mindspore 2.2.10__cp37-none-any.whl → 2.2.14__cp37-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of mindspore might be problematic. Click here for more details.
- mindspore/.commit_id +1 -1
- mindspore/__init__.py +2 -1
- mindspore/_akg/akg/composite/build_module.py +95 -5
- mindspore/_akg/akg/topi/cpp/impl.py +1 -1
- mindspore/_akg/akg/tvm/_ffi/base.py +1 -1
- mindspore/_akg/akg/utils/composite_op_helper.py +7 -2
- mindspore/_akg/akg/utils/dump_ascend_meta.py +22 -3
- mindspore/_akg/akg/utils/util.py +18 -1
- mindspore/_c_dataengine.cpython-37m-aarch64-linux-gnu.so +0 -0
- mindspore/_c_expression.cpython-37m-aarch64-linux-gnu.so +0 -0
- mindspore/_c_mindrecord.cpython-37m-aarch64-linux-gnu.so +0 -0
- mindspore/_extends/parse/__init__.py +3 -2
- mindspore/_extends/parse/parser.py +6 -1
- mindspore/_extends/parse/standard_method.py +12 -2
- mindspore/_mindspore_offline_debug.cpython-37m-aarch64-linux-gnu.so +0 -0
- mindspore/bin/cache_admin +0 -0
- mindspore/bin/cache_server +0 -0
- mindspore/common/_utils.py +16 -0
- mindspore/common/tensor.py +0 -2
- mindspore/communication/management.py +3 -0
- mindspore/context.py +34 -4
- mindspore/dataset/engine/cache_client.py +8 -5
- mindspore/dataset/engine/datasets.py +23 -0
- mindspore/dataset/engine/validators.py +1 -1
- mindspore/dataset/vision/py_transforms_util.py +2 -2
- mindspore/experimental/optim/lr_scheduler.py +5 -6
- mindspore/lib/libdnnl.so.2 +0 -0
- mindspore/lib/libmindspore.so +0 -0
- mindspore/lib/libmindspore_backend.so +0 -0
- mindspore/lib/libmindspore_common.so +0 -0
- mindspore/lib/libmindspore_core.so +0 -0
- mindspore/lib/libmindspore_glog.so.0 +0 -0
- mindspore/lib/libmindspore_gpr.so.15 +0 -0
- mindspore/lib/libmindspore_grpc++.so.1 +0 -0
- mindspore/lib/libmindspore_grpc.so.15 +0 -0
- mindspore/lib/libmindspore_shared_lib.so +0 -0
- mindspore/lib/libopencv_core.so.4.5 +0 -0
- mindspore/lib/libopencv_imgcodecs.so.4.5 +0 -0
- mindspore/lib/libopencv_imgproc.so.4.5 +0 -0
- mindspore/lib/plugin/ascend/custom_aicpu_ops/op_impl/cpu/aicpu_kernel/impl/libcust_aicpu_kernels.so +0 -0
- mindspore/lib/plugin/ascend/custom_aicpu_ops/op_impl/cpu/aicpu_kernel/impl/libcust_cpu_kernels.so +0 -0
- mindspore/lib/plugin/ascend/custom_aicpu_ops/op_impl/cpu/config/cust_aicpu_kernel.json +118 -0
- mindspore/lib/plugin/ascend/custom_aicpu_ops/op_proto/libcust_op_proto.so +0 -0
- mindspore/lib/plugin/ascend/libakg.so +0 -0
- mindspore/lib/plugin/ascend/libascend_collective.so +0 -0
- mindspore/lib/plugin/ascend/libdvpp_utils.so +0 -0
- mindspore/lib/plugin/ascend/libmindspore_aicpu_kernels.so +0 -0
- mindspore/lib/plugin/ascend/libmindspore_cpu_kernels.so +0 -0
- mindspore/lib/plugin/cpu/libakg.so +0 -0
- mindspore/lib/plugin/libmindspore_ascend.so.1 +0 -0
- mindspore/mindrecord/tools/cifar100_to_mr.py +49 -57
- mindspore/mindrecord/tools/cifar10_to_mr.py +46 -55
- mindspore/mindrecord/tools/csv_to_mr.py +3 -8
- mindspore/mindrecord/tools/mnist_to_mr.py +4 -9
- mindspore/mindrecord/tools/tfrecord_to_mr.py +1 -4
- mindspore/nn/layer/activation.py +1 -1
- mindspore/nn/layer/embedding.py +2 -2
- mindspore/nn/layer/flash_attention.py +48 -135
- mindspore/nn/loss/loss.py +1 -1
- mindspore/nn/optim/ada_grad.py +2 -2
- mindspore/nn/optim/sgd.py +3 -2
- mindspore/nn/wrap/__init__.py +4 -2
- mindspore/nn/wrap/cell_wrapper.py +6 -3
- mindspore/numpy/math_ops.py +1 -1
- mindspore/ops/__init__.py +3 -0
- mindspore/ops/_grad_experimental/grad_array_ops.py +0 -31
- mindspore/ops/_grad_experimental/grad_comm_ops.py +4 -2
- mindspore/ops/_grad_experimental/grad_inner_ops.py +8 -0
- mindspore/ops/_grad_experimental/grad_math_ops.py +37 -17
- mindspore/ops/_op_impl/aicpu/__init__.py +1 -0
- mindspore/ops/_op_impl/aicpu/generate_eod_mask.py +38 -0
- mindspore/ops/_op_impl/aicpu/linear_sum_assignment.py +21 -2
- mindspore/ops/function/array_func.py +6 -5
- mindspore/ops/function/debug_func.py +1 -1
- mindspore/ops/function/linalg_func.py +21 -11
- mindspore/ops/function/math_func.py +3 -0
- mindspore/ops/function/nn_func.py +13 -11
- mindspore/ops/function/parameter_func.py +2 -0
- mindspore/ops/function/sparse_unary_func.py +2 -2
- mindspore/ops/function/vmap_func.py +1 -0
- mindspore/ops/operations/__init__.py +5 -2
- mindspore/ops/operations/_embedding_cache_ops.py +1 -1
- mindspore/ops/operations/_grad_ops.py +3 -4
- mindspore/ops/operations/_inner_ops.py +56 -1
- mindspore/ops/operations/_quant_ops.py +4 -4
- mindspore/ops/operations/_rl_inner_ops.py +1 -1
- mindspore/ops/operations/array_ops.py +15 -4
- mindspore/ops/operations/custom_ops.py +1 -1
- mindspore/ops/operations/debug_ops.py +1 -1
- mindspore/ops/operations/image_ops.py +3 -3
- mindspore/ops/operations/inner_ops.py +49 -0
- mindspore/ops/operations/math_ops.py +65 -3
