mindspore 2.2.0__cp38-cp38-manylinux1_x86_64.whl → 2.2.11__cp38-cp38-manylinux1_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of mindspore might be problematic. Click here for more details.

Files changed (170) hide show
  1. mindspore/.commit_id +1 -1
  2. mindspore/_akg/akg/composite/build_module.py +104 -20
  3. mindspore/_akg/akg/utils/ascend_profilier/cann_file_parser.py +76 -0
  4. mindspore/_akg/akg/utils/ascend_profilier/file_manager.py +56 -0
  5. mindspore/_akg/akg/utils/ascend_profilier/op_summary_bean.py +23 -0
  6. mindspore/_akg/akg/utils/ascend_profilier/op_summary_headers.py +8 -0
  7. mindspore/_akg/akg/utils/ascend_profilier/op_summary_parser.py +42 -0
  8. mindspore/_akg/akg/utils/ascend_profilier/path_manager.py +65 -0
  9. mindspore/_akg/akg/utils/composite_op_helper.py +7 -2
  10. mindspore/_akg/akg/utils/dump_ascend_meta.py +22 -3
  11. mindspore/_akg/akg/utils/kernel_exec.py +41 -15
  12. mindspore/_akg/akg/utils/tbe_codegen_utils.py +27 -6
  13. mindspore/_akg/akg/utils/util.py +56 -1
  14. mindspore/_c_dataengine.cpython-38-x86_64-linux-gnu.so +0 -0
  15. mindspore/_c_expression.cpython-38-x86_64-linux-gnu.so +0 -0
  16. mindspore/_checkparam.py +3 -3
  17. mindspore/_extends/graph_kernel/model/graph_split.py +84 -76
  18. mindspore/_extends/graph_kernel/splitter.py +3 -2
  19. mindspore/_extends/parallel_compile/akg_compiler/build_tbe_kernel.py +83 -66
  20. mindspore/_extends/parallel_compile/akg_compiler/tbe_topi.py +4 -4
  21. mindspore/_extends/parallel_compile/akg_compiler/util.py +10 -7
  22. mindspore/_extends/parallel_compile/tbe_compiler/tbe_helper.py +2 -1
  23. mindspore/_extends/parse/__init__.py +3 -2
  24. mindspore/_extends/parse/parser.py +6 -1
  25. mindspore/_extends/parse/standard_method.py +14 -11
  26. mindspore/_extends/remote/kernel_build_server.py +2 -1
  27. mindspore/_mindspore_offline_debug.cpython-38-x86_64-linux-gnu.so +0 -0
  28. mindspore/bin/cache_admin +0 -0
  29. mindspore/bin/cache_server +0 -0
  30. mindspore/common/_utils.py +16 -0
  31. mindspore/common/api.py +1 -1
  32. mindspore/common/auto_dynamic_shape.py +81 -85
  33. mindspore/common/dump.py +1 -1
  34. mindspore/common/tensor.py +3 -20
  35. mindspore/config/op_info.config +1 -1
  36. mindspore/context.py +11 -4
  37. mindspore/dataset/engine/cache_client.py +8 -5
  38. mindspore/dataset/engine/datasets_standard_format.py +5 -0
  39. mindspore/dataset/vision/transforms.py +21 -21
  40. mindspore/experimental/optim/adam.py +1 -1
  41. mindspore/gen_ops.py +1 -1
  42. mindspore/include/api/model.h +17 -0
  43. mindspore/include/api/status.h +8 -3
  44. mindspore/lib/libdnnl.so.2 +0 -0
  45. mindspore/lib/libmindspore.so +0 -0
  46. mindspore/lib/libmindspore_backend.so +0 -0
  47. mindspore/lib/libmindspore_common.so +0 -0
  48. mindspore/lib/libmindspore_core.so +0 -0
  49. mindspore/lib/libmindspore_glog.so.0 +0 -0
  50. mindspore/lib/libmindspore_gpr.so.15 +0 -0
  51. mindspore/lib/libmindspore_grpc++.so.1 +0 -0
  52. mindspore/lib/libmindspore_grpc.so.15 +0 -0
  53. mindspore/lib/libmindspore_shared_lib.so +0 -0
  54. mindspore/lib/libnnacl.so +0 -0
  55. mindspore/lib/libopencv_core.so.4.5 +0 -0
