mindspore 2.2.10__cp38-none-any.whl → 2.2.14__cp38-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of mindspore might be problematic. Click here for more details.
- mindspore/.commit_id +1 -1
- mindspore/__init__.py +2 -1
- mindspore/_akg/akg/composite/build_module.py +95 -5
- mindspore/_akg/akg/topi/cpp/impl.py +1 -1
- mindspore/_akg/akg/tvm/_ffi/base.py +1 -1
- mindspore/_akg/akg/utils/composite_op_helper.py +7 -2
- mindspore/_akg/akg/utils/dump_ascend_meta.py +22 -3
- mindspore/_akg/akg/utils/util.py +18 -1
- mindspore/_c_dataengine.cpython-38-aarch64-linux-gnu.so +0 -0
- mindspore/_c_expression.cpython-38-aarch64-linux-gnu.so +0 -0
- mindspore/_c_mindrecord.cpython-38-aarch64-linux-gnu.so +0 -0
- mindspore/_extends/parse/__init__.py +3 -2
- mindspore/_extends/parse/parser.py +6 -1
- mindspore/_extends/parse/standard_method.py +12 -2
- mindspore/_mindspore_offline_debug.cpython-38-aarch64-linux-gnu.so +0 -0
- mindspore/bin/cache_admin +0 -0
- mindspore/bin/cache_server +0 -0
- mindspore/common/_utils.py +16 -0
- mindspore/common/tensor.py +0 -2
- mindspore/communication/management.py +3 -0
- mindspore/context.py +34 -4
- mindspore/dataset/engine/cache_client.py +8 -5
- mindspore/dataset/engine/datasets.py +23 -0
- mindspore/dataset/engine/validators.py +1 -1
- mindspore/dataset/vision/py_transforms_util.py +2 -2
- mindspore/experimental/optim/lr_scheduler.py +5 -6
- mindspore/lib/libdnnl.so.2 +0 -0
- mindspore/lib/libmindspore.so +0 -0
- mindspore/lib/libmindspore_backend.so +0 -0
- mindspore/lib/libmindspore_common.so +0 -0
- mindspore/lib/libmindspore_core.so +0 -0
- mindspore/lib/libmindspore_gpr.so.15 +0 -0
- mindspore/lib/libmindspore_grpc++.so.1 +0 -0
- mindspore/lib/libmindspore_grpc.so.15 +0 -0
- mindspore/lib/libmindspore_shared_lib.so +0 -0
- mindspore/lib/libopencv_core.so.4.5 +0 -0
- mindspore/lib/libopencv_imgcodecs.so.4.5 +0 -0
- mindspore/lib/libopencv_imgproc.so.4.5 +0 -0
- mindspore/lib/plugin/ascend/custom_aicpu_ops/op_impl/cpu/aicpu_kernel/impl/libcust_aicpu_kernels.so +0 -0
- mindspore/lib/plugin/ascend/custom_aicpu_ops/op_impl/cpu/aicpu_kernel/impl/libcust_cpu_kernels.so +0 -0
- mindspore/lib/plugin/ascend/custom_aicpu_ops/op_impl/cpu/config/cust_aicpu_kernel.json +118 -0
- mindspore/lib/plugin/ascend/custom_aicpu_ops/op_proto/libcust_op_proto.so +0 -0
- mindspore/lib/plugin/ascend/libakg.so +0 -0
- mindspore/lib/plugin/ascend/libascend_collective.so +0 -0
- mindspore/lib/plugin/ascend/libdvpp_utils.so +0 -0
- mindspore/lib/plugin/ascend/libmindspore_aicpu_kernels.so +0 -0
- mindspore/lib/plugin/ascend/libmindspore_cpu_kernels.so +0 -0
- mindspore/lib/plugin/cpu/libakg.so +0 -0
- mindspore/lib/plugin/libmindspore_ascend.so.1 +0 -0
- mindspore/mindrecord/tools/cifar100_to_mr.py +49 -57
- mindspore/mindrecord/tools/cifar10_to_mr.py +46 -55
- mindspore/mindrecord/tools/csv_to_mr.py +3 -8
- mindspore/mindrecord/tools/mnist_to_mr.py +4 -9
- mindspore/mindrecord/tools/tfrecord_to_mr.py +1 -4
- mindspore/nn/layer/activation.py +1 -1
- mindspore/nn/layer/embedding.py +2 -2
- mindspore/nn/layer/flash_attention.py +48 -135
- mindspore/nn/loss/loss.py +1 -1
- mindspore/nn/optim/ada_grad.py +2 -2
- mindspore/nn/optim/sgd.py +3 -2
- mindspore/nn/wrap/__init__.py +4 -2
- mindspore/nn/wrap/cell_wrapper.py +6 -3
- mindspore/numpy/math_ops.py +1 -1
- mindspore/ops/__init__.py +3 -0
- mindspore/ops/_grad_experimental/grad_array_ops.py +0 -31
- mindspore/ops/_grad_experimental/grad_comm_ops.py +4 -2
- mindspore/ops/_grad_experimental/grad_inner_ops.py +8 -0
- mindspore/ops/_grad_experimental/grad_math_ops.py +37 -17
- mindspore/ops/_op_impl/aicpu/__init__.py +1 -0
- mindspore/ops/_op_impl/aicpu/generate_eod_mask.py +38 -0
- mindspore/ops/_op_impl/aicpu/linear_sum_assignment.py +21 -2
- mindspore/ops/function/array_func.py +6 -5
- mindspore/ops/function/debug_func.py +1 -1
- mindspore/ops/function/linalg_func.py +21 -11
- mindspore/ops/function/math_func.py +3 -0
- mindspore/ops/function/nn_func.py +13 -11
- mindspore/ops/function/parameter_func.py +2 -0
- mindspore/ops/function/sparse_unary_func.py +2 -2
- mindspore/ops/function/vmap_func.py +1 -0
- mindspore/ops/operations/__init__.py +5 -2
- mindspore/ops/operations/_embedding_cache_ops.py +1 -1
- mindspore/ops/operations/_grad_ops.py +3 -4
- mindspore/ops/operations/_inner_ops.py +56 -1
- mindspore/ops/operations/_quant_ops.py +4 -4
- mindspore/ops/operations/_rl_inner_ops.py +1 -1
- mindspore/ops/operations/array_ops.py +15 -4
- mindspore/ops/operations/custom_ops.py +1 -1
- mindspore/ops/operations/debug_ops.py +1 -1
- mindspore/ops/operations/image_ops.py +3 -3
- mindspore/ops/operations/inner_ops.py +49 -0
- mindspore/ops/operations/math_ops.py +65 -3
- mindspore/ops/operations/nn_ops.py +95 -28
- mindspore/ops/operations/random_ops.py +2 -0
- mindspore/ops/operations/sparse_ops.py +4 -4
- mindspore/ops/silent_check.py +162 -0
- mindspore/parallel/__init__.py +3 -2
- mindspore/parallel/_auto_parallel_context.py +82 -3
- mindspore/parallel/_parallel_serialization.py +34 -2
- mindspore/parallel/_tensor.py +3 -1
- mindspore/parallel/_transformer/transformer.py +8 -8
- mindspore/parallel/checkpoint_transform.py +191 -45
- mindspore/profiler/parser/ascend_cluster_generator.py +111 -0