- mindspore/ops/operations/nn_ops.py +95 -28
- mindspore/ops/operations/random_ops.py +2 -0
- mindspore/ops/operations/sparse_ops.py +4 -4
- mindspore/ops/silent_check.py +162 -0
- mindspore/parallel/__init__.py +3 -2
- mindspore/parallel/_auto_parallel_context.py +82 -3
- mindspore/parallel/_parallel_serialization.py +34 -2
- mindspore/parallel/_tensor.py +3 -1
- mindspore/parallel/_transformer/transformer.py +8 -8
- mindspore/parallel/checkpoint_transform.py +191 -45
- mindspore/profiler/parser/ascend_cluster_generator.py +111 -0
- mindspore/profiler/parser/ascend_communicate_generator.py +315 -0
- mindspore/profiler/parser/ascend_flops_generator.py +8 -2
- mindspore/profiler/parser/ascend_fpbp_generator.py +8 -2
- mindspore/profiler/parser/ascend_hccl_generator.py +2 -2
- mindspore/profiler/parser/ascend_msprof_exporter.py +30 -6
- mindspore/profiler/parser/ascend_msprof_generator.py +16 -5
- mindspore/profiler/parser/ascend_op_generator.py +15 -7
- mindspore/profiler/parser/ascend_timeline_generator.py +5 -2
- mindspore/profiler/parser/base_timeline_generator.py +11 -3
- mindspore/profiler/parser/cpu_gpu_timeline_generator.py +2 -1
- mindspore/profiler/parser/framework_parser.py +8 -2
- mindspore/profiler/parser/memory_usage_parser.py +8 -2
- mindspore/profiler/parser/minddata_analyzer.py +8 -2
- mindspore/profiler/parser/minddata_parser.py +1 -1
- mindspore/profiler/parser/msadvisor_analyzer.py +4 -2
- mindspore/profiler/parser/msadvisor_parser.py +9 -3
- mindspore/profiler/profiling.py +97 -25
- mindspore/rewrite/api/node.py +1 -1
- mindspore/rewrite/api/symbol_tree.py +2 -2
- mindspore/rewrite/parsers/for_parser.py +6 -6
- mindspore/rewrite/parsers/module_parser.py +4 -4
- mindspore/scipy/ops.py +55 -5
- mindspore/scipy/optimize/__init__.py +3 -2
- mindspore/scipy/optimize/linear_sum_assignment.py +38 -33
- mindspore/train/callback/_checkpoint.py +8 -8
- mindspore/train/callback/_landscape.py +2 -3
- mindspore/train/callback/_summary_collector.py +6 -7
- mindspore/train/dataset_helper.py +6 -0
- mindspore/train/model.py +17 -5
- mindspore/train/serialization.py +6 -1
- mindspore/train/summary/_writer_pool.py +1 -1
- mindspore/train/summary/summary_record.py +5 -6
- mindspore/version.py +1 -1
- {mindspore-2.2.10.dist-info → mindspore-2.2.14.dist-info}/METADATA +3 -2
- {mindspore-2.2.10.dist-info → mindspore-2.2.14.dist-info}/RECORD +141 -149
- mindspore/lib/plugin/libmindspore_ascend.so.2 +0 -0
- mindspore/ops/_op_impl/_custom_op/flash_attention/__init__.py +0 -0
- mindspore/ops/_op_impl/_custom_op/flash_attention/attention.py +0 -406
- mindspore/ops/_op_impl/_custom_op/flash_attention/constants.py +0 -41
- mindspore/ops/_op_impl/_custom_op/flash_attention/flash_attention_bwd.py +0 -467
- mindspore/ops/_op_impl/_custom_op/flash_attention/flash_attention_fwd.py +0 -563
- mindspore/ops/_op_impl/_custom_op/flash_attention/flash_attention_impl.py +0 -193
- mindspore/ops/_op_impl/_custom_op/flash_attention/tik_ops_utils.py +0 -435
- mindspore/ops/_op_impl/_custom_op/flash_attention/tiling_strategy/__init__.py +0 -0
- mindspore/ops/_op_impl/_custom_op/flash_attention/tiling_strategy/sparse_tiling.py +0 -45
- mindspore/ops/_op_impl/_custom_op/flash_attention/tiling_strategy/strategy.py +0 -67
- mindspore/ops/_op_impl/_custom_op/flash_attention/tiling_strategy/wukong_tiling.py +0 -62
- {mindspore-2.2.10.dist-info → mindspore-2.2.14.dist-info}/WHEEL +0 -0
- {mindspore-2.2.10.dist-info → mindspore-2.2.14.dist-info}/entry_points.txt +0 -0
- {mindspore-2.2.10.dist-info → mindspore-2.2.14.dist-info}/top_level.txt +0 -0
|
@@ -21,9 +21,7 @@ import mindspore.common.dtype as mstype
|
|
|
21
21
|
from mindspore.common.tensor import Tensor
|
|
22
22
|
from mindspore import ops
|
|
23
23
|
from mindspore.nn.cell import Cell
|
|
24
|
-
from mindspore.ops._op_impl._custom_op.flash_attention.flash_attention_impl import get_flash_attention
|
|
25
24
|
from mindspore.ops.operations.nn_ops import FlashAttentionScore
|
|
26
|
-
from mindspore._c_expression import MSContext
|
|
27
25
|
|
|
28
26
|
__all__ = ['FlashAttention']
|
|
29
27
|
|
|
@@ -46,18 +44,17 @@ class FlashAttention(Cell):
|
|
|
46
44
|
Default 65536.
|
|
47
45
|
next_block_num(int): A integer to define the number of blocks to look behind for local block sparse attention.
|
|
48
46
|
Default 65536.
|
|
49
|
-
tiling_stgy_name(str): A str to define tiling strategy of flash attention.
|
|
50
47
|
dp(int): data parallel.
|
|
51
48
|
Default 1.
|
|
52
49
|
mp(int): model parallel.
|
|
53
50
|
Default 1.
|
|
54
|
-
high_precision(bool): This mode has higher precision but some performance loss.
|
|
51
|
+
high_precision(bool): This mode has higher precision but some performance loss. Only take effect on Ascend910A.
|
|
55
52
|
Default False.
