_with_min_max_vars.py +0 -39
  778. mindspore/ops/_op_impl/tbe/fake_quant_with_min_max_vars_gradient.py +0 -43
  779. mindspore/ops/_op_impl/tbe/fake_quant_with_min_max_vars_per_channel.py +0 -39
  780. mindspore/ops/_op_impl/tbe/fake_quant_with_min_max_vars_per_channel_gradient.py +0 -43
  781. mindspore/ops/_op_impl/tbe/fast_gelu.py +0 -37
  782. mindspore/ops/_op_impl/tbe/fast_gelu_ds.py +0 -38
  783. mindspore/ops/_op_impl/tbe/fast_gelu_grad.py +0 -41
  784. mindspore/ops/_op_impl/tbe/fast_gelu_grad_ds.py +0 -42
  785. mindspore/ops/_op_impl/tbe/fill.py +0 -56
  786. mindspore/ops/_op_impl/tbe/fill_ds.py +0 -42
  787. mindspore/ops/_op_impl/tbe/flatten.py +0 -48
  788. mindspore/ops/_op_impl/tbe/floor.py +0 -37
  789. mindspore/ops/_op_impl/tbe/floor_div.py +0 -41
  790. mindspore/ops/_op_impl/tbe/floor_div_ds.py +0 -42
  791. mindspore/ops/_op_impl/tbe/floor_ds.py +0 -38
  792. mindspore/ops/_op_impl/tbe/floor_mod.py +0 -39
  793. mindspore/ops/_op_impl/tbe/floor_mod_ds.py +0 -40
  794. mindspore/ops/_op_impl/tbe/fused_dbn_dw.py +0 -52
  795. mindspore/ops/_op_impl/tbe/fused_mul_add.py +0 -38
  796. mindspore/ops/_op_impl/tbe/fused_mul_add_n.py +0 -48
  797. mindspore/ops/_op_impl/tbe/fused_mul_add_n_l2loss.py +0 -53
  798. mindspore/ops/_op_impl/tbe/fused_mul_apply_momentum.py +0 -57
  799. mindspore/ops/_op_impl/tbe/fused_mul_apply_momentum_extern.py +0 -67
  800. mindspore/ops/_op_impl/tbe/gather_nd.py +0 -52
  801. mindspore/ops/_op_impl/tbe/gather_nd_ds.py +0 -48
  802. mindspore/ops/_op_impl/tbe/gather_v2.py +0 -56
  803. mindspore/ops/_op_impl/tbe/gather_v2_ds.py +0 -68
  804. mindspore/ops/_op_impl/tbe/gelu.py +0 -37
  805. mindspore/ops/_op_impl/tbe/gelu_ds.py +0 -38
  806. mindspore/ops/_op_impl/tbe/gelu_grad.py +0 -42
  807. mindspore/ops/_op_impl/tbe/gelu_grad_ds.py +0 -43
  808. mindspore/ops/_op_impl/tbe/ger.py +0 -43
  809. mindspore/ops/_op_impl/tbe/ger_ds.py +0 -44
  810. mindspore/ops/_op_impl/tbe/greater.py +0 -43
  811. mindspore/ops/_op_impl/tbe/greater_equal.py +0 -41
  812. mindspore/ops/_op_impl/tbe/greater_equal_ds.py +0 -42
  813. mindspore/ops/_op_impl/tbe/gru_v2_hidden_grad.py +0 -51
  814. mindspore/ops/_op_impl/tbe/gru_v2_hidden_grad_cell.py +0 -52
  815. mindspore/ops/_op_impl/tbe/hard_swish.py +0 -37
  816. mindspore/ops/_op_impl/tbe/hard_swish_ds.py +0 -38
  817. mindspore/ops/_op_impl/tbe/hard_swish_grad.py +0 -41
  818. mindspore/ops/_op_impl/tbe/hard_swish_grad_ds.py +0 -42
  819. mindspore/ops/_op_impl/tbe/histogram_fixed_width.py +0 -40
  820. mindspore/ops/_op_impl/tbe/hshrink.py +0 -33
  821. mindspore/ops/_op_impl/tbe/hshrink_grad.py +0 -37
  822. mindspore/ops/_op_impl/tbe/hsigmoid.py +0 -45
  823. mindspore/ops/_op_impl/tbe/hsigmoid_grad.py +0 -39
  824. mindspore/ops/_op_impl/tbe/ifmr.py +0 -47
  825. mindspore/ops/_op_impl/tbe/ifmr_ds.py +0 -48
  826. mindspore/ops/_op_impl/tbe/im2col.py +0 -42
  827. mindspore/ops/_op_impl/tbe/in_top_k.py +0 -37
  828. mindspore/ops/_op_impl/tbe/inplace_add.py +0 -39
  829. mindspore/ops/_op_impl/tbe/inplace_index_add.py +0 -46
  830. mindspore/ops/_op_impl/tbe/inplace_sub.py +0 -39
  831. mindspore/ops/_op_impl/tbe/inplace_update.py +0 -39
  832. mindspore/ops/_op_impl/tbe/inplace_update_ds.py +0 -40
  833. mindspore/ops/_op_impl/tbe/inv.py +0 -38
  834. mindspore/ops/_op_impl/tbe/inv_ds.py +0 -39
  835. mindspore/ops/_op_impl/tbe/inv_grad.py +0 -40
  836. mindspore/ops/_op_impl/tbe/inv_grad_ds.py +0 -41
  837. mindspore/ops/_op_impl/tbe/invert.py +0 -37
  838. mindspore/ops/_op_impl/tbe/invert_ds.py +0 -38
  839. mindspore/ops/_op_impl/tbe/iou.py +0 -38
  840. mindspore/ops/_op_impl/tbe/iou_ds.py +0 -39
  841. mindspore/ops/_op_impl/tbe/is_close.py +0 -40
  842. mindspore/ops/_op_impl/tbe/kl_div_loss.py +0 -38
  843. mindspore/ops/_op_impl/tbe/kl_div_loss_ds.py +0 -39
  844. mindspore/ops/_op_impl/tbe/kl_div_loss_grad.py +0 -40
  845. mindspore/ops/_op_impl/tbe/l2_loss.py +0 -36
  846. mindspore/ops/_op_impl/tbe/l2_loss_ds.py +0 -37
  847. mindspore/ops/_op_impl/tbe/l2_normalize.py +0 -38
  848. mindspore/ops/_op_impl/tbe/l2_normalize_grad.py +0 -40
  849. mindspore/ops/_op_impl/tbe/lamb_apply_optimizer_assign.py +0 -55
  850. mindspore/ops/_op_impl/tbe/lamb_apply_weight_assign.py +0 -42
  851. mindspore/ops/_op_impl/tbe/lamb_next_mv.py +0 -59
  852. mindspore/ops/_op_impl/tbe/lamb_next_mv_with_decay.py +0 -59
  853. mindspore/ops/_op_impl/tbe/lamb_next_right.py +0 -44
  854. mindspore/ops/_op_impl/tbe/lamb_update_with_lr.py +0 -48
  855. mindspore/ops/_op_impl/tbe/lamb_update_with_lr_v2.py +0 -44
  856. mindspore/ops/_op_impl/tbe/lars_update.py +0 -50
  857. mindspore/ops/_op_impl/tbe/lars_update_ds.py +0 -51
  858. mindspore/ops/_op_impl/tbe/layer_norm.py +0 -46
  859. mindspore/ops/_op_impl/tbe/layer_norm_beta_gamma_backprop.py +0 -44
  860. mindspore/ops/_op_impl/tbe/layer_norm_beta_gamma_backprop_ds.py +0 -45
  861. mindspore/ops/_op_impl/tbe/layer_norm_beta_gamma_backprop_v2.py +0 -40
  862. mindspore/ops/_op_impl/tbe/layer_norm_beta_gamma_backprop_v2_ds.py +0 -41
  863. mindspore/ops/_op_impl/tbe/layer_norm_ds.py +0 -47
  864. mindspore/ops/_op_impl/tbe/layer_norm_grad.py +0 -48
  865. mindspore/ops/_op_impl/tbe/layer_norm_x_backprop.py +0 -43
  866. mindspore/ops/_op_impl/tbe/layer_norm_x_backprop_ds.py +0 -44
  867. mindspore/ops/_op_impl/tbe/layer_norm_x_backprop_v2.py +0 -45
  868. mindspore/ops/_op_impl/tbe/layer_norm_x_backprop_v2_ds.py +0 -45
  869. mindspore/ops/_op_impl/tbe/lerp.py +0 -38
  870. mindspore/ops/_op_impl/tbe/less.py +0 -41
  871. mindspore/ops/_op_impl/tbe/less_ds.py +0 -42
  872. mindspore/ops/_op_impl/tbe/less_equal.py +0 -41
  873. mindspore/ops/_op_impl/tbe/less_equal_ds.py +0 -42
  874. mindspore/ops/_op_impl/tbe/log.py +0 -40
  875. mindspore/ops/_op_impl/tbe/log1p.py +0 -37
  876. mindspore/ops/_op_impl/tbe/log1p_ds.py +0 -38
  877. mindspore/ops/_op_impl/tbe/log_ds.py +0 -41
  878. mindspore/ops/_op_impl/tbe/logical_and.py +0 -37
  879. mindspore/ops/_op_impl/tbe/logical_and_ds.py +0 -38
  880. mindspore/ops/_op_impl/tbe/logical_not.py +0 -36
  881. mindspore/ops/_op_impl/tbe/logical_not_ds.py +0 -37
  882. mindspore/ops/_op_impl/tbe/logical_or.py +0 -37
  883. mindspore/ops/_op_impl/tbe/logical_or_ds.py +0 -38
  884. mindspore/ops/_op_impl/tbe/logsoftmax.py +0 -37
  885. mindspore/ops/_op_impl/tbe/logsoftmax_ds.py +0 -38
  886. mindspore/ops/_op_impl/tbe/logsoftmax_grad.py +0 -38
  887. mindspore/ops/_op_impl/tbe/logsoftmax_grad_ds.py +0 -39
  888. mindspore/ops/_op_impl/tbe/lp_norm.py +0 -40
  889. mindspore/ops/_op_impl/tbe/lp_norm_ds.py +0 -41
  890. mindspore/ops/_op_impl/tbe/lrn.py +0 -41
  891. mindspore/ops/_op_impl/tbe/lrn_grad.py +0 -42
  892. mindspore/ops/_op_impl/tbe/lstm_input_grad.py +0 -51
  893. mindspore/ops/_op_impl/tbe/masked_fill.py +0 -40
  894. mindspore/ops/_op_impl/tbe/masked_fill_ds.py +0 -41
  895. mindspore/ops/_op_impl/tbe/matmul.py +0 -53
  896. mindspore/ops/_op_impl/tbe/matmul_ds.py +0 -47
  897. mindspore/ops/_op_impl/tbe/matmul_v2.py +0 -50
  898. mindspore/ops/_op_impl/tbe/matrix_diag.py +0 -45
  899. mindspore/ops/_op_impl/tbe/matrix_diag_part.py +0 -45
  900. mindspore/ops/_op_impl/tbe/matrix_set_diag.py +0 -46
  901. mindspore/ops/_op_impl/tbe/max_pool.py +0 -39
  902. mindspore/ops/_op_impl/tbe/max_pool3d.py +0 -44
  903. mindspore/ops/_op_impl/tbe/max_pool3d_grad.py +0 -43
  904. mindspore/ops/_op_impl/tbe/max_pool3d_grad_grad.py +0 -44
  905. mindspore/ops/_op_impl/tbe/max_pool_ds.py +0 -40
  906. mindspore/ops/_op_impl/tbe/max_pool_grad.py +0 -43
  907. mindspore/ops/_op_impl/tbe/max_pool_grad_grad.py +0 -41
  908. mindspore/ops/_op_impl/tbe/max_pool_grad_grad_with_argmax.py +0 -41
  909. mindspore/ops/_op_impl/tbe/max_pool_grad_with_argmax.py +0 -42
  910. mindspore/ops/_op_impl/tbe/max_pool_with_argmax.py +0 -40
  911. mindspore/ops/_op_impl/tbe/maximum.py +0 -39
  912. mindspore/ops/_op_impl/tbe/maximum_ds.py +0 -40
  913. mindspore/ops/_op_impl/tbe/maximum_grad.py +0 -46
  914. mindspore/ops/_op_impl/tbe/maximum_grad_ds.py +0 -47
  915. mindspore/ops/_op_impl/tbe/mem_set.py +0 -38
  916. mindspore/ops/_op_impl/tbe/minimum.py +0 -40
  917. mindspore/ops/_op_impl/tbe/minimum_ds.py +0 -41
  918. mindspore/ops/_op_impl/tbe/minimum_grad.py +0 -46
  919. mindspore/ops/_op_impl/tbe/minimum_grad_ds.py +0 -47
  920. mindspore/ops/_op_impl/tbe/mish.py +0 -37
  921. mindspore/ops/_op_impl/tbe/mod.py +0 -41
  922. mindspore/ops/_op_impl/tbe/mod_ds.py +0 -42
  923. mindspore/ops/_op_impl/tbe/mul.py +0 -37
  924. mindspore/ops/_op_impl/tbe/mul_ds.py +0 -38
  925. mindspore/ops/_op_impl/tbe/mul_no_nan.py +0 -39
  926. mindspore/ops/_op_impl/tbe/mul_no_nan_ds.py +0 -40
  927. mindspore/ops/_op_impl/tbe/multilabel_margin_loss.py +0 -39
  928. mindspore/ops/_op_impl/tbe/neg.py +0 -39
  929. mindspore/ops/_op_impl/tbe/neg_ds.py +0 -40
  930. mindspore/ops/_op_impl/tbe/new_im2col.py +0 -40
  931. mindspore/ops/_op_impl/tbe/nll_loss.py +0 -41
  932. mindspore/ops/_op_impl/tbe/nll_loss_grad.py +0 -44
  933. mindspore/ops/_op_impl/tbe/nms_with_mask.py +0 -39
  934. mindspore/ops/_op_impl/tbe/not_equal.py +0 -41
  935. mindspore/ops/_op_impl/tbe/not_equal_ds.py +0 -42
  936. mindspore/ops/_op_impl/tbe/npu_alloc_float_status.py +0 -34
  937. mindspore/ops/_op_impl/tbe/npu_clear_float_status.py +0 -35
  938. mindspore/ops/_op_impl/tbe/npu_clear_float_status_v2.py +0 -35
  939. mindspore/ops/_op_impl/tbe/npu_get_float_status.py +0 -35
  940. mindspore/ops/_op_impl/tbe/npu_get_float_status_v2.py +0 -35
  941. mindspore/ops/_op_impl/tbe/one_hot.py +0 -48
  942. mindspore/ops/_op_impl/tbe/one_hot_ds.py +0 -45
  943. mindspore/ops/_op_impl/tbe/ones_like.py +0 -40
  944. mindspore/ops/_op_impl/tbe/ones_like_ds.py +0 -41
  945. mindspore/ops/_op_impl/tbe/p_s_r_o_i_pooling.py +0 -40
  946. mindspore/ops/_op_impl/tbe/p_s_r_o_i_pooling_grad.py +0 -40
  947. mindspore/ops/_op_impl/tbe/pack.py +0 -58
  948. mindspore/ops/_op_impl/tbe/pack_ds.py +0 -59
  949. mindspore/ops/_op_impl/tbe/pad_d.py +0 -40
  950. mindspore/ops/_op_impl/tbe/pad_d_ds.py +0 -41
  951. mindspore/ops/_op_impl/tbe/parallel_concat.py +0 -70
  952. mindspore/ops/_op_impl/tbe/parallel_resize_bilinear.py +0 -45
  953. mindspore/ops/_op_impl/tbe/parallel_resize_bilinear_grad.py +0 -44
  954. mindspore/ops/_op_impl/tbe/pdist.py +0 -36
  955. mindspore/ops/_op_impl/tbe/pooling.py +0 -46
  956. mindspore/ops/_op_impl/tbe/population_count.py +0 -38
  957. mindspore/ops/_op_impl/tbe/pow.py +0 -41
  958. mindspore/ops/_op_impl/tbe/pow_ds.py +0 -42
  959. mindspore/ops/_op_impl/tbe/prelu.py +0 -37
  960. mindspore/ops/_op_impl/tbe/prelu_ds.py +0 -38
  961. mindspore/ops/_op_impl/tbe/prelu_grad.py +0 -40
  962. mindspore/ops/_op_impl/tbe/range.py +0 -39
  963. mindspore/ops/_op_impl/tbe/real_div.py +0 -38
  964. mindspore/ops/_op_impl/tbe/real_div_ds.py +0 -39
  965. mindspore/ops/_op_impl/tbe/reciprocal.py +0 -36
  966. mindspore/ops/_op_impl/tbe/reciprocal_ds.py +0 -37
  967. mindspore/ops/_op_impl/tbe/reciprocal_grad.py +0 -38
  968. mindspore/ops/_op_impl/tbe/reciprocal_grad_ds.py +0 -39
  969. mindspore/ops/_op_impl/tbe/reduce_all.py +0 -38
  970. mindspore/ops/_op_impl/tbe/reduce_all_ds.py +0 -39
  971. mindspore/ops/_op_impl/tbe/reduce_any.py +0 -38
  972. mindspore/ops/_op_impl/tbe/reduce_any_ds.py +0 -39
  973. mindspore/ops/_op_impl/tbe/reduce_max.py +0 -43
  974. mindspore/ops/_op_impl/tbe/reduce_max_ds.py +0 -41
  975. mindspore/ops/_op_impl/tbe/reduce_mean.py +0 -40
  976. mindspore/ops/_op_impl/tbe/reduce_mean_ds.py +0 -42
  977. mindspore/ops/_op_impl/tbe/reduce_min.py +0 -41
  978. mindspore/ops/_op_impl/tbe/reduce_min_ds.py +0 -41
  979. mindspore/ops/_op_impl/tbe/reduce_prod.py +0 -42
  980. mindspore/ops/_op_impl/tbe/reduce_prod_ds.py +0 -41
  981. mindspore/ops/_op_impl/tbe/reduce_std.py +0 -44
  982. mindspore/ops/_op_impl/tbe/reduce_sum.py +0 -39
  983. mindspore/ops/_op_impl/tbe/reduce_sum_ds.py +0 -41
  984. mindspore/ops/_op_impl/tbe/relu.py +0 -39
  985. mindspore/ops/_op_impl/tbe/relu6.py +0 -38
  986. mindspore/ops/_op_impl/tbe/relu6_ds.py +0 -39
  987. mindspore/ops/_op_impl/tbe/relu6_grad.py +0 -43
  988. mindspore/ops/_op_impl/tbe/relu6_grad_ds.py +0 -44
  989. mindspore/ops/_op_impl/tbe/relu_ds.py +0 -40
  990. mindspore/ops/_op_impl/tbe/relu_grad.py +0 -41