- mindspore/profiler/parser/ascend_communicate_generator.py +315 -0
- mindspore/profiler/parser/ascend_flops_generator.py +8 -2
- mindspore/profiler/parser/ascend_fpbp_generator.py +8 -2
- mindspore/profiler/parser/ascend_hccl_generator.py +2 -2
- mindspore/profiler/parser/ascend_msprof_exporter.py +30 -6
- mindspore/profiler/parser/ascend_msprof_generator.py +16 -5
- mindspore/profiler/parser/ascend_op_generator.py +15 -7
- mindspore/profiler/parser/ascend_timeline_generator.py +5 -2
- mindspore/profiler/parser/base_timeline_generator.py +11 -3
- mindspore/profiler/parser/cpu_gpu_timeline_generator.py +2 -1
- mindspore/profiler/parser/framework_parser.py +8 -2
- mindspore/profiler/parser/memory_usage_parser.py +8 -2
- mindspore/profiler/parser/minddata_analyzer.py +8 -2
- mindspore/profiler/parser/minddata_parser.py +1 -1
- mindspore/profiler/parser/msadvisor_analyzer.py +4 -2
- mindspore/profiler/parser/msadvisor_parser.py +9 -3
- mindspore/profiler/profiling.py +97 -25
- mindspore/rewrite/api/node.py +1 -1
- mindspore/rewrite/api/symbol_tree.py +2 -2
- mindspore/rewrite/parsers/for_parser.py +6 -6
- mindspore/rewrite/parsers/module_parser.py +4 -4
- mindspore/scipy/ops.py +55 -5
- mindspore/scipy/optimize/__init__.py +3 -2
- mindspore/scipy/optimize/linear_sum_assignment.py +38 -33
- mindspore/train/callback/_checkpoint.py +8 -8
- mindspore/train/callback/_landscape.py +2 -3
- mindspore/train/callback/_summary_collector.py +6 -7
- mindspore/train/dataset_helper.py +6 -0
- mindspore/train/model.py +17 -5
- mindspore/train/serialization.py +6 -1
- mindspore/train/summary/_writer_pool.py +1 -1
- mindspore/train/summary/summary_record.py +5 -6
- mindspore/version.py +1 -1
- {mindspore-2.2.10.dist-info → mindspore-2.2.14.dist-info}/METADATA +3 -2
- {mindspore-2.2.10.dist-info → mindspore-2.2.14.dist-info}/RECORD +140 -148
- mindspore/lib/plugin/libmindspore_ascend.so.2 +0 -0
- mindspore/ops/_op_impl/_custom_op/flash_attention/__init__.py +0 -0
- mindspore/ops/_op_impl/_custom_op/flash_attention/attention.py +0 -406
- mindspore/ops/_op_impl/_custom_op/flash_attention/constants.py +0 -41
- mindspore/ops/_op_impl/_custom_op/flash_attention/flash_attention_bwd.py +0 -467
- mindspore/ops/_op_impl/_custom_op/flash_attention/flash_attention_fwd.py +0 -563
- mindspore/ops/_op_impl/_custom_op/flash_attention/flash_attention_impl.py +0 -193
- mindspore/ops/_op_impl/_custom_op/flash_attention/tik_ops_utils.py +0 -435
- mindspore/ops/_op_impl/_custom_op/flash_attention/tiling_strategy/__init__.py +0 -0
- mindspore/ops/_op_impl/_custom_op/flash_attention/tiling_strategy/sparse_tiling.py +0 -45
- mindspore/ops/_op_impl/_custom_op/flash_attention/tiling_strategy/strategy.py +0 -67
- mindspore/ops/_op_impl/_custom_op/flash_attention/tiling_strategy/wukong_tiling.py +0 -62
- {mindspore-2.2.10.dist-info → mindspore-2.2.14.dist-info}/WHEEL +0 -0
- {mindspore-2.2.10.dist-info → mindspore-2.2.14.dist-info}/entry_points.txt +0 -0
- {mindspore-2.2.10.dist-info → mindspore-2.2.14.dist-info}/top_level.txt +0 -0
|
@@ -1,563 +0,0 @@
|
|
|
1
|
-
# Copyright 2023 Huawei Technologies Co., Ltd
|
|
2
|
-
#
|
|
3
|
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
-
# you may not use this file except in compliance with the License.
|
|
5
|
-
# You may obtain a copy of the License at
|
|
6
|
-
#
|
|
7
|
-
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
-
#
|
|
9
|
-
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
-
# See the License for the specific language governing permissions and
|
|
13
|
-
# limitations under the License.
|
|
14
|
-
# ============================================================================
|
|
15
|
-
"""The forward tik ops of flash attention"""
|
|
16
|
-
|
|
17
|
-
from tbe import tik
|
|
18
|
-
|
|
19
|
-
from mindspore.ops._op_impl._custom_op.flash_attention.attention import FlashAttention
|
|
20
|
-
from mindspore.ops._op_impl._custom_op.flash_attention.constants import DTYPE_SIZE
|
|
21
|
-
from mindspore.ops._op_impl._custom_op.flash_attention.constants import FP16
|
|
22
|
-
from mindspore.ops._op_impl._custom_op.flash_attention.constants import FP32
|
|
23
|
-
from mindspore.ops._op_impl._custom_op.flash_attention.constants import GM
|
|
24
|
-
from mindspore.ops._op_impl._custom_op.flash_attention.constants import L1
|
|
25
|
-
from mindspore.ops._op_impl._custom_op.flash_attention.constants import UB
|
|
26
|
-
from mindspore.ops._op_impl._custom_op.flash_attention.tiling_strategy.strategy import TilingStrategy
|
|
27
|
-
|
|
28
|
-
|
|
29
|
-
class FlashAttentionFwd(FlashAttention):
|
|
30
|
-
"""The implementation of flash attention forward
|
|
31
|
-
This function contains the flash attention forward implementation used in flash attention (see paper)
|
|
32
|
-
`FlashAttention: Fast and Memory-Efficient Exact Attention with IO-Awareness <https://arxiv.org/pdf/2205.14135.pdf>`
|
|
33
|
-
"""
|
|
34
|
-
|
|
35
|
-
def __init__(self, query, key, value,
|
|
36
|
-
attn_mask, dropout_mask, alibi_mask,
|
|
37
|
-
kernel_name,
|
|
38
|
-
tiling_stgy: TilingStrategy,
|
|
39
|
-
prev_block_num=65536,
|
|
40
|
-
next_block_num=65536, high_precision=False, disable_debug=True):
|
|
41
|
-