|
|
56
53
|
have_attention_mask_batch(bool): indicates whether attention_mask contains the batch dimension.
|
|
57
54
|
Default True
|
|
58
55
|
alibi(bool): This parameter indicates whether the flashattention supports the Alibi.
|
|
59
56
|
Default: False
|
|
60
|
-
use_mqa(bool): Using
|
|
57
|
+
use_mqa(bool): Using MQA if True, only take effect under 910B. Default: False.
|
|
61
58
|
|
|
62
59
|
|
|
63
60
|
Inputs:
|
|
@@ -98,7 +95,6 @@ class FlashAttention(Cell):
|
|
|
98
95
|
dropout_rate=0.0,
|
|
99
96
|
prev_block_num=65536,
|
|
100
97
|
next_block_num=65536,
|
|
101
|
-
tiling_stgy_name="sparse",
|
|
102
98
|
dp=1,
|
|
103
99
|
mp=1,
|
|
104
100
|
high_precision=False,
|
|
@@ -112,52 +108,36 @@ class FlashAttention(Cell):
|
|
|
112
108
|
if scaling_constant == 0:
|
|
113
109
|
raise ValueError("the scaling constant must not be 0.")
|
|
114
110
|
self.dropout_rate = dropout_rate
|
|
115
|
-
self.
|
|
116
|
-
|
|
117
|
-
|
|
118
|
-
|
|
119
|
-
|
|
120
|
-
|
|
121
|
-
|
|
122
|
-
|
|
123
|
-
|
|
124
|
-
|
|
125
|
-
|
|
126
|
-
|
|
127
|
-
|
|
128
|
-
|
|
129
|
-
self.flash_attention.add_prim_attr("primitive_target", "Ascend")
|
|
111
|
+
self.alibi = alibi
|
|
112
|
+
self.have_attention_mask_batch = have_attention_mask_batch
|
|
113
|
+
|
|
114
|
+
self.transpose_4d_pre = ops.Transpose().shard(((dp, mp, 1, 1),))
|
|
115
|
+
self.transpose_4d_post = ops.Transpose().shard(((dp, 1, mp, 1),))
|
|
116
|
+
self.reshape = ops.Reshape()
|
|
117
|
+
self.zeros_like = ops.ZerosLike().shard(((dp, mp, 1, 1),))
|
|
118
|
+
self.zeros = ops.Zeros()
|
|
119
|
+
self.attn_cast = ops.Cast()
|
|
120
|
+
if use_mqa:
|
|
121
|
+
fa_strategies = ((dp, mp, 1, 1),
|
|
122
|
+
(dp, 1, 1, 1),
|
|
123
|
+
(dp, 1, 1, 1))
|
|
124
|
+
else:
|
|
130
125
|
fa_strategies = ((dp, mp, 1, 1),
|
|
131
126
|
(dp, mp, 1, 1),
|
|
132
127
|
(dp, mp, 1, 1))
|
|
133
|
-
|
|
134
|
-
|
|
135
|
-
|
|
136
|
-
|
|
137
|
-
|
|
138
|
-
|
|
139
|
-
|
|
140
|
-
|
|
141
|
-
|
|
142
|
-
|
|
143
|
-
|
|
144
|
-
|
|
145
|
-
|
|
146
|
-
(dp, 1, 1, 1),
|
|
147
|
-
(dp, 1, 1, 1))
|
|
148
|
-
else:
|
|
149
|
-
fa_strategies = ((dp, mp, 1, 1),
|
|
150
|
-
(dp, mp, 1, 1),
|
|
151
|
-
(dp, mp, 1, 1),
|
|
152
|
-
(dp, 1, 1, 1))
|
|
153
|
-
if dropout_rate > 1e-5:
|
|
154
|
-
fa_strategies += ((dp, mp, 1, 1),)
|
|
155
|
-
self.flash_attention = FlashAttentionScore(head_num=head_num, pre_tokens=prev_block_num,
|
|
156
|
-
next_tokens=next_block_num,
|
|
157
|
-
keep_prob=1 - dropout_rate,
|
|
158
|
-
scale_value=1. / scaling_constant,
|
|
159
|
-
inner_precise=0 if high_precision else 1,
|
|
160
|
-
input_layout="BNSD").shard(fa_strategies)
|
|
128
|
+
if self.alibi:
|
|
129
|
+
self.alibi_rescale_mul = ops.Mul().shard(((dp, mp, 1, 1), (1,)))
|
|
130
|
+
self.alibi_rescale_factor = Tensor([scaling_constant], dtype=mstype.float16)
|
|
131
|
+
fa_strategies += ((dp, mp, 1, 1),)
|
|
132
|
+
if dropout_rate > 1e-5:
|
|
133
|
+
fa_strategies += ((dp, mp, 1, 1),)
|
|
134
|
+
fa_strategies += ((dp, 1, 1, 1),)
|
|
135
|
+
self.flash_attention = FlashAttentionScore(head_num=head_num, pre_tokens=prev_block_num,
|
|
136
|
+
next_tokens=next_block_num,
|
|
137
|
+
keep_prob=1 - dropout_rate,
|
|
138
|
+
scale_value=1. / scaling_constant,
|
|
139
|
+
inner_precise=0,
|
|
140
|
+
input_layout="BNSD").shard(fa_strategies)
|
|
161
141
|
|
|
162
142
|
self.dropout_rate = dropout_rate
|
|
163
143
|
if self.dropout_rate > 1e-5:
|
|
@@ -175,49 +155,7 @@ class FlashAttention(Cell):
|
|
|
175
155
|
such as MatMul. Default: None.