  56. mindspore/lib/libopencv_imgcodecs.so.4.5 +0 -0
  57. mindspore/lib/libopencv_imgproc.so.4.5 +0 -0
  58. mindspore/lib/plugin/ascend/custom_aicore_ops/op_impl/ai_core/tbe/config/ascend310/aic-ascend310-ops-info.json +123 -0
  59. mindspore/lib/plugin/ascend/custom_aicore_ops/op_impl/ai_core/tbe/config/ascend310p/aic-ascend310p-ops-info.json +123 -0
  60. mindspore/lib/plugin/ascend/custom_aicore_ops/op_impl/ai_core/tbe/config/ascend910/aic-ascend910-ops-info.json +158 -0
  61. mindspore/lib/plugin/ascend/custom_aicore_ops/op_impl/ai_core/tbe/config/ascend910b/aic-ascend910b-ops-info.json +37 -0
  62. mindspore/lib/plugin/ascend/custom_aicore_ops/op_impl/ai_core/tbe/custom_aicore_ops_impl/add_dsl.py +46 -0
  63. mindspore/lib/plugin/ascend/custom_aicore_ops/op_impl/ai_core/tbe/custom_aicore_ops_impl/add_tik.py +51 -0
  64. mindspore/lib/plugin/ascend/custom_aicore_ops/op_impl/ai_core/tbe/custom_aicore_ops_impl/kv_cache_mgr.py +241 -0
  65. mindspore/lib/plugin/ascend/custom_aicore_ops/op_impl/ai_core/tbe/custom_aicore_ops_impl/matmul_tik.py +212 -0
  66. mindspore/lib/plugin/ascend/custom_aicore_ops/op_impl/vector_core/tbe/custom_aicore_ops_impl/add_dsl.py +46 -0
  67. mindspore/lib/plugin/ascend/custom_aicore_ops/op_impl/vector_core/tbe/custom_aicore_ops_impl/add_tik.py +51 -0
  68. mindspore/lib/plugin/ascend/custom_aicore_ops/op_impl/vector_core/tbe/custom_aicore_ops_impl/kv_cache_mgr.py +241 -0
  69. mindspore/lib/plugin/ascend/custom_aicore_ops/op_impl/vector_core/tbe/custom_aicore_ops_impl/matmul_tik.py +212 -0
  70. mindspore/lib/plugin/ascend/custom_aicore_ops/op_proto/libop_proto.so +0 -0
  71. mindspore/lib/plugin/ascend/custom_aicpu_ops/op_impl/cpu/aicpu_kernel/impl/libcust_aicpu_kernels.so +0 -0
  72. mindspore/lib/plugin/ascend/custom_aicpu_ops/op_impl/cpu/aicpu_kernel/impl/libcust_cpu_kernels.so +0 -0
  73. mindspore/lib/plugin/ascend/custom_aicpu_ops/op_impl/cpu/config/cust_aicpu_kernel.json +78 -80
  74. mindspore/lib/plugin/ascend/custom_aicpu_ops/op_proto/libcust_op_proto.so +0 -0
  75. mindspore/lib/plugin/ascend/libakg.so +0 -0
  76. mindspore/lib/plugin/ascend/libhccl_plugin.so +0 -0
  77. mindspore/lib/plugin/ascend/libmindspore_aicpu_kernels.so +0 -0
  78. mindspore/lib/plugin/ascend/libmindspore_cpu_kernels.so +0 -0
  79. mindspore/lib/plugin/cpu/libakg.so +0 -0
  80. mindspore/lib/plugin/gpu/libcuda_ops.so.10 +0 -0
  81. mindspore/lib/plugin/gpu/libcuda_ops.so.11 +0 -0
  82. mindspore/lib/plugin/gpu10.1/libakg.so +0 -0
  83. mindspore/lib/plugin/gpu11.1/libakg.so +0 -0
  84. mindspore/lib/plugin/gpu11.1/libnccl.so.2 +0 -0
  85. mindspore/lib/plugin/gpu11.6/libakg.so +0 -0
  86. mindspore/lib/plugin/gpu11.6/libnccl.so.2 +0 -0
  87. mindspore/lib/plugin/libmindspore_ascend.so.1 +0 -0
  88. mindspore/lib/plugin/libmindspore_ascend.so.2 +0 -0
  89. mindspore/lib/plugin/libmindspore_gpu.so.10.1 +0 -0
  90. mindspore/lib/plugin/libmindspore_gpu.so.11.1 +0 -0
  91. mindspore/lib/plugin/libmindspore_gpu.so.11.6 +0 -0
  92. mindspore/nn/cell.py +0 -3
  93. mindspore/nn/layer/activation.py +4 -5
  94. mindspore/nn/layer/conv.py +39 -23
  95. mindspore/nn/layer/flash_attention.py +54 -129