  991. mindspore/ops/_op_impl/tbe/relu_grad_ds.py +0 -42
  992. mindspore/ops/_op_impl/tbe/relu_grad_v2.py +0 -40
  993. mindspore/ops/_op_impl/tbe/relu_grad_v2_ds.py +0 -41
  994. mindspore/ops/_op_impl/tbe/relu_v2.py +0 -40
  995. mindspore/ops/_op_impl/tbe/relu_v2_ds.py +0 -41
  996. mindspore/ops/_op_impl/tbe/renorm.py +0 -39
  997. mindspore/ops/_op_impl/tbe/resize_bilinear.py +0 -40
  998. mindspore/ops/_op_impl/tbe/resize_bilinear_grad.py +0 -41
  999. mindspore/ops/_op_impl/tbe/resize_bilinear_v2.py +0 -43
  1000. mindspore/ops/_op_impl/tbe/resize_nearest_neighbor.py +0 -40
  1001. mindspore/ops/_op_impl/tbe/resize_nearest_neighbor_ds.py +0 -40
  1002. mindspore/ops/_op_impl/tbe/resize_nearest_neighbor_grad.py +0 -39
  1003. mindspore/ops/_op_impl/tbe/resize_nearest_neighbor_grad_ds.py +0 -42
  1004. mindspore/ops/_op_impl/tbe/reverse_v2_d.py +0 -37
  1005. mindspore/ops/_op_impl/tbe/rint.py +0 -37
  1006. mindspore/ops/_op_impl/tbe/rint_ds.py +0 -38
  1007. mindspore/ops/_op_impl/tbe/roi_align.py +0 -43
  1008. mindspore/ops/_op_impl/tbe/roi_align_ds.py +0 -44
  1009. mindspore/ops/_op_impl/tbe/roi_align_grad.py +0 -43
  1010. mindspore/ops/_op_impl/tbe/roi_align_grad_ds.py +0 -44
  1011. mindspore/ops/_op_impl/tbe/roll.py +0 -42
  1012. mindspore/ops/_op_impl/tbe/round.py +0 -38
  1013. mindspore/ops/_op_impl/tbe/round_ds.py +0 -39
  1014. mindspore/ops/_op_impl/tbe/rsqrt.py +0 -37
  1015. mindspore/ops/_op_impl/tbe/rsqrt_ds.py +0 -38
  1016. mindspore/ops/_op_impl/tbe/rsqrt_grad.py +0 -40
  1017. mindspore/ops/_op_impl/tbe/rsqrt_grad_ds.py +0 -41
  1018. mindspore/ops/_op_impl/tbe/scatter_add.py +0 -44
  1019. mindspore/ops/_op_impl/tbe/scatter_div.py +0 -46
  1020. mindspore/ops/_op_impl/tbe/scatter_max.py +0 -45
  1021. mindspore/ops/_op_impl/tbe/scatter_min.py +0 -45
  1022. mindspore/ops/_op_impl/tbe/scatter_mul.py +0 -44
  1023. mindspore/ops/_op_impl/tbe/scatter_nd.py +0 -41
  1024. mindspore/ops/_op_impl/tbe/scatter_nd_add.py +0 -45
  1025. mindspore/ops/_op_impl/tbe/scatter_nd_d.py +0 -41
  1026. mindspore/ops/_op_impl/tbe/scatter_nd_ds.py +0 -49
  1027. mindspore/ops/_op_impl/tbe/scatter_nd_sub.py +0 -47
  1028. mindspore/ops/_op_impl/tbe/scatter_nd_sub_ds.py +0 -48
  1029. mindspore/ops/_op_impl/tbe/scatter_nd_update.py +0 -47
  1030. mindspore/ops/_op_impl/tbe/scatter_nd_update_ds.py +0 -48
  1031. mindspore/ops/_op_impl/tbe/scatter_non_aliasing_add.py +0 -39
  1032. mindspore/ops/_op_impl/tbe/scatter_non_aliasing_add_ds.py +0 -40
  1033. mindspore/ops/_op_impl/tbe/scatter_sub.py +0 -47
  1034. mindspore/ops/_op_impl/tbe/scatter_sub_ds.py +0 -48
  1035. mindspore/ops/_op_impl/tbe/scatter_update.py +0 -43
  1036. mindspore/ops/_op_impl/tbe/select.py +0 -38
  1037. mindspore/ops/_op_impl/tbe/select_ds.py +0 -39
  1038. mindspore/ops/_op_impl/tbe/selu.py +0 -39
  1039. mindspore/ops/_op_impl/tbe/selu_ds.py +0 -40
  1040. mindspore/ops/_op_impl/tbe/sgd.py +0 -62
  1041. mindspore/ops/_op_impl/tbe/sigmoid.py +0 -37
  1042. mindspore/ops/_op_impl/tbe/sigmoid_cross_entropy_with_logits.py +0 -41
  1043. mindspore/ops/_op_impl/tbe/sigmoid_cross_entropy_with_logits_ds.py +0 -42
  1044. mindspore/ops/_op_impl/tbe/sigmoid_cross_entropy_with_logits_grad.py +0 -42
  1045. mindspore/ops/_op_impl/tbe/sigmoid_cross_entropy_with_logits_grad_ds.py +0 -43
  1046. mindspore/ops/_op_impl/tbe/sigmoid_ds.py +0 -38
  1047. mindspore/ops/_op_impl/tbe/sigmoid_grad.py +0 -39
  1048. mindspore/ops/_op_impl/tbe/sigmoid_grad_ds.py +0 -40
  1049. mindspore/ops/_op_impl/tbe/sign.py +0 -38
  1050. mindspore/ops/_op_impl/tbe/sign_ds.py +0 -39
  1051. mindspore/ops/_op_impl/tbe/sin.py +0 -37
  1052. mindspore/ops/_op_impl/tbe/sin_ds.py +0 -38
  1053. mindspore/ops/_op_impl/tbe/sinh.py +0 -37
  1054. mindspore/ops/_op_impl/tbe/sinh_ds.py +0 -38
  1055. mindspore/ops/_op_impl/tbe/slice.py +0 -58
  1056. mindspore/ops/_op_impl/tbe/smooth_l1_loss.py +0 -45
  1057. mindspore/ops/_op_impl/tbe/smooth_l1_loss_ds.py +0 -46
  1058. mindspore/ops/_op_impl/tbe/smooth_l1_loss_grad.py +0 -46
  1059. mindspore/ops/_op_impl/tbe/smooth_l1_loss_grad_ds.py +0 -47
  1060. mindspore/ops/_op_impl/tbe/soft_margin_loss.py +0 -38
  1061. mindspore/ops/_op_impl/tbe/soft_margin_loss_grad.py +0 -39
  1062. mindspore/ops/_op_impl/tbe/soft_shrink.py +0 -36
  1063. mindspore/ops/_op_impl/tbe/soft_shrink_grad.py +0 -38
  1064. mindspore/ops/_op_impl/tbe/softmax.py +0 -37
  1065. mindspore/ops/_op_impl/tbe/softmax_cross_entropy_with_logits.py +0 -38
  1066. mindspore/ops/_op_impl/tbe/softmax_cross_entropy_with_logits_ds.py +0 -39
  1067. mindspore/ops/_op_impl/tbe/softmax_ds.py +0 -38
  1068. mindspore/ops/_op_impl/tbe/softmax_grad_ext.py +0 -42
  1069. mindspore/ops/_op_impl/tbe/softmax_v2_with_dropout_do_mask_v3.py +0 -39
  1070. mindspore/ops/_op_impl/tbe/softplus.py +0 -37
  1071. mindspore/ops/_op_impl/tbe/softplus_ds.py +0 -38
  1072. mindspore/ops/_op_impl/tbe/softplus_grad.py +0 -38
  1073. mindspore/ops/_op_impl/tbe/softplus_grad_ds.py +0 -38
  1074. mindspore/ops/_op_impl/tbe/softsign.py +0 -37
  1075. mindspore/ops/_op_impl/tbe/softsign_ds.py +0 -38
  1076. mindspore/ops/_op_impl/tbe/sort.py +0 -38
  1077. mindspore/ops/_op_impl/tbe/sort_ds.py +0 -39
  1078. mindspore/ops/_op_impl/tbe/space_to_batch.py +0 -38
  1079. mindspore/ops/_op_impl/tbe/space_to_batch_nd.py +0 -38
  1080. mindspore/ops/_op_impl/tbe/space_to_depth.py +0 -47
  1081. mindspore/ops/_op_impl/tbe/sparse_apply_adadelta.py +0 -56
  1082. mindspore/ops/_op_impl/tbe/sparse_apply_adagrad.py +0 -45
  1083. mindspore/ops/_op_impl/tbe/sparse_apply_adagrad_ds.py +0 -46
  1084. mindspore/ops/_op_impl/tbe/sparse_apply_adagrad_v2.py +0 -46
  1085. mindspore/ops/_op_impl/tbe/sparse_apply_adagrad_v2_ds.py +0 -47
  1086. mindspore/ops/_op_impl/tbe/sparse_apply_ftrl_d.py +0 -53
  1087. mindspore/ops/_op_impl/tbe/sparse_apply_ftrl_d_ds.py +0 -50
  1088. mindspore/ops/_op_impl/tbe/sparse_apply_ftrl_v2.py +0 -50
  1089. mindspore/ops/_op_impl/tbe/sparse_apply_proximal_adagrad.py +0 -66
  1090. mindspore/ops/_op_impl/tbe/sparse_apply_proximal_adagrad_ds.py +0 -67
  1091. mindspore/ops/_op_impl/tbe/sparse_apply_r_m_s_prop.py +0 -57
  1092. mindspore/ops/_op_impl/tbe/sparse_apply_r_m_s_prop_ds.py +0 -58
  1093. mindspore/ops/_op_impl/tbe/sparse_gather_v2.py +0 -56
  1094. mindspore/ops/_op_impl/tbe/sparse_gather_v2_ds.py +0 -58
  1095. mindspore/ops/_op_impl/tbe/split_d.py +0 -38
  1096. mindspore/ops/_op_impl/tbe/split_d_ds.py +0 -39
  1097. mindspore/ops/_op_impl/tbe/split_v.py +0 -39
  1098. mindspore/ops/_op_impl/tbe/splitv.py +0 -39
  1099. mindspore/ops/_op_impl/tbe/sqrt.py +0 -37
  1100. mindspore/ops/_op_impl/tbe/sqrt_ds.py +0 -38
  1101. mindspore/ops/_op_impl/tbe/sqrt_grad.py +0 -43
  1102. mindspore/ops/_op_impl/tbe/sqrt_grad_ds.py +0 -44
  1103. mindspore/ops/_op_impl/tbe/square.py +0 -38
  1104. mindspore/ops/_op_impl/tbe/square_ds.py +0 -39
  1105. mindspore/ops/_op_impl/tbe/square_sum_all.py +0 -40
  1106. mindspore/ops/_op_impl/tbe/square_sum_all_ds.py +0 -41
  1107. mindspore/ops/_op_impl/tbe/square_sum_v1.py +0 -38
  1108. mindspore/ops/_op_impl/tbe/square_sum_v1_ds.py +0 -39
  1109. mindspore/ops/_op_impl/tbe/square_sum_v2.py +0 -39
  1110. mindspore/ops/_op_impl/tbe/squared_difference.py +0 -39
  1111. mindspore/ops/_op_impl/tbe/squared_difference_ds.py +0 -41
  1112. mindspore/ops/_op_impl/tbe/squeeze.py +0 -37
  1113. mindspore/ops/_op_impl/tbe/strided_read.py +0 -38
  1114. mindspore/ops/_op_impl/tbe/strided_slice_d.py +0 -44
  1115. mindspore/ops/_op_impl/tbe/strided_slice_ds.py +0 -71
  1116. mindspore/ops/_op_impl/tbe/strided_slice_grad_d.py +0 -51
  1117. mindspore/ops/_op_impl/tbe/strided_slice_grad_ds.py +0 -57
  1118. mindspore/ops/_op_impl/tbe/strided_write.py +0 -38
  1119. mindspore/ops/_op_impl/tbe/sub.py +0 -39
  1120. mindspore/ops/_op_impl/tbe/sub_ds.py +0 -40
  1121. mindspore/ops/_op_impl/tbe/tan.py +0 -38
  1122. mindspore/ops/_op_impl/tbe/tan_ds.py +0 -39
  1123. mindspore/ops/_op_impl/tbe/tanh.py +0 -37
  1124. mindspore/ops/_op_impl/tbe/tanh_ds.py +0 -38
  1125. mindspore/ops/_op_impl/tbe/tanh_grad.py +0 -39
  1126. mindspore/ops/_op_impl/tbe/tanh_grad_ds.py +0 -40
  1127. mindspore/ops/_op_impl/tbe/tensor_move.py +0 -49
  1128. mindspore/ops/_op_impl/tbe/tensor_move_ds.py +0 -50
  1129. mindspore/ops/_op_impl/tbe/tensor_scatter_update.py +0 -41
  1130. mindspore/ops/_op_impl/tbe/tile.py +0 -37
  1131. mindspore/ops/_op_impl/tbe/tile_ds.py +0 -42
  1132. mindspore/ops/_op_impl/tbe/top_k.py +0 -42
  1133. mindspore/ops/_op_impl/tbe/top_k_ds.py +0 -43
  1134. mindspore/ops/_op_impl/tbe/trans_data.py +0 -167
  1135. mindspore/ops/_op_impl/tbe/trans_data_ds.py +0 -180
  1136. mindspore/ops/_op_impl/tbe/trans_data_rnn.py +0 -44
  1137. mindspore/ops/_op_impl/tbe/transpose.py +0 -60
  1138. mindspore/ops/_op_impl/tbe/transpose_d.py +0 -47
  1139. mindspore/ops/_op_impl/tbe/transpose_nod.py +0 -60
  1140. mindspore/ops/_op_impl/tbe/trunc.py +0 -39
  1141. mindspore/ops/_op_impl/tbe/truncate_div.py +0 -41
  1142. mindspore/ops/_op_impl/tbe/truncate_div_ds.py +0 -42
  1143. mindspore/ops/_op_impl/tbe/truncate_mod.py +0 -41
  1144. mindspore/ops/_op_impl/tbe/truncate_mod_ds.py +0 -42
  1145. mindspore/ops/_op_impl/tbe/unpack.py +0 -38
  1146. mindspore/ops/_op_impl/tbe/unpack_ds.py +0 -39
  1147. mindspore/ops/_op_impl/tbe/unsorted_segment_max.py +0 -49
  1148. mindspore/ops/_op_impl/tbe/unsorted_segment_max_ds.py +0 -40
  1149. mindspore/ops/_op_impl/tbe/unsorted_segment_min.py +0 -49
  1150. mindspore/ops/_op_impl/tbe/unsorted_segment_min_ds.py +0 -40
  1151. mindspore/ops/_op_impl/tbe/unsorted_segment_prod.py +0 -49
  1152. mindspore/ops/_op_impl/tbe/unsorted_segment_prod_ds.py +0 -38
  1153. mindspore/ops/_op_impl/tbe/unsorted_segment_sum.py +0 -38
  1154. mindspore/ops/_op_impl/tbe/unsorted_segment_sum_ds.py +0 -41
  1155. mindspore/ops/_op_impl/tbe/wts_arq.py +0 -40
  1156. mindspore/ops/_op_impl/tbe/xdivy.py +0 -38
  1157. mindspore/ops/_op_impl/tbe/xdivy_ds.py +0 -39
  1158. mindspore/ops/_op_impl/tbe/xlogy.py +0 -38
  1159. mindspore/ops/_op_impl/tbe/xlogy_ds.py +0 -39
  1160. mindspore/ops/_op_impl/tbe/zeros_like.py +0 -41
  1161. mindspore/ops/_op_impl/tbe/zeros_like_ds.py +0 -42
  1162. mindspore/ops/_tracefunc.py +0 -241
  1163. mindspore/ops/arg_dtype_cast.py +0 -54
  1164. mindspore/rewrite/api/tree_node_helper.py +0 -60
  1165. mindspore/rewrite/ast_creator_register.py +0 -37
  1166. mindspore/rewrite/ast_helpers/ast_creator.py +0 -115
  1167. mindspore/rewrite/ast_transformers/flatten_recursive_stmt.py +0 -267
  1168. mindspore/rewrite/ast_transformers/remove_return_out_of_if.py +0 -228
  1169. mindspore/rewrite/namespace.py +0 -53
  1170. {mindspore-2.2.11.dist-info → mindspore-2.3.0rc1.dist-info}/WHEEL +0 -0
  1171. {mindspore-2.2.11.dist-info → mindspore-2.3.0rc1.dist-info}/top_level.txt +0 -0
@@ -116,23 +116,33 @@ class AddToken(TextTensorOperation):
116
116
  >>> import mindspore.dataset as ds
117
117
  >>> import mindspore.dataset.text as text
118
118
  >>>
119
- >>> dataset = ds.NumpySlicesDataset(data={"text": [['a', 'b', 'c', 'd', 'e']]})
119
+ >>> # Use the transform in dataset pipeline mode
120
+ >>> numpy_slices_dataset = ds.NumpySlicesDataset(data=[['a', 'b', 'c', 'd', 'e']], column_names=["text"])
120
121
  >>> # Data before
121
122
  >>> # | text |
122
123
  >>> # +---------------------------+
123
124
  >>> # | ['a', 'b', 'c', 'd', 'e'] |
124
125
  >>> # +---------------------------+
125
126
  >>> add_token_op = text.AddToken(token='TOKEN', begin=True)
126
- >>> dataset = dataset.map(operations=add_token_op)
127
+ >>> numpy_slices_dataset = numpy_slices_dataset.map(operations=add_token_op)
128
+ >>> for item in numpy_slices_dataset.create_dict_iterator(num_epochs=1, output_numpy=True):
129
+ ... print(item["text"])
130
+ ['TOKEN' 'a' 'b' 'c' 'd' 'e']
127
131
  >>> # Data after
128
132
  >>> # | text |
129
133
  >>> # +---------------------------+
130
134
  >>> # | ['TOKEN', 'a', 'b', 'c', 'd', 'e'] |
131
135
  >>> # +---------------------------+
136
+ >>>
137
+ >>> # Use the transform in eager mode
138
+ >>> data = ["happy", "birthday", "to", "you"]
139
+ >>> output = text.AddToken(token='TOKEN', begin=True)(data)
140
+ >>> print(output)
141
+ ['TOKEN' 'happy' 'birthday' 'to' 'you']
132
142
 