|
|
176
156
|
:return:
|
|
177
157
|
"""
|
|
178
|
-
|
|
179
|
-
if in_strategy is None:
|
|
180
|
-
# default: dp=1, mp=1, construct inputs only contain query, key, value
|
|
181
|
-
in_strategy = (
|
|
182
|
-
(1, 1, 1, 1),
|
|
183
|
-
(1, 1, 1, 1),
|
|
184
|
-
(1, 1, 1, 1),
|
|
185
|
-
)
|
|
186
|
-
self.flash_attention.shard(in_strategy)
|
|
187
|
-
dp = in_strategy[0][0]
|
|
188
|
-
mp = in_strategy[0][1]
|
|
189
|
-
self.flash_attention.add_prim_attr("dev_matrix_shape", [dp, mp, 1, 1])
|
|
190
|
-
inputs_tensor_map = [
|
|
191
|
-
[3, 2, 1, 0],
|
|
192
|
-
[3, 2, 1, 0],
|
|
193
|
-
[3, 2, 1, 0],
|
|
194
|
-
]
|
|
195
|
-
if self.have_attention_mask_batch:
|
|
196
|
-
inputs_tensor_map.append([3, 1, 0])
|
|
197
|
-
else:
|
|
198
|
-
inputs_tensor_map.append([-1, 1, 0])
|
|
199
|
-
|
|
200
|
-
input_empty_args_num = 2
|
|
201
|
-
# dropout_mask
|
|
202
|
-
if self.dropout_rate > 1e-5:
|
|
203
|
-
input_empty_args_num -= 1
|
|
204
|
-
inputs_tensor_map.append([3, 2, 1, 0])
|
|
205
|
-
|
|
206
|
-
if self.alibi:
|
|
207
|
-
input_empty_args_num -= 1
|
|
208
|
-
inputs_tensor_map.append([3, 2, 1, 0])
|
|
209
|
-
|
|
210
|
-
self.flash_attention.add_prim_attr("inputs_tensor_map", inputs_tensor_map)
|
|
211
|
-
|
|
212
|
-
self.flash_attention.add_prim_attr("outputs_tensor_map", [
|
|
213
|
-
[3, 2, 1, 0], # O
|
|
214
|
-
[3, 2, 1], # L
|
|
215
|
-
[3, 2, 1] # M
|
|
216
|
-
])
|
|
217
|
-
self.flash_attention.add_prim_attr("as_loss_divisor", 0)
|
|
218
|
-
self.flash_attention.add_prim_attr("empty_mirror_ops", input_empty_args_num)
|
|
219
|
-
else:
|
|
220
|
-
self.flash_attention.shard(in_strategy)
|
|
158
|
+
self.flash_attention.shard(in_strategy)
|
|
221
159
|
|
|
222
160
|
def construct(self, query, key, value, attn_mask=None, alibi_mask=None):
|
|
223
161
|
"""FlashAttention forward
|
|
@@ -228,49 +166,24 @@ class FlashAttention(Cell):
|
|
|
228
166
|
:param alibi_mask: [bsz, head_num, 1, seq_len], if not None
|
|
229
167
|
:return: output [bsz, head_num, seq_len, head_dim]
|
|
230
168
|
"""
|
|
231
|
-
bsz, head_num, seq_len,
|
|
232
|
-
|
|
233
|
-
|
|
234
|
-
|
|
235
|
-
|
|
236
|
-
raise ValueError(
|
|
237
|
-
"the head_num of query, key and value must be the same, "
|
|
238
|
-
"If different head_num are used, users need to change themselves to be same by tile.")
|
|
239
|
-
if seq_len % 16 != 0 or k_seq_len % 16 != 0 or k_seq_len != v_seq_len:
|
|
240
|
-
raise ValueError(
|
|
241
|
-
"query, key, value seq_len must be a multiple of 16, "
|
|
242
|
-
"and the seq_len between key and value must be equal.")
|
|
243
|
-
# 910A -- FlashAttentionPrimtive
|
|
244
|
-
if head_dim > 304:
|
|
245
|
-
raise ValueError(
|
|
246
|
-
"the head_dim must be less than 304, otherwise the ub would be OOM.")
|
|
247
|
-
if self.dropout_rate > 1e-5:
|
|
248
|
-
drop_mask_bits = self.drop_gen_mask((bsz, head_num, seq_len, seq_len), self.keep_prob)
|
|
249
|
-
tensor_shape = Tensor((bsz, head_num, seq_len, seq_len), mstype.int32)
|
|
250
|
-
ones = self.fill_v2(tensor_shape, self.tensor_one)
|
|
251
|
-
ones = self.depend(ones, query)
|
|
252
|
-
drop_mask = self.do_dropout(ones, drop_mask_bits, self.keep_prob)
|
|
253
|
-
else:
|
|
254
|
-
drop_mask = None
|
|
255
|
-
query = self.scale_mul(query, self.scale_factor)
|
|
256
|
-
key = self.scale_mul(key, self.scale_factor)
|
|
257
|
-
attn_mask = self.cast(attn_mask, mstype.float16)
|
|
258
|
-
output, _, _ = self.flash_attention(query, key, value, attn_mask, drop_mask, alibi_mask)
|
|
169
|
+
bsz, head_num, seq_len, _ = query.shape
|
|
170
|
+
# 910B -- FlashAttentionScore
|
|
171
|
+
if self.dropout_rate > 1e-5:
|
|
172
|
+
drop_mask_bits = self.reshape(self.drop_gen_mask((bsz, head_num, seq_len, seq_len), self.keep_prob),
|
|
173
|
+
(bsz, head_num, seq_len, seq_len // 8))
|
|
259
174
|
else:
|
|
260
|
-
|
|
261
|
-
|
|
262
|
-
|
|
263
|
-
|
|
264
|
-
|
|
265
|
-
drop_mask_bits = None
|
|
266
|
-
# (B, S, S) -> (B, 1, S, S)
|
|
175
|
+
drop_mask_bits = None
|
|
176
|
+
if self.alibi:
|
|
177
|
+
alibi_mask = self.alibi_rescale_mul(alibi_mask, self.cast(self.alibi_rescale_factor, alibi_mask.dtype))
|
|
178
|
+
# (B, S, S) -> (B, 1, S, S)
|
|
179
|
+
if self.have_attention_mask_batch:
|
|
267
180
|
attn_mask = self.cast(self.reshape(attn_mask, (bsz, 1, seq_len, seq_len)), mstype.uint8)
|
|
268
|
-
|
|
269
|
-
|
|
270
|
-
|
|
271
|
-
|
|
272
|
-
|
|
273
|
-
|
|
274
|
-
|
|
275
|
-
|
|
181
|
+
_, _, _, output = self.flash_attention(query,
|
|
182
|
+
key,
|
|
183
|
+
value,
|
|
184
|
+
alibi_mask,
|
|
185
|
+
drop_mask_bits,
|
|
186
|
+
None,
|
|
187
|
+
attn_mask,
|
|
188
|
+
None)
|
|
276
189
|
return output
|
mindspore/nn/loss/loss.py
CHANGED
|
@@ -1996,7 +1996,7 @@ class FocalLoss(LossBase):
|
|
|
1996
1996
|
>>> import mindspore.nn as nn
|
|
1997
1997
|
>>> logits = ms.Tensor([[0.8, 1.4], [0.5, 0.9], [1.2, 0.9]], ms.float32)
|
|
1998
1998
|
>>> labels = ms.Tensor([[1], [1], [0]], ms.int32)
|
|
1999
|
-
>>> focalloss = nn.FocalLoss(weight=Tensor([1, 2]), gamma=2.0, reduction='mean')
|
|
1999
|
+
>>> focalloss = nn.FocalLoss(weight=ms.Tensor([1, 2]), gamma=2.0, reduction='mean')
|
|
2000
2000
|
>>> output = focalloss(logits, labels)
|
|
2001
2001
|
>>> print(output)
|
|
2002
2002
|
0.12516622
|
mindspore/nn/optim/ada_grad.py
CHANGED
|
@@ -162,7 +162,7 @@ class Adagrad(Optimizer):
|
|
|
162
162
|
``Ascend`` ``GPU`` ``CPU``
|
|
163
163
|
|
|
164
164
|
Examples:
|
|
165
|
-
>>> import
|
|
165
|
+
>>> from mindspore import train
|
|
166
166
|
>>> import mindspore.nn as nn
|
|
167
167
|
>>>
|
|
168
168
|
>>> # Define the network structure of LeNet5. Refer to
|
|
@@ -185,7 +185,7 @@ class Adagrad(Optimizer):
|
|
|
185
185
|
>>> # The final parameters order in which the optimizer will be followed is the value of 'order_params'.
