mindspore 2.2.0__cp38-cp38-win_amd64.whl → 2.2.11__cp38-cp38-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of mindspore might be problematic. Click here for more details.

Files changed (112) hide show
  1. mindspore/.commit_id +1 -1
  2. mindspore/_c_dataengine.cp38-win_amd64.pyd +0 -0
  3. mindspore/_c_expression.cp38-win_amd64.pyd +0 -0
  4. mindspore/_c_mindrecord.cp38-win_amd64.pyd +0 -0
  5. mindspore/_checkparam.py +3 -3
  6. mindspore/_extends/graph_kernel/model/graph_split.py +84 -76
  7. mindspore/_extends/graph_kernel/splitter.py +3 -2
  8. mindspore/_extends/parallel_compile/akg_compiler/build_tbe_kernel.py +83 -66
  9. mindspore/_extends/parallel_compile/akg_compiler/tbe_topi.py +4 -4
  10. mindspore/_extends/parallel_compile/akg_compiler/util.py +10 -7
  11. mindspore/_extends/parallel_compile/tbe_compiler/tbe_helper.py +2 -1
  12. mindspore/_extends/parse/__init__.py +3 -2
  13. mindspore/_extends/parse/parser.py +6 -1
  14. mindspore/_extends/parse/standard_method.py +14 -11
  15. mindspore/_extends/remote/kernel_build_server.py +2 -1
  16. mindspore/common/_utils.py +16 -0
  17. mindspore/common/api.py +1 -1
  18. mindspore/common/auto_dynamic_shape.py +81 -85
  19. mindspore/common/dump.py +1 -1
  20. mindspore/common/tensor.py +3 -20
  21. mindspore/config/op_info.config +1 -1
  22. mindspore/context.py +11 -4
  23. mindspore/dataset/engine/cache_client.py +8 -5
  24. mindspore/dataset/engine/datasets_standard_format.py +5 -0
  25. mindspore/dataset/vision/transforms.py +21 -21
  26. mindspore/experimental/optim/adam.py +1 -1
  27. mindspore/gen_ops.py +1 -1
  28. mindspore/include/api/model.h +17 -0
  29. mindspore/include/api/status.h +8 -3
  30. mindspore/mindspore_backend.dll +0 -0
  31. mindspore/mindspore_common.dll +0 -0
  32. mindspore/mindspore_core.dll +0 -0
  33. mindspore/mindspore_shared_lib.dll +0 -0
  34. mindspore/nn/cell.py +0 -3
  35. mindspore/nn/layer/activation.py +4 -5
  36. mindspore/nn/layer/conv.py +39 -23
  37. mindspore/nn/layer/flash_attention.py +54 -129
  38. mindspore/nn/layer/math.py +3 -7
  39. mindspore/nn/layer/rnn_cells.py +5 -5
  40. mindspore/nn/wrap/__init__.py +4 -2
  41. mindspore/nn/wrap/cell_wrapper.py +12 -3
  42. mindspore/numpy/utils_const.py +5 -5
  43. mindspore/opencv_core452.dll +0 -0
  44. mindspore/opencv_imgcodecs452.dll +0 -0
  45. mindspore/opencv_imgproc452.dll +0 -0
  46. mindspore/ops/_grad_experimental/grad_array_ops.py +1 -1
  47. mindspore/ops/_grad_experimental/grad_implementations.py +2 -2
  48. mindspore/ops/_grad_experimental/grad_math_ops.py +19 -18
  49. mindspore/ops/_grad_experimental/grad_sparse_ops.py +3 -3
  50. mindspore/ops/_op_impl/aicpu/add.py +3 -3
  51. mindspore/ops/_op_impl/aicpu/linear_sum_assignment.py +21 -2
  52. mindspore/ops/_utils/utils.py +2 -0
  53. mindspore/ops/composite/multitype_ops/_compile_utils.py +2 -1
  54. mindspore/ops/composite/multitype_ops/getitem_impl.py +2 -2
  55. mindspore/ops/function/array_func.py +10 -7
  56. mindspore/ops/function/grad/grad_func.py +0 -1
  57. mindspore/ops/function/nn_func.py +98 -9
  58. mindspore/ops/function/random_func.py +2 -1
  59. mindspore/ops/op_info_register.py +24 -21
  60. mindspore/ops/operations/__init__.py +6 -2
  61. mindspore/ops/operations/_grad_ops.py +25 -6
  62. mindspore/ops/operations/_inner_ops.py +155 -23
  63. mindspore/ops/operations/array_ops.py +9 -7
  64. mindspore/ops/operations/comm_ops.py +2 -2
  65. mindspore/ops/operations/custom_ops.py +85 -68
  66. mindspore/ops/operations/inner_ops.py +26 -3
  67. mindspore/ops/operations/math_ops.py +7 -6
  68. mindspore/ops/operations/nn_ops.py +193 -49
  69. mindspore/parallel/_parallel_serialization.py +10 -3
  70. mindspore/parallel/_tensor.py +4 -1
  71. mindspore/parallel/checkpoint_transform.py +13 -2
  72. mindspore/parallel/shard.py +17 -10
  73. mindspore/profiler/common/util.py +1 -0
  74. mindspore/profiler/parser/ascend_hccl_generator.py +232 -0
  75. mindspore/profiler/parser/ascend_msprof_exporter.py +86 -43
  76. mindspore/profiler/parser/ascend_msprof_generator.py +196 -9
  77. mindspore/profiler/parser/ascend_op_generator.py +1 -1
  78. mindspore/profiler/parser/ascend_timeline_generator.py +6 -182
  79. mindspore/profiler/parser/base_timeline_generator.py +1 -1
  80. mindspore/profiler/parser/cpu_gpu_timeline_generator.py +2 -2
  81. mindspore/profiler/parser/framework_parser.py +1 -1
  82. mindspore/profiler/parser/profiler_info.py +19 -0
  83. mindspore/profiler/profiling.py +46 -24
  84. mindspore/rewrite/api/pattern_engine.py +1 -1
  85. mindspore/rewrite/parsers/for_parser.py +7 -7
  86. mindspore/rewrite/parsers/module_parser.py +4 -4
  87. mindspore/rewrite/symbol_tree.py +1 -4
  88. mindspore/run_check/_check_version.py +5 -3
  89. mindspore/safeguard/rewrite_obfuscation.py +52 -28
  90. mindspore/train/callback/_summary_collector.py +1 -1
  91. mindspore/train/dataset_helper.py +1 -0
  92. mindspore/train/model.py +2 -2
  93. mindspore/train/serialization.py +97 -11
  94. mindspore/train/summary/_summary_adapter.py +1 -1
  95. mindspore/train/summary/summary_record.py +23 -7
  96. mindspore/version.py +1 -1
  97. {mindspore-2.2.0.dist-info → mindspore-2.2.11.dist-info}/METADATA +3 -2
  98. {mindspore-2.2.0.dist-info → mindspore-2.2.11.dist-info}/RECORD +101 -112
  99. mindspore/ops/_op_impl/_custom_op/flash_attention/__init__.py +0 -0
  100. mindspore/ops/_op_impl/_custom_op/flash_attention/attention.py +0 -406
  101. mindspore/ops/_op_impl/_custom_op/flash_attention/constants.py +0 -41
  102. mindspore/ops/_op_impl/_custom_op/flash_attention/flash_attention_bwd.py +0 -467
  103. mindspore/ops/_op_impl/_custom_op/flash_attention/flash_attention_fwd.py +0 -563
  104. mindspore/ops/_op_impl/_custom_op/flash_attention/flash_attention_impl.py +0 -193
  105. mindspore/ops/_op_impl/_custom_op/flash_attention/tik_ops_utils.py +0 -435
  106. mindspore/ops/_op_impl/_custom_op/flash_attention/tiling_strategy/__init__.py +0 -0
  107. mindspore/ops/_op_impl/_custom_op/flash_attention/tiling_strategy/sparse_tiling.py +0 -45
  108. mindspore/ops/_op_impl/_custom_op/flash_attention/tiling_strategy/strategy.py +0 -67
  109. mindspore/ops/_op_impl/_custom_op/flash_attention/tiling_strategy/wukong_tiling.py +0 -62
  110. {mindspore-2.2.0.dist-info → mindspore-2.2.11.dist-info}/WHEEL +0 -0
  111. {mindspore-2.2.0.dist-info → mindspore-2.2.11.dist-info}/entry_points.txt +0 -0
  112. {mindspore-2.2.0.dist-info → mindspore-2.2.11.dist-info}/top_level.txt +0 -0
@@ -375,9 +375,6 @@ class DiGamma(Cell):
375
375
  nan, real_result)
376
376
 