133
143
  Tutorial Examples:
134
144
  - `Illustration of text transforms
135
- <https://www.mindspore.cn/docs/en/r2.2/api_python/samples/dataset/text_gallery.html>`_
145
+ <https://www.mindspore.cn/docs/en/r2.3.q1/api_python/samples/dataset/text_gallery.html>`_
136
146
  """
137
147
 
138
148
  @check_add_token
@@ -176,24 +186,40 @@ class JiebaTokenizer(TextTensorOperation):
176
186
  >>> import mindspore.dataset.text as text
177
187
  >>> from mindspore.dataset.text import JiebaMode
178
188
  >>>
179
- >>> text_file_list = ["/path/to/text_file_dataset_file"]
180
- >>> text_file_dataset = ds.TextFileDataset(dataset_files=text_file_list)
189
+ >>> # Use the transform in dataset pipeline mode
190
+ >>> numpy_slices_dataset = ds.NumpySlicesDataset(data=["床前明月光"], column_names=["text"])
181
191
  >>>
182
192
  >>> # 1) If with_offsets=False, return one data column {["text", dtype=str]}
183
- >>> jieba_hmm_file = "/path/to/jieba/hmm/file"
184
- >>> jieba_mp_file = "/path/to/jieba/mp/file"
193
+ >>> # The paths to jieba_hmm_file and jieba_mp_file can be downloaded directly from the mindspore repository.
194
+ >>> # Refer to https://gitee.com/mindspore/mindspore/blob/r2.3.q1/tests/ut/data/dataset/jiebadict/hmm_model.utf8
195
+ >>> # and https://gitee.com/mindspore/mindspore/blob/r2.3.q1/tests/ut/data/dataset/jiebadict/jieba.dict.utf8
196
+ >>> jieba_hmm_file = "tests/ut/data/dataset/jiebadict/hmm_model.utf8"
197
+ >>> jieba_mp_file = "tests/ut/data/dataset/jiebadict/jieba.dict.utf8"
185
198
  >>> tokenizer_op = text.JiebaTokenizer(jieba_hmm_file, jieba_mp_file, mode=JiebaMode.MP, with_offsets=False)
186
- >>> text_file_dataset = text_file_dataset.map(operations=tokenizer_op)
199
+ >>> numpy_slices_dataset = numpy_slices_dataset.map(operations=tokenizer_op)
200
+ >>> for item in numpy_slices_dataset.create_dict_iterator(num_epochs=1, output_numpy=True):
201
+ ... print(item["text"])
202
+ ['床' '前' '明月光']
187
203
  >>>
188
204
  >>> # 2) If with_offsets=True, return three columns {["token", dtype=str], ["offsets_start", dtype=uint32],
189
205
  >>> # ["offsets_limit", dtype=uint32]}
206
+ >>> numpy_slices_dataset = ds.NumpySlicesDataset(data=["床前明月光"], column_names=["text"])
190
207
  >>> tokenizer_op = text.JiebaTokenizer(jieba_hmm_file, jieba_mp_file, mode=JiebaMode.MP, with_offsets=True)
191
- >>> text_file_dataset = text_file_dataset.map(operations=tokenizer_op, input_columns=["text"],
192
- ... output_columns=["token", "offsets_start", "offsets_limit"])
208
+ >>> numpy_slices_dataset = numpy_slices_dataset.map(operations=tokenizer_op, input_columns=["text"],
209
+ ... output_columns=["token", "offsets_start", "offsets_limit"])
210
+ >>> for item in numpy_slices_dataset.create_dict_iterator(num_epochs=1, output_numpy=True):
211
+ ... print(item["token"], item["offsets_start"], item["offsets_limit"])
212
+ ['床' '前' '明月光'] [0 3 6] [ 3 6 15]
213
+ >>>
214
+ >>> # Use the transform in eager mode
215
+ >>> data = "床前明月光"
216
+ >>> output = text.JiebaTokenizer(jieba_hmm_file, jieba_mp_file, mode=JiebaMode.MP)(data)
217
+ >>> print(output)
218
+ ['床' '前' '明月光']
193
219
 