|
|
186
186
|
>>>
|
|
187
187
|
>>> loss = nn.SoftmaxCrossEntropyWithLogits()
|
|
188
|
-
>>> model =
|
|
188
|
+
>>> model = train.Model(net, loss_fn=loss, optimizer=optim)
|
|
189
189
|
"""
|
|
190
190
|
|
|
191
191
|
@opt_init_args_register
|
mindspore/nn/optim/sgd.py
CHANGED
|
@@ -193,9 +193,9 @@ class SGD(Optimizer):
|
|
|
193
193
|
"or 'weight_decay' set in grouped 'params' must be float or int type.")
|
|
194
194
|
|
|
195
195
|
if hasattr(self, "group_weight_decay") and self.group_weight_decay:
|
|
196
|
-
self.opt = tuple(P.SGD(dampening,
|
|
196
|
+
self.opt = tuple(P.SGD(dampening, 0.0, nesterov) for _ in self.group_weight_decay)
|
|
197
197
|
else:
|
|
198
|
-
self.opt = tuple([P.SGD(dampening,
|
|
198
|
+
self.opt = tuple([P.SGD(dampening, 0.0, nesterov)] * len(self._parameters))
|
|
199
199
|
|
|
200
200
|
self.momentum = Parameter(Tensor(momentum, mstype.float32), name="momentum")
|
|
201
201
|
|
|
@@ -220,6 +220,7 @@ class SGD(Optimizer):
|
|
|
220
220
|
params = self._parameters
|
|
221
221
|
accum = self.accum
|
|
222
222
|
stat = self.stat
|
|
223
|
+
gradients = self.decay_weight(gradients)
|
|
223
224
|
gradients = self.flatten_gradients(gradients)
|
|
224
225
|
gradients = self.gradients_centralization(gradients)
|
|
225
226
|
gradients = self.scale_grad(gradients)
|
mindspore/nn/wrap/__init__.py
CHANGED
|
@@ -20,7 +20,8 @@ Use the Wrapper to combine the loss or build the training steps.
|
|
|
20
20
|
from __future__ import absolute_import
|
|
21
21
|
|
|
22
22
|
from mindspore.nn.wrap.cell_wrapper import ForwardValueAndGrad, TrainOneStepCell, WithLossCell, WithGradCell, \
|
|
23
|
-
WithEvalCell, ParameterUpdate, GetNextSingleOp, VirtualDatasetCellTriple, MicroBatchInterleaved, PipelineCell
|
|
23
|
+
WithEvalCell, ParameterUpdate, GetNextSingleOp, VirtualDatasetCellTriple, MicroBatchInterleaved, PipelineCell, \
|
|
24
|
+
GradAccumulationCell
|
|
24
25
|
from mindspore.nn.wrap.loss_scale import TrainOneStepWithLossScaleCell,\
|
|
25
26
|
DynamicLossScaleUpdateCell, FixedLossScaleUpdateCell
|
|
26
27
|
from mindspore.nn.wrap.grad_reducer import DistributedGradReducer
|
|
@@ -42,5 +43,6 @@ __all__ = [
|
|
|
42
43
|
"ParameterUpdate",
|
|
43
44
|
"DynamicLossScaleUpdateCell",
|
|
44
45
|
"FixedLossScaleUpdateCell",
|
|
45
|
-
"VirtualDatasetCellTriple"
|
|
46
|
+
"VirtualDatasetCellTriple",
|
|
47
|
+
"GradAccumulationCell"
|
|
46
48
|
]
|
|
@@ -673,7 +673,7 @@ class PipelineCell(Cell):
|
|
|
673
673
|
|
|
674
674
|
class GradAccumulationCell(Cell):
|
|
675
675
|
"""
|
|
676
|
-
Wrap the network with Micro Batch.
|
|
676
|
+
Wrap the network with Micro Batch to enable the grad accumulation in semi_auto_parallel/auto_parallel mode.
|
|
677
677
|
|
|
678
678
|
Args:
|
|
679
679
|
network (Cell): The target network to wrap.