377
377
 
378
- eps_fp32 = Tensor(np.finfo(np.float32).eps, mstype.float32)
379
-
380
-
381
378
  def _while_helper_func(cond, body, vals):
382
379
  while cond(vals).any():
383
380
  vals = body(vals)
@@ -394,7 +391,7 @@ def _igamma_series(ax, x, a, enabled):
394
391
  select = P.Select()
395
392
 
396
393
  # If more data types are supported, this epsilon need to be selected.
397
- epsilon = eps_fp32
394
+ epsilon = Tensor(np.finfo(np.float32).eps, mstype.float32)
398
395
 
399
396
  def cond(vals):
400
397
  enabled = vals[0]
@@ -443,7 +440,7 @@ def _igammac_continued_fraction(ax, x, a, enabled):
443
440
  select = P.Select()
444
441
 
445
442
  # If more data types are supported, this epsilon need to be selected.
446
- epsilon = eps_fp32
443
+ epsilon = Tensor(np.finfo(np.float32).eps, mstype.float32)
447
444
 
448
445
  def cond(vals):
449
446
  enabled = vals[0]
@@ -620,8 +617,7 @@ class IGamma(Cell):
620
617
  x = F.broadcast_to(x, para_shape)
621
618
  a = F.broadcast_to(a, para_shape)
622
619
  x_is_zero = self.equal(x, 0)
623
- log_maxfloat = self.log_maxfloat32
624
- underflow = self.less(ax, self.neg(log_maxfloat))
620
+ underflow = self.less(ax, self.neg(self.log_maxfloat32))
625
621
  ax = self.exp(ax)
626
622
  enabled = self.logicalnot(self.logicalor(self.logicalor(x_is_zero, domain_error), underflow))
627
623
  output = self.select(use_igammac,
@@ -83,7 +83,7 @@ def _check_lstmcell_init(func):
83
83
 
84
84
 
85
85
  def _rnn_tanh_cell(inputs, hidden, w_ih, w_hh, b_ih, b_hh):
86
- '''RNN cell function with tanh activation'''
86
+ """RNN cell function with tanh activation"""
87
87
  if b_ih is None:
88
88
  igates = P.MatMul(False, True)(inputs, w_ih)
89
89
  hgates = P.MatMul(False, True)(hidden, w_hh)
@@ -94,7 +94,7 @@ def _rnn_tanh_cell(inputs, hidden, w_ih, w_hh, b_ih, b_hh):
94
94
 
95
95
 
96
96
  def _rnn_relu_cell(inputs, hidden, w_ih, w_hh, b_ih, b_hh):
97
- '''RNN cell function with relu activation'''
97
+ """RNN cell function with relu activation"""
98
98
  if b_ih is None:
99
99
  igates = P.MatMul(False, True)(inputs, w_ih)
100
100
  hgates = P.MatMul(False, True)(hidden, w_hh)
@@ -105,7 +105,7 @@ def _rnn_relu_cell(inputs, hidden, w_ih, w_hh, b_ih, b_hh):
105
105
 