194
220
  Tutorial Examples:
195
221
  - `Illustration of text transforms
196
- <https://www.mindspore.cn/docs/en/r2.2/api_python/samples/dataset/text_gallery.html>`_
222
+ <https://www.mindspore.cn/docs/en/r2.3.q1/api_python/samples/dataset/text_gallery.html>`_
197
223
  """
198
224
 
199
225
  @check_jieba_init
@@ -362,18 +388,28 @@ class Lookup(TextTensorOperation):
362
388
  Examples:
363
389
  >>> import mindspore.dataset as ds
364
390
  >>> import mindspore.dataset.text as text
391
+ >>>
392
+ >>> # Use the transform in dataset pipeline mode
393
+ >>> numpy_slices_dataset = ds.NumpySlicesDataset(data=["with"], column_names=["text"])
365
394
  >>> # Load vocabulary from list
366
- >>> vocab = text.Vocab.from_list(['深', '圳', '欢', '迎', '您'])
395
+ >>> vocab = text.Vocab.from_list(["?", "##", "with", "the", "test", "符号"])
367
396
  >>> # Use Lookup operation to map tokens to ids
368
397
  >>> lookup = text.Lookup(vocab)
398
+ >>> numpy_slices_dataset = numpy_slices_dataset.map(operations=[lookup])
399
+ >>> for item in numpy_slices_dataset.create_dict_iterator(num_epochs=1, output_numpy=True):
400
+ ... print(item["text"])
401
+ 2
369
402
  >>>
370
- >>> text_file_list = ["/path/to/text_file_dataset_file"]
371
- >>> text_file_dataset = ds.TextFileDataset(dataset_files=text_file_list)
372
- >>> text_file_dataset = text_file_dataset.map(operations=[lookup])
403
+ >>> # Use the transform in eager mode
404
+ >>> vocab = text.Vocab.from_list(["?", "##", "with", "the", "test", "符号"])
405
+ >>> data = "with"
406
+ >>> output = text.Lookup(vocab=vocab, unknown_token="test")(data)
407
+ >>> print(output)
408
+ 2
373
409
 
374
410
  Tutorial Examples:
375
411
  - `Illustration of text transforms
376
- <https://www.mindspore.cn/docs/en/r2.2/api_python/samples/dataset/text_gallery.html>`_
412
+ <https://www.mindspore.cn/docs/en/r2.3.q1/api_python/samples/dataset/text_gallery.html>`_
377
413
  """
378
414
 
379
415
  @check_lookup
@@ -420,21 +456,31 @@ class Ngram(TextTensorOperation):
420
456
  ``CPU``
421
457
 
422
458
  Examples:
459
+ >>> import numpy as np
423
460
  >>> import mindspore.dataset as ds
424
461
  >>> import mindspore.dataset.text as text
462
+ >>>
463
+ >>> # Use the transform in dataset pipeline mode
464
+ >>> def gen(texts):
465
+ ... for line in texts:
466
+ ... yield(np.array(line.split(" "), dtype=str),)
467
+ >>> data = ["WildRose Country", "Canada's Ocean Playground", "Land of Living Skies"]
468
+ >>> generator_dataset = ds.GeneratorDataset(gen(data), ["text"])
425
469
  >>> ngram_op = text.Ngram(3, separator="-")
426
- >>> output = ngram_op(["WildRose Country", "Canada's Ocean Playground", "Land of Living Skies"])
427
- >>> # output
428
- >>> # ["WildRose Country-Canada's Ocean Playground-Land of Living Skies"]
470
+ >>> generator_dataset = generator_dataset.map(operations=ngram_op)
471
+ >>> for item in generator_dataset.create_dict_iterator(num_epochs=1, output_numpy=True):
472
+ ... print(item["text"])
473
+ ... break
474
+ ['']
429
475
  >>>
430
- >>> # same ngram_op called through map
431
- >>> text_file_list = ["/path/to/text_file_dataset_file"]
432
- >>> text_file_dataset = ds.TextFileDataset(dataset_files=text_file_list)
433
- >>> text_file_dataset = text_file_dataset.map(operations=ngram_op)
476
+ >>> # Use the transform in eager mode
477
+ >>> output = ngram_op(data)
478
+ >>> print(output)
479
+ ["WildRose Country-Canada's Ocean Playground-Land of Living Skies"]
434
480
 
435
481
  Tutorial Examples:
436
482
  - `Illustration of text transforms
437
- <https://www.mindspore.cn/docs/en/r2.2/api_python/samples/dataset/text_gallery.html>`_
483
+ <https://www.mindspore.cn/docs/en/r2.3.q1/api_python/samples/dataset/text_gallery.html>`_
438
484
  """
439
485
 
440
486
  @check_ngram
@@ -463,19 +509,29 @@ class PythonTokenizer:
463
509
  ``CPU``
464
510
 
465
511
  Examples:
512
+ >>> import numpy as np
466
513
  >>> import mindspore.dataset as ds
467
514
  >>> import mindspore.dataset.text as text
468
515
  >>>
516
+ >>> # Use the transform in dataset pipeline mode
469
517
  >>> def my_tokenizer(line):
470
518
  ... return line.split()
471
519
  >>>
472
- >>> text_file_list = ["/path/to/text_file_dataset_file"]
473
- >>> text_file_dataset = ds.TextFileDataset(dataset_files=text_file_list)
474
- >>> text_file_dataset = text_file_dataset.map(operations=text.PythonTokenizer(my_tokenizer))
520
+ >>> numpy_slices_dataset = ds.NumpySlicesDataset(data=['Hello world'], column_names=["text"])
521
+ >>> numpy_slices_dataset = numpy_slices_dataset.map(operations=text.PythonTokenizer(my_tokenizer))
522
+ >>> for item in numpy_slices_dataset.create_dict_iterator(num_epochs=1, output_numpy=True):
523
+ ... print(item["text"])
524
+ ['Hello' 'world']
525
+ >>>
526
+ >>> # Use the transform in eager mode
527
+ >>> data = np.array('Hello world'.encode())
528
+ >>> output = text.PythonTokenizer(my_tokenizer)(data)
529
+ >>> print(output)
530
+ ['Hello' 'world']
475
531
 
476
532
  Tutorial Examples:
477
533
  - `Illustration of text transforms
478
- <https://www.mindspore.cn/docs/en/r2.2/api_python/samples/dataset/text_gallery.html>`_
534
+ <https://www.mindspore.cn/docs/en/r2.3.q1/api_python/samples/dataset/text_gallery.html>`_
479
535
  """
480
536
 
