mindspore 2.2.0__cp38-none-any.whl → 2.2.10__cp38-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of mindspore might be problematic. Click here for more details.

Files changed (138) hide show
  1. mindspore/.commit_id +1 -1
  2. mindspore/_akg/akg/composite/build_module.py +9 -15
  3. mindspore/_akg/akg/utils/ascend_profilier/__init__.py +0 -0
  4. mindspore/_akg/akg/utils/ascend_profilier/cann_file_parser.py +76 -0
  5. mindspore/_akg/akg/utils/ascend_profilier/file_manager.py +56 -0
  6. mindspore/_akg/akg/utils/ascend_profilier/op_summary_bean.py +23 -0
  7. mindspore/_akg/akg/utils/ascend_profilier/op_summary_headers.py +8 -0
  8. mindspore/_akg/akg/utils/ascend_profilier/op_summary_parser.py +42 -0
  9. mindspore/_akg/akg/utils/ascend_profilier/path_manager.py +65 -0
  10. mindspore/_akg/akg/utils/kernel_exec.py +41 -15
  11. mindspore/_akg/akg/utils/tbe_codegen_utils.py +27 -6
  12. mindspore/_akg/akg/utils/util.py +38 -0
  13. mindspore/_c_dataengine.cpython-38-aarch64-linux-gnu.so +0 -0
  14. mindspore/_c_expression.cpython-38-aarch64-linux-gnu.so +0 -0
  15. mindspore/_checkparam.py +3 -3
  16. mindspore/_extends/graph_kernel/model/graph_split.py +84 -76
  17. mindspore/_extends/graph_kernel/splitter.py +3 -2
  18. mindspore/_extends/parallel_compile/akg_compiler/build_tbe_kernel.py +83 -66
  19. mindspore/_extends/parallel_compile/akg_compiler/tbe_topi.py +4 -4
  20. mindspore/_extends/parallel_compile/akg_compiler/util.py +10 -7
  21. mindspore/_extends/parallel_compile/tbe_compiler/tbe_helper.py +2 -1
  22. mindspore/_extends/parse/standard_method.py +2 -9
  23. mindspore/_extends/remote/kernel_build_server.py +2 -1
  24. mindspore/_mindspore_offline_debug.cpython-38-aarch64-linux-gnu.so +0 -0
  25. mindspore/bin/cache_admin +0 -0
  26. mindspore/bin/cache_server +0 -0
  27. mindspore/common/api.py +1 -1
  28. mindspore/common/auto_dynamic_shape.py +81 -85
  29. mindspore/common/dump.py +1 -1
  30. mindspore/common/tensor.py +3 -20
  31. mindspore/config/op_info.config +1 -1
  32. mindspore/context.py +11 -4
  33. mindspore/dataset/engine/datasets_standard_format.py +5 -0
  34. mindspore/dataset/vision/transforms.py +21 -21
  35. mindspore/experimental/optim/adam.py +1 -1
  36. mindspore/gen_ops.py +1 -1
  37. mindspore/include/api/model.h +17 -0
  38. mindspore/include/api/status.h +8 -3
  39. mindspore/lib/libdnnl.so.2 +0 -0
  40. mindspore/lib/libmindspore.so +0 -0
  41. mindspore/lib/libmindspore_backend.so +0 -0
  42. mindspore/lib/libmindspore_common.so +0 -0
  43. mindspore/lib/libmindspore_core.so +0 -0
  44. mindspore/lib/libmindspore_glog.so.0 +0 -0
  45. mindspore/lib/libmindspore_gpr.so.15 +0 -0
  46. mindspore/lib/libmindspore_grpc++.so.1 +0 -0
  47. mindspore/lib/libmindspore_grpc.so.15 +0 -0
  48. mindspore/lib/libmindspore_shared_lib.so +0 -0
  49. mindspore/lib/libnnacl.so +0 -0
  50. mindspore/lib/libopencv_core.so.4.5 +0 -0
  51. mindspore/lib/libopencv_imgcodecs.so.4.5 +0 -0
  52. mindspore/lib/libopencv_imgproc.so.4.5 +0 -0
  53. mindspore/lib/plugin/ascend/custom_aicore_ops/op_impl/ai_core/tbe/config/ascend310/aic-ascend310-ops-info.json +123 -0
  54. mindspore/lib/plugin/ascend/custom_aicore_ops/op_impl/ai_core/tbe/config/ascend310p/aic-ascend310p-ops-info.json +123 -0
  55. mindspore/lib/plugin/ascend/custom_aicore_ops/op_impl/ai_core/tbe/config/ascend910/aic-ascend910-ops-info.json +158 -0
  56. mindspore/lib/plugin/ascend/custom_aicore_ops/op_impl/ai_core/tbe/config/ascend910b/aic-ascend910b-ops-info.json +37 -0
  57. mindspore/lib/plugin/ascend/custom_aicore_ops/op_impl/ai_core/tbe/custom_aicore_ops_impl/add_dsl.py +46 -0
  58. mindspore/lib/plugin/ascend/custom_aicore_ops/op_impl/ai_core/tbe/custom_aicore_ops_impl/add_tik.py +51 -0
  59. mindspore/lib/plugin/ascend/custom_aicore_ops/op_impl/ai_core/tbe/custom_aicore_ops_impl/kv_cache_mgr.py +241 -0
  60. mindspore/lib/plugin/ascend/custom_aicore_ops/op_impl/ai_core/tbe/custom_aicore_ops_impl/matmul_tik.py +212 -0
  61. mindspore/lib/plugin/ascend/custom_aicore_ops/op_impl/vector_core/tbe/custom_aicore_ops_impl/add_dsl.py +46 -0
  62. mindspore/lib/plugin/ascend/custom_aicore_ops/op_impl/vector_core/tbe/custom_aicore_ops_impl/add_tik.py +51 -0
  63. mindspore/lib/plugin/ascend/custom_aicore_ops/op_impl/vector_core/tbe/custom_aicore_ops_impl/kv_cache_mgr.py +241 -0
  64. mindspore/lib/plugin/ascend/custom_aicore_ops/op_impl/vector_core/tbe/custom_aicore_ops_impl/matmul_tik.py +212 -0