|
|
@@ -683,8 +683,11 @@ class GradAccumulationCell(Cell):
|
|
|
683
683
|
``Ascend`` ``GPU``
|
|
684
684
|
|
|
685
685
|
Examples:
|
|
686
|
-
>>>
|
|
687
|
-
>>>
|
|
686
|
+
>>> import mindspore.nn as nn
|
|
687
|
+
>>> # Define the network structure of LeNet5. Refer to
|
|
688
|
+
>>> # https://gitee.com/mindspore/docs/blob/r2.2/docs/mindspore/code/lenet.py
|
|
689
|
+
>>> net = LeNet5()
|
|
690
|
+
>>> net = nn.GradAccumulationCell(net, 4)
|
|
688
691
|
"""
|
|
689
692
|
def __init__(self, network, micro_size):
|
|
690
693
|
super(GradAccumulationCell, self).__init__(auto_prefix=False)
|
mindspore/numpy/math_ops.py
CHANGED
|
@@ -4285,7 +4285,7 @@ def argmin(a, axis=None):
|
|
|
4285
4285
|
|
|
4286
4286
|
Examples:
|
|
4287
4287
|
>>> import mindspore.numpy as np
|
|
4288
|
-
>>> a = np.arange(10, 16).reshape(2, 3)
|
|
4288
|
+
>>> a = np.arange(10, 16).reshape(2, 3).astype(np.float32)
|
|
4289
4289
|
>>> print(np.argmin(a))
|
|
4290
4290
|
0
|
|
4291
4291
|
>>> print(np.argmin(a, axis=0))
|
mindspore/ops/__init__.py
CHANGED
|
@@ -34,6 +34,7 @@ from mindspore.ops.composite import *
|
|
|
34
34
|
from mindspore.ops.operations import *
|
|
35
35
|
from mindspore.ops.function import *
|
|
36
36
|
from mindspore.ops.functional import *
|
|
37
|
+
from mindspore.ops.silent_check import _silent_check
|
|
37
38
|
|
|
38
39
|
__primitive__ = [
|
|
39
40
|
"prim_attr_register", "Primitive", "PrimitiveWithInfer", "PrimitiveWithCheck", "signature"
|
|
@@ -48,3 +49,5 @@ __all__.extend(composite.__all__)
|
|
|
48
49
|
__all__.extend(operations.__all__)
|
|
49
50
|
__all__.extend(functional.__all__)
|
|
50
51
|
__all__.extend(function.__all__)
|
|
52
|
+
|
|
53
|
+
_silent_check()
|
|
@@ -36,8 +36,6 @@ from mindspore.ops.operations.array_ops import ScatterAddWithAxis
|
|
|
36
36
|
from mindspore.ops.operations.array_ops import Expand
|
|
37
37
|
from mindspore.ops.operations.array_ops import SegmentMean
|
|
38
38
|
from mindspore.ops.operations.array_ops import AffineGrid
|
|
39
|
-
from mindspore.ops.operations.array_ops import Im2Col
|
|
40
|
-
from mindspore.ops.operations.array_ops import Col2Im
|
|
41
39
|
from mindspore.ops.operations.array_ops import MaskedScatter
|
|
42
40
|
from mindspore.ops.operations.array_ops import MaskedSelect
|
|
43
41
|
from mindspore.ops.operations.array_ops import CountNonZero
|
|
@@ -360,35 +358,6 @@ def get_bprop_resize_nearest_neighbor_v2(self):
|
|
|
360
358
|
return bprop
|
|
361
359
|
|
|
362
360
|
|
|
363
|
-
@bprop_getters.register(Im2Col)
|
|
364
|
-
def get_bprop_im2col(self):
|
|
365
|
-
"""
|
|
366
|
-
Generate bprop for Im2Col
|
|
367
|
-
|
|
368
|
-
Im2Col, corresponding to torch's UnFold operator.
|
|
369
|
-
The Unfold operator has no `padding_mode` attribute,
|
|
370
|
-
and it's implementation corresponds to the mindspore
|
|
371
|
-
implementation with `padding_mode=CALCULATED` .
|
|
372
|
-
So, currently the bprop function of Im2Col only supports
|
|
373
|
-
the CALCULATED mode.
|
|
374
|
-
"""
|
|
375
|
-
kernel_size = self.ksizes
|
|
376
|
-
dilation = self.dilations
|
|
377
|
-
stride = self.strides
|
|
378
|
-
padding = (self.pads[0], self.pads[-1])
|
|
379
|
-
col2im = Col2Im(kernel_size=kernel_size,
|
|
380
|
-
dilation=dilation,
|
|
381
|
-
stride=stride,
|
|
382
|
-
padding=padding)
|
|
383
|
-
|
|
384
|
-
def bprop(x, out, dout):
|
|
385
|
-
x_shape = P.TensorShape()(x)[2:]
|
|
386
|
-
dx = col2im(dout, x_shape)
|
|
387
|
-
return (dx,)
|
|
388
|
-
|
|
389
|
-
return bprop
|
|
390
|
-
|
|
391
|
-
|
|
392
361
|
@bprop_getters.register(P.ExtractVolumePatches)
|
|
393
362
|
def get_bprop_extract_volume_patches(self):
|
|
394
363
|
"""Generate bprop for ExtractVolumePatches"""
|
|
@@ -92,7 +92,8 @@ def get_bprop_send(self):
|
|
|
92
92
|
"""Generate bprop for Send."""
|
|
93
93
|
shape = self.get_attr_dict()["shape"]
|
|
94
94
|
dtype = self.get_attr_dict()["dtype"]
|
|
95
|
-
|
|
95
|
+
tag = self.get_attr_dict()["sr_tag"]
|
|
96
|
+
send_grad = Receive(tag, self.rank, shape, dtype, self.group_back)
|
|
96
97
|
virtual_input = Tensor(0.0, dtype)
|
|
97
98
|
|
|
98
99
|
def bprop(x, out, dout):
|
|
@@ -105,7 +106,8 @@ def get_bprop_send(self):
|
|
|
105
106
|
@bprop_getters.register(Receive)
|
|
106
107
|
def get_bprop_receive(self):
|
|
107
108
|
"""Generate bprop for Receive."""
|
|
108
|
-
|
|
109
|
+
tag = self.get_attr_dict()["sr_tag"]
|
|
110
|
+
receive_grad = Send(tag, self.rank, self.group_back)
|
|
109
111
|
depend = P.Depend()
|
|
110
112
|
cast = P.Cast()
|
|
111
113
|
out_tensor = Tensor(0.0, mstype.float16)
|
|
@@ -36,6 +36,14 @@ def get_bprop_parallel_resize_bilinear(self):
|
|
|
36
36
|
return bprop
|
|
37
37
|
|
|
38
38
|
|
|
39
|
+
@bprop_getters.register(P.inner_ops.GenerateEodMask)
|
|
40
|
+
def get_bprop_generate_eod_mask(self):
|
|
41
|
+
|
|
42
|
+
def bprop(x, out, dout):
|
|
43
|
+
return dout, dout
|
|
44
|
+
return bprop
|
|
45
|
+
|
|
46
|
+
|
|
39
47
|
@bprop_getters.register(inner.PsROIPooling)
|
|
40
48
|
def get_bprop_ps_roi_pooling(self):
|
|
41
49
|
"""Grad definition for `PsROIPooling` operation."""