super(FlashAttentionFwd, self).__init__(query, key, value, attn_mask, dropout_mask, alibi_mask,
|
|
42
|
-
kernel_name,
|
|
43
|
-
tiling_stgy, prev_block_num, next_block_num, high_precision,
|
|
44
|
-
disable_debug)
|
|
45
|
-
self.O_gm = None
|
|
46
|
-
self.l_gm = None
|
|
47
|
-
self.m_gm = None
|
|
48
|
-
self.O_gm_workspace = None
|
|
49
|
-
|
|
50
|
-
def define_custom_inputs(self):
|
|
51
|
-
"""define custom inputs"""
|
|
52
|
-
|
|
53
|
-
def define_outputs(self):
|
|
54
|
-
"""define outputs"""
|
|
55
|
-
self.O_gm = self.tik_instance.Tensor(FP16, self.O_shape, name="O_gm", scope=GM, is_atomic_add=True)
|
|
56
|
-
if self.high_precision:
|
|
57
|
-
self.O_gm_workspace = self.tik_instance.Tensor(FP32, self.O_shape, name="O_gm_workspace", scope=GM,
|
|
58
|
-
is_workspace=True, is_atomic_add=True)
|
|
59
|
-
self.l_gm = self.tik_instance.Tensor(self.precision_type, self.l_shape, name="l_gm", scope=GM,
|
|
60
|
-
is_atomic_add=True)
|
|
61
|
-
self.m_gm = self.tik_instance.Tensor(FP16, self.m_shape, name="m_gm", scope=GM, is_atomic_add=True)
|
|
62
|
-
|
|
63
|
-
def prepare_global_ones(self):
|
|
64
|
-
"""Prepare global ones tensor in L1 for cube impl row_sum"""
|
|
65
|
-
Bc_aligned = (self.Bc + 15) // 16 * 16
|
|
66
|
-
last_Bc_aligned = (self.last_Bc + 15) // 16 * 16
|
|
67
|
-
self.ones_l1 = self.tik_instance.Tensor(FP16, (Bc_aligned, 16), name="ones_l1", scope=L1)
|
|
68
|
-
self.last_ones_l1 = self.tik_instance.Tensor(FP16, (last_Bc_aligned, 16), name="last_ones_l1", scope=L1)
|
|
69
|
-
with self.tik_instance.new_stmt_scope(disable_sync=False):
|
|
70
|
-
ones_ub = self.tik_instance.Tensor(FP16, (Bc_aligned, 16), name="ones_ub", scope=UB)
|
|
71
|
-
self.tik_instance.h_duplicate(ones_ub, 1.0)
|
|
72
|
-
self.cont_data_mv_1_bust(dst=self.ones_l1, src=ones_ub, burst=Bc_aligned)
|
|
73
|
-
last_ones_ub = self.tik_instance.Tensor(FP16, (last_Bc_aligned, 16), name="last_ones_ub", scope=UB)
|
|
74
|
-
self.tik_instance.h_duplicate(ones_ub, 1.0)
|
|
75
|
-
self.cont_data_mv_1_bust(dst=self.last_ones_l1, src=last_ones_ub, burst=last_Bc_aligned)
|
|
76
|
-
|
|
77
|
-
def softmax_compute(self, Sij_ub, mij_ub, lij_ub, m, n):
|
|
78
|
-
"""Refer to Algorithm 2 line12"""
|
|
79
|
-
m_aligned = self.tik_ops_utils.up_align_to_K0(m)
|
|
80
|
-
n_aligned = self.tik_ops_utils.up_align_to_K0(n)
|
|
81
|
-
n0 = 16
|
|
82
|
-
n1 = n // 16
|
|
83
|
-
# only support n % 16 == 0
|
|
84
|
-
with self.tik_instance.new_stmt_scope(disable_sync=False):
|
|
85
|
-
mn0_block_max = self.tik_instance.Tensor(FP16, (1, m, n0), name="mn0_block_max", scope=UB)
|
|
86
|
-
self.cont_data_mv_1_bust(dst=mn0_block_max, src=Sij_ub, burst=m)
|
|
87
|
-
with self.tik_instance.for_range(1, n1) as idx:
|
|
88
|
-
self.tik_instance.h_max(mn0_block_max, mn0_block_max, Sij_ub[idx, :, :])
|
|
89
|
-
mn0_block_max = mn0_block_max.reshape((m, n0))
|
|
90
|
-
self.tik_instance.h_reduce_max(mij_ub, mn0_block_max, 1)
|
|
91
|
-
# Sij - mij
|
|
92
|
-
with self.tik_instance.new_stmt_scope(disable_sync=False):
|
|
93
|
-
broadcast_mij_ub = self.tik_ops_utils.broadcast(mij_ub, (m, n0))
|
|
94
|
-
broadcast_mij_ub = broadcast_mij_ub.reshape((1, m, n0))
|
|
95
|
-
for idx in range(n1):
|
|
96
|
-
self.tik_instance.h_sub(Sij_ub[idx, :, :], Sij_ub[idx, :, :], broadcast_mij_ub)
|
|
97
|
-
# exp
|
|
98
|
-
if self.high_precision:
|
|
99
|
-
Sij_ub_fp32 = self.tik_instance.Tensor(
|
|
100
|
-
FP32, (n_aligned // 16, m_aligned, 16), name="Sij_ub_fp32", scope=UB
|
|
101
|
-
)
|
|
102
|
-
with self.tik_instance.new_stmt_scope(disable_sync=False):
|
|
103
|
-
self.tik_instance.h_cast(Sij_ub_fp32, Sij_ub, "none")
|
|
104
|
-
self.tik_instance.h_exp(Sij_ub_fp32, Sij_ub_fp32)
|
|
105
|
-
self.tik_instance.h_cast(Sij_ub, Sij_ub_fp32, "none")
|
|
106
|
-
else:
|
|
107
|
-
self.tik_instance.h_exp(Sij_ub, Sij_ub)
|
|
108
|
-
|
|
109
|
-
# cube impl rowsum
|
|
110
|
-
Sij_l1_K1MK0_ed = self.tik_instance.Tensor(FP16, (n_aligned // 16, m_aligned, 16),
|
|
111
|
-
name="Sij_l1_K1MK0_ed", scope=L1)
|
|
112
|
-
self.cont_data_mv_1_bust(dst=Sij_l1_K1MK0_ed, src=Sij_ub, burst=m * n // 16)
|
|
113
|
-
if n == self.Bc:
|
|
114
|
-
Sij_row_sum_ub = self.tik_ops_utils.row_sum_cube_impl(Sij_l1_K1MK0_ed, self.ones_l1,
|
|
115
|
-
lij_ub, m, n, self.precision_type)
|
|
116
|
-
else:
|
|
117
|
-
Sij_row_sum_ub = self.tik_ops_utils.row_sum_cube_impl(Sij_l1_K1MK0_ed, self.last_ones_l1,
|
|
118
|
-
lij_ub, m, n, self.precision_type)
|
|
119
|
-
|
|
120
|
-
if self.high_precision:
|
|
121
|
-
return Sij_ub_fp32, mij_ub, Sij_row_sum_ub
|
|
122
|
-
if self.has_drop_mask:
|
|
123
|
-
return Sij_ub, mij_ub, Sij_row_sum_ub
|
|
124
|
-
return Sij_l1_K1MK0_ed, mij_ub, Sij_row_sum_ub
|
|
125
|
-
|
|
126
|
-
def update_m_l(self, mi_old_ub, mij_ub, li_old_ub, lij_ub, vec_len):
|
|
127
|
-
"""Refer to Algorithm 2 line13
|
|
128
|
-
mi_new = max(mi, mij), li_new = exp(mi-mi_new)*li + exp(mij - mi_new) * lij
|
|
129
|
-
"""
|
|
130
|
-
dtype = li_old_ub.dtype
|
|
131
|
-
vec_len_aligned = self.tik_ops_utils.up_align_to_K0(vec_len)
|
|
132
|
-
mi_new_ub = self.tik_instance.Tensor(FP16, (vec_len_aligned,), name="mi_new_ub", scope=UB)
|
|
133
|
-
li_new_ub = self.tik_instance.Tensor(dtype, (vec_len_aligned,), name="li_new_ub", scope=UB)