  65. mindspore/lib/plugin/ascend/custom_aicore_ops/op_proto/libop_proto.so +0 -0
  66. mindspore/lib/plugin/ascend/custom_aicpu_ops/op_impl/cpu/aicpu_kernel/impl/libcust_aicpu_kernels.so +0 -0
  67. mindspore/lib/plugin/ascend/custom_aicpu_ops/op_impl/cpu/aicpu_kernel/impl/libcust_cpu_kernels.so +0 -0
  68. mindspore/lib/plugin/ascend/custom_aicpu_ops/op_impl/cpu/config/cust_aicpu_kernel.json +8 -80
  69. mindspore/lib/plugin/ascend/custom_aicpu_ops/op_proto/libcust_op_proto.so +0 -0
  70. mindspore/lib/plugin/ascend/libakg.so +0 -0
  71. mindspore/lib/plugin/ascend/libhccl_plugin.so +0 -0
  72. mindspore/lib/plugin/ascend/libmindspore_aicpu_kernels.so +0 -0
  73. mindspore/lib/plugin/ascend/libmindspore_cpu_kernels.so +0 -0
  74. mindspore/lib/plugin/cpu/libakg.so +0 -0
  75. mindspore/lib/plugin/libmindspore_ascend.so.1 +0 -0
  76. mindspore/lib/plugin/libmindspore_ascend.so.2 +0 -0
  77. mindspore/nn/cell.py +0 -3
  78. mindspore/nn/layer/activation.py +4 -5
  79. mindspore/nn/layer/conv.py +39 -23
  80. mindspore/nn/layer/flash_attention.py +90 -78
  81. mindspore/nn/layer/math.py +3 -7
  82. mindspore/nn/layer/rnn_cells.py +5 -5
  83. mindspore/nn/wrap/cell_wrapper.py +6 -0
  84. mindspore/numpy/utils_const.py +5 -5
  85. mindspore/ops/_grad_experimental/grad_array_ops.py +1 -1
  86. mindspore/ops/_grad_experimental/grad_implementations.py +2 -2
  87. mindspore/ops/_grad_experimental/grad_math_ops.py +19 -18
  88. mindspore/ops/_grad_experimental/grad_sparse_ops.py +3 -3
  89. mindspore/ops/_op_impl/aicpu/add.py +3 -3
  90. mindspore/ops/_utils/utils.py +2 -0
  91. mindspore/ops/composite/multitype_ops/_compile_utils.py +2 -1
  92. mindspore/ops/composite/multitype_ops/getitem_impl.py +2 -2
  93. mindspore/ops/function/array_func.py +10 -7
  94. mindspore/ops/function/grad/grad_func.py +0 -1
  95. mindspore/ops/function/nn_func.py +98 -9
  96. mindspore/ops/function/random_func.py +2 -1
  97. mindspore/ops/op_info_register.py +24 -21
  98. mindspore/ops/operations/__init__.py +3 -2
  99. mindspore/ops/operations/_grad_ops.py +24 -4
  100. mindspore/ops/operations/_inner_ops.py +155 -23
  101. mindspore/ops/operations/array_ops.py +9 -7
  102. mindspore/ops/operations/comm_ops.py +2 -2
  103. mindspore/ops/operations/custom_ops.py +85 -68
  104. mindspore/ops/operations/inner_ops.py +26 -3
  105. mindspore/ops/operations/math_ops.py +4 -3
  106. mindspore/ops/operations/nn_ops.py +109 -28
  107. mindspore/parallel/_parallel_serialization.py +10 -3
  108. mindspore/parallel/_tensor.py +4 -1
  109. mindspore/parallel/checkpoint_transform.py +13 -2
  110. mindspore/parallel/shard.py +17 -10
  111. mindspore/profiler/common/util.py +1 -0
  112. mindspore/profiler/parser/ascend_hccl_generator.py +232 -0
  113. mindspore/profiler/parser/ascend_msprof_exporter.py +86 -43
  114. mindspore/profiler/parser/ascend_msprof_generator.py +196 -9
  115. mindspore/profiler/parser/ascend_op_generator.py +1 -1
  116. mindspore/profiler/parser/ascend_timeline_generator.py +6 -182
  117. mindspore/profiler/parser/base_timeline_generator.py +1 -1
  118. mindspore/profiler/parser/cpu_gpu_timeline_generator.py +2 -2
  119. mindspore/profiler/parser/framework_parser.py +1 -1
  120. mindspore/profiler/parser/profiler_info.py +19 -0
  121. mindspore/profiler/profiling.py +46 -24
  122. mindspore/rewrite/api/pattern_engine.py +1 -1
  123. mindspore/rewrite/parsers/for_parser.py +1 -1
  124. mindspore/rewrite/symbol_tree.py +1 -4
  125. mindspore/run_check/_check_version.py +5 -3
  126. mindspore/safeguard/rewrite_obfuscation.py +52 -28
  127. mindspore/train/callback/_summary_collector.py +1 -1
  128. mindspore/train/dataset_helper.py +1 -0
  129. mindspore/train/model.py +2 -2
  130. mindspore/train/serialization.py +97 -11
  131. mindspore/train/summary/_summary_adapter.py +1 -1
  132. mindspore/train/summary/summary_record.py +23 -7
  133. mindspore/version.py +1 -1
  134. {mindspore-2.2.0.dist-info → mindspore-2.2.10.dist-info}/METADATA +1 -1
  135. {mindspore-2.2.0.dist-info → mindspore-2.2.10.dist-info}/RECORD +138 -118
  136. {mindspore-2.2.0.dist-info → mindspore-2.2.10.dist-info}/WHEEL +0 -0
  137. {mindspore-2.2.0.dist-info → mindspore-2.2.10.dist-info}/entry_points.txt +0 -0
  138. {mindspore-2.2.0.dist-info → mindspore-2.2.10.dist-info}/top_level.txt +0 -0
@@ -718,9 +718,9 @@ class Conv3d(_Conv):
718
718
 