106
106
 
107
107
  def _lstm_cell(inputs, hidden, w_ih, w_hh, b_ih, b_hh):
108
- '''LSTM cell function'''
108
+ """LSTM cell function"""
109
109
  hx, cx = hidden
110
110
  if b_ih is None:
111
111
  gates = P.MatMul(False, True)(inputs, w_ih) + P.MatMul(False, True)(hx, w_hh)
@@ -125,7 +125,7 @@ def _lstm_cell(inputs, hidden, w_ih, w_hh, b_ih, b_hh):
125
125
 
126
126
 
127
127
  def _gru_cell(inputs, hidden, w_ih, w_hh, b_ih, b_hh):
128
- '''GRU cell function'''
128
+ """GRU cell function"""
129
129
  if b_ih is None:
130
130
  gi = P.MatMul(False, True)(inputs, w_ih)
131
131
  gh = P.MatMul(False, True)(hidden, w_hh)
@@ -144,7 +144,7 @@ def _gru_cell(inputs, hidden, w_ih, w_hh, b_ih, b_hh):
144
144
 
145
145
 
146
146
  class RNNCellBase(Cell):
147
- '''Basic class for RNN Cells'''
147
+ """Basic class for RNN Cells"""
148
148
  def __init__(self, input_size: int, hidden_size: int, has_bias: bool, num_chunks: int,
149
149
  dtype=mstype.float32):
150
150
  super().__init__()
@@ -20,7 +20,8 @@ Use the Wrapper to combine the loss or build the training steps.
20
20
  from __future__ import absolute_import
21
21
 
22
22
  from mindspore.nn.wrap.cell_wrapper import ForwardValueAndGrad, TrainOneStepCell, WithLossCell, WithGradCell, \
23
- WithEvalCell, ParameterUpdate, GetNextSingleOp, VirtualDatasetCellTriple, MicroBatchInterleaved, PipelineCell
23
+ WithEvalCell, ParameterUpdate, GetNextSingleOp, VirtualDatasetCellTriple, MicroBatchInterleaved, PipelineCell, \
24
+ GradAccumulationCell
24
25
  from mindspore.nn.wrap.loss_scale import TrainOneStepWithLossScaleCell,\
25
26
  DynamicLossScaleUpdateCell, FixedLossScaleUpdateCell
26
27
  from mindspore.nn.wrap.grad_reducer import DistributedGradReducer
@@ -42,5 +43,6 @@ __all__ = [
42
43
  "ParameterUpdate",
43
44
  "DynamicLossScaleUpdateCell",
44
45
  "FixedLossScaleUpdateCell",
45
- "VirtualDatasetCellTriple"
46
+ "VirtualDatasetCellTriple",
47
+ "GradAccumulationCell"
46
48
  ]
@@ -644,6 +644,9 @@ class PipelineCell(Cell):
644
644
  self.micro_inputs = nn.CellList()
645
645
  self.micro_size = micro_size
646
646
  self.add_list = []
647
+ if not isinstance(network, Cell):
648
+ raise TypeError("For 'PipelineCell', the argument 'network' must cell type, "
649
+ "but got the type : {}.".format(type(network)))
647
650
  if not isinstance(micro_size, int):
648
651
  raise TypeError("For 'PipelineCell', the argument 'micro_size' must be integer, "
649
652
  "but got the type : {}.".format(type(micro_size)))
@@ -670,7 +673,7 @@ class PipelineCell(Cell):
670
673
 
671
674
  class GradAccumulationCell(Cell):
672
675
  """
673
- Wrap the network with Micro Batch.
676
+ Wrap the network with Micro Batch to enable the grad accumulation in semi_auto_parallel/auto_parallel mode.
674
677
 
675
678
  Args:
676
679
  network (Cell): The target network to wrap.
@@ -680,8 +683,11 @@ class GradAccumulationCell(Cell):
680
683
  ``Ascend`` ``GPU``
681
684
 
682
685
  Examples:
683
- >>> net = Net()
684
- >>> net = GradAccumulationCell(net, 4)
686
+ >>> import mindspore.nn as nn
687
+ >>> # Define the network structure of LeNet5. Refer to
688
+ >>> # https://gitee.com/mindspore/docs/blob/r2.2/docs/mindspore/code/lenet.py
689
+ >>> net = LeNet5()
690
+ >>> net = nn.GradAccumulationCell(net, 4)
685
691
  """
686
692
  def __init__(self, network, micro_size):
687
693
  super(GradAccumulationCell, self).__init__(auto_prefix=False)
@@ -689,6 +695,9 @@ class GradAccumulationCell(Cell):
689
695
  self.micro_inputs = nn.CellList()
690
696
  self.micro_size = micro_size
691
697
  self.add_list = []
698
+ if not isinstance(network, Cell):
699
+ raise TypeError("For 'GradAccumulationCell', the argument 'network' must cell type, "
700
+ "but got the type : {}.".format(type(network)))
692
701
  if not isinstance(micro_size, int):
693
702
  raise TypeError("For 'GradAccumulationCell', the argument 'micro_size' must be integer, "
694
703
  "but got the type : {}.".format(type(micro_size)))
@@ -143,8 +143,8 @@ def _infer_out_shape(*shapes):
143
143
  shape_out = list()
144
144
  max_len = max([len(it) for it in shapes])
145
145
  for i in range(max_len):
146
- items = [it[i-max_len+len(it)] if i-max_len +
147
- len(it) >= 0 else 1 for it in shapes]
146
+ items = [
147
+ it[i - max_len + len(it)] if i - max_len + len(it) >= 0 else 1 for it in shapes]
148
148
  max_size = 0 if 0 in items else max(items)
149
149
  _check()
150
150
  shape_out.append(max_size)
@@ -158,8 +158,8 @@ def _can_broadcast(*shapes):
158
158
  """
159
159
  max_len = max([len(it) for it in shapes])
160
160
  for i in range(max_len):
161
- items = [it[i-max_len+len(it)] if i-max_len +
162
- len(it) >= 0 else 1 for it in shapes]
161
+ items = [
162
+ it[i - max_len + len(it)] if i - max_len + len(it) >= 0 else 1 for it in shapes]
163
163
  max_size = 0 if 0 in items else max(items)
164
164
  if any(item not in (1, max_size) for item in items):
165
165
  return False
@@ -399,7 +399,7 @@ def _broadcast_tuples(tup1, tup2):
399
399
  if not isinstance(tup1, (tuple, list)) or not isinstance(tup2, (tuple, list)):
400
400
  raise TypeError("input shift and axis must be tuple or list or int.")
401
401
  if len(tup1) == len(tup2) or len(tup1) == 1 or len(tup2) == 1:
402
- return None
402
+ return
403
403
  raise ValueError("shape mismatch: objects cannot be broadcast to a single shape")
404
404
 