  96. mindspore/nn/layer/math.py +3 -7
  97. mindspore/nn/layer/rnn_cells.py +5 -5
  98. mindspore/nn/wrap/__init__.py +4 -2
  99. mindspore/nn/wrap/cell_wrapper.py +12 -3
  100. mindspore/numpy/utils_const.py +5 -5
  101. mindspore/ops/_grad_experimental/grad_array_ops.py +1 -1
  102. mindspore/ops/_grad_experimental/grad_implementations.py +2 -2
  103. mindspore/ops/_grad_experimental/grad_math_ops.py +19 -18
  104. mindspore/ops/_grad_experimental/grad_sparse_ops.py +3 -3
  105. mindspore/ops/_op_impl/aicpu/add.py +3 -3
  106. mindspore/ops/_op_impl/aicpu/linear_sum_assignment.py +21 -2
  107. mindspore/ops/_utils/utils.py +2 -0
  108. mindspore/ops/composite/multitype_ops/_compile_utils.py +2 -1
  109. mindspore/ops/composite/multitype_ops/getitem_impl.py +2 -2
  110. mindspore/ops/function/array_func.py +10 -7
  111. mindspore/ops/function/grad/grad_func.py +0 -1
  112. mindspore/ops/function/nn_func.py +98 -9
  113. mindspore/ops/function/random_func.py +2 -1
  114. mindspore/ops/op_info_register.py +24 -21
  115. mindspore/ops/operations/__init__.py +6 -2
  116. mindspore/ops/operations/_grad_ops.py +25 -6
  117. mindspore/ops/operations/_inner_ops.py +155 -23
  118. mindspore/ops/operations/array_ops.py +9 -7
  119. mindspore/ops/operations/comm_ops.py +2 -2
  120. mindspore/ops/operations/custom_ops.py +85 -68
  121. mindspore/ops/operations/inner_ops.py +26 -3
  122. mindspore/ops/operations/math_ops.py +7 -6
  123. mindspore/ops/operations/nn_ops.py +193 -49
  124. mindspore/parallel/_parallel_serialization.py +10 -3
  125. mindspore/parallel/_tensor.py +4 -1
  126. mindspore/parallel/checkpoint_transform.py +13 -2
  127. mindspore/parallel/shard.py +17 -10
  128. mindspore/profiler/common/util.py +1 -0
  129. mindspore/profiler/parser/ascend_hccl_generator.py +232 -0
  130. mindspore/profiler/parser/ascend_msprof_exporter.py +86 -43
  131. mindspore/profiler/parser/ascend_msprof_generator.py +196 -9
  132. mindspore/profiler/parser/ascend_op_generator.py +1 -1
  133. mindspore/profiler/parser/ascend_timeline_generator.py +6 -182
  134. mindspore/profiler/parser/base_timeline_generator.py +1 -1
  135. mindspore/profiler/parser/cpu_gpu_timeline_generator.py +2 -2
  136. mindspore/profiler/parser/framework_parser.py +1 -1
  137. mindspore/profiler/parser/profiler_info.py +19 -0
  138. mindspore/profiler/profiling.py +46 -24
  139. mindspore/rewrite/api/pattern_engine.py +1 -1
  140. mindspore/rewrite/parsers/for_parser.py +7 -7
  141. mindspore/rewrite/parsers/module_parser.py +4 -4
  142. mindspore/rewrite/symbol_tree.py +1 -4
  143. mindspore/run_check/_check_version.py +5 -3
  144. mindspore/safeguard/rewrite_obfuscation.py +52 -28
  145. mindspore/scipy/ops.py +55 -5
  146. mindspore/scipy/optimize/__init__.py +3 -2
  147. mindspore/scipy/optimize/linear_sum_assignment.py +38 -33
  148. mindspore/train/callback/_summary_collector.py +1 -1
  149. mindspore/train/dataset_helper.py +1 -0
  150. mindspore/train/model.py +2 -2
  151. mindspore/train/serialization.py +97 -11
  152. mindspore/train/summary/_summary_adapter.py +1 -1
  153. mindspore/train/summary/summary_record.py +23 -7