719
719
  .. math::
720
720
  \begin{array}{ll} \\
721
- D_{out} \left \lceil{\frac{D_{in}}{\text{stride[0]}}} \right \rceil \\
722
- H_{out} \left \lceil{\frac{H_{in}}{\text{stride[1]}}} \right \rceil \\
723
- W_{out} \left \lceil{\frac{W_{in}}{\text{stride[2]}}} \right \rceil \\
721
+ D_{out} = \left \lceil{\frac{D_{in}}{\text{stride[0]}}} \right \rceil \\
722
+ H_{out} = \left \lceil{\frac{H_{in}}{\text{stride[1]}}} \right \rceil \\
723
+ W_{out} = \left \lceil{\frac{W_{in}}{\text{stride[2]}}} \right \rceil \\
724
724
  \end{array}
725
725
 
726
726
 
@@ -728,11 +728,11 @@ class Conv3d(_Conv):
728
728
 
729
729
  .. math::
730
730
  \begin{array}{ll} \\
731
- D_{out} \left \lfloor{\frac{D_{in} - \text{dilation[0]} \times (\text{kernel_size[0]} - 1) }
731
+ D_{out} = \left \lfloor{\frac{D_{in} - \text{dilation[0]} \times (\text{kernel_size[0]} - 1) }
732
732
  {\text{stride[0]}} + 1} \right \rfloor \\
733
- H_{out} \left \lfloor{\frac{H_{in} - \text{dilation[1]} \times (\text{kernel_size[1]} - 1) }
733
+ H_{out} = \left \lfloor{\frac{H_{in} - \text{dilation[1]} \times (\text{kernel_size[1]} - 1) }
734
734
  {\text{stride[1]}} + 1} \right \rfloor \\
735
- W_{out} \left \lfloor{\frac{W_{in} - \text{dilation[2]} \times (\text{kernel_size[2]} - 1) }
735
+ W_{out} = \left \lfloor{\frac{W_{in} - \text{dilation[2]} \times (\text{kernel_size[2]} - 1) }
736
736
  {\text{stride[2]}} + 1} \right \rfloor \\
737
737
  \end{array}
738
738
 
@@ -740,11 +740,11 @@ class Conv3d(_Conv):
740
740
 
741
741
  .. math::
742
742
  \begin{array}{ll} \\
743
- D_{out} \left \lfloor{\frac{D_{in} + padding[0] + padding[1] - (\text{dilation[0]} - 1) \times
743
+ D_{out} = \left \lfloor{\frac{D_{in} + padding[0] + padding[1] - (\text{dilation[0]} - 1) \times
744
744
  \text{kernel_size[0]} - 1 }{\text{stride[0]}} + 1} \right \rfloor \\
745
- H_{out} \left \lfloor{\frac{H_{in} + padding[2] + padding[3] - (\text{dilation[1]} - 1) \times
745
+ H_{out} = \left \lfloor{\frac{H_{in} + padding[2] + padding[3] - (\text{dilation[1]} - 1) \times
746
746
  \text{kernel_size[1]} - 1 }{\text{stride[1]}} + 1} \right \rfloor \\
747
- W_{out} \left \lfloor{\frac{W_{in} + padding[4] + padding[5] - (\text{dilation[2]} - 1) \times
747
+ W_{out} = \left \lfloor{\frac{W_{in} + padding[4] + padding[5] - (\text{dilation[2]} - 1) \times
748
748
  \text{kernel_size[2]} - 1 }{\text{stride[2]}} + 1} \right \rfloor \\
749
749
  \end{array}
750
750
 
@@ -812,7 +812,7 @@ class Conv3d(_Conv):
812
812
  bias_init,
813
813
  data_format,
814
814
  dtype=dtype)
815
- out_channels = self.out_channels
815
+ out_channels = self.out_channels // group
816
816
  self.conv3d = P.Conv3D(out_channel=out_channels,
817
817
  kernel_size=self.kernel_size,
818
818
  mode=1,
@@ -820,17 +820,33 @@ class Conv3d(_Conv):
820
820
  pad=self.padding,
821
821
  stride=self.stride,
822
822
  dilation=self.dilation,
823
- group=group,
823
+ group=1,
824
824
  data_format=self.data_format)
825
825
  self.bias_add = P.BiasAdd(data_format=self.data_format)
826
826
  self.shape = P.Shape()
827
+ self.concat = P.Concat(1)
828
+ self.split_0 = P.Split(0, self.group)
829
+ self.split_1 = P.Split(1, self.group)
827
830
 
828
831
  def construct(self, x):
829
832
  x_shape = self.shape(x)
830
833
  _check_input_5dims(x_shape, self.cls_name)
831
- out = self.conv3d(x, self.weight)
832
- if self.has_bias:
833
- out = self.bias_add(out, self.bias)
834
+ if self.group == 1:
835
+ out = self.conv3d(x, self.weight)
836
+ if self.has_bias:
837
+ out = self.bias_add(out, self.bias)
838
+ else:
839
+ features = self.split_1(x)
840
+ weights = self.split_0(self.weight)
841
+ outputs = ()
842
+ for i in range(self.group):
843
+ output = self.conv3d(features[i], weights[i])
844
+ outputs = outputs + (output,)
845
+ out = self.concat(outputs)
846
+ if self.bias is not None:
847
+ new_shape = [1 for _ in range(out.ndim)]
848
+ new_shape[1] = self.out_channels
849
+ out = out + self.bias.reshape(new_shape)
834
850
  return out
835
851
 
836
852
 
@@ -921,9 +937,9 @@ class Conv3dTranspose(_Conv):
921
937
 
922
938
  .. math::
923
939
  \begin{array}{ll} \\
924
- D_{out} \left \lfloor{\frac{D_{in}}{\text{stride[0]}} + 1} \right \rfloor \\
925
- H_{out} \left \lfloor{\frac{H_{in}}{\text{stride[1]}} + 1} \right \rfloor \\
926
- W_{out} \left \lfloor{\frac{W_{in}}{\text{stride[2]}} + 1} \right \rfloor \\
940
+ D_{out} = \left \lfloor{\frac{D_{in}}{\text{stride[0]}} + 1} \right \rfloor \\
941
+ H_{out} = \left \lfloor{\frac{H_{in}}{\text{stride[1]}} + 1} \right \rfloor \\
942
+ W_{out} = \left \lfloor{\frac{W_{in}}{\text{stride[2]}} + 1} \right \rfloor \\
927
943
  \end{array}
928
944
 