481
537
  @check_python_tokenizer
@@ -528,18 +584,30 @@ class SentencePieceTokenizer(TextTensorOperation):
528
584
  >>> import mindspore.dataset.text as text
529
585
  >>> from mindspore.dataset.text import SentencePieceModel, SPieceTokenizerOutType
530
586
  >>>
531
- >>> sentence_piece_vocab_file = "/path/to/sentence/piece/vocab/file"
532
- >>> vocab = text.SentencePieceVocab.from_file([sentence_piece_vocab_file], 5000, 0.9995,
533
- ... SentencePieceModel.UNIGRAM, {})
587
+ >>> # Use the transform in dataset pipeline mode
588
+ >>> numpy_slices_dataset = ds.NumpySlicesDataset(data=['Hello world'], column_names=["text"])
589
+ >>> # The paths to sentence_piece_vocab_file can be downloaded directly from the mindspore repository. Refer to
590
+ >>> # https://gitee.com/mindspore/mindspore/blob/r2.3.q1/tests/ut/data/dataset/test_sentencepiece/vocab.txt
591
+ >>> sentence_piece_vocab_file = "tests/ut/data/dataset/test_sentencepiece/vocab.txt"
592
+ >>> vocab = text.SentencePieceVocab.from_file([sentence_piece_vocab_file], 512, 0.9995,
593
+ ... SentencePieceModel.UNIGRAM, {})
534
594
  >>> tokenizer = text.SentencePieceTokenizer(vocab, out_type=SPieceTokenizerOutType.STRING)
595
+ >>> numpy_slices_dataset = numpy_slices_dataset.map(operations=tokenizer)
596
+ >>> for item in numpy_slices_dataset.create_dict_iterator(num_epochs=1, output_numpy=True):
597
+ ... print(item["text"])
598
+ ['▁H' 'e' 'l' 'lo' '▁w' 'o' 'r' 'l' 'd']
535
599
  >>>
536
- >>> text_file_list = ["/path/to/text_file_dataset_file"]
537
- >>> text_file_dataset = ds.TextFileDataset(dataset_files=text_file_list)
538
- >>> text_file_dataset = text_file_dataset.map(operations=tokenizer)
600
+ >>> # Use the transform in eager mode
601
+ >>> data = "Hello world"
602
+ >>> vocab = text.SentencePieceVocab.from_file([sentence_piece_vocab_file], 100, 0.9995,
603
+ ... SentencePieceModel.UNIGRAM, {})
604
+ >>> output = text.SentencePieceTokenizer(vocab, out_type=SPieceTokenizerOutType.STRING)(data)
605
+ >>> print(output)
606
+ ['▁' 'H' 'e' 'l' 'l' 'o' '▁' 'w' 'o' 'r' 'l' 'd']
539
607
 
540
608
  Tutorial Examples:
541
609
  - `Illustration of text transforms
542
- <https://www.mindspore.cn/docs/en/r2.2/api_python/samples/dataset/text_gallery.html>`_
610
+ <https://www.mindspore.cn/docs/en/r2.3.q1/api_python/samples/dataset/text_gallery.html>`_
543
611
  """
544
612
 
545
613
  @check_sentence_piece_tokenizer
@@ -574,13 +642,17 @@ class SlidingWindow(TextTensorOperation):
574
642
  >>> import mindspore.dataset as ds
575
643
  >>> import mindspore.dataset.text as text
576
644
  >>>
577
- >>> dataset = ds.NumpySlicesDataset(data=[[1, 2, 3, 4, 5]], column_names="col1")
645
+ >>> # Use the transform in dataset pipeline mode
646
+ >>> numpy_slices_dataset = ds.NumpySlicesDataset(data=[[1, 2, 3, 4, 5]], column_names=["col1"])
578
647
  >>> # Data before
579
648
  >>> # | col1 |
580
649
  >>> # +--------------+
581
650
  >>> # | [[1, 2, 3, 4, 5]] |
582
651
  >>> # +--------------+
583
- >>> dataset = dataset.map(operations=text.SlidingWindow(3, 0))
652
+ >>> numpy_slices_dataset = numpy_slices_dataset.map(operations=text.SlidingWindow(3, 0))
653
+ >>> for item in numpy_slices_dataset.create_dict_iterator(num_epochs=1, output_numpy=True):
654
+ ... print(item["col1"])
655
+ [[1 2 3] [2 3 4] [3 4 5]]
584
656
  >>> # Data after
585
657
  >>> # | col1 |
586
658
  >>> # +--------------+
@@ -588,10 +660,16 @@ class SlidingWindow(TextTensorOperation):
588
660
  >>> # | [2, 3, 4], |
589
661
  >>> # | [3, 4, 5]] |
590
662
  >>> # +--------------+
663
+ >>>
664
+ >>> # Use the transform in eager mode
665
+ >>> data = ["happy", "birthday", "to", "you"]
666
+ >>> output = text.SlidingWindow(2, 0)(data)
667
+ >>> print(output)
668
+ [['happy' 'birthday'] ['birthday' 'to'] ['to' 'you']]
591
669
 
592
670
  Tutorial Examples:
593
671
  - `Illustration of text transforms
594
- <https://www.mindspore.cn/docs/en/r2.2/api_python/samples/dataset/text_gallery.html>`_
672
+ <https://www.mindspore.cn/docs/en/r2.3.q1/api_python/samples/dataset/text_gallery.html>`_
595
673
  """
596
674
 
597
675
  @check_slidingwindow
@@ -628,14 +706,23 @@ class ToNumber(TextTensorOperation):
628
706
  >>> import mindspore.dataset.text as text
629
707
  >>> from mindspore import dtype as mstype
630
708
  >>>
631
- >>> data = [["1", "2", "3"]]
632
- >>> dataset = ds.NumpySlicesDataset(data)
709
+ >>> # Use the transform in dataset pipeline mode
710
+ >>> numpy_slices_dataset = ds.NumpySlicesDataset(data=[["1", "2", "3"]], column_names=["text"])
633
711
  >>> to_number_op = text.ToNumber(mstype.int8)
634
- >>> dataset = dataset.map(operations=to_number_op)
712
+ >>> numpy_slices_dataset = numpy_slices_dataset.map(operations=to_number_op)
713
+ >>> for item in numpy_slices_dataset.create_dict_iterator(num_epochs=1, output_numpy=True):
714
+ ... print(item["text"])
715
+ [1 2 3]
716
+ >>>
717
+ >>> # Use the transform in eager mode
718
+ >>> data = ["1", "2", "3"]
719
+ >>> output = text.ToNumber(mstype.uint32)(data)
720
+ >>> print(output)
721
+ [1 2 3]
635
722
 
636
723
  Tutorial Examples:
637
724
  - `Illustration of text transforms
638
- <https://www.mindspore.cn/docs/en/r2.2/api_python/samples/dataset/text_gallery.html>`_
725
+ <https://www.mindspore.cn/docs/en/r2.3.q1/api_python/samples/dataset/text_gallery.html>`_
639
726
  """
640
727
 
641
728
  @check_to_number
@@ -673,18 +760,30 @@ class ToVectors(TextTensorOperation):
673
760
  >>> import mindspore.dataset as ds
674
761
  >>> import mindspore.dataset.text as text
675
762
  >>>
763
+ >>> # Use the transform in dataset pipeline mode
764
+ >>> numpy_slices_dataset = ds.NumpySlicesDataset(data=["happy", "birthday", "to", "you"], column_names=["text"])
676
765
  >>> # Load vectors from file
677
- >>> vectors = text.Vectors.from_file("/path/to/vectors/file")
766
+ >>> # The paths to vectors_file can be downloaded directly from the mindspore repository. Refer to
767
+ >>> # https://gitee.com/mindspore/mindspore/blob/r2.3.q1/tests/ut/data/dataset/testVectors/vectors.txt
768
+ >>> vectors_file = "tests/ut/data/dataset/testVectors/vectors.txt"
769
+ >>> vectors = text.Vectors.from_file(vectors_file)
678
770
  >>> # Use ToVectors operation to map tokens to vectors
679
771
  >>> to_vectors = text.ToVectors(vectors)
772
+ >>> numpy_slices_dataset = numpy_slices_dataset.map(operations=[to_vectors])
773
+ >>> for item in numpy_slices_dataset.create_dict_iterator(num_epochs=1, output_numpy=True):
774
+ ... print(item["text"])
775
+ ... break
776
+ [0. 0. 0. 0. 0. 0.]
680
777
  >>>
681
- >>> text_file_list = ["/path/to/text_file_dataset_file"]
682
- >>> text_file_dataset = ds.TextFileDataset(dataset_files=text_file_list)
683
- >>> text_file_dataset = text_file_dataset.map(operations=[to_vectors])
778
+ >>> # Use the transform in eager mode
779
+ >>> data = ["happy"]
780
+ >>> output = text.ToVectors(vectors)(data)
781
+ >>> print(output)
782
+ [0. 0. 0. 0. 0. 0.]
684
783
 
685
784
  Tutorial Examples:
686
785
  - `Illustration of text transforms
687
- <https://www.mindspore.cn/docs/en/r2.2/api_python/samples/dataset/text_gallery.html>`_
786
+ <https://www.mindspore.cn/docs/en/r2.3.q1/api_python/samples/dataset/text_gallery.html>`_
688
787
  """
689
788
 
690
789
  @check_to_vectors
@@ -717,23 +816,34 @@ class Truncate(TextTensorOperation):
717
816
  >>> import mindspore.dataset as ds
718
817
  >>> import mindspore.dataset.text as text
719
818
  >>>
720
- >>> dataset = ds.NumpySlicesDataset(data=[['a', 'b', 'c', 'd', 'e']], column_names=["text"], shuffle=False)
819
+ >>> # Use the transform in dataset pipeline mode
820
+ >>> numpy_slices_dataset = ds.NumpySlicesDataset(data=[['a', 'b', 'c', 'd', 'e']], column_names=["text"],
821
+ ... shuffle=False)
721
822
  >>> # Data before
722
823
  >>> # | col1 |
723
824
  >>> # +---------------------------+
724
825
  >>> # | ['a', 'b', 'c', 'd', 'e'] |
725
826
  >>> # +---------------------------+
726
827
  >>> truncate = text.Truncate(4)
727
- >>> dataset = dataset.map(operations=truncate, input_columns=["text"])
828
+ >>> numpy_slices_dataset = numpy_slices_dataset.map(operations=truncate, input_columns=["text"])
829
+ >>> for item in numpy_slices_dataset.create_dict_iterator(num_epochs=1, output_numpy=True):
830
+ ... print(item["text"])
831
+ ['a' 'b' 'c' 'd']
728
832
  >>> # Data after
729
833
  >>> # | col1 |
730
834
  >>> # +------------------------+
731
835
  >>> # | ['a', 'b', 'c', 'd'] |
732
836
  >>> # +------------------------+
837
+ >>>
838
+ >>> # Use the transform in eager mode
839
+ >>> data = ["happy", "birthday", "to", "you"]
840
+ >>> output = text.Truncate(2)(data)
841
+ >>> print(output)
842
+ ['happy' 'birthday']
733
843
 
734
844
  Tutorial Examples:
735
845
  - `Illustration of text transforms
736
- <https://www.mindspore.cn/docs/en/r2.2/api_python/samples/dataset/text_gallery.html>`_
846
+ <https://www.mindspore.cn/docs/en/r2.3.q1/api_python/samples/dataset/text_gallery.html>`_
737
847
  """
738
848
 
739
849
  @check_truncate
@@ -764,23 +874,34 @@ class TruncateSequencePair(TextTensorOperation):
764
874
  >>> import mindspore.dataset as ds
765
875
  >>> import mindspore.dataset.text as text
766
876
  >>>
767
- >>> dataset = ds.NumpySlicesDataset(data={"col1": [[1, 2, 3]], "col2": [[4, 5]]})
877
+ >>> # Use the transform in dataset pipeline mode
878
+ >>> numpy_slices_dataset = ds.NumpySlicesDataset(data=([[1, 2, 3]], [[4, 5]]), column_names=["col1", "col2"])
768
879
  >>> # Data before
769
880
  >>> # | col1 | col2 |
770
881
  >>> # +-----------+-----------|
771
882
  >>> # | [1, 2, 3] | [4, 5] |
772
883
  >>> # +-----------+-----------+
773
884
  >>> truncate_sequence_pair_op = text.TruncateSequencePair(max_length=4)
774
- >>> dataset = dataset.map(operations=truncate_sequence_pair_op)
885
+ >>> numpy_slices_dataset = numpy_slices_dataset.map(operations=truncate_sequence_pair_op,
886
+ ... input_columns=["col1", "col2"])
887
+ >>> for item in numpy_slices_dataset.create_dict_iterator(num_epochs=1, output_numpy=True):
888
+ ... print(item["col1"], item["col2"])
889
+ [1 2] [4 5]
775
890
  >>> # Data after
776
891
  >>> # | col1 | col2 |
777
892
  >>> # +-----------+-----------+
778
893
  >>> # | [1, 2] | [4, 5] |
779
894
  >>> # +-----------+-----------+
895
+ >>>
896
+ >>> # Use the transform in eager mode
897
+ >>> data = [["1", "2", "3"], ["4", "5"]]
898
+ >>> output = text.TruncateSequencePair(4)(*data)
899
+ >>> print(output)
900
+ (array(['1', '2'], dtype='<U1'), array(['4', '5'], dtype='<U1'))
780
901
 