405
405
  tup1 = (tup1,) if isinstance(tup1, int) else tup1
Binary file
Binary file
Binary file
@@ -203,7 +203,7 @@ def get_bprop_index_put(self):
203
203
  if is_ascend:
204
204
  indices_ms = [convert_idx_positive(indices_ms[i], x1.shape[i]) for i in range(len(indices_ms))]
205
205
  indices_me = stack(indices_ms)
206
- indices_grad = F.transpose(indices_me, F.make_range(F.rank(indices_me)-1, -1, -1))
206
+ indices_grad = F.transpose(indices_me, F.make_range(F.rank(indices_me) - 1, -1, -1))
207
207
  values_grad = gather_nd(dout, indices_grad)
208
208
  if equal(cast(x2.shape[0], mstype.int32), Tensor(1)):
209
209
  values_grad = values_grad.sum().reshape(1)
@@ -19,7 +19,7 @@ from mindspore.ops import functional as F
19
19
  from mindspore.ops import operations as P
20
20
  from mindspore.ops.composite import multitype_ops as C
21
21
  from mindspore.ops.composite.multitype_ops.zeros_like_impl import zeros_like
22
- from mindspore.ops._grad_experimental.grad_base import bprops
22
+ from mindspore.ops._grad_experimental.grad_base import bprops, bprop_getters
23
23
  from mindspore.common import dtype as mstype
24
24
 
25
25
  get_dtype = P.DType()
@@ -193,7 +193,7 @@ def bprop_tensor_move(x, out, dout):
193
193
  return (dout,)
194
194
 
195
195
 
196
- @bprops.register("DictInplaceSetItem")
196
+ @bprop_getters.register("DictInplaceSetItem")
197
197
  def get_bprop_dict_inplace_setitem(self):
198
198
  """Generate bprop for dict inplace pop"""
199
199
 
@@ -135,7 +135,7 @@ def get_bprop_matrix_triangular_solve(self):
135
135
 
136
136
  def bprop(matrix, rhs, out, dout):
137
137
  grad_rhs = matrix_triangular_solve_op(matrix, dout)
138
- if matrix.dtype == mstype.complex64 or matrix.dtype == mstype.complex128:
138
+ if matrix.dtype in (mstype.complex64, mstype.complex128):
139
139
  grad_rhs_temp = _adjoint(grad_rhs)
140
140
  out_temp = _adjoint(out)
141
141
  else:
@@ -156,14 +156,14 @@ def get_bprop_matrix_triangular_solve(self):
156
156
  grad_matrix = mat_mul_op(grad_rhs, out_temp)
157
157
  grad_matrix = neg_op(grad_matrix)
158
158
  if lower_a:
159
- if grad_matrix.dtype == mstype.complex64 or grad_matrix.dtype == mstype.complex128:
159
+ if grad_matrix.dtype in (mstype.complex64, mstype.complex128):
160
160
  grad_matrix_real = matrix_band_part_op(real_op(grad_matrix), -1, 0)
161
161
  grad_matrix_imag = matrix_band_part_op(imag_op(grad_matrix), -1, 0)
162
162
  grad_matrix = complex_op(grad_matrix_real, grad_matrix_imag)
163
163
  else:
164
164
  grad_matrix = matrix_band_part_op(grad_matrix, -1, 0)
165
165
  else:
166
- if grad_matrix.dtype == mstype.complex64 or grad_matrix.dtype == mstype.complex128:
166
+ if grad_matrix.dtype in (mstype.complex64, mstype.complex128):
167
167
  grad_matrix_real = matrix_band_part_op(real_op(grad_matrix), 0, -1)
168
168
  grad_matrix_imag = matrix_band_part_op(imag_op(grad_matrix), 0, -1)
169
169
  grad_matrix = complex_op(grad_matrix_real, grad_matrix_imag)
@@ -219,7 +219,7 @@ def get_bprop_matrix_solve(self):
219
219
  @_primexpr
220
220
  def _generate_perm_matrix_solve_ls(x_dim):
221
221
  perm = tuple(range(x_dim - 2))
222
- perm = perm + (x_dim-1, x_dim-2)
222
+ perm = perm + (x_dim - 1, x_dim - 2)
223
223
  return perm
224
224
 
225
225
 
@@ -647,20 +647,21 @@ def _fft_rank_offset(norm_shape, rank):
647
647
  @_primexpr
648
648
  def _fft_with_size_back_norm(norm_shape, norm, inverse, rank):
649
649
  """generate reverse term for fft_with_size"""
650
+ norm_ = None
650
651
  if inverse is False:
651
652
  if norm == "forward":
652
- norm_ = 1 / _fft_rank_offset(norm_shape, rank)
653
- if norm == "backward":
654
- norm_ = 1 * _fft_rank_offset(norm_shape, rank)
655
- if norm == "ortho":
656
- norm_ = 1
657
- if inverse is True:
653
+ norm_ = 1.0 / _fft_rank_offset(norm_shape, rank)
654
+ elif norm == "backward":
655
+ norm_ = 1.0 * _fft_rank_offset(norm_shape, rank)
656
+ elif norm == "ortho":
657
+ norm_ = 1.0
658
+ else:
658
659
  if norm == "forward":
659
- norm_ = 1 * _fft_rank_offset(norm_shape, rank)
660
- if norm == "backward":
661
- norm_ = 1 / _fft_rank_offset(norm_shape, rank)
662
- if norm == "ortho":
663
- norm_ = 1
660
+ norm_ = 1.0 * _fft_rank_offset(norm_shape, rank)
661
+ elif norm == "backward":
662
+ norm_ = 1.0 / _fft_rank_offset(norm_shape, rank)
663
+ elif norm == "ortho":
664
+ norm_ = 1.0
664
665
  return norm_
665
666
 