929
945
 
@@ -931,11 +947,11 @@ class Conv3dTranspose(_Conv):
931
947
 
932
948
  .. math::
933
949
  \begin{array}{ll} \\
934
- D_{out} \left \lfloor{\frac{D_{in} - \text{dilation[0]} \times (\text{kernel_size[0]} - 1) }
950
+ D_{out} = \left \lfloor{\frac{D_{in} - \text{dilation[0]} \times (\text{kernel_size[0]} - 1) }
935
951
  {\text{stride[0]}} + 1} \right \rfloor \\
936
- H_{out} \left \lfloor{\frac{H_{in} - \text{dilation[1]} \times (\text{kernel_size[1]} - 1) }
952
+ H_{out} = \left \lfloor{\frac{H_{in} - \text{dilation[1]} \times (\text{kernel_size[1]} - 1) }
937
953
  {\text{stride[1]}} + 1} \right \rfloor \\
938
- W_{out} \left \lfloor{\frac{W_{in} - \text{dilation[2]} \times (\text{kernel_size[2]} - 1) }
954
+ W_{out} = \left \lfloor{\frac{W_{in} - \text{dilation[2]} \times (\text{kernel_size[2]} - 1) }
939
955
  {\text{stride[2]}} + 1} \right \rfloor \\
940
956
  \end{array}
941
957
 
@@ -943,11 +959,11 @@ class Conv3dTranspose(_Conv):
943
959
 
944
960
  .. math::
945
961
  \begin{array}{ll} \\
946
- D_{out} \left \lfloor{\frac{D_{in} + padding[0] + padding[1] - (\text{dilation[0]} - 1) \times
962
+ D_{out} = \left \lfloor{\frac{D_{in} + padding[0] + padding[1] - (\text{dilation[0]} - 1) \times
947
963
  \text{kernel_size[0]} - 1 }{\text{stride[0]}} + 1} \right \rfloor \\
948
- H_{out} \left \lfloor{\frac{H_{in} + padding[2] + padding[3] - (\text{dilation[1]} - 1) \times
964
+ H_{out} = \left \lfloor{\frac{H_{in} + padding[2] + padding[3] - (\text{dilation[1]} - 1) \times
949
965
  \text{kernel_size[1]} - 1 }{\text{stride[1]}} + 1} \right \rfloor \\
950
- W_{out} \left \lfloor{\frac{W_{in} + padding[4] + padding[5] - (\text{dilation[2]} - 1) \times
966
+ W_{out} = \left \lfloor{\frac{W_{in} + padding[4] + padding[5] - (\text{dilation[2]} - 1) \times
951
967
  \text{kernel_size[2]} - 1 }{\text{stride[2]}} + 1} \right \rfloor \\
952
968
  \end{array}
953
969
 
@@ -57,14 +57,15 @@ class FlashAttention(Cell):
57
57
  Default True
58
58
  alibi(bool): This parameter indicates whether the flashattention supports the Alibi.
59
59
  Default: False
60
+ use_mqa(bool): Using MHA if True, only take effect under 910B. Default: False.
60
61
 
61
62
 
62
63
  Inputs:
63
64
  - **query** (Tensor) - Tensor query (:class:`mstype.fp16` [batch_size, head_num, seq_length, head_dim])
64
65
  - **key** (Tensor) - Tensor key (:class:`mstype.fp16` [batch_size, head_num, seq_length, head_dim])
65
66
  - **value** (Tensor) - Tensor value (:class:`mstype.fp16` [batch_size, head_num, seq_length, head_dim])
66
- - **attention_mask** (Tensor) - Float Tensor the mask of (:class:`mstype.fp16` [batch_size, seq_length,
67
- seq_length]): A matrix to pass masked information.
67
+ - **attention_mask** (Tensor) - Float Tensor the mask of (:class:`mstype.fp16` `mstype.uint8`
68
+ [batch_size, seq_length, seq_length]): A matrix to pass masked information.
68
69
 
69
70
  Outputs:
70
71
  A Tensor. The output of the attention with shape [batch_size, head_num, seq_length, head_dim]
@@ -102,17 +103,23 @@ class FlashAttention(Cell):
102
103
  mp=1,
103
104
  high_precision=False,
104
105
  have_attention_mask_batch=True,
105
- alibi=False
106
+ alibi=False,
107
+ use_mqa=False
106
108
  ):
107
109
  super(FlashAttention, self).__init__()
108
110
 
109
111
  scaling_constant = math.sqrt(head_dim)
110
112
  if scaling_constant == 0:
111
113
  raise ValueError("the scaling constant must not be 0.")
112
- self.scale_factor = Tensor([1. / scaling_constant], dtype=mstype.float16)
113
-
114
- self.is_910A = MSContext.get_instance().get_ascend_soc_version() == "Ascend910"
114
+ self.dropout_rate = dropout_rate
115
+ self.is_910A = MSContext.get_instance().get_ascend_soc_version() == "ascend910"
115
116
  if self.is_910A:
117
+ self.scale_factor = Tensor([1. / math.sqrt(scaling_constant)], dtype=mstype.float16)
118
+ self.scale_mul = ops.Mul().shard(((dp, mp, 1, 1), (1,)))
119
+ self.ones = ops.Ones()
120
+ self.dim_mask = Tensor([1 for _ in range(head_dim)], dtype=mstype.int8)
121
+ self.have_attention_mask_batch = have_attention_mask_batch
122
+ self.alibi = alibi
116
123
  self.flash_attention = get_flash_attention(
117
124
  prev_block_num=prev_block_num,
118
125
  next_block_num=next_block_num,
@@ -120,6 +127,10 @@ class FlashAttention(Cell):
120
127
  high_precision=high_precision
121
128
  )
122
129
  self.flash_attention.add_prim_attr("primitive_target", "Ascend")
130
+ fa_strategies = ((dp, mp, 1, 1),
131
+ (dp, mp, 1, 1),
132
+ (dp, mp, 1, 1))
133
+ self.shard(fa_strategies)
123
134
  else:
124
135
  if alibi:
125
136
  raise ValueError(f"When soc_version is not Ascend910A, alibi must be False")
@@ -128,25 +139,27 @@ class FlashAttention(Cell):
128
139
  self.reshape = ops.Reshape()
129
140
  self.zeros_like = ops.ZerosLike().shard(((dp, mp, 1, 1),))
130
141
  self.zeros = ops.Zeros()
131
- self.attn_expand_dims = ops.ExpandDims().shard(((dp, 1, 1),))
132
- fa_strategies = ((dp, 1, mp),
133
- (dp, 1, mp),
134
- (dp, 1, mp),
135
- (dp, 1, 1, 1))
142
+ self.attn_cast = ops.Cast()
143
+ if use_mqa:
144
+ fa_strategies = ((dp, mp, 1, 1),
145
+ (dp, 1, 1, 1),
146
+ (dp, 1, 1, 1),
147
+ (dp, 1, 1, 1))
148
+ else:
149
+ fa_strategies = ((dp, mp, 1, 1),
150
+ (dp, mp, 1, 1),
151
+ (dp, mp, 1, 1),
152
+ (dp, 1, 1, 1))
136
153
  if dropout_rate > 1e-5:
137
154
  fa_strategies += ((dp, mp, 1, 1),)
138
155
  self.flash_attention = FlashAttentionScore(head_num=head_num, pre_tokens=prev_block_num,
139
156
  next_tokens=next_block_num,
140
157
  keep_prob=1 - dropout_rate,
141
- scale_value=1.0,
142
- inner_precise=0 if high_precision else 1).shard(fa_strategies)
158
+ scale_value=1. / scaling_constant,
159
+ inner_precise=0 if high_precision else 1,
160
+ input_layout="BNSD").shard(fa_strategies)
143
161
 