|
|
@@ -18,11 +18,13 @@
|
|
|
18
18
|
import numpy as np
|
|
19
19
|
import mindspore.numpy as mnp
|
|
20
20
|
from mindspore.common import dtype as mstype
|
|
21
|
+
import mindspore.ops as ops
|
|
21
22
|
from mindspore.ops import functional as F
|
|
22
23
|
from mindspore.ops import operations as P
|
|
23
24
|
from mindspore import Tensor
|
|
24
25
|
from mindspore.ops.operations.math_ops import Real, Imag, Complex, Angle
|
|
25
|
-
from mindspore.ops.operations.math_ops import Polar
|
|
26
|
+
from mindspore.ops.operations.math_ops import Polar, SilentCheck
|
|
27
|
+
from mindspore.ops.operations._inner_ops import _MirrorSilentCheck
|
|
26
28
|
from mindspore.ops.operations import _grad_ops as G
|
|
27
29
|
from mindspore.ops.operations.math_ops import Lgamma
|
|
28
30
|
from mindspore.ops.operations.math_ops import Digamma
|
|
@@ -763,6 +765,7 @@ def get_bprop_fft_with_size(self):
|
|
|
763
765
|
to_tensor_op = P.ScalarToTensor()
|
|
764
766
|
type_op = P.DType()
|
|
765
767
|
concat_op = P.Concat()
|
|
768
|
+
concat_op_last = P.Concat(axis=-1)
|
|
766
769
|
ones_op = P.Ones()
|
|
767
770
|
zeros_op = P.Zeros()
|
|
768
771
|
real_op = P.Real()
|
|
@@ -794,8 +797,7 @@ def get_bprop_fft_with_size(self):
|
|
|
794
797
|
signal_sizes=offset_shape[-1:])
|
|
795
798
|
irfft2d_ = FFTWithSize(signal_ndim=2, inverse=True, real=True, norm="backward", onesided=onesided,
|
|
796
799
|
signal_sizes=offset_shape[-2:])
|
|
797
|
-
irfft3d_ = FFTWithSize(signal_ndim=3, inverse=True, real=
|
|
798
|
-
signal_sizes=offset_shape[-3:])
|
|
800
|
+
irfft3d_ = FFTWithSize(signal_ndim=3, inverse=True, real=False, norm="backward", onesided=onesided)
|
|
799
801
|
if inverse is False:
|
|
800
802
|
if onesided is True:
|
|
801
803
|
terms = 0
|
|
@@ -811,6 +813,7 @@ def get_bprop_fft_with_size(self):
|
|
|
811
813
|
vec_mask = complex_op(1 - 2 * (mnp.arange(0, input_shape[-1], 1, input_type) % 2),
|
|
812
814
|
zeros_op(input_shape[-1], input_type))
|
|
813
815
|
terms = real_op(dout_first) + is_even * real_op(dout_last * vec_mask)
|
|
816
|
+
dx = to_tensor_op(0.5, input_type) * (dx * rfft_offset_size + terms) * rfft_norm_offset
|
|
814
817
|
elif signal_ndim == 2:
|
|
815
818
|
dx = irfft2d_(dout)
|
|
816
819
|
arange_inner = mnp.arange(0, input_shape[-2], 1, input_type)
|
|
@@ -852,26 +855,27 @@ def get_bprop_fft_with_size(self):
|
|
|
852
855
|
dout_shape, [input_shape[-1]])))
|
|
853
856
|
dout_last_term = dout_last_term * vec_mask
|
|
854
857
|
terms = real_op(dout_first_term) + is_even * real_op(dout_last_term)
|
|
858
|
+
dx = to_tensor_op(0.5, input_type) * (dx * rfft_offset_size + terms) * rfft_norm_offset
|
|
855
859
|
elif signal_ndim == 3:
|
|
856
|
-
|
|
857
|
-
|
|
860
|
+
zeros_shape = offset_shape[:-1] + (offset_shape[-1] - dout_shape[-1],)
|
|
861
|
+
zeros_values = zeros_op(zeros_shape, input_type)
|
|
862
|
+
zeros_padding = complex_op(zeros_values, zeros_values)
|
|
863
|
+
dout = concat_op_last((dout, zeros_padding))
|
|
864
|
+
dx = real_op(irfft3d_(dout)) * real_op(offset_size)
|
|
858
865
|
else:
|
|
859
866
|
dx = irfft_fn(dout) * real_op(offset_size)
|
|
860
867
|
else:
|
|
861
868
|
dx = rfft_fn(dout)
|
|
862
869
|
if onesided is True:
|
|
863
|
-
|
|
864
|
-
|
|
865
|
-
|
|
866
|
-
|
|
867
|
-
|
|
868
|
-
|
|
869
|
-
|
|
870
|
-
|
|
871
|
-
|
|
872
|
-
dx = dx * complex_op(irfft_offset_size, zeros_op(1, output_type))
|
|
873
|
-
else:
|
|
874
|
-
dx = dx * complex_op(offset_size, zeros_op(1, output_type))
|
|
870
|
+
is_odd = dout_shape[-1] % 2
|
|
871
|
+
last_shape = offset_shape[-1]
|
|
872
|
+
mask = concat_op((ones_op(1, output_type), 2.0 * ones_op(
|
|
873
|
+
(last_shape - 2 + is_odd,), output_type), ones_op((1 - is_odd,), output_type)))
|
|
874
|
+
dx = dx * complex_op(mask, zeros_op(shape_op(mask), output_type))
|
|
875
|
+
irfft_offset_size = to_tensor_op(
|
|
876
|
+
_fft_with_size_back_norm(shape_op(dout), norm, inverse, signal_ndim),
|
|
877
|
+
output_type)
|
|
878
|
+
dx = dx * complex_op(irfft_offset_size, zeros_op(1, output_type))
|
|
875
879
|
else:
|
|
876
880
|
dx = dx * complex_op(offset_size, zeros_op(1, output_type))
|
|
877
881
|
return (dx,)
|
|
@@ -1017,3 +1021,19 @@ def get_bprop_tensor_add(self):
|
|
|
1017
1021
|
return binop_grad_common(x, y, dout, dout)
|
|
1018
1022
|
|
|
1019
1023
|
return bprop
|
|
1024
|
+
|
|
1025
|
+
|
|
1026
|
+
@bprop_getters.register(_MirrorSilentCheck)
|
|
1027
|
+
def get_bprop_mirror_silent_check(self):
|
|
1028
|
+
"""Grad definition for '_MirrorSilentCheck' op"""
|
|
1029
|
+
silent_check = SilentCheck(self.min_steps, self.thresh_l1, self.coeff_l1, self.thresh_l2, self.coeff_l2)