666
667
 
@@ -670,9 +671,9 @@ def _rfft_norm(norm_shape, norm, rank):
670
671
  norm_ = 1.0
671
672
  if norm == "forward":
672
673
  norm_ = 1 / _fft_rank_offset(norm_shape, rank)
673
- if norm == "backward":
674
- norm_ = 1
675
- if norm == "ortho":
674
+ elif norm == "backward":
675
+ norm_ = 1.0
676
+ elif norm == "ortho":
676
677
  norm_ = 1 / np.sqrt(_fft_rank_offset(norm_shape, rank))
677
678
  return norm_
678
679
 
@@ -358,10 +358,10 @@ def get_bprop_ragged_tensor_to_sparse(self):
358
358
  split.append(zeros_like(i))
359
359
  all_d = (split, ragged_values_grad)
360
360
  return all_d
361
- split = ()
361
+ split_ = ()
362
362
  for i in enumerate(rt_nested_splits):
363
- split = split + (zeros_like(i),)
364
- all_d = (split, ragged_values_grad)
363
+ split_ = split_ + (zeros_like(i),)
364
+ all_d = (split_, ragged_values_grad)
365
365
  return all_d
366
366
 
367
367
  return bprop
@@ -29,9 +29,9 @@ add_op_info = AiCPURegOp("Add") \
29
29
  .dtype_format(DataType.I32_Default, DataType.I32_Default, DataType.I32_Default) \
30
30
  .dtype_format(DataType.I64_Default, DataType.I64_Default, DataType.I64_Default) \
31
31
  .dtype_format(DataType.U8_Default, DataType.U8_Default, DataType.U8_Default) \
32
- .dtype_format(DataType.U16_Default, DataType.I16_Default, DataType.I16_Default) \
33
- .dtype_format(DataType.U32_Default, DataType.I32_Default, DataType.I32_Default) \
34
- .dtype_format(DataType.U64_Default, DataType.I64_Default, DataType.I64_Default) \
32
+ .dtype_format(DataType.U16_Default, DataType.U16_Default, DataType.U16_Default) \
33
+ .dtype_format(DataType.U32_Default, DataType.U32_Default, DataType.U32_Default) \
34
+ .dtype_format(DataType.U64_Default, DataType.U64_Default, DataType.U64_Default) \
35
35
  .dtype_format(DataType.C64_Default, DataType.C64_Default, DataType.C64_Default) \
36
36
  .dtype_format(DataType.C128_Default, DataType.C128_Default, DataType.C128_Default) \
37
37
  .get_op_info()
@@ -1,4 +1,4 @@
1
- # Copyright 2022 Huawei Technologies Co., Ltd
1
+ # Copyright 2023 Huawei Technologies Co., Ltd
2
2
  #
3
3
  # Licensed under the Apache License, Version 2.0 (the "License");
4
4
  # you may not use this file except in compliance with the License.
@@ -24,11 +24,30 @@ lsap_op_info = AiCPURegOp("LinearSumAssignment") \
24
24
  .input(2, 'maximize', "required") \
25
25
  .output(0, "row_ind", "required") \
26
26
  .output(1, "col_ind", "required") \
27
- .attr("cust_aicpu", "str") \
28
27
  .dtype_format(DataType.F64_Default, DataType.I64_Default,
29
28
  DataType.BOOL_Default, DataType.I64_Default, DataType.I64_Default,) \
30
29
  .dtype_format(DataType.F32_Default, DataType.I64_Default,
31
30
  DataType.BOOL_Default, DataType.I64_Default, DataType.I64_Default,) \
31
+ .dtype_format(DataType.F16_Default, DataType.I64_Default,
32
+ DataType.BOOL_Default, DataType.I64_Default, DataType.I64_Default,) \
33
+ .dtype_format(DataType.BOOL_Default, DataType.I64_Default,
34
+ DataType.BOOL_Default, DataType.I64_Default, DataType.I64_Default,) \
35
+ .dtype_format(DataType.I16_Default, DataType.I64_Default,
36
+ DataType.BOOL_Default, DataType.I64_Default, DataType.I64_Default,) \
37
+ .dtype_format(DataType.I32_Default, DataType.I64_Default,
38
+ DataType.BOOL_Default, DataType.I64_Default, DataType.I64_Default,) \
39
+ .dtype_format(DataType.I64_Default, DataType.I64_Default,
40
+ DataType.BOOL_Default, DataType.I64_Default, DataType.I64_Default,) \
41
+ .dtype_format(DataType.I8_Default, DataType.I64_Default,
42
+ DataType.BOOL_Default, DataType.I64_Default, DataType.I64_Default,) \
43
+ .dtype_format(DataType.U16_Default, DataType.I64_Default,
44
+ DataType.BOOL_Default, DataType.I64_Default, DataType.I64_Default,) \
45
+ .dtype_format(DataType.U32_Default, DataType.I64_Default,
46
+ DataType.BOOL_Default, DataType.I64_Default, DataType.I64_Default,) \
47
+ .dtype_format(DataType.U64_Default, DataType.I64_Default,
48
+ DataType.BOOL_Default, DataType.I64_Default, DataType.I64_Default,) \
49
+ .dtype_format(DataType.U8_Default, DataType.I64_Default,
50
+ DataType.BOOL_Default, DataType.I64_Default, DataType.I64_Default,) \
32
51
  .get_op_info()
33
52
 