144
- self.ones = ops.Ones()
145
- self.dim_mask = Tensor([1 for _ in range(head_dim)], dtype=mstype.int8)
146
- self.scale_mul = ops.Mul().shard(((dp, mp, 1, 1), (1,)))
147
162
  self.dropout_rate = dropout_rate
148
- self.have_attention_mask_batch = have_attention_mask_batch
149
- self.alibi = alibi
150
163
  if self.dropout_rate > 1e-5:
151
164
  self.keep_prob = Tensor(1 - self.dropout_rate, dtype=mstype.float16)
152
165
  self.fill_v2 = ops.FillV2().shard(((dp, mp, 1, 1), ()))
@@ -162,46 +175,49 @@ class FlashAttention(Cell):
162
175
  such as MatMul. Default: None.
163
176
  :return:
164
177
  """
165
- if in_strategy is None:
166
- # default: dp=1, mp=1, construct inputs only contain query, key, value
167
- in_strategy = (
168
- (1, 1, 1, 1),
169
- (1, 1, 1, 1),
170
- (1, 1, 1, 1),
171
- )
172
- self.flash_attention.shard(in_strategy)
173
- dp = in_strategy[0][0]
174
- mp = in_strategy[0][1]
175
- self.flash_attention.add_prim_attr("dev_matrix_shape", [dp, mp, 1, 1])
176
- inputs_tensor_map = [
177
- [3, 2, 1, 0],
178
- [3, 2, 1, 0],
179
- [3, 2, 1, 0],
180
- ]
181
- if self.have_attention_mask_batch:
182
- inputs_tensor_map.append([3, 1, 0])
183
- else:
184
- inputs_tensor_map.append([-1, 1, 0])
178
+ if self.is_910A:
179
+ if in_strategy is None:
180
+ # default: dp=1, mp=1, construct inputs only contain query, key, value
181
+ in_strategy = (
182
+ (1, 1, 1, 1),
183
+ (1, 1, 1, 1),
184
+ (1, 1, 1, 1),
185
+ )
186
+ self.flash_attention.shard(in_strategy)
187
+ dp = in_strategy[0][0]
188
+ mp = in_strategy[0][1]
189
+ self.flash_attention.add_prim_attr("dev_matrix_shape", [dp, mp, 1, 1])
190
+ inputs_tensor_map = [
191
+ [3, 2, 1, 0],
192
+ [3, 2, 1, 0],
193
+ [3, 2, 1, 0],
194
+ ]
195
+ if self.have_attention_mask_batch:
196
+ inputs_tensor_map.append([3, 1, 0])
197
+ else:
198
+ inputs_tensor_map.append([-1, 1, 0])
185
199
 
186
- input_empty_args_num = 2
187
- # dropout_mask
188
- if self.dropout_rate > 1e-5:
189
- input_empty_args_num -= 1
190
- inputs_tensor_map.append([3, 2, 1, 0])
200
+ input_empty_args_num = 2
201
+ # dropout_mask
202
+ if self.dropout_rate > 1e-5:
203
+ input_empty_args_num -= 1
204
+ inputs_tensor_map.append([3, 2, 1, 0])
191
205
 
192
- if self.alibi:
193
- input_empty_args_num -= 1
194
- inputs_tensor_map.append([3, 2, 1, 0])
206
+ if self.alibi:
207
+ input_empty_args_num -= 1
208
+ inputs_tensor_map.append([3, 2, 1, 0])
195
209
 
196
- self.flash_attention.add_prim_attr("inputs_tensor_map", inputs_tensor_map)
210
+ self.flash_attention.add_prim_attr("inputs_tensor_map", inputs_tensor_map)
197
211
 
198
- self.flash_attention.add_prim_attr("outputs_tensor_map", [
199
- [3, 2, 1, 0], # O
200
- [3, 2, 1], # L
201
- [3, 2, 1] # M
202
- ])
203
- self.flash_attention.add_prim_attr("as_loss_divisor", 0)
204
- self.flash_attention.add_prim_attr("empty_mirror_ops", input_empty_args_num)
212
+ self.flash_attention.add_prim_attr("outputs_tensor_map", [
213
+ [3, 2, 1, 0], # O
214
+ [3, 2, 1], # L
215
+ [3, 2, 1] # M
216
+ ])
217
+ self.flash_attention.add_prim_attr("as_loss_divisor", 0)
218
+ self.flash_attention.add_prim_attr("empty_mirror_ops", input_empty_args_num)
219
+ else:
220
+ self.flash_attention.shard(in_strategy)
205
221
 