781
902
  Tutorial Examples:
782
903
  - `Illustration of text transforms
783
- <https://www.mindspore.cn/docs/en/r2.2/api_python/samples/dataset/text_gallery.html>`_
904
+ <https://www.mindspore.cn/docs/en/r2.3.q1/api_python/samples/dataset/text_gallery.html>`_
784
905
  """
785
906
 
786
907
  @check_pair_truncate
@@ -810,22 +931,41 @@ class UnicodeCharTokenizer(TextTensorOperation):
810
931
  >>> import mindspore.dataset as ds
811
932
  >>> import mindspore.dataset.text as text
812
933
  >>>
813
- >>> text_file_list = ["/path/to/text_file_dataset_file"]
814
- >>> text_file_dataset = ds.TextFileDataset(dataset_files=text_file_list)
934
+ >>> # Use the transform in dataset pipeline mode
935
+ >>> numpy_slices_dataset = ds.NumpySlicesDataset(data=['Welcome To BeiJing!'], column_names=["text"])
815
936
  >>>
816
937
  >>> # If with_offsets=False, default output one column {["text", dtype=str]}
817
938
  >>> tokenizer_op = text.UnicodeCharTokenizer(with_offsets=False)
818
- >>> text_file_dataset = text_file_dataset.map(operations=tokenizer_op)
939
+ >>> numpy_slices_dataset = numpy_slices_dataset.map(operations=tokenizer_op)
940
+ >>> for item in numpy_slices_dataset.create_dict_iterator(num_epochs=1, output_numpy=True):
941
+ ... print(item["text"])
942
+ ... break
943
+ ['W' 'e' 'l' 'c' 'o' 'm' 'e' ' ' ' ' ' ' ' ' ' ' 'T' 'o' ' ' ' ' ' ' 'B' 'e' 'i' 'J' 'i' 'n' 'g' '!']
819
944
  >>>
820
945
  >>> # If with_offsets=True, then output three columns {["token", dtype=str], ["offsets_start", dtype=uint32],
821
- >>> # ["offsets_limit", dtype=uint32]}
946
+ >>> # ["offsets_limit", dtype=uint32]}
822
947
  >>> tokenizer_op = text.UnicodeCharTokenizer(with_offsets=True)
823
- >>> text_file_dataset = text_file_dataset.map(operations=tokenizer_op, input_columns=["text"],
824
- ... output_columns=["token", "offsets_start", "offsets_limit"])
948
+ >>> numpy_slices_dataset = ds.NumpySlicesDataset(data=['Welcome To BeiJing!'], column_names=["text"])
949
+ >>> numpy_slices_dataset = numpy_slices_dataset.map(operations=tokenizer_op, input_columns=["text"],
950
+ ... output_columns=["token", "offsets_start", "offsets_limit"])
951
+ >>> for item in numpy_slices_dataset.create_dict_iterator(num_epochs=1, output_numpy=True):
952
+ ... print(item["token"], item["offsets_start"], item["offsets_limit"])
953
+ ['W' 'e' 'l' 'c' 'o' 'm' 'e' ' ' ' ' ' ' ' ' ' ' 'T' 'o' ' ' ' ' ' ' 'B' 'e' 'i' 'J' 'i' 'n' 'g' '!'] [ 0 1 2
954
+ 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24] [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
955
+ 16 17 18 19 20 21 22 23 24 25]
956
+ >>>
957
+ >>> # Use the transform in eager mode
958
+ >>> data = 'Welcome To BeiJing!'
959
+ >>> output = text.UnicodeCharTokenizer(with_offsets=True)(data)
960
+ >>> print(output)
961
+ (array(['W', 'e', 'l', 'c', 'o', 'm', 'e', ' ', ' ', ' ', ' ', ' ', 'T', 'o', ' ', ' ', ' ', 'B', 'e', 'i', 'J',
962
+ 'i', 'n', 'g', '!'], dtype='<U1'), array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
963
+ 17, 18, 19, 20, 21, 22, 23, 24], dtype=uint32), array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
964
+ 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25], dtype=uint32))
825
965
 
826
966
  Tutorial Examples:
827
967
  - `Illustration of text transforms
828
- <https://www.mindspore.cn/docs/en/r2.2/api_python/samples/dataset/text_gallery.html>`_
968
+ <https://www.mindspore.cn/docs/en/r2.3.q1/api_python/samples/dataset/text_gallery.html>`_
829
969
  """
830
970
 
831
971
  @check_with_offsets
@@ -867,8 +1007,10 @@ class WordpieceTokenizer(TextTensorOperation):
867
1007
  >>> import mindspore.dataset as ds
868
1008
  >>> import mindspore.dataset.text as text
869
1009
  >>>
870
- >>> text_file_list = ["/path/to/text_file_dataset_file"]
871
- >>> text_file_dataset = ds.TextFileDataset(dataset_files=text_file_list)
1010
+ >>> # Use the transform in dataset pipeline mode
1011
+ >>> seed = ds.config.get_seed()
1012
+ >>> ds.config.set_seed(12345)
1013
+ >>> numpy_slices_dataset = ds.NumpySlicesDataset(data=["happy", "birthday", "to", "you"], column_names=["text"])
872
1014
  >>>
873
1015
  >>> vocab_list = ["book", "cholera", "era", "favor", "##ite", "my", "is", "love", "dur", "##ing", "the"]
874
1016
  >>> vocab = text.Vocab.from_list(vocab_list)
@@ -876,19 +1018,36 @@ class WordpieceTokenizer(TextTensorOperation):
876
1018
  >>> # If with_offsets=False, default output one column {["text", dtype=str]}
877
1019
  >>> tokenizer_op = text.WordpieceTokenizer(vocab=vocab, unknown_token='[UNK]',
878
1020
  ... max_bytes_per_token=100, with_offsets=False)
879
- >>> text_file_dataset = text_file_dataset.map(operations=tokenizer_op)
1021
+ >>> numpy_slices_dataset = numpy_slices_dataset.map(operations=tokenizer_op)
1022
+ >>> for item in numpy_slices_dataset.create_dict_iterator(num_epochs=1, output_numpy=True):
1023
+ ... print(item["text"])
1024
+ ... break
1025
+ ['[UNK]']
880
1026
  >>>
881
1027
  >>> # If with_offsets=True, then output three columns {["token", dtype=str], ["offsets_start", dtype=uint32],
882
- >>> # ["offsets_limit", dtype=uint32]}
1028
+ >>> # ["offsets_limit", dtype=uint32]}
1029
+ >>> numpy_slices_dataset = ds.NumpySlicesDataset(data=["happy", "birthday", "to", "you"], column_names=["text"])
883
1030
  >>> tokenizer_op = text.WordpieceTokenizer(vocab=vocab, unknown_token='[UNK]',
884
- ... max_bytes_per_token=100, with_offsets=True)
1031
+ ... max_bytes_per_token=100, with_offsets=True)
1032
+ >>> numpy_slices_dataset = numpy_slices_dataset.map(operations=tokenizer_op, input_columns=["text"],
1033
+ ... output_columns=["token", "offsets_start", "offsets_limit"])
1034
+ >>> for item in numpy_slices_dataset.create_dict_iterator(num_epochs=1, output_numpy=True):
1035
+ ... print(item["token"], item["offsets_start"], item["offsets_limit"])
1036
+ ... break
1037
+ ['[UNK]'] [0] [5]
885
1038
  >>>
886
- >>> text_file_dataset = text_file_dataset.map(operations=tokenizer_op, input_columns=["text"],
887
- ... output_columns=["token", "offsets_start", "offsets_limit"])
1039
+ >>> # Use the transform in eager mode
1040
+ >>> data = ["happy", "birthday", "to", "you"]
1041
+ >>> vocab_list = ["book", "cholera", "era", "favor", "**ite", "my", "is", "love", "dur", "**ing", "the"]
1042
+ >>> vocab = text.Vocab.from_list(vocab_list)
1043
+ >>> output = text.WordpieceTokenizer(vocab=vocab, suffix_indicator="y", unknown_token='[UNK]')(data)
1044
+ >>> print(output)
1045
+ ['[UNK]' '[UNK]' '[UNK]' '[UNK]']
1046
+ >>> ds.config.set_seed(seed)
888
1047
 
889
1048
  Tutorial Examples:
890
1049
  - `Illustration of text transforms
891
- <https://www.mindspore.cn/docs/en/r2.2/api_python/samples/dataset/text_gallery.html>`_
1050
+ <https://www.mindspore.cn/docs/en/r2.3.q1/api_python/samples/dataset/text_gallery.html>`_
892
1051
  """
893
1052
 
894
1053
  @check_wordpiece_tokenizer
@@ -952,8 +1111,8 @@ if platform.system().lower() != 'windows':
952
1111
  >>> import mindspore.dataset.text as text
953
1112
  >>> from mindspore.dataset.text import NormalizeForm
954
1113
  >>>
955
- >>> text_file_list = ["/path/to/text_file_dataset_file"]
956
- >>> text_file_dataset = ds.TextFileDataset(dataset_files=text_file_list)
1114
+ >>> # Use the transform in dataset pipeline mode
1115
+ >>> numpy_slices_dataset = ds.NumpySlicesDataset(data=['Welcome To BeiJing!'], column_names=["text"])
957
1116
  >>>
958
1117
  >>> # 1) If with_offsets=False, default output one column {["text", dtype=str]}
959
1118
  >>> tokenizer_op = text.BasicTokenizer(lower_case=False,
@@ -961,21 +1120,36 @@ if platform.system().lower() != 'windows':
961
1120
  ... normalization_form=NormalizeForm.NONE,
962
1121
  ... preserve_unused_token=True,
963
1122
  ... with_offsets=False)
964
- >>> text_file_dataset = text_file_dataset.map(operations=tokenizer_op)
1123
+ >>> numpy_slices_dataset = numpy_slices_dataset.map(operations=tokenizer_op)
1124
+ >>> for item in numpy_slices_dataset.create_dict_iterator(num_epochs=1, output_numpy=True):
1125
+ ... print(item["text"])
1126
+ ['Welcome' 'To' 'BeiJing' '!']
1127
+ >>>
965
1128
  >>> # 2) If with_offsets=True, then output three columns {["token", dtype=str],
966
1129
  >>> # ["offsets_start", dtype=uint32],
967
1130
  >>> # ["offsets_limit", dtype=uint32]}
1131
+ >>> numpy_slices_dataset = ds.NumpySlicesDataset(data=['Welcome To BeiJing!'], column_names=["text"])
968
1132
  >>> tokenizer_op = text.BasicTokenizer(lower_case=False,
969
1133
  ... keep_whitespace=False,
970
1134
  ... normalization_form=NormalizeForm.NONE,
971
1135
  ... preserve_unused_token=True,
972
1136
  ... with_offsets=True)
973
- >>> text_file_dataset = text_file_dataset.map(operations=tokenizer_op, input_columns=["text"],
974
- ... output_columns=["token", "offsets_start", "offsets_limit"])
1137
+ >>> numpy_slices_dataset = numpy_slices_dataset.map(
1138
+ ... operations=tokenizer_op, input_columns=["text"],
1139
+ ... output_columns=["token", "offsets_start", "offsets_limit"])
1140
+ >>> for item in numpy_slices_dataset.create_dict_iterator(num_epochs=1, output_numpy=True):
1141
+ ... print(item["token"], item["offsets_start"], item["offsets_limit"])
1142
+ ['Welcome' 'To' 'BeiJing' '!'] [ 0 12 17 24] [ 7 14 24 25]
1143
+ >>>
1144
+ >>> # Use the transform in eager mode
1145
+ >>> data = 'Welcome To BeiJing!'
1146
+ >>> output = text.BasicTokenizer()(data)
1147
+ >>> print(output)
1148
+ ['Welcome' 'To' 'BeiJing' '!']
975
1149
 