34
53
 
@@ -77,10 +77,12 @@ def get_broadcast_shape(x_shape, y_shape, prim_name, arg_name1="x", arg_name2="y
77
77
  broadcast_shape = list(broadcast_shape_front) + broadcast_shape_back
78
78
  return broadcast_shape
79
79
 
80
+
80
81
  def dim_not_equal(dim1, dim2):
81
82
  """Compare dim in shape"""
82
83
  return dim1 != dim2 and dim1 >= 0 and dim2 >= 0
83
84
 
85
+
84
86
  def get_concat_offset(x_shp, x_type, axis, prim_name):
85
87
  """for concat and concatoffset check args and compute offset"""
86
88
  validator.check_value_type("shape", x_shp, [tuple, list], prim_name)
@@ -1255,7 +1255,8 @@ def _tensor_setitem_by_bool_tensor_with_tensor(data, index, value):
1255
1255
  index = index.reshape(const_utils.generate_padding_shape(index.shape, len(data.shape)))
1256
1256
  index = F.broadcast_to(index, data.shape)
1257
1257
  value = F.cast(value, F.dtype(data))
1258
- value = value.reshape(const_utils.generate_padding_shape(value.shape, len(data.shape)))
1258
+ while value.ndim < data.ndim:
1259
+ value = value.unsqueeze(-1)
1259
1260
  value = F.broadcast_to(value, data.shape)
1260
1261
  result = F.select(index, value, data)
1261
1262
  return result
@@ -161,7 +161,7 @@ def _tuple_getitem_by_slice(data, slice_index):
161
161
  if start is None:
162
162
  start = 0 if step >= 1 else -1
163
163
  if stop is None:
164
- stop = (2**31-1) if step >= 1 else -(2**31-1)
164
+ stop = (2**31 - 1) if step >= 1 else -(2**31 - 1)
165
165
  return sequence_slice(data, start, stop, step)
166
166
  return _tuple_slice(data, slice_index)
167
167
 
@@ -236,7 +236,7 @@ def _list_getitem_by_slice(data, slice_index):
236
236
  if start is None:
237
237
  start = 0 if step >= 1 else -1
238
238
  if stop is None:
239
- stop = (2**31-1) if step >= 1 else -(2**31-1)
239
+ stop = (2**31 - 1) if step >= 1 else -(2**31 - 1)
240
240
  return sequence_slice(data, start, stop, step)
241
241
  return _list_slice(data, slice_index)
242
242
 
@@ -660,14 +660,14 @@ def one_hot(indices, depth, on_value=1, off_value=0, axis=-1):
660
660
 
661
661
  Note:
662
662
  If the input indices is rank `N`, the output will have rank `N+1`. The new axis is created at dimension `axis`.
663
+ On Ascend, if `on_value` is Int64 dtype, `indices` must be Int64 dtype.
663
664
 
664
665
  Args:
665
666
  indices(Tensor): A tensor of indices. Tensor of shape :math:`(X_0, \ldots, X_n)`.
666
667
  Data type must be int32 or int64.
667
668
  depth(int): A scalar defining the depth of the one-hot dimension.
668
669
  on_value(Union[Tensor, int, float], optional): A value to fill in output when `indices[j] = i`.
669
- Support uint8, uint16, uint32, uint64, int8, int16, int32, int64, float16, float32, float64,
670
- bool, complex64, complex128. Default: ``1`` .
670
+ Data type must be int32, int64, float16 or float32. Default: ``1`` .
671
671
  off_value(Union[Tensor, int, float], optional): A value to fill in output when `indices[j] != i`.
672
672
  Has the same data type as `on_value`. Default: ``0`` .
673
673
  axis(int, optional): Position to insert the value. e.g. If shape of `self` is :math:`(N, C)`, and `axis` is -1,
@@ -676,7 +676,8 @@ def one_hot(indices, depth, on_value=1, off_value=0, axis=-1):
676
676
  Default: ``-1`` .
677
677
 
678
678
  Returns:
679
- Tensor, one-hot tensor. Tensor of shape :math:`(X_0, \ldots, X_{axis}, \text{depth} ,X_{axis+1}, \ldots, X_n)`.
679
+ Tensor, one-hot tensor. Tensor of shape :math:`(X_0, \ldots, X_{axis}, \text{depth} ,X_{axis+1}, \ldots, X_n)`,
680
+ and it has the same data type as `on_value`.
680
681
 
681
682
  Raises:
682
683
  TypeError: If `axis` or `depth` is not an int.
@@ -1734,7 +1735,11 @@ def flatten(input, order='C', *, start_dim=1, end_dim=-1):
1734
1735
  raise TypeError(f"For 'flatten', both 'start_dim' and 'end_dim' must be int.")
1735
1736
  check_flatten_order_const(order)
1736
1737
  if order == 'F':
1737
- perm = ops.make_range(0, ops.rank(input))
1738
+ x_rank = rank_(input)
1739
+ # If input is a 0-dimensional Tensor, a 1-dimensional Tensor will be returned.
1740
+ if x_rank in (0, 1):
1741
+ return reshape_(input, (-1,))
1742
+ perm = ops.make_range(0, x_rank)
1738
1743
  new_order = ops.tuple_reversed(perm)
1739
1744
  input = _get_cache_prim(P.Transpose)()(input, new_order)
1740
1745
 