  154. mindspore/version.py +1 -1
  155. {mindspore-2.2.0.dist-info → mindspore-2.2.11.dist-info}/METADATA +3 -2
  156. {mindspore-2.2.0.dist-info → mindspore-2.2.11.dist-info}/RECORD +160 -151
  157. mindspore/ops/_op_impl/_custom_op/flash_attention/attention.py +0 -406
  158. mindspore/ops/_op_impl/_custom_op/flash_attention/constants.py +0 -41
  159. mindspore/ops/_op_impl/_custom_op/flash_attention/flash_attention_bwd.py +0 -467
  160. mindspore/ops/_op_impl/_custom_op/flash_attention/flash_attention_fwd.py +0 -563
  161. mindspore/ops/_op_impl/_custom_op/flash_attention/flash_attention_impl.py +0 -193
  162. mindspore/ops/_op_impl/_custom_op/flash_attention/tik_ops_utils.py +0 -435
  163. mindspore/ops/_op_impl/_custom_op/flash_attention/tiling_strategy/__init__.py +0 -0
  164. mindspore/ops/_op_impl/_custom_op/flash_attention/tiling_strategy/sparse_tiling.py +0 -45
  165. mindspore/ops/_op_impl/_custom_op/flash_attention/tiling_strategy/strategy.py +0 -67
  166. mindspore/ops/_op_impl/_custom_op/flash_attention/tiling_strategy/wukong_tiling.py +0 -62
  167. /mindspore/{ops/_op_impl/_custom_op/flash_attention → _akg/akg/utils/ascend_profilier}/__init__.py +0 -0
  168. {mindspore-2.2.0.dist-info → mindspore-2.2.11.dist-info}/WHEEL +0 -0
  169. {mindspore-2.2.0.dist-info → mindspore-2.2.11.dist-info}/entry_points.txt +0 -0
  170. {mindspore-2.2.0.dist-info → mindspore-2.2.11.dist-info}/top_level.txt +0 -0
@@ -3292,6 +3292,41 @@
3292
3292
  "type":"DT_DOUBLE,DT_FLOAT,DT_FLOAT16"
3293
3293
  }
3294
3294
  },
3295
+ "CustLinearSumAssignment":{
3296
+ "input0":{
3297
+ "name":"cost_matrix",
3298
+ "type":"DT_FLOAT16,DT_FLOAT,DT_DOUBLE,DT_INT16,DT_INT32,DT_INT64,DT_INT8,DT_UINT16,DT_UINT32,DT_UINT64,DT_UINT8,DT_BOOL"
3299
+ },
3300
+ "input1":{
3301
+ "name":"dimension_limit",
3302
+ "type":"DT_INT64"
3303
+ },
3304
+ "input2":{
3305
+ "name":"maximize",
3306
+ "type":"DT_BOOL"
3307
+ },
3308
+ "opInfo":{
3309
+ "computeCost":"100",
3310
+ "engine":"DNN_VM_AICPU",
3311
+ "flagAsync":"False",
3312
+ "flagPartial":"False",
3313
+ "formatAgnostic":"False",
3314
+ "functionName":"RunCpuKernel",
3315
+ "kernelSo":"libcust_cpu_kernels.so",
3316
+ "opKernelLib":"CUSTAICPUKernel",
3317
+ "opsFlag":"OPS_FLAG_OPEN",
3318
+ "subTypeOfInferShape":"1",
3319
+ "userDefined":"True"
3320
+ },
3321
+ "output0":{
3322
+ "name":"row_ind",
3323
+ "type":"DT_INT64"
3324
+ },
3325
+ "output1":{
3326
+ "name":"col_ind",
3327
+ "type":"DT_INT64"
3328
+ }
3329
+ },
3295
3330
  "CustListDiff":{
3296
3331
  "input0":{
3297
3332
  "name":"x",
@@ -3888,42 +3923,6 @@
3888
3923
  "type":"DT_FLOAT,DT_FLOAT16,DT_DOUBLE"
3889
3924
  }
3890
3925
  },
3891
- "CustMultinomial":{
3892
- "input0":{
3893
- "name":"input",
3894
- "type":"DT_DOUBLE,DT_FLOAT,DT_FLOAT16"
3895
- },
3896
- "input1":{
3897
- "name":"num_sample",
3898
- "type":"DT_INT32"
3899
- },
3900
- "input2":{
3901
- "name":"count",
3902
- "type":"DT_UINT64"
3903
- },
3904
- "input3":{
3905
- "name":"state",
3906
- "type":"DT_UINT64"
3907
- },
3908
- "opInfo":{
3909
- "computeCost":"100",
3910
- "engine":"DNN_VM_AICPU",
3911
- "flagAsync":"False",
3912
- "flagPartial":"False",
3913
- "formatAgnostic