|
|
134
|
-
self.tik_instance.h_max(mi_new_ub, mi_old_ub, mij_ub)
|
|
135
|
-
|
|
136
|
-
self.tik_instance.h_sub(mi_old_ub, mi_old_ub, mi_new_ub) # mi-mi_new
|
|
137
|
-
self.tik_instance.h_exp(mi_old_ub, mi_old_ub) # exp(mi-mi_new)
|
|
138
|
-
|
|
139
|
-
self.tik_instance.h_sub(mij_ub, mij_ub, mi_new_ub) # mij-mi_new
|
|
140
|
-
self.tik_instance.h_exp(mij_ub, mij_ub) # exp(mij-mi_new)
|
|
141
|
-
|
|
142
|
-
with self.tik_instance.new_stmt_scope(disable_sync=False):
|
|
143
|
-
mul_li_ub = self.tik_instance.Tensor(dtype, (vec_len_aligned,), scope=UB, name="mul_li_ub")
|
|
144
|
-
mul_lij_ub = self.tik_instance.Tensor(dtype, (vec_len_aligned,), scope=UB, name="mul_lij_ub")
|
|
145
|
-
if self.high_precision:
|
|
146
|
-
self.tik_instance.h_cast(mul_li_ub, mi_old_ub, "none")
|
|
147
|
-
self.tik_instance.h_cast(mul_lij_ub, mij_ub, "none")
|
|
148
|
-
self.tik_instance.h_mul(mul_li_ub, mul_li_ub, li_old_ub)
|
|
149
|
-
self.tik_instance.h_mul(mul_lij_ub, mul_lij_ub, lij_ub)
|
|
150
|
-
else:
|
|
151
|
-
self.tik_instance.h_mul(mul_li_ub, mi_old_ub, li_old_ub)
|
|
152
|
-
self.tik_instance.h_mul(mul_lij_ub, mij_ub, lij_ub)
|
|
153
|
-
self.tik_instance.h_add(li_new_ub, mul_li_ub, mul_lij_ub)
|
|
154
|
-
return mi_new_ub, li_new_ub
|
|
155
|
-
|
|
156
|
-
def update_o_m_l_fp32(self,
|
|
157
|
-
Pij_ub_fp32,
|
|
158
|
-
Vj_l1_K1NK0_ed,
|
|
159
|
-
Pij_ub,
|
|
160
|
-
mij_ub,
|
|
161
|
-
lij_ub,
|
|
162
|
-
batch_start,
|
|
163
|
-
batch_idx,
|
|
164
|
-
kv_blk_idx,
|
|
165
|
-
kv_blk_height,
|
|
166
|
-
q_blk_idx,
|
|
167
|
-
block_h):
|
|
168
|
-
""" load o m l from gm and update them in ub, then write them back to gm
|
|
169
|
-
:param Pij_Vj_ub: input tensor with shape of (q_blk_h_aligned, self.d)
|
|
170
|
-
:param mij_ub: input tensor with shape of (Br)
|
|
171
|
-
:param lij_ub: input tensor with shape of (Br)
|
|
172
|
-
:param batch_start:
|
|
173
|
-
:param batch_idx:
|
|
174
|
-
:param kv_blk_idx:
|
|
175
|
-
:param q_blk_idx:
|
|
176
|
-
:param block_h:
|
|
177
|
-
:return: None
|
|
178
|
-
"""
|
|
179
|
-
vec_gm_offset = self.get_l_m_gm_offset(batch_start, batch_idx, self.Nq, self.Br, q_blk_idx)
|
|
180
|
-
o_gm_offset = self.get_gm_offset(batch_start, batch_idx, self.Nq, self.d, self.Br, q_blk_idx)
|
|
181
|
-
block_h_aligned = self.tik_ops_utils.up_align_to_K0(block_h)
|
|
182
|
-
block_k_aligned_aligned = self.tik_ops_utils.up_align_to_K0(kv_blk_height)
|
|
183
|
-
n1 = block_k_aligned_aligned // self.N0
|
|
184
|
-
with self.tik_instance.if_scope(tik.any(kv_blk_idx == 0, kv_blk_idx + self.prev_block_num == q_blk_idx)):
|
|
185
|
-
self.tik_ops_utils.move_vector_from_ub_to_gm(self.l_gm, lij_ub, vec_gm_offset, block_h)
|
|
186
|
-
self.tik_ops_utils.move_vector_from_ub_to_gm(self.m_gm, mij_ub, vec_gm_offset, block_h)
|
|
187
|
-
li_new_rec_ub = self.tik_ops_utils.calc_vec_rec(lij_ub, block_h)
|
|
188
|
-
vec_ub = self.tik_instance.Tensor(FP32, (block_h, self.N0), name="vec_ub", scope=UB)
|
|
189
|
-
for i in range(block_h):
|
|
190
|
-
src_scalar = self.tik_instance.Scalar(init_value=li_new_rec_ub[i], dtype=FP32)
|
|
191
|
-
self.tik_instance.h_duplicate(vec_ub[i, :], src_scalar)
|
|
192
|
-
vec_ub = vec_ub.reshape((1, block_h, self.N0))
|
|
193
|
-
with self.tik_instance.for_range(0, n1) as idx:
|
|
194
|
-
self.tik_instance.h_mul(Pij_ub_fp32[idx, :, :],
|
|
195
|
-
Pij_ub_fp32[idx, :, :],
|
|
196
|
-
vec_ub)
|
|
197
|
-
self.tik_instance.h_cast(Pij_ub, Pij_ub_fp32, "none")
|
|
198
|
-
Pij_l1_K1MK0_ed = self.tik_instance.Tensor(
|
|
199
|
-
FP16, (block_k_aligned_aligned // 16, block_h_aligned, 16), name="Pij_l1_K1MK0_ed", scope=L1
|
|
200
|
-
)
|
|
201
|
-
self.cont_data_mv_1_bust(dst=Pij_l1_K1MK0_ed, src=Pij_ub,
|
|
202
|
-
burst=block_k_aligned_aligned * block_h_aligned // 16)
|
|
203
|
-
Pij_Vj_matmul_res_ub = self.tik_ops_utils.matmul_compute(Pij_l1_K1MK0_ed, Vj_l1_K1NK0_ed, block_h,
|
|
204
|
-
kv_blk_height, self.actual_d, N1MN0_to_MN=False,
|
|
205
|
-
precision_type=self.precision_type) # Pij*Vj
|
|
206
|
-
self.tik_instance.data_move(dst=self.O_gm_workspace[o_gm_offset], src=Pij_Vj_matmul_res_ub, sid=0,
|
|
207
|
-
nburst=self.N1, burst=block_h * self.N0 // 8,
|
|
208
|
-
src_stride=0, dst_stride=(self.Nq - block_h_aligned) * self.N0 // 8)
|
|
209
|
-
with self.tik_instance.else_scope():
|
|
210
|
-
mi_ub = self.tik_instance.Tensor(FP16, (block_h_aligned,), name="mi_old_ub", scope=UB)
|
|
211
|
-
li_ub = self.tik_instance.Tensor(FP32, (block_h_aligned,), name="li_ub", scope=UB)
|
|
212
|
-
self.tik_ops_utils.move_vector_from_gm_to_ub(mi_ub, self.m_gm, vec_gm_offset, block_h)
|
|
213
|
-
self.tik_ops_utils.move_vector_from_gm_to_ub(li_ub, self.l_gm, vec_gm_offset, block_h)
|
|
214
|
-
mi_new_ub, li_new_ub = self.update_m_l(mi_ub, mij_ub, li_ub, lij_ub, block_h)
|
|
215
|
-
self.tik_ops_utils.move_vector_from_ub_to_gm(self.l_gm, li_new_ub, vec_gm_offset, block_h)
|
|
216
|
-
self.tik_ops_utils.move_vector_from_ub_to_gm(self.m_gm, mi_new_ub, vec_gm_offset, block_h)
|
|
217
|
-
|
|
218
|
-
exp_m_old_fp32 = self.tik_instance.Tensor(FP32, (block_h_aligned,), scope=UB, name="exp_m_old_fp32")
|
|
219
|
-
exp_m_cur_fp32 = self.tik_instance.Tensor(FP32, (block_h_aligned,), scope=UB, name="exp_m_cur_fp32")