206
222
  def construct(self, query, key, value, attn_mask=None, alibi_mask=None):
207
223
  """FlashAttention forward
@@ -212,24 +228,22 @@ class FlashAttention(Cell):
212
228
  :param alibi_mask: [bsz, head_num, 1, seq_len], if not None
213
229
  :return: output [bsz, head_num, seq_len, head_dim]
214
230
  """
215
- query = self.scale_mul(query, self.scale_factor)
216
231
  bsz, head_num, seq_len, head_dim = query.shape
217
- _, k_head_num, k_seq_len, _ = key.shape
218
- _, v_head_num, v_seq_len, _ = value.shape
219
- if head_num != k_head_num or head_num != v_head_num:
220
- raise ValueError(
221
- "the head_num of query, key and value must be the same, "
222
- "If different head_num are used, users need to change themselves to be same by tile.")
223
- if seq_len % 16 != 0 or k_seq_len % 16 != 0 or k_seq_len != v_seq_len:
224
- raise ValueError(
225
- "query, key, value seq_len must be a multiple of 16, and key seq_len, value seq_len must be the same.")
226
-
227
- if head_dim > 304:
228
- raise ValueError(
229
- "the head_dim must be less than 304, otherwise the ub would be OOM.")
230
-
231
232
  if self.is_910A:
233
+ _, k_head_num, k_seq_len, _ = key.shape
234
+ _, v_head_num, v_seq_len, _ = value.shape
235
+ if head_num != k_head_num or head_num != v_head_num:
236
+ raise ValueError(
237
+ "the head_num of query, key and value must be the same, "
238
+ "If different head_num are used, users need to change themselves to be same by tile.")
239
+ if seq_len % 16 != 0 or k_seq_len % 16 != 0 or k_seq_len != v_seq_len:
240
+ raise ValueError(
241
+ "query, key, value seq_len must be a multiple of 16, "
242
+ "and the seq_len between key and value must be equal.")
232
243
  # 910A -- FlashAttentionPrimtive
244
+ if head_dim > 304:
245
+ raise ValueError(
246
+ "the head_dim must be less than 304, otherwise the ub would be OOM.")
233
247
  if self.dropout_rate > 1e-5:
234
248
  drop_mask_bits = self.drop_gen_mask((bsz, head_num, seq_len, seq_len), self.keep_prob)
235
249
  tensor_shape = Tensor((bsz, head_num, seq_len, seq_len), mstype.int32)
@@ -238,27 +252,25 @@ class FlashAttention(Cell):
238
252
  drop_mask = self.do_dropout(ones, drop_mask_bits, self.keep_prob)
239
253
  else:
240
254
  drop_mask = None
255
+ query = self.scale_mul(query, self.scale_factor)
256
+ key = self.scale_mul(key, self.scale_factor)
257
+ attn_mask = self.cast(attn_mask, mstype.float16)
241
258
  output, _, _ = self.flash_attention(query, key, value, attn_mask, drop_mask, alibi_mask)
242
259
  else:
243
- # FlashAttentionScore
244
- # Useless input, just for binary calls.
260
+ # 910B -- FlashAttentionScore
245
261
  if self.dropout_rate > 1e-5:
246
262
  drop_mask_bits = self.reshape(self.drop_gen_mask((bsz, head_num, seq_len, seq_len), self.keep_prob),
247
263
  (bsz, head_num, seq_len, seq_len // 8))
248
264
  else:
249
265
  drop_mask_bits = None
250
- # (B, N, S, D) -> (B, S, H)
251
- query = self.reshape(self.transpose_4d_pre(query, (0, 2, 1, 3)), (bsz, seq_len, -1))
252
- key = self.reshape(self.transpose_4d_pre(key, (0, 2, 1, 3)), (bsz, seq_len, -1))
253
- value = self.reshape(self.transpose_4d_pre(value, (0, 2, 1, 3)), (bsz, seq_len, -1))
254
- attn_mask = self.attn_expand_dims(attn_mask, 1)
266
+ # (B, S, S) -> (B, 1, S, S)
267
+ attn_mask = self.cast(self.reshape(attn_mask, (bsz, 1, seq_len, seq_len)), mstype.uint8)
255
268
  output, _, _ = self.flash_attention(query,
256
269
  key,
257
270
  value,
258
271
  attn_mask,
259
272
  drop_mask_bits,
260
273
  None,
274
+ None,
261
275
  None)
262
- output = self.transpose_4d_post(self.reshape(output, (bsz, seq_len, head_num, head_dim)), (0, 2, 1, 3))
263
-
264
276
  return output
@@ -375,9 +375,6 @@ class DiGamma(Cell):
375
375
  nan, real_result)
376
376
 
377
377
 
378
- eps_fp32 = Tensor(np.finfo(np.float32).eps, mstype.float32)
379
-
380
-
381
378
  def _while_helper_func(cond, body, vals):
382
379
  while cond(vals).any():
383
380
  vals = body(vals)
@@ -394,7 +391,7 @@ def _igamma_series(ax, x, a, enabled):
394
391
  select = P.Select()
395
392
 
396
393
  # If more data types are supported, this epsilon need to be selected.
397
- epsilon = eps_fp32
394
+ epsilon = Tensor(np.finfo(np.float32).eps, mstype.float32)
398
395
 
399
396
  def cond(vals):
400
397
  enabled = vals[0]
@@ -443,7 +440,7 @@ def _igammac_continued_fraction(ax, x, a, enabled):
443
440
  select = P.Select()
444
441
 
445
442
  # If more data types are supported, this epsilon need to be selected.
446
- epsilon = eps_fp32
443
+ epsilon = Tensor(np.finfo(np.float32).eps, mstype.float32)
447
444
 
448
445
  def cond(vals):
449
446
  enabled = vals[0]
@@ -620,8 +617,7 @@ class IGamma(Cell):
620
617
  x = F.broadcast_to(x, para_shape)
621
618
  a = F.broadcast_to(a, para_shape)
622
619
  x_is_zero = self.equal(x, 0)
623
- log_maxfloat = self.log_maxfloat32
624
- underflow = self.less(ax, self.neg(log_maxfloat))
620
+ underflow = self.less(ax, self.neg(self.log_maxfloat32))
625
621
  ax = self.exp(ax)
626
622
  enabled = self.logicalnot(self.logicalor(self.logicalor(x_is_zero, domain_error), underflow))
627
623
  output = self.select(use_igammac,
@@ -83,7 +83,7 @@ def _check_lstmcell_init(func):
83
83
 