|
|
1030
|
+
out_tensor = Tensor([0.0], mstype.float32)
|
|
1031
|
+
|
|
1032
|
+
def bporp(x, pre_val, min_val, max_val, n_step, loss_scale, out, dout):
|
|
1033
|
+
if loss_scale is not None:
|
|
1034
|
+
dout = dout / loss_scale
|
|
1035
|
+
grad = ops.norm(dout)
|
|
1036
|
+
dx, _, _, _, _ = silent_check(grad, dout, pre_val, min_val, max_val, n_step)
|
|
1037
|
+
return (dx, out_tensor, out_tensor, out_tensor, out_tensor, out_tensor)
|
|
1038
|
+
|
|
1039
|
+
return bporp
|
|
@@ -60,6 +60,7 @@ from .init_data_set_queue import _init_data_set_queue_aicpu
|
|
|
60
60
|
from .embedding_lookup import _embedding_lookup_aicpu
|
|
61
61
|
from .padding import _padding_aicpu
|
|
62
62
|
from .gather import _gather_aicpu
|
|
63
|
+
from .generate_eod_mask import _generate_eod_mask_aicpu
|
|
63
64
|
from .gather_grad import _gather_grad_aicpu
|
|
64
65
|
from .gather_d_grad_v2 import _gather_d_grad_v2_aicpu
|
|
65
66
|
from .gather_d import _gather_d_aicpu
|
|
@@ -0,0 +1,38 @@
|
|
|
1
|
+
# Copyright 2023 Huawei Technologies Co., Ltd
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
# ============================================================================
|
|
15
|
+
|
|
16
|
+
"""GenerateEodMask op"""
|
|
17
|
+
from mindspore.ops.op_info_register import op_info_register, AiCPURegOp, DataType
|
|
18
|
+
|
|
19
|
+
generate_eod_mask_op_info = AiCPURegOp("GenerateEodMask") \
|
|
20
|
+
.fusion_type("OPAQUE") \
|
|
21
|
+
.attr("eod_token_id", "int") \
|
|
22
|
+
.attr("n_pos", "int") \
|
|
23
|
+
.attr("n_step", "listint") \
|
|
24
|
+
.attr("n_error_mode", "str") \
|
|
25
|
+
.input(0, "inputs_ids", "required") \
|
|
26
|
+
.output(0, "position_ids", "required") \
|
|
27
|
+
.dtype_format(DataType.U16_Default, DataType.U16_Default) \
|
|
28
|
+
.dtype_format(DataType.U32_Default, DataType.U32_Default) \
|
|
29
|
+
.dtype_format(DataType.U64_Default, DataType.U64_Default) \
|
|
30
|
+
.dtype_format(DataType.I32_Default, DataType.I32_Default) \
|
|
31
|
+
.dtype_format(DataType.I64_Default, DataType.I64_Default) \
|
|
32
|
+
.get_op_info()
|
|
33
|
+
|
|
34
|
+
|
|
35
|
+
@op_info_register(generate_eod_mask_op_info)
|
|
36
|
+
def _generate_eod_mask_aicpu():
|
|
37
|
+
"""GenerateEodMask AiCPU register"""
|
|
38
|
+
return
|
|
@@ -1,4 +1,4 @@
|
|
|
1
|
-
# Copyright
|
|
1
|
+
# Copyright 2023 Huawei Technologies Co., Ltd
|
|
2
2
|
#
|
|
3
3
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
4
|
# you may not use this file except in compliance with the License.
|
|
@@ -24,11 +24,30 @@ lsap_op_info = AiCPURegOp("LinearSumAssignment") \
|
|
|
24
24
|
.input(2, 'maximize', "required") \
|
|
25
25
|
.output(0, "row_ind", "required") \
|
|
26
26
|
.output(1, "col_ind", "required") \
|
|
27
|
-
.attr("cust_aicpu", "str") \
|
|
28
27
|
.dtype_format(DataType.F64_Default, DataType.I64_Default,
|
|
29
28
|
DataType.BOOL_Default, DataType.I64_Default, DataType.I64_Default,) \
|
|
30
29
|
.dtype_format(DataType.F32_Default, DataType.I64_Default,
|
|
31
30
|
DataType.BOOL_Default, DataType.I64_Default, DataType.I64_Default,) \
|
|
31
|
+
.dtype_format(DataType.F16_Default, DataType.I64_Default,
|
|
32
|
+
DataType.BOOL_Default, DataType.I64_Default, DataType.I64_Default,) \
|
|
33
|
+
.dtype_format(DataType.BOOL_Default, DataType.I64_Default,
|
|
34
|
+
DataType.BOOL_Default, DataType.I64_Default, DataType.I64_Default,) \
|
|
35
|
+
.dtype_format(DataType.I16_Default, DataType.I64_Default,
|
|
36
|
+
DataType.BOOL_Default, DataType.I64_Default, DataType.I64_Default,) \
|
|
37
|
+
.dtype_format(DataType.I32_Default, DataType.I64_Default,
|
|
38
|
+
DataType.BOOL_Default, DataType.I64_Default, DataType.I64_Default,) \
|
|
39
|
+
.dtype_format(DataType.I64_Default, DataType.I64_Default,
|
|
40
|
+
DataType.BOOL_Default, DataType.I64_Default, DataType.I64_Default,) \
|
|
41
|
+
.dtype_format(DataType.I8_Default, DataType.I64_Default,
|
|
42
|
+
DataType.BOOL_Default, DataType.I64_Default, DataType.I64_Default,) \
|
|
43
|
+
.dtype_format(DataType.U16_Default, DataType.I64_Default,
|
|
44
|
+
DataType.BOOL_Default, DataType.I64_Default, DataType.I64_Default,) \
|
|
45
|
+
.dtype_format(DataType.U32_Default, DataType.I64_Default,
|
|
46
|
+
DataType.BOOL_Default, DataType.I64_Default, DataType.I64_Default,) \
|
|
47
|
+
.dtype_format(DataType.U64_Default, DataType.I64_Default,
|
|
48
|
+
DataType.BOOL_Default, DataType.I64_Default, DataType.I64_Default,) \
|
|
49
|
+
.dtype_format(DataType.U8_Default, DataType.I64_Default,
|
|
50
|
+
DataType.BOOL_Default, DataType.I64_Default, DataType.I64_Default,) \
|
|
32
51
|
.get_op_info()
|
|
33
52
|
|
|
34
53
|
|