|
|
220
|
-
self.tik_instance.h_cast(exp_m_old_fp32, mi_ub, "none")
|
|
221
|
-
self.tik_instance.h_cast(exp_m_cur_fp32, mij_ub, "none")
|
|
222
|
-
|
|
223
|
-
li_new_rec_ub = self.tik_ops_utils.calc_vec_rec(li_new_ub, block_h)
|
|
224
|
-
self.tik_instance.h_mul(exp_m_cur_fp32, exp_m_cur_fp32, li_new_rec_ub)
|
|
225
|
-
exp_m_cur_fp32_vec_ub = self.tik_instance.Tensor(FP32, (block_h, self.N0), name="exp_m_cur_fp32_vec_ub",
|
|
226
|
-
scope=UB)
|
|
227
|
-
for i in range(block_h):
|
|
228
|
-
src_scalar = self.tik_instance.Scalar(init_value=exp_m_cur_fp32[i], dtype=FP32)
|
|
229
|
-
self.tik_instance.h_duplicate(exp_m_cur_fp32_vec_ub[i, :], src_scalar)
|
|
230
|
-
exp_m_cur_fp32_vec_ub = exp_m_cur_fp32_vec_ub.reshape((1, block_h, self.N0))
|
|
231
|
-
with self.tik_instance.for_range(0, n1) as idx:
|
|
232
|
-
self.tik_instance.h_mul(Pij_ub_fp32[idx, :, :],
|
|
233
|
-
Pij_ub_fp32[idx, :, :],
|
|
234
|
-
exp_m_cur_fp32_vec_ub)
|
|
235
|
-
self.tik_instance.h_cast(Pij_ub, Pij_ub_fp32, "none")
|
|
236
|
-
Pij_l1_K1MK0_ed = self.tik_instance.Tensor(
|
|
237
|
-
FP16, (block_k_aligned_aligned // 16, block_h_aligned, 16), name="Pij_l1_K1MK0_ed", scope=L1
|
|
238
|
-
)
|
|
239
|
-
self.cont_data_mv_1_bust(dst=Pij_l1_K1MK0_ed, src=Pij_ub,
|
|
240
|
-
burst=block_k_aligned_aligned * block_h_aligned // 16)
|
|
241
|
-
Pij_Vj_matmul_res_ub = self.tik_ops_utils.matmul_compute(Pij_l1_K1MK0_ed, Vj_l1_K1NK0_ed, block_h,
|
|
242
|
-
kv_blk_height, self.actual_d, N1MN0_to_MN=False,
|
|
243
|
-
precision_type=self.precision_type) # Pij*Vj
|
|
244
|
-
n1, m, n0 = Pij_Vj_matmul_res_ub.shape
|
|
245
|
-
Oi_ub = self.tik_instance.Tensor(FP32, (n1, m, n0), name="Oi_ub", scope=UB)
|
|
246
|
-
self.tik_instance.data_move(dst=Oi_ub, src=self.O_gm_workspace[o_gm_offset],
|
|
247
|
-
sid=0, nburst=self.N1, burst=m * self.N0 // 8,
|
|
248
|
-
src_stride=(self.Nq - m) * self.N0 // 8, dst_stride=0)
|
|
249
|
-
|
|
250
|
-
self.tik_instance.h_mul(li_new_rec_ub, li_new_rec_ub, li_ub)
|
|
251
|
-
self.tik_instance.h_mul(li_new_rec_ub, li_new_rec_ub, exp_m_old_fp32)
|
|
252
|
-
li_new_rec_vec_ub = self.tik_instance.Tensor(FP32, (block_h, self.N0), name="li_new_rec_vec_ub",
|
|
253
|
-
scope=UB)
|
|
254
|
-
for i in range(block_h):
|
|
255
|
-
src_scalar = self.tik_instance.Scalar(init_value=li_new_rec_ub[i], dtype=FP32)
|
|
256
|
-
self.tik_instance.h_duplicate(li_new_rec_vec_ub[i, :], src_scalar)
|
|
257
|
-
li_new_rec_vec_ub = li_new_rec_vec_ub.reshape((1, block_h, self.N0))
|
|
258
|
-
with self.tik_instance.for_range(0, n1) as idx:
|
|
259
|
-
self.tik_instance.h_mul(Oi_ub[idx, :, :],
|
|
260
|
-
Oi_ub[idx, :, :],
|
|
261
|
-
li_new_rec_vec_ub)
|
|
262
|
-
self.tik_instance.h_add(Oi_ub, Oi_ub, Pij_Vj_matmul_res_ub)
|
|
263
|
-
self.tik_instance.data_move(dst=self.O_gm_workspace[o_gm_offset], src=Oi_ub, sid=0,
|
|
264
|
-
nburst=self.N1, burst=block_h * self.N0 // 8,
|
|
265
|
-
src_stride=0, dst_stride=(self.Nq - block_h_aligned) * self.N0 // 8)
|
|
266
|
-
|
|
267
|
-
def exp_Pij_Vj(self, exp_mij_sub_mi_new, Pij_Vj_ub, block_h_aligned):
|
|
268
|
-
"""Refer to Algorithm 2 line15
|
|
269
|
-
exp(mij - mi_new) * Pij * Vj
|
|
270
|
-
"""
|
|
271
|
-
with self.tik_instance.new_stmt_scope(disable_sync=False):
|
|
272
|
-
broadcast_exp_mij_sub_mi_new = self.tik_ops_utils.broadcast(exp_mij_sub_mi_new, (block_h_aligned, self.d))
|
|
273
|
-
self.tik_instance.h_mul(Pij_Vj_ub, Pij_Vj_ub, broadcast_exp_mij_sub_mi_new)
|
|
274
|
-
return Pij_Vj_ub
|
|
275
|
-
|
|
276
|
-
def update_o_m_l(self,
|
|
277
|
-
Pij_l1_K1MK0_ed,
|
|
278
|
-
Vj_l1_K1NK0_ed,
|
|
279
|
-
mij_ub,
|
|
280
|
-
lij_ub,
|
|
281
|
-
batch_start,
|
|
282
|
-
batch_idx,
|
|
283
|
-
kv_blk_idx,
|
|
284
|
-
kv_blk_height,
|
|
285
|
-
q_blk_idx,
|
|
286
|
-
block_h):
|
|
287
|
-
"""Refer to Algorithm 2 line13 and line15 in FlashAttention"""
|
|
288
|
-
vec_gm_offset = self.get_l_m_gm_offset(batch_start, batch_idx, self.Nq, self.Br, q_blk_idx)
|
|
289
|
-
o_gm_offset = self.get_gm_offset(
|
|
290
|
-
batch_start, batch_idx, self.Nq, self.d, self.Br, q_blk_idx
|
|
291
|
-
)
|
|
292
|
-
block_h_aligned = self.tik_ops_utils.up_align_to_K0(block_h)
|
|
293
|
-
|
|
294
|
-
Pij_Vj_matmul_res_ub = self.tik_ops_utils.matmul_compute(Pij_l1_K1MK0_ed, Vj_l1_K1NK0_ed, block_h,
|
|
295
|
-
kv_blk_height, self.actual_d,
|
|
296
|
-
N1MN0_to_MN=False) # Pij*Vj
|
|
297
|
-
n1, m, n0 = Pij_Vj_matmul_res_ub.shape
|
|
298
|
-
with self.tik_instance.if_scope(tik.any(kv_blk_idx == 0, kv_blk_idx + self.prev_block_num == q_blk_idx)):
|
|
299
|
-
self.tik_ops_utils.move_vector_from_ub_to_gm(self.l_gm, lij_ub, vec_gm_offset, block_h)
|
|
300
|
-
self.tik_ops_utils.move_vector_from_ub_to_gm(self.m_gm, mij_ub, vec_gm_offset, block_h)
|
|
301
|
-
li_new_rec_ub = self.tik_ops_utils.calc_vec_rec(lij_ub, block_h)
|
|
302
|
-
broadcast_li_new_rec_ub = self.tik_ops_utils.broadcast(li_new_rec_ub, (m, n0))
|
|
303
|
-
broadcast_li_new_rec_ub = broadcast_li_new_rec_ub.reshape((1, m, n0))
|
|
304
|
-
with self.tik_instance.for_range(0, n1) as idx:
|
|
305
|
-
self.tik_instance.h_mul(Pij_Vj_matmul_res_ub[idx, :, :],
|
|
306
|
-
Pij_Vj_matmul_res_ub[idx, :, :],
|
|
307
|
-
broadcast_li_new_rec_ub)
|
|
308
|
-