84
84
 
85
85
  def _rnn_tanh_cell(inputs, hidden, w_ih, w_hh, b_ih, b_hh):
86
- '''RNN cell function with tanh activation'''
86
+ """RNN cell function with tanh activation"""
87
87
  if b_ih is None:
88
88
  igates = P.MatMul(False, True)(inputs, w_ih)
89
89
  hgates = P.MatMul(False, True)(hidden, w_hh)
@@ -94,7 +94,7 @@ def _rnn_tanh_cell(inputs, hidden, w_ih, w_hh, b_ih, b_hh):
94
94
 
95
95
 
96
96
  def _rnn_relu_cell(inputs, hidden, w_ih, w_hh, b_ih, b_hh):
97
- '''RNN cell function with relu activation'''
97
+ """RNN cell function with relu activation"""
98
98
  if b_ih is None:
99
99
  igates = P.MatMul(False, True)(inputs, w_ih)
100
100
  hgates = P.MatMul(False, True)(hidden, w_hh)
@@ -105,7 +105,7 @@ def _rnn_relu_cell(inputs, hidden, w_ih, w_hh, b_ih, b_hh):
105
105
 
106
106
 
107
107
  def _lstm_cell(inputs, hidden, w_ih, w_hh, b_ih, b_hh):
108
- '''LSTM cell function'''
108
+ """LSTM cell function"""
109
109
  hx, cx = hidden
110
110
  if b_ih is None:
111
111
  gates = P.MatMul(False, True)(inputs, w_ih) + P.MatMul(False, True)(hx, w_hh)
@@ -125,7 +125,7 @@ def _lstm_cell(inputs, hidden, w_ih, w_hh, b_ih, b_hh):
125
125
 
126
126
 
127
127
  def _gru_cell(inputs, hidden, w_ih, w_hh, b_ih, b_hh):
128
- '''GRU cell function'''
128
+ """GRU cell function"""
129
129
  if b_ih is None:
130
130
  gi = P.MatMul(False, True)(inputs, w_ih)
131
131
  gh = P.MatMul(False, True)(hidden, w_hh)
@@ -144,7 +144,7 @@ def _gru_cell(inputs, hidden, w_ih, w_hh, b_ih, b_hh):
144
144
 
145
145
 
146
146
  class RNNCellBase(Cell):
147
- '''Basic class for RNN Cells'''
147
+ """Basic class for RNN Cells"""
148
148
  def __init__(self, input_size: int, hidden_size: int, has_bias: bool, num_chunks: int,
149
149
  dtype=mstype.float32):
150
150
  super().__init__()
@@ -644,6 +644,9 @@ class PipelineCell(Cell):
644
644
  self.micro_inputs = nn.CellList()
645
645
  self.micro_size = micro_size
646
646
  self.add_list = []
647
+ if not isinstance(network, Cell):
648
+ raise TypeError("For 'PipelineCell', the argument 'network' must cell type, "
649
+ "but got the type : {}.".format(type(network)))
647
650
  if not isinstance(micro_size, int):
648
651
  raise TypeError("For 'PipelineCell', the argument 'micro_size' must be integer, "
649
652
  "but got the type : {}.".format(type(micro_size)))
@@ -689,6 +692,9 @@ class GradAccumulationCell(Cell):
689
692
  self.micro_inputs = nn.CellList()
690
693
  self.micro_size = micro_size
691
694
  self.add_list = []
695
+ if not isinstance(network, Cell):
696
+ raise TypeError("For 'GradAccumulationCell', the argument 'network' must cell type, "
697
+ "but got the type : {}.".format(type(network)))
692
698
  if not isinstance(micro_size, int):
693
699
  raise TypeError("For 'GradAccumulationCell', the argument 'micro_size' must be integer, "
694
700
  "but got the type : {}.".format(type(micro_size)))
@@ -143,8 +143,8 @@ def _infer_out_shape(*shapes):
143
143
  shape_out = list()
144
144
  max_len = max([len(it) for it in shapes])
145
145
  for i in range(max_len):
146
- items = [it[i-max_len+len(it)] if i-max_len +
147
- len(it) >= 0 else 1 for it in shapes]
146
+ items = [
147
+ it[i - max_len + len(it)] if i - max_len + len(it) >= 0 else 1 for it in shapes]
148
148
  max_size = 0 if 0 in items else max(items)
149
149
  _check()
150
150
  shape_out.append(max_size)
@@ -158,8 +158,8 @@ def _can_broadcast(*shapes):
158
158
  """
159
159
  max_len = max([len(it) for it in shapes])
160
160
  for i in range(max_len):
161
- items = [it[i-max_len+len(it)] if i-max_len +
162
- len(it) >= 0 else 1 for it in shapes]
161
+ items = [
162
+ it[i - max_len + len(it)] if i - max_len + len(it) >= 0 else 1 for it in shapes]
163
163
  max_size = 0 if 0 in items else max(items)
164
164
  if any(item not in (1, max_size) for item in items):
165
165
  return False
@@ -399,7 +399,7 @@ def _broadcast_tuples(tup1, tup2):
399
399
  if not isinstance(tup1, (tuple, list)) or not isinstance(tup2, (tuple, list)):
400
400
  raise TypeError("input shift and axis must be tuple or list or int.")
401
401
  if len(tup1) == len(tup2) or len(tup1) == 1 or len(tup2) == 1:
402
- return None
402
+ return
403
403
  raise ValueError("shape mismatch: objects cannot be broadcast to a single shape")
404
404
 
405
405
  tup1 = (tup1,) if isinstance(tup1, int) else tup1
@@ -203,7 +203,7 @@ def get_bprop_index_put(self):
203
203
  if is_ascend:
204
204
  indices_ms = [convert_idx_positive(indices_ms[i], x1.shape[i]) for i in range(len(indices_ms))]
205
205
  indices_me = stack(indices_ms)
206
- indices_grad = F.transpose(indices_me, F.make_range(F.rank(indices_me)-1, -1, -1))
206
+ indices_grad = F.transpose(indices_me, F.make_range(F.rank(indices_me) - 1, -1, -1))
207
207
  values_grad = gather_nd(dout, indices_grad)
208
208
  if equal(cast(x2.shape[0], mstype.int32), Tensor(1)):
209
209
  values_grad = values_grad.sum().reshape(1)
@@ -19,7 +19,7 @@ from mindspore.ops import functional as F
19
19
  from mindspore.ops import operations as P
20
20
  from mindspore.ops.composite import multitype_ops as C
21
21
  from mindspore.ops.composite.multitype_ops.zeros_like_impl import zeros_like
22
- from mindspore.ops._grad_experimental.grad_base import bprops
22
+ from mindspore.ops._grad_experimental.grad_base import bprops, bprop_getters
23
23
  from mindspore.common import dtype as mstype
24
24
 