@@ -2161,8 +2166,6 @@ def concat(tensors, axis=0):
2161
2166
 
2162
2167
  Tutorial Examples:
2163
2168
  - `Tensor - Tensor Operation <https://mindspore.cn/tutorials/en/r2.2/beginner/tensor.html#tensor-operation>`_
2164
- - `FGSM Network Adversarial Attack - Implementing FGSM
2165
- <https://mindspore.cn/tutorials/application/en/r2.2/cv/fgsm.html#implementing-fgsm>`_
2166
2169
  - `Vision Transformer Image Classification - Building ViT as a whole
2167
2170
  <https://mindspore.cn/tutorials/application/en/r2.2/cv/vit.html#building-vit-as-a-whole>`_
2168
2171
  - `Sentiment Classification Implemented by RNN - Dense
@@ -6828,7 +6831,7 @@ def diagonal(input, offset=0, dim1=0, dim2=1):
6828
6831
  """
6829
6832
  x_ndim = input.ndim
6830
6833
  if x_ndim < 2:
6831
- raise ValueError(f"ops.diagonal requires an array of at least two dimensions")
6834
+ raise ValueError(f"For 'ops.diagonal', the original tensor requires at least two dimensions, but got {x_ndim}")
6832
6835
  _check_attr_dtype("dim1", dim1, [int], "diagonal")
6833
6836
  _check_attr_dtype("dim2", dim2, [int], "diagonal")
6834
6837
  dtype = input.dtype
@@ -37,7 +37,6 @@ oneslike = P.OnesLike()
37
37
  def _check_has_aux_type(inputs):
38
38
  if not isinstance(inputs, bool):
39
39
  raise TypeError("The 'has_aux' must be bool type.")
40
- return True
41
40
 
42
41
 
43
42
  @constexpr
@@ -4609,6 +4609,19 @@ def max_pool3d(x, kernel_size, stride=None, padding=0, dilation=1, ceil_mode=Fal
4609
4609
 
4610
4610
  - **output** (Tensor) - Maxpooling result, with shape :math:`(N_{out}, C_{out}, D_{out}, H_{out}, W_{out})`.
4611
4611
  It has the same data type as `x`.
4612
+
4613
+ .. math::
4614
+ D_{out} = \left\lfloor\frac{D_{in} + 2 \times \text{padding}[0] - \text{dilation}[0] \times
4615
+ (\text{kernel_size}[0] - 1) - 1}{\text{stride}[0]} + 1\right\rfloor
4616
+
4617
+ .. math::
4618
+ H_{out} = \left\lfloor\frac{H_{in} + 2 \times \text{padding}[1] - \text{dilation}[1] \times
4619
+ (\text{kernel_size}[1] - 1) - 1}{\text{stride}[1]} + 1\right\rfloor
4620
+
4621
+ .. math::
4622
+ W_{out} = \left\lfloor\frac{W_{in} + 2 \times \text{padding}[2] - \text{dilation}[2] \times
4623
+ (\text{kernel_size}[2] - 1) - 1}{\text{stride}[2]} + 1\right\rfloor
4624
+
4612
4625
  - **argmax** (Tensor) - Index corresponding to the maximum value. Data type is int64. It will be return
4613
4626
  only when `return_indices` is ``True`` .
4614
4627
 
@@ -6037,20 +6050,20 @@ def conv3d(input, weight, bias=None, stride=1, pad_mode="valid", padding=0, dila
6037
6050
 
6038
6051
  .. math::
6039
6052
  \begin{array}{ll} \\
6040
- D_{out} \left \lceil{\frac{D_{in}}{\text{stride[0]}}} \right \rceil \\
6041
- H_{out} \left \lceil{\frac{H_{in}}{\text{stride[1]}}} \right \rceil \\
6042
- W_{out} \left \lceil{\frac{W_{in}}{\text{stride[2]}}} \right \rceil \\
6053
+ D_{out} = \left \lceil{\frac{D_{in}}{\text{stride[0]}}} \right \rceil \\
6054
+ H_{out} = \left \lceil{\frac{H_{in}}{\text{stride[1]}}} \right \rceil \\
6055
+ W_{out} = \left \lceil{\frac{W_{in}}{\text{stride[2]}}} \right \rceil \\
6043
6056
  \end{array}
6044
6057
 
6045
6058
  `pad_mode` is ``"valid"``:
6046
6059
 
6047
6060
  .. math::
6048
6061
  \begin{array}{ll} \\
6049
- D_{out} \left \lfloor{\frac{D_{in} - \text{dilation[0]} \times (\text{kernel_size[0]} - 1) }
6062
+ D_{out} = \left \lfloor{\frac{D_{in} - \text{dilation[0]} \times (\text{kernel_size[0]} - 1) }
6050
6063
  {\text{stride[0]}} + 1} \right \rfloor \\
6051
- H_{out} \left \lfloor{\frac{H_{in} - \text{dilation[1]} \times (\text{kernel_size[1]} - 1) }
6064
+ H_{out} = \left \lfloor{\frac{H_{in} - \text{dilation[1]} \times (\text{kernel_size[1]} - 1) }
6052
6065
  {\text{stride[1]}} + 1} \right \rfloor \\
6053
- W_{out} \left \lfloor{\frac{W_{in} - \text{dilation[2]} \times (\text{kernel_size[2]} - 1) }
6066
+ W_{out} = \left \lfloor{\frac{W_{in} - \text{dilation[2]} \times (\text{kernel_size[2]} - 1) }
6054
6067
  {\text{stride[2]}} + 1} \right \rfloor \\
6055
6068
  \end{array}
6056
6069
 
@@ -6058,11 +6071,11 @@ def conv3d(input, weight, bias=None, stride=1, pad_mode="valid", padding=0, dila
6058
6071
 
6059
6072
  .. math::
6060
6073
  \begin{array}{ll} \\
6061
- D_{out} \left \lfloor{\frac{D_{in} + padding[0] + padding[1] - (\text{dilation[0]} - 1) \times
6074
+ D_{out} = \left \lfloor{\frac{D_{in} + padding[0] + padding[1] - (\text{dilation[0]} - 1) \times
6062
6075
  \text{kernel_size[0]} - 1 }{\text{stride[0]}} + 1} \right \rfloor \\
6063
- H_{out} \left \lfloor{\frac{H_{in} + padding[2] + padding[3] - (\text{dilation[1]} - 1) \times
6076
+ H_{out} = \left \lfloor{\frac{H_{in} + padding[2] + padding[3] - (\text{dilation[1]} - 1) \times
6064
6077
  \text{kernel_size[1]} - 1 }{\text{stride[1]}} + 1} \right \rfloor \\
6065
- W_{out} \left \lfloor{\frac{W_{in} + padding[4] + padding[5] - (\text{dilation[2]} - 1) \times
6078
+ W_{out} = \left \lfloor{\frac{W_{in} + padding[4] + padding[5] - (\text{dilation[2]} - 1) \times
6066
6079
  \text{kernel_size[2]} - 1 }{\text{stride[2]}} + 1} \right \rfloor \\
6067
6080
  \end{array}
6068
6081
 