self.tik_instance.data_move(dst=self.O_gm[o_gm_offset], src=Pij_Vj_matmul_res_ub, sid=0,
|
|
309
|
-
nburst=self.N1, burst=block_h * self.N0 // 16,
|
|
310
|
-
src_stride=0, dst_stride=(self.Nq - block_h_aligned) * self.N0 // 16)
|
|
311
|
-
|
|
312
|
-
with self.tik_instance.else_scope():
|
|
313
|
-
mi_ub = self.tik_instance.Tensor(FP16, (block_h_aligned,), name="mi_old_ub", scope=UB)
|
|
314
|
-
li_ub = self.tik_instance.Tensor(FP16, (block_h_aligned,), name="li_ub", scope=UB)
|
|
315
|
-
self.tik_ops_utils.move_vector_from_gm_to_ub(mi_ub, self.m_gm, vec_gm_offset, block_h)
|
|
316
|
-
self.tik_ops_utils.move_vector_from_gm_to_ub(li_ub, self.l_gm, vec_gm_offset, block_h)
|
|
317
|
-
mi_new_ub, li_new_ub = self.update_m_l(mi_ub, mij_ub, li_ub, lij_ub, block_h)
|
|
318
|
-
self.tik_ops_utils.move_vector_from_ub_to_gm(self.l_gm, li_new_ub, vec_gm_offset, block_h)
|
|
319
|
-
self.tik_ops_utils.move_vector_from_ub_to_gm(self.m_gm, mi_new_ub, vec_gm_offset, block_h)
|
|
320
|
-
exp_mi_sub_mi_new = mi_ub
|
|
321
|
-
exp_mij_sub_mi_new = mij_ub
|
|
322
|
-
|
|
323
|
-
li_new_rec_ub = self.tik_ops_utils.calc_vec_rec(li_new_ub, block_h)
|
|
324
|
-
self.tik_instance.h_mul(li_ub, li_ub, exp_mi_sub_mi_new)
|
|
325
|
-
self.tik_instance.h_mul(li_ub, li_ub, li_new_rec_ub)
|
|
326
|
-
scale1 = li_ub
|
|
327
|
-
self.tik_instance.h_mul(exp_mij_sub_mi_new, exp_mij_sub_mi_new, li_new_rec_ub)
|
|
328
|
-
scale2 = exp_mij_sub_mi_new
|
|
329
|
-
Oi_ub = self.tik_instance.Tensor(FP16, (n1, m, n0), name="Oi_ub", scope=UB)
|
|
330
|
-
self.tik_instance.data_move(dst=Oi_ub, src=self.O_gm[o_gm_offset],
|
|
331
|
-
sid=0, nburst=self.N1, burst=m * self.N0 // 16,
|
|
332
|
-
src_stride=(self.Nq - m) * self.N0 // 16, dst_stride=0)
|
|
333
|
-
broadcast_scale1 = self.tik_ops_utils.broadcast(scale1, (m, n0))
|
|
334
|
-
broadcast_scale1 = broadcast_scale1.reshape((1, m, n0))
|
|
335
|
-
with self.tik_instance.for_range(0, n1) as idx:
|
|
336
|
-
self.tik_instance.h_mul(Oi_ub[idx, :, :], Oi_ub[idx, :, :], broadcast_scale1)
|
|
337
|
-
broadcast_scale2 = self.tik_ops_utils.broadcast(scale2, (m, n0))
|
|
338
|
-
broadcast_scale2 = broadcast_scale2.reshape((1, m, n0))
|
|
339
|
-
with self.tik_instance.for_range(0, n1) as idx:
|
|
340
|
-
self.tik_instance.h_mul(Pij_Vj_matmul_res_ub[idx, :, :],
|
|
341
|
-
Pij_Vj_matmul_res_ub[idx, :, :],
|
|
342
|
-
broadcast_scale2)
|
|
343
|
-
self.tik_instance.h_add(Oi_ub, Oi_ub, Pij_Vj_matmul_res_ub)
|
|
344
|
-
self.tik_instance.data_move(dst=self.O_gm[o_gm_offset], src=Oi_ub, sid=0,
|
|
345
|
-
nburst=self.N1, burst=block_h * self.N0 // 16,
|
|
346
|
-
src_stride=0, dst_stride=(self.Nq - block_h_aligned) * self.N0 // 16)
|
|
347
|
-
|
|
348
|
-
def compute_in_each_kv_block(self, batch_start, batch_idx, kv_blk_idx, kv_blk_height,
|
|
349
|
-
core_idx_to_tr_info, core_idx):
|
|
350
|
-
"""The forward computation in each outer loop"""
|
|
351
|
-
kv_blk_height_aligned = self.tik_ops_utils.up_align_to_K0(kv_blk_height)
|
|
352
|
-
kv_gm_offset = self.get_gm_offset(batch_start, batch_idx, self.N, self.d, self.Bc, kv_blk_idx)
|
|
353
|
-
# load Kj (kv_blk_idx_th block of K_gm)
|
|
354
|
-
KjT_l1_K1MK0_ed = self.tik_instance.Tensor(FP16, (self.d // self.N0, kv_blk_height_aligned, self.N0),
|
|
355
|
-
name="KjT_l1_K1MK0_ed", scope=L1)
|
|
356
|
-
self.tik_instance.data_move(dst=KjT_l1_K1MK0_ed, src=self.K_gm[kv_gm_offset],
|
|
357
|
-
sid=0, nburst=self.N1, burst=kv_blk_height_aligned * self.N0 // 16,
|
|
358
|
-
src_stride=(self.N - kv_blk_height_aligned) * self.N0 // 16, dst_stride=0)
|
|
359
|
-
|
|
360
|
-
# load Vj (kv_blk_idx_th block of V_gm), then reorder for Pij*Vj
|
|
361
|
-
Vj_l1 = self.tik_instance.Tensor(FP16, (kv_blk_height_aligned, self.d), name="Vj_l1", scope=L1)
|
|
362
|
-
with self.tik_instance.new_stmt_scope(disable_sync=False):
|
|
363
|
-
Vj_ub = self.tik_instance.Tensor(FP16, (self.d // self.N0, kv_blk_height_aligned, self.N0),
|
|
364
|
-
name="Vj_ub", scope=UB)
|
|
365
|
-
self.tik_instance.data_move(dst=Vj_ub, src=self.V_gm[kv_gm_offset],
|
|
366
|
-
sid=0, nburst=self.N1, burst=kv_blk_height_aligned * self.N0 // 16,
|
|
367
|
-
src_stride=(self.N - kv_blk_height_aligned) * self.N0 // 16, dst_stride=0)
|
|
368
|
-
# (N1, K, N0) -> (K, N)
|
|
369
|
-
Vj_ub = self.tik_ops_utils.N1MN0_TO_MN(Vj_ub)
|
|
370
|
-
# (K, N) -> (K1, N, K0)
|
|
371
|
-
Vj_l1_K1NK0_ed = self.tik_ops_utils.KN_TO_K1NK0(Vj_ub, workspace_tensor=Vj_l1)
|
|
372
|
-
|
|
373
|
-
tr_start_s = self.tik_instance.Scalar("int32", name="tr_start_s")
|
|
374
|
-
tr_end_s = self.tik_instance.Scalar("int32", name="tr_end_s")
|
|
375
|
-
tr_start_s.set_as(core_idx_to_tr_info[core_idx, batch_start + batch_idx, 0])
|
|
376
|
-
tr_end_s.set_as(core_idx_to_tr_info[core_idx, batch_start + batch_idx, 1])
|
|
377
|
-
with self.tik_instance.for_range(tr_start_s, tr_end_s, name="q_blk_idx") as q_blk_idx:
|
|
378
|
-
# 根据atten_mask倒三角特性,过滤无效计算
|
|
379
|
-
with self.tik_instance.if_scope(tik.all(kv_blk_idx - self.next_block_num <= q_blk_idx,
|
|
380
|
-
q_blk_idx <= kv_blk_idx + self.prev_block_num)):
|
|
381
|
-
with self.tik_instance.if_scope(q_blk_idx != self.Tr - 1):
|
|
382
|
-
self.compute_in_each_q_block(KjT_l1_K1MK0_ed, Vj_l1_K1NK0_ed, batch_idx,
|
|
383
|
-
batch_start,