976
1150
  Tutorial Examples:
977
1151
  - `Illustration of text transforms
978
- <https://www.mindspore.cn/docs/en/r2.2/api_python/samples/dataset/text_gallery.html>`_
1152
+ <https://www.mindspore.cn/docs/en/r2.3.q1/api_python/samples/dataset/text_gallery.html>`_
979
1153
  """
980
1154
 
981
1155
  @check_basic_tokenizer
@@ -1041,39 +1215,56 @@ if platform.system().lower() != 'windows':
1041
1215
  ``CPU``
1042
1216
 
1043
1217
  Examples:
1218
+ >>> import numpy as np
1044
1219
  >>> import mindspore.dataset as ds
1045
1220
  >>> import mindspore.dataset.text as text
1046
1221
  >>> from mindspore.dataset.text import NormalizeForm
1047
1222
  >>>
1048
- >>> text_file_list = ["/path/to/text_file_dataset_file"]
1049
- >>> text_file_dataset = ds.TextFileDataset(dataset_files=text_file_list)
1223
+ >>> # Use the transform in dataset pipeline mode
1224
+ >>> numpy_slices_dataset = ds.NumpySlicesDataset(data=["床前明月光"], column_names=["text"])
1050
1225
  >>>
1051
1226
  >>> # 1) If with_offsets=False, default output one column {["text", dtype=str]}
1052
1227
  >>> vocab_list = ["床", "前", "明", "月", "光", "疑", "是", "地", "上", "霜", "举", "头", "望", "低",
1053
- ... "思", "故", "乡","繁", "體", "字", "嘿", "哈", "大", "笑", "嘻", "i", "am", "mak",
1054
- ... "make", "small", "mistake", "##s", "during", "work", "##ing", "hour", "😀", "😃",
1055
- ... "😄", "😁", "+", "/", "-", "=", "12", "28", "40", "16", " ", "I", "[CLS]", "[SEP]",
1056
- ... "[UNK]", "[PAD]", "[MASK]", "[unused1]", "[unused10]"]
1228
+ ... "思", "故", "乡", "繁", "體", "字", "嘿", "哈", "大", "笑", "嘻", "i", "am", "mak",
1229
+ ... "make", "small", "mistake", "##s", "during", "work", "##ing", "hour", "+", "/",
1230
+ ... "-", "=", "12", "28", "40", "16", " ", "I", "[CLS]", "[SEP]", "[UNK]", "[PAD]", "[MASK]"]
1057
1231
  >>> vocab = text.Vocab.from_list(vocab_list)
1058
1232
  >>> tokenizer_op = text.BertTokenizer(vocab=vocab, suffix_indicator='##', max_bytes_per_token=100,
1059
1233
  ... unknown_token='[UNK]', lower_case=False, keep_whitespace=False,
1060
1234
  ... normalization_form=NormalizeForm.NONE, preserve_unused_token=True,
1061
1235
  ... with_offsets=False)
1062
- >>> text_file_dataset = text_file_dataset.map(operations=tokenizer_op)
1236
+ >>> numpy_slices_dataset = numpy_slices_dataset.map(operations=tokenizer_op)
1237
+ >>> for item in numpy_slices_dataset.create_dict_iterator(num_epochs=1, output_numpy=True):
1238
+ ... print(item["text"])
1239
+ ['床' '前' '明' '月' '光']
1240
+ >>>
1063
1241
  >>> # 2) If with_offsets=True, then output three columns {["token", dtype=str],
1064
1242
  >>> # ["offsets_start", dtype=uint32],
1065
1243
  >>> # ["offsets_limit", dtype=uint32]}
1244
+ >>> numpy_slices_dataset = ds.NumpySlicesDataset(data=["床前明月光"], column_names=["text"])
1066
1245
  >>> tokenizer_op = text.BertTokenizer(vocab=vocab, suffix_indicator='##', max_bytes_per_token=100,
1067
1246
  ... unknown_token='[UNK]', lower_case=False, keep_whitespace=False,
1068
1247
  ... normalization_form=NormalizeForm.NONE, preserve_unused_token=True,
1069
1248
  ... with_offsets=True)
1070
- >>> text_file_dataset = text_file_dataset.map(operations=tokenizer_op, input_columns=["text"],
1071
- ... output_columns=["token", "offsets_start",
1072
- ... "offsets_limit"])
1249
+ >>> numpy_slices_dataset = numpy_slices_dataset.map(
1250
+ ... operations=tokenizer_op,
1251
+ ... input_columns=["text"],
1252
+ ... output_columns=["token", "offsets_start", "offsets_limit"])
1253
+ >>> for item in numpy_slices_dataset.create_dict_iterator(num_epochs=1, output_numpy=True):
1254
+ ... print(item["token"], item["offsets_start"], item["offsets_limit"])
1255
+ ['床' '前' '明' '月' '光'] [ 0 3 6 9 12] [ 3 6 9 12 15]
1256
+ >>>
1257
+ >>> # Use the transform in eager mode
1258
+ >>> data = "床前明月光"
1259
+ >>> vocab = text.Vocab.from_list(vocab_list)
1260
+ >>> tokenizer_op = text.BertTokenizer(vocab=vocab)
1261
+ >>> output = tokenizer_op(data)
1262
+ >>> print(output)
1263
+ ['床' '前' '明' '月' '光']
1073
1264
 
1074
1265
  Tutorial Examples:
1075
1266
  - `Illustration of text transforms
1076
- <https://www.mindspore.cn/docs/en/r2.2/api_python/samples/dataset/text_gallery.html>`_
1267
+ <https://www.mindspore.cn/docs/en/r2.3.q1/api_python/samples/dataset/text_gallery.html>`_
1077
1268
  """
1078
1269
 
1079
1270
  @check_bert_tokenizer
@@ -1115,14 +1306,24 @@ if platform.system().lower() != 'windows':
1115
1306
  Examples:
1116
1307
  >>> import mindspore.dataset as ds
1117
1308
  >>> import mindspore.dataset.text as text
1309
+ >>>
1310
+ >>> # Use the transform in dataset pipeline mode
1311
+ >>> numpy_slices_dataset = ds.NumpySlicesDataset(data=['Welcome To BeiJing!'], column_names=["text"])
1118
1312
  >>> case_op = text.CaseFold()
1119
- >>> text_file_list = ["/path/to/text_file_dataset_file"]
1120
- >>> text_file_dataset = ds.TextFileDataset(dataset_files=text_file_list)
1121
- >>> text_file_dataset = text_file_dataset.map(operations=case_op)
1313
+ >>> numpy_slices_dataset = numpy_slices_dataset.map(operations=case_op)
1314
+ >>> for item in numpy_slices_dataset.create_dict_iterator(num_epochs=1, output_numpy=True):
1315
+ ... print(item["text"])
1316
+ welcome to beijing!
1317
+ >>>
1318
+ >>> # Use the transform in eager mode
1319
+ >>> data = 'Welcome To BeiJing!'
1320
+ >>> output = text.CaseFold()(data)
1321
+ >>> print(output)
1322
+ welcome to beijing!
1122
1323
 
1123
1324
  Tutorial Examples:
1124
1325
  - `Illustration of text transforms
1125
- <https://www.mindspore.cn/docs/en/r2.2/api_python/samples/dataset/text_gallery.html>`_
1326
+ <https://www.mindspore.cn/docs/en/r2.3.q1/api_python/samples/dataset/text_gallery.html>`_
1126
1327
  """
1127
1328
 
1128
1329
  def parse(self):
@@ -1144,14 +1345,25 @@ if platform.system().lower() != 'windows':
1144
1345
  >>> import mindspore.dataset as ds
1145
1346
  >>> import mindspore.dataset.text as text
1146
1347
  >>>
1348
+ >>> # Use the transform in dataset pipeline mode
1349
+ >>> numpy_slices_dataset = ds.NumpySlicesDataset(data=["Welcome to China", "!!!", "ABC"],
1350
+ ... column_names=["text"], shuffle=False)
1147
1351
  >>> replace_op = text.FilterWikipediaXML()
1148
- >>> text_file_list = ["/path/to/text_file_dataset_file"]
1149
- >>> text_file_dataset = ds.TextFileDataset(dataset_files=text_file_list)
1150
- >>> text_file_dataset = text_file_dataset.map(operations=replace_op)
1352
+ >>> numpy_slices_dataset = numpy_slices_dataset.map(operations=replace_op)
1353
+ >>> for item in numpy_slices_dataset.create_dict_iterator(num_epochs=1, output_numpy=True):
1354
+ ... print(item["text"])
1355
+ ... break
1356
+ welcome to china
1357
+ >>>
1358
+ >>> # Use the transform in eager mode
1359
+ >>> data = "Welcome to China"
1360
+ >>> output = replace_op(data)
1361
+ >>> print(output)
1362
+ welcome to china
1151
1363
 
1152
1364
  Tutorial Examples:
1153
1365
  - `Illustration of text transforms
1154
- <https://www.mindspore.cn/docs/en/r2.2/api_python/samples/dataset/text_gallery.html>`_
1366
+ <https://www.mindspore.cn/docs/en/r2.3.q1/api_python/samples/dataset/text_gallery.html>`_
1155
1367
  """
1156
1368
 
1157
1369
  def parse(self):
@@ -1181,14 +1393,25 @@ if platform.system().lower() != 'windows':
1181
1393
  >>> import mindspore.dataset.text as text
1182
1394
  >>> from mindspore.dataset.text import NormalizeForm
1183
1395
  >>>
1396
+ >>> # Use the transform in dataset pipeline mode
1397
+ >>> numpy_slices_dataset = ds.NumpySlicesDataset(data=["ṩ", "ḍ̇", "q̇", "fi", "2⁵", "ẛ"],
1398
+ ... column_names=["text"], shuffle=False)
1184
1399
  >>> normalize_op = text.NormalizeUTF8(normalize_form=NormalizeForm.NFC)
1185
- >>> text_file_list = ["/path/to/text_file_dataset_file"]
1186
- >>> text_file_dataset = ds.TextFileDataset(dataset_files=text_file_list)
1187
- >>> text_file_dataset = text_file_dataset.map(operations=normalize_op)
1400
+ >>> numpy_slices_dataset = numpy_slices_dataset.map(operations=normalize_op)
1401
+ >>> for item in numpy_slices_dataset.create_dict_iterator(num_epochs=1, output_numpy=True):
1402
+ ... print(item["text"])
1403
+ ... break
1404
+
1405
+ >>>
1406
+ >>> # Use the transform in eager mode
1407
+ >>> data = ["ṩ", "ḍ̇", "q̇", "fi", "2⁵", "ẛ"]
1408
+ >>> output = text.NormalizeUTF8(NormalizeForm.NFKC)(data)
1409
+ >>> print(output)
1410
+ ['ṩ' 'ḍ̇' 'q̇' 'fi' '25' 'ṡ']
1188
1411
 
1189
1412
  Tutorial Examples:
1190
1413
  - `Illustration of text transforms
1191
- <https://www.mindspore.cn/docs/en/r2.2/api_python/samples/dataset/text_gallery.html>`_
1414
+ <https://www.mindspore.cn/docs/en/r2.3.q1/api_python/samples/dataset/text_gallery.html>`_
1192
1415
  """
1193
1416
 