@@ -7431,6 +7444,82 @@ def max_pool2d(x, kernel_size, stride=None, padding=0, dilation=1, return_indice
7431
7444
  return out
7432
7445
 
7433
7446
 
7447
+ def prompt_flash_attention(query, key, value, padding_mask, attn_mask, actual_seq_lengths,
7448
+ actual_seq_lengths_kv, deq_scale1, quant_scale1,
7449
+ deq_scale2, quant_scale2, quant_offset2, num_heads, scale_value=1.0, pre_tokens=2147483547,
7450
+ next_tokens=0, input_layout='BSH',
7451
+ num_key_value_heads=0, sparse_mode=0):
7452
+ r"""
7453
+ The interface for fully inference.
7454
+ B -- Batch size
7455
+ S -- Sequence length
7456
+ H -- Hidden size
7457
+
7458
+ Note:
7459
+ is only supported on ascend910B
7460
+
7461
+ .. warning::
7462
+ This is an experimental API that is subject to change or deletion.
7463
+
7464
+ Inputs:
7465
+ query (Tensor) - The query tensor with data type of float16 or float32.
7466
+ Input tensor of shape :math:`(B, S, H)` / `(B, N, S, D)`.
7467
+ key (Tensor) - The key tensor with data type of float16 or float32.
7468
+ Input tensor of shape :math:`(B, S, H)` / `(B, N, S, D)`.
7469
+ value (Tensor) - The value tensor with data type of float16 or float32.
7470
+ Input tensor of shape :math:`(B, S, H)` / `(B, N, S, D)`.
7471
+ padding_mask (Tensor) - The padding mask tensor with data type of float16 or float32
7472
+ attn_mask (Tensor) - The attention mask tensor with data type of float16 or float32.
7473
+ For each element, 0 indicates retention and 1 indicates discard. Input tensor of shape :math:`(B, 1, S, S)`.
7474
+ actual_seq_lengths (list[int]): Describe actual sequence length of each input with data type of int.
7475
+ actual_seq_lengths_kv (list[int]): Describe actual sequence length of each input with data type of int.
7476
+ dep_scale1 (Tensor)
7477
+ quant_scale1 (Tensor)
7478
+ deq_scale2 (Tensor)
7479
+ quant_scale2 (Tensor)
7480
+ quant_offset2 (Tensor)
7481
+ num_heads (int): The number of heads.
7482
+ scale_value (float): The scale value indicating the scale coefficient, which is used as the scalar of
7483
+ Muls in the calculation. Default: 1.0.
7484
+ pre_tokens (int): Previous tokens. Default: 2147483547.
7485
+ next_tokens (int): next tokens. Default: 0.
7486
+ indicate the upper triangle, Indicate the number of data blocks involved in the calculation. The value 0
7487
+ indicates that the data blocks in the upper triangle are not involved in the calculation
7488
+ input_layout (str): the data layout of the input qkv, support `(BSH)` and `(BNSD)`, Default `BSH`.
7489
+ num_key_value_heads (int): head numbers of key/value which are used in GQA algorithm.
7490
+ The value o indicates if the key and value have the same head nums, use numHeads. Default: 0.
7491
+ sparse_mode (int): Default: 0
7492
+
7493
+
7494
+ Outputs:
7495
+ attention_out (Tensor) - Input tensor of shape :math:`(B, S, H)` / `(B, N, S, D)`.
7496
+
7497
+ Supported Platforms:
7498
+ ``Ascend``
7499
+
7500
+ Examples:
7501
+ >>> from mindspore.ops.function.nn_func import prompt_flash_attention
7502
+ >>> from mindspore import Tensor
7503
+ >>> import numpy as np
7504
+ >>> B = 1
7505
+ >>> N = 16
7506
+ >>> S = 256
7507
+ >>> D = 16
7508
+ >>> query = Tensor(np.ones((B, N, S, D), dtype=np.float16))
7509
+ >>> key = Tensor(np.ones((B, N, S, D), dtype=np.float16))
7510
+ >>> value = Tensor(np.ones((B, N, S, D), dtype=np.float16))
7511
+ >>> out = ops.prompt_flash_attention(query, key, value, None, None, None, None, None, None, None, None,
7512
+ None, N, input_layout='BNSD')
7513
+ >>> print(out[0].shape)
7514
+ (1, 16, 256, 16)
7515
+ """
7516
+
7517
+ pfa = _get_cache_prim(NN_OPS.PromptFlashAttention)(num_heads, scale_value, pre_tokens, next_tokens, input_layout,
7518
+ num_key_value_heads, sparse_mode)
7519
+ return pfa(query, key, value, padding_mask, attn_mask, actual_seq_lengths, actual_seq_lengths_kv, deq_scale1,
7520
+ quant_scale1, deq_scale2, quant_scale2, quant_offset2)
7521
+
7522
+
7434
7523
  __all__ = [
7435
7524
  'adaptive_avg_pool1d',
7436
7525
  'adaptive_avg_pool2d',
@@ -1180,7 +1180,8 @@ def randint_like(input, low, high, seed=None, *, dtype=None):
1180
1180
  cast_ = P.Cast()
1181
1181
  low_ = Tensor(low, mstype.int32)
1182
1182
  high_ = Tensor(high, mstype.int32)
1183
- output = rand_op(size, low_, high_)
1183
+ size_ = Tensor(size, mstype.int32)
1184
+ output = rand_op(size_, low_, high_)
1184
1185
  return cast_(output, dtype)
1185
1186
 
1186
1187