25
25
  get_dtype = P.DType()
@@ -193,7 +193,7 @@ def bprop_tensor_move(x, out, dout):
193
193
  return (dout,)
194
194
 
195
195
 
196
- @bprops.register("DictInplaceSetItem")
196
+ @bprop_getters.register("DictInplaceSetItem")
197
197
  def get_bprop_dict_inplace_setitem(self):
198
198
  """Generate bprop for dict inplace pop"""
199
199
 
@@ -135,7 +135,7 @@ def get_bprop_matrix_triangular_solve(self):
135
135
 
136
136
  def bprop(matrix, rhs, out, dout):
137
137
  grad_rhs = matrix_triangular_solve_op(matrix, dout)
138
- if matrix.dtype == mstype.complex64 or matrix.dtype == mstype.complex128:
138
+ if matrix.dtype in (mstype.complex64, mstype.complex128):
139
139
  grad_rhs_temp = _adjoint(grad_rhs)
140
140
  out_temp = _adjoint(out)
141
141
  else:
@@ -156,14 +156,14 @@ def get_bprop_matrix_triangular_solve(self):
156
156
  grad_matrix = mat_mul_op(grad_rhs, out_temp)
157
157
  grad_matrix = neg_op(grad_matrix)
158
158
  if lower_a:
159
- if grad_matrix.dtype == mstype.complex64 or grad_matrix.dtype == mstype.complex128:
159
+ if grad_matrix.dtype in (mstype.complex64, mstype.complex128):
160
160
  grad_matrix_real = matrix_band_part_op(real_op(grad_matrix), -1, 0)
161
161
  grad_matrix_imag = matrix_band_part_op(imag_op(grad_matrix), -1, 0)
162
162
  grad_matrix = complex_op(grad_matrix_real, grad_matrix_imag)
163
163
  else:
164
164
  grad_matrix = matrix_band_part_op(grad_matrix, -1, 0)
165
165
  else:
166
- if grad_matrix.dtype == mstype.complex64 or grad_matrix.dtype == mstype.complex128:
166
+ if grad_matrix.dtype in (mstype.complex64, mstype.complex128):
167
167
  grad_matrix_real = matrix_band_part_op(real_op(grad_matrix), 0, -1)
168
168
  grad_matrix_imag = matrix_band_part_op(imag_op(grad_matrix), 0, -1)
169
169
  grad_matrix = complex_op(grad_matrix_real, grad_matrix_imag)
@@ -219,7 +219,7 @@ def get_bprop_matrix_solve(self):
219
219
  @_primexpr
220
220
  def _generate_perm_matrix_solve_ls(x_dim):
221
221
  perm = tuple(range(x_dim - 2))
222
- perm = perm + (x_dim-1, x_dim-2)
222
+ perm = perm + (x_dim - 1, x_dim - 2)
223
223
  return perm
224
224
 
225
225
 
@@ -647,20 +647,21 @@ def _fft_rank_offset(norm_shape, rank):
647
647
  @_primexpr
648
648
  def _fft_with_size_back_norm(norm_shape, norm, inverse, rank):
649
649
  """generate reverse term for fft_with_size"""
650
+ norm_ = None
650
651
  if inverse is False:
651
652
  if norm == "forward":
652
- norm_ = 1 / _fft_rank_offset(norm_shape, rank)
653
- if norm == "backward":
654
- norm_ = 1 * _fft_rank_offset(norm_shape, rank)
655
- if norm == "ortho":
656
- norm_ = 1
657
- if inverse is True:
653
+ norm_ = 1.0 / _fft_rank_offset(norm_shape, rank)
654
+ elif norm == "backward":
655
+ norm_ = 1.0 * _fft_rank_offset(norm_shape, rank)
656
+ elif norm == "ortho":
657
+ norm_ = 1.0
658
+ else:
658
659
  if norm == "forward":
659
- norm_ = 1 * _fft_rank_offset(norm_shape, rank)
660
- if norm == "backward":
661
- norm_ = 1 / _fft_rank_offset(norm_shape, rank)
662
- if norm == "ortho":
663
- norm_ = 1
660
+ norm_ = 1.0 * _fft_rank_offset(norm_shape, rank)
661
+ elif norm == "backward":
662
+ norm_ = 1.0 / _fft_rank_offset(norm_shape, rank)
663
+ elif norm == "ortho":
664
+ norm_ = 1.0
664
665
  return norm_
665
666
 
666
667
 
@@ -670,9 +671,9 @@ def _rfft_norm(norm_shape, norm, rank):
670
671
  norm_ = 1.0
671
672
  if norm == "forward":
672
673
  norm_ = 1 / _fft_rank_offset(norm_shape, rank)
673
- if norm == "backward":
674
- norm_ = 1
675
- if norm == "ortho":
674
+ elif norm == "backward":
675
+ norm_ = 1.0
676
+ elif norm == "ortho":
676
677
  norm_ = 1 / np.sqrt(_fft_rank_offset(norm_shape, rank))
677
678
  return norm_
678
679
 
@@ -358,10 +358,10 @@ def get_bprop_ragged_tensor_to_sparse(self):
358
358
  split.append(zeros_like(i))
359
359
  all_d = (split, ragged_values_grad)
360
360
  return all_d
361
- split = ()
361
+ split_ = ()
362
362
  for i in enumerate(rt_nested_splits):
363
- split = split + (zeros_like(i),)
364
- all_d = (split, ragged_values_grad)
363
+ split_ = split_ + (zeros_like(i),)
364
+ all_d = (split_, ragged_values_grad)
365
365
  return all_d
366
366
 
367
367
  return bprop