|
|
384
|
-
kv_blk_height, self.Br, q_blk_idx, kv_blk_idx)
|
|
385
|
-
with self.tik_instance.else_scope():
|
|
386
|
-
self.compute_in_each_q_block(KjT_l1_K1MK0_ed, Vj_l1_K1NK0_ed, batch_idx,
|
|
387
|
-
batch_start,
|
|
388
|
-
kv_blk_height, self.last_Br, q_blk_idx, kv_blk_idx)
|
|
389
|
-
|
|
390
|
-
def compute_in_each_q_block(self, KjT_l1_K1MK0_ed, Vj_l1_K1NK0_ed, batch_idx, batch_start,
|
|
391
|
-
kv_blk_height, q_blk_height, q_blk_idx, kv_blk_idx):
|
|
392
|
-
"""The forward computation in each inner loop"""
|
|
393
|
-
kv_blk_h_aligned = self.tik_ops_utils.up_align_to_K0(kv_blk_height)
|
|
394
|
-
q_blk_h_aligned = self.tik_ops_utils.up_align_to_K0(q_blk_height)
|
|
395
|
-
# load Qi (q_blk_idx_th block of Q_gm), then reorder it fo Qi*KjT
|
|
396
|
-
q_gm_offset = self.get_gm_offset(batch_start, batch_idx, self.Nq, self.d, self.Br, q_blk_idx)
|
|
397
|
-
Qi_l1_K1MK0_ed = self.tik_instance.Tensor(FP16, (self.d // self.N0, q_blk_h_aligned, self.N0),
|
|
398
|
-
scope=L1, name="Qi_l1_K1MK0_ed")
|
|
399
|
-
self.tik_instance.data_move(dst=Qi_l1_K1MK0_ed, src=self.Q_gm[q_gm_offset],
|
|
400
|
-
sid=0, nburst=self.N1, burst=q_blk_h_aligned * self.N0 // 16,
|
|
401
|
-
src_stride=(self.Nq - q_blk_h_aligned) * self.N0 // 16, dst_stride=0)
|
|
402
|
-
|
|
403
|
-
lij_ub = self.tik_instance.Tensor(self.precision_type, (q_blk_h_aligned,), scope=UB, name="lij_ub")
|
|
404
|
-
mij_ub = self.tik_instance.Tensor(FP16, (q_blk_h_aligned,), scope=UB, name="mij_ub")
|
|
405
|
-
|
|
406
|
-
Sij_ub_N1MN0 = self.tik_ops_utils.matmul_compute(Qi_l1_K1MK0_ed, KjT_l1_K1MK0_ed, m=q_blk_height,
|
|
407
|
-
k=self.actual_d, n=kv_blk_height,
|
|
408
|
-
N1MN0_to_MN=False) # Qi*KjT
|
|
409
|
-
if self.has_alibi_mask:
|
|
410
|
-
alibi_mask_gm_offset = self.get_alibi_gm_offset(batch_start, batch_idx, self.N, self.Bc, kv_blk_idx)
|
|
411
|
-
self.do_alibi_mask(Sij_ub_N1MN0, alibi_mask_gm_offset, q_blk_h_aligned, kv_blk_h_aligned)
|
|
412
|
-
|
|
413
|
-
# att_mask
|
|
414
|
-
if self.has_attn_mask:
|
|
415
|
-
attn_mask_gm_offset = self.get_attn_mask_gm_offset(batch_start, batch_idx, self.Nq, self.N,
|
|
416
|
-
self.Br, q_blk_idx, self.Bc, kv_blk_idx)
|
|
417
|
-
self.do_att_mask(Sij_ub_N1MN0, attn_mask_gm_offset, q_blk_height, kv_blk_height,
|
|
418
|
-
q_blk_h_aligned, kv_blk_h_aligned)
|
|
419
|
-
|
|
420
|
-
Pij_N1MN0, mij_ub, lij_ub = self.softmax_compute(
|
|
421
|
-
Sij_ub_N1MN0, mij_ub, lij_ub, q_blk_height, kv_blk_height
|
|
422
|
-
) # self.high_precision=True, Pij_ub return type fp32
|
|
423
|
-
# dropout_mask
|
|
424
|
-
if self.has_drop_mask:
|
|
425
|
-
dropout_mask_gm_offset = self.get_drop_mask_gm_offset(batch_start, batch_idx, self.Nq,
|
|
426
|
-
self.N, self.Br, q_blk_idx, self.Bc, kv_blk_idx)
|
|
427
|
-
self.do_dropout_mask(Pij_N1MN0, dropout_mask_gm_offset, kv_blk_h_aligned, kv_blk_height,
|
|
428
|
-
q_blk_h_aligned, q_blk_height, precision_type=self.precision_type)
|
|
429
|
-
if not self.high_precision:
|
|
430
|
-
Pij_l1_K1MK0_ed = self.tik_instance.Tensor(FP16,
|
|
431
|
-
(kv_blk_h_aligned // self.N0, q_blk_h_aligned, self.N0),
|
|
432
|
-
name="Pij_l1_K1MK0_ed", scope=L1)
|
|
433
|
-
self.cont_data_mv_1_bust(dst=Pij_l1_K1MK0_ed, src=Pij_N1MN0,
|
|
434
|
-
burst=kv_blk_h_aligned * q_blk_h_aligned // 16)
|
|
435
|
-
Pij_N1MN0 = Pij_l1_K1MK0_ed
|
|
436
|
-
if self.high_precision:
|
|
437
|
-
self.update_o_m_l_fp32(
|
|
438
|
-
Pij_N1MN0,
|
|
439
|
-
Vj_l1_K1NK0_ed,
|
|
440
|
-
Sij_ub_N1MN0,
|
|
441
|
-
mij_ub,
|
|
442
|
-
lij_ub,
|
|
443
|
-
batch_start,
|
|
444
|
-
batch_idx,
|
|
445
|
-
kv_blk_idx,
|
|
446
|
-
kv_blk_height,
|
|
447
|
-
q_blk_idx,
|
|
448
|
-
q_blk_height
|
|
449
|
-
)
|
|
450
|
-
else:
|
|
451
|
-
self.update_o_m_l(
|
|
452
|
-
Pij_N1MN0,
|
|
453
|
-
Vj_l1_K1NK0_ed,
|
|
454
|
-
mij_ub,
|
|
455
|
-
lij_ub,
|
|
456
|
-
batch_start,
|
|
457
|
-
batch_idx,
|
|
458
|
-
kv_blk_idx,
|
|
459
|
-
kv_blk_height,
|
|
460
|
-
q_blk_idx,
|
|
461
|
-
q_blk_height
|
|
462
|
-
)
|
|
463
|
-
|
|
464
|
-
def compute_one_core(self, batch_start_sc, batch_num_sc, core_idx_to_tr_info, core_idx):
|
|
465
|
-
"""The computation of FlashAttention forward on each core"""
|
|
466
|
-
with self.tik_instance.for_range(0, batch_num_sc, name="batch_index") as batch_idx:
|
|
467
|
-
with self.tik_instance.for_range(0, self.Tc, name="kv_blk_idx") as kv_blk_idx:
|
|
468
|
-
with self.tik_instance.if_scope(kv_blk_idx != self.Tc - 1):
|
|
469
|
-
self.compute_in_each_kv_block(batch_start_sc, batch_idx, kv_blk_idx, self.Bc,
|
|
470
|
-
core_idx_to_tr_info, core_idx)
|
|
471
|
-
with self.tik_instance.else_scope():
|
|
472
|
-
self.compute_in_each_kv_block(batch_start_sc, batch_idx, kv_blk_idx, self.last_Bc,
|
|
473
|
-
core_idx_to_tr_info, core_idx)
|
|
474
|
-
if self.high_precision:
|
|
475
|
-
block_h = 128
|
|
476
|
-
gm_offset = (batch_start_sc + batch_idx) * (self.Nq * self.d)
|
|
477
|
-
temp_ub = self.tik_instance.Tensor(FP32, (block_h, self.d), name="temp_ub", scope=UB)
|
|
478
|
-
temp_ub_fp16 = self.tik_instance.Tensor(FP16, (block_h, self.d), name="temp_ub_fp16", scope=UB)
|
|
479
|
-
try:
|
|
480
|
-
dtype32_size = DTYPE_SIZE[FP32]
|
|
481
|
-
except KeyError:
|
|
482
|
-
raise ValueError("The argument 'FP32' is not valid.")