1194
1417
  def __init__(self, normalize_form=NormalizeForm.NFKC):
@@ -1230,14 +1453,24 @@ if platform.system().lower() != 'windows':
1230
1453
  >>> import mindspore.dataset as ds
1231
1454
  >>> import mindspore.dataset.text as text
1232
1455
  >>>
1456
+ >>> # Use the transform in dataset pipeline mode
1457
+ >>> numpy_slices_dataset = ds.NumpySlicesDataset(data=['apple orange apple orange apple'],
1458
+ ... column_names=["text"])
1233
1459
  >>> regex_replace = text.RegexReplace('apple', 'orange')
1234
- >>> text_file_list = ["/path/to/text_file_dataset_file"]
1235
- >>> text_file_dataset = ds.TextFileDataset(dataset_files=text_file_list)
1236
- >>> text_file_dataset = text_file_dataset.map(operations=regex_replace)
1460
+ >>> numpy_slices_dataset = numpy_slices_dataset.map(operations=regex_replace)
1461
+ >>> for item in numpy_slices_dataset.create_dict_iterator(num_epochs=1, output_numpy=True):
1462
+ ... print(item["text"])
1463
+ orange orange orange orange orange
1464
+ >>>
1465
+ >>> # Use the transform in eager mode
1466
+ >>> data = 'onetwoonetwoone'
1467
+ >>> output = text.RegexReplace(pattern="one", replace="two", replace_all=True)(data)
1468
+ >>> print(output)
1469
+ twotwotwotwotwo
1237
1470
 
1238
1471
  Tutorial Examples:
1239
1472
  - `Illustration of text transforms
1240
- <https://www.mindspore.cn/docs/en/r2.2/api_python/samples/dataset/text_gallery.html>`_
1473
+ <https://www.mindspore.cn/docs/en/r2.3.q1/api_python/samples/dataset/text_gallery.html>`_
1241
1474
  """
1242
1475
 
1243
1476
  @check_regex_replace
@@ -1281,24 +1514,42 @@ if platform.system().lower() != 'windows':
1281
1514
  >>> import mindspore.dataset as ds
1282
1515
  >>> import mindspore.dataset.text as text
1283
1516
  >>>
1284
- >>> text_file_list = ["/path/to/text_file_dataset_file"]
1285
- >>> text_file_dataset = ds.TextFileDataset(dataset_files=text_file_list)
1517
+ >>> # Use the transform in dataset pipeline mode
1518
+ >>> numpy_slices_dataset = ds.NumpySlicesDataset(data=['Welcome |, To |, BeiJing!'],
1519
+ ... column_names=["text"])
1286
1520
  >>>
1287
1521
  >>> # 1) If with_offsets=False, default output is one column {["text", dtype=str]}
1288
1522
  >>> delim_pattern = r"[ |,]"
1289
1523
  >>> tokenizer_op = text.RegexTokenizer(delim_pattern, with_offsets=False)
1290
- >>> text_file_dataset = text_file_dataset.map(operations=tokenizer_op)
1524
+ >>> numpy_slices_dataset = numpy_slices_dataset.map(operations=tokenizer_op)
1525
+ >>> for item in numpy_slices_dataset.create_dict_iterator(num_epochs=1, output_numpy=True):
1526
+ ... print(item["text"])
1527
+ ['Welcome' 'To' 'BeiJing!']
1291
1528
  >>>
1292
1529
  >>> # 2) If with_offsets=True, then output three columns {["token", dtype=str],
1293
1530
  >>> # ["offsets_start", dtype=uint32],
1294
1531
  >>> # ["offsets_limit", dtype=uint32]}
1532
+ >>> numpy_slices_dataset = ds.NumpySlicesDataset(data=['Welcome |, To |, BeiJing!'],
1533
+ ... column_names=["text"])
1295
1534
  >>> tokenizer_op = text.RegexTokenizer(delim_pattern, with_offsets=True)
1296
- >>> text_file_dataset = text_file_dataset.map(operations=tokenizer_op, input_columns=["text"],
1297
- ... output_columns=["token", "offsets_start", "offsets_limit"])
1535
+ >>> numpy_slices_dataset = numpy_slices_dataset.map(
1536
+ ... operations=tokenizer_op,
1537
+ ... input_columns=["text"],
1538
+ ... output_columns=["token", "offsets_start", "offsets_limit"])
1539
+ >>> for item in numpy_slices_dataset.create_dict_iterator(num_epochs=1, output_numpy=True):
1540
+ ... print(item["token"], item["offsets_start"], item["offsets_limit"])
1541
+ ['Welcome' 'To' 'BeiJing!'] [ 0 13 21] [ 7 15 29]
1542
+ >>>
1543
+ >>> # Use the transform in eager mode
1544
+ >>> data = 'Welcome To BeiJing!'
1545
+ >>> output = text.RegexTokenizer(delim_pattern="To", keep_delim_pattern="To", with_offsets=True)(data)
1546
+ >>> print(output)
1547
+ (array(['Welcome ', 'To', ' BeiJing!'], dtype='<U12'),
1548
+ array([ 0, 12, 14], dtype=uint32), array([12, 14, 25], dtype=uint32))
1298
1549
 
1299
1550
  Tutorial Examples:
1300
1551
  - `Illustration of text transforms
1301
- <https://www.mindspore.cn/docs/en/r2.2/api_python/samples/dataset/text_gallery.html>`_
1552
+ <https://www.mindspore.cn/docs/en/r2.3.q1/api_python/samples/dataset/text_gallery.html>`_
1302
1553
  """
1303
1554
 
1304
1555
  @check_regex_tokenizer
@@ -1335,23 +1586,43 @@ if platform.system().lower() != 'windows':
1335
1586
  >>> import mindspore.dataset as ds
1336
1587
  >>> import mindspore.dataset.text as text
1337
1588
  >>>
1338
- >>> text_file_list = ["/path/to/text_file_dataset_file"]
1339
- >>> text_file_dataset = ds.TextFileDataset(dataset_files=text_file_list)
1589
+ >>> # Use the transform in dataset pipeline mode
1590
+ >>> numpy_slices_dataset = ds.NumpySlicesDataset(data=["北 京", "123", "欢 迎", "你"],
1591
+ ... column_names=["text"], shuffle=False)
1340
1592
  >>>
1341
1593
  >>> # 1) If with_offsets=False, default output one column {["text", dtype=str]}
1342
1594
  >>> tokenizer_op = text.UnicodeScriptTokenizer(keep_whitespace=True, with_offsets=False)
1343
- >>> text_file_dataset = text_file_dataset.map(operations=tokenizer_op)
1595
+ >>> numpy_slices_dataset = numpy_slices_dataset.map(operations=tokenizer_op)
1596
+ >>> for item in numpy_slices_dataset.create_dict_iterator(num_epochs=1, output_numpy=True):
1597
+ ... print(item["text"])
1598
+ ... break
1599
+ ['北' ' ' '京']
1344
1600
  >>>
1345
1601
  >>> # 2) If with_offsets=True, then output three columns {["token", dtype=str],
1346
1602
  >>> # ["offsets_start", dtype=uint32],
1347
1603
  >>> # ["offsets_limit", dtype=uint32]}
1604
+ >>> numpy_slices_dataset = ds.NumpySlicesDataset(data=["北 京", "123", "欢 迎", "你"],
1605
+ ... column_names=["text"], shuffle=False)
1348
1606
  >>> tokenizer_op = text.UnicodeScriptTokenizer(keep_whitespace=True, with_offsets=True)
1349
- >>> text_file_dataset = text_file_dataset.map(operations=tokenizer_op, input_columns=["text"],
1350
- ... output_columns=["token", "offsets_start", "offsets_limit"])
1607
+ >>> numpy_slices_dataset = numpy_slices_dataset.map(
1608
+ ... operations=tokenizer_op,
1609
+ ... input_columns=["text"],
1610
+ ... output_columns=["token", "offsets_start", "offsets_limit"])
1611
+ >>> for item in numpy_slices_dataset.create_dict_iterator(num_epochs=1, output_numpy=True):
1612
+ ... print(item["token"], item["offsets_start"], item["offsets_limit"])
1613
+ ... break
1614
+ ['北' ' ' '京'] [0 3 4] [3 4 7]
1615
+ >>>
1616
+ >>> # Use the transform in eager mode
1617
+ >>> data = "北 京"
1618
+ >>> unicode_script_tokenizer_op = text.UnicodeScriptTokenizer(keep_whitespace=True, with_offsets=False)
1619
+ >>> output = unicode_script_tokenizer_op(data)
1620
+ >>> print(output)
1621
+ ['北' ' ' '京']
1351
1622
 
1352
1623
  Tutorial Examples:
1353
1624
  - `Illustration of text transforms
1354
- <https://www.mindspore.cn/docs/en/r2.2/api_python/samples/dataset/text_gallery.html>`_
1625
+ <https://www.mindspore.cn/docs/en/r2.3.q1/api_python/samples/dataset/text_gallery.html>`_
1355
1626
 
1356
1627
  """
1357
1628
 
@@ -1388,23 +1659,39 @@ if platform.system().lower() != 'windows':
1388
1659
  >>> import mindspore.dataset as ds
1389
1660
  >>> import mindspore.dataset.text as text
1390
1661
  >>>
1391
- >>> text_file_list = ["/path/to/text_file_dataset_file"]
1392
- >>> text_file_dataset = ds.TextFileDataset(dataset_files=text_file_list)
1662
+ >>> # Use the transform in dataset pipeline mode
1663
+ >>> numpy_slices_dataset = ds.NumpySlicesDataset(data=['Welcome To BeiJing!'], column_names=["text"])
1393
1664
  >>>
1394
1665
  >>> # 1) If with_offsets=False, default output one column {["text", dtype=str]}
1395
1666
  >>> tokenizer_op = text.WhitespaceTokenizer(with_offsets=False)
1396
- >>> text_file_dataset = text_file_dataset.map(operations=tokenizer_op)
1667
+ >>> numpy_slices_dataset = numpy_slices_dataset.map(operations=tokenizer_op)
1668
+ >>> for item in numpy_slices_dataset.create_dict_iterator(num_epochs=1, output_numpy=True):
1669
+ ... print(item["text"])
1670
+ ['Welcome' 'To' 'BeiJing!']
1397
1671
  >>>
1398
1672
  >>> # 2) If with_offsets=True, then output three columns {["token", dtype=str],
1399
- >>> # ["offsets_start", dtype=uint32],
1400
- >>> # ["offsets_limit", dtype=uint32]}
1673
+ >>> # ["offsets_start", dtype=uint32],
1674
+ >>> # ["offsets_limit", dtype=uint32]}
1675
+ >>> numpy_slices_dataset = ds.NumpySlicesDataset(data=['Welcome To BeiJing!'], column_names=["text"])
1401
1676
  >>> tokenizer_op = text.WhitespaceTokenizer(with_offsets=True)
1402
- >>> text_file_dataset = text_file_dataset.map(operations=tokenizer_op, input_columns=["text"],
1403
- ... output_columns=["token", "offsets_start", "offsets_limit"])
1677
+ >>> numpy_slices_dataset = numpy_slices_dataset.map(
1678
+ ... operations=tokenizer_op,
1679
+ ... input_columns=["text"],
1680
+ ... output_columns=["token", "offsets_start", "offsets_limit"])
1681
+ >>> for item in numpy_slices_dataset.create_dict_iterator(num_epochs=1, output_numpy=True):
1682
+ ... print(item["token"], item["offsets_start"], item["offsets_limit"])
1683
+ ['Welcome' 'To' 'BeiJing!'] [ 0 12 17] [ 7 14 25]
1684
+ >>>
1685
+ >>> # Use the transform in eager mode
1686
+ >>> data = 'Welcome To BeiJing!'
1687
+ >>> output = text.WhitespaceTokenizer(with_offsets=True)(data)
1688
+ >>> print(output)
1689
+ (array(['Welcome', 'To', 'BeiJing!'], dtype='<U8'), array([ 0, 12, 17], dtype=uint32),
1690
+ array([ 7, 14, 25], dtype=uint32))
1404
1691
 
1405
1692
  Tutorial Examples:
1406
1693
  - `Illustration of text transforms
1407
- <https://www.mindspore.cn/docs/en/r2.2/api_python/samples/dataset/text_gallery.html>`_
1694
+ <https://www.mindspore.cn/docs/en/r2.3.q1/api_python/samples/dataset/text_gallery.html>`_
1408
1695
  """
1409
1696
 
1410
1697
  @check_with_offsets