|
|
483
|
-
try:
|
|
484
|
-
dtype16_size = DTYPE_SIZE[FP16]
|
|
485
|
-
except KeyError:
|
|
486
|
-
raise ValueError("The argument 'FP16' is not valid.")
|
|
487
|
-
if self.Nq // block_h // 2 > 0:
|
|
488
|
-
with self.tik_instance.for_range(0, self.Nq // block_h // 2) as i:
|
|
489
|
-
with self.tik_instance.for_range(0, 2, thread_num=2) as t_idx:
|
|
490
|
-
index = i * 2 + t_idx
|
|
491
|
-
gm_offset += index * (block_h * self.d)
|
|
492
|
-
self.cont_data_mv_1_bust(dst=temp_ub, src=self.O_gm_workspace[gm_offset],
|
|
493
|
-
burst=block_h * self.d * dtype32_size // 32)
|
|
494
|
-
self.tik_instance.h_cast(temp_ub_fp16, temp_ub, "none")
|
|
495
|
-
self.cont_data_mv_1_bust(dst=self.O_gm[gm_offset], src=temp_ub_fp16,
|
|
496
|
-
burst=block_h * self.d * dtype16_size // 32)
|
|
497
|
-
if self.Nq % (block_h * 2) > 0:
|
|
498
|
-
gm_offset = (batch_start_sc + batch_idx) * (self.Nq * self.d) + \
|
|
499
|
-
(self.Nq // (block_h * 2) * 2) * (block_h * self.d)
|
|
500
|
-
last_block_h = self.Nq % (block_h * 2)
|
|
501
|
-
self.cont_data_mv_1_bust(dst=temp_ub, src=self.O_gm_workspace[gm_offset],
|
|
502
|
-
burst=last_block_h * self.d * dtype32_size // 32)
|
|
503
|
-
self.tik_instance.h_cast(temp_ub_fp16, temp_ub, "none")
|
|
504
|
-
self.cont_data_mv_1_bust(dst=self.O_gm[gm_offset], src=temp_ub_fp16,
|
|
505
|
-
burst=last_block_h * self.d * dtype16_size // 32)
|
|
506
|
-
|
|
507
|
-
def collect_inputs(self):
|
|
508
|
-
"""collect all input gm tensors into input_gm_list,
|
|
509
|
-
the input list should keep order with the para order in Primitive and init
|
|
510
|
-
"""
|
|
511
|
-
input_gm_list = [self.Q_gm, self.K_gm, self.V_gm]
|
|
512
|
-
if self.has_attn_mask:
|
|
513
|
-
input_gm_list.append(self.att_mask_gm)
|
|
514
|
-
if self.has_drop_mask:
|
|
515
|
-
input_gm_list.append(self.drop_mask_gm)
|
|
516
|
-
if self.has_alibi_mask:
|
|
517
|
-
input_gm_list.append(self.alibi_mask_gm)
|
|
518
|
-
|
|
519
|
-
return input_gm_list
|
|
520
|
-
|
|
521
|
-
def collect_outputs(self):
|
|
522
|
-
"""collect all output gm tensors into output_gm_list,
|
|
523
|
-
the output list should keep order with the para order in Primitive and init
|
|
524
|
-
"""
|
|
525
|
-
output_gm_list = [self.O_gm, self.l_gm, self.m_gm]
|
|
526
|
-
return output_gm_list
|
|
527
|
-
|
|
528
|
-
|
|
529
|
-
def flash_attention(query, key, value, attn_mask, dropout_mask, alibi_mask, output, rowsum, rowmax,
|
|
530
|
-
prev_block_num=65536, next_block_num=65536, high_precision=False, tiling_stgy_name='sparse',
|
|
531
|
-
kernel_name="flash_attention", disable_debug=True):
|
|
532
|
-
"""
|
|
533
|
-
algorithm: flash_attention_backward
|
|
534
|
-
|
|
535
|
-
Parameters
|
|
536
|
-
----------
|
|
537
|
-
query : dict. shape and dtype of input, only support float16
|
|
538
|
-
key : dict. shape and dtype of input, only support float16
|
|
539
|
-
value: dict. shape and dtype of input, only support float16
|
|
540
|
-
attn_mask: dict. shape and dtype of input, only support float16
|
|
541
|
-
dropout_mask: dict. shape and dtype of input, only support float16
|
|
542
|
-
dropout_mask: dict. shape and dtype of input, only support float16
|
|
543
|
-
alibi_mask: dict. shape and dtype of input, only support float16
|
|
544
|
-
output: dict. shape and dtype of output, only support float16
|
|
545
|
-
rowsum: dict. shape and dtype of output, only support float16
|
|
546
|
-
rowmax: dict. shape and dtype of output, only support float16
|
|
547
|
-
prev_block_num: int. an attribute used to define sparse attention
|
|
548
|
-
next_block_num: int. an attribute used to define sparse attention
|
|
549
|
-
tiling_stgy_name: str. an attribute used to choose the tiling strategy
|
|
550
|
-
kernel_name: str. cce kernel name, default value is real_div
|
|
551
|
-
disable_debug: bool. whether disable debug
|
|
552
|
-
|
|
553
|
-
Returns
|
|
554
|
-
-------
|
|
555
|
-
tik_instance
|
|
556
|
-
"""
|
|
557
|
-
fa = FlashAttentionFwd(query=query, key=key, value=value, attn_mask=attn_mask,
|
|
558
|
-
dropout_mask=dropout_mask, alibi_mask=alibi_mask, kernel_name=kernel_name,
|
|
559
|
-
tiling_stgy=TilingStrategy.from_strategy_name(tiling_stgy_name),
|
|
560
|
-
prev_block_num=prev_block_num, next_block_num=next_block_num,
|
|
561
|
-
high_precision=high_precision, disable_debug=disable_debug)
|
|
562
|
-
fa.compute_process()
|
|
563
|
-
return fa.tik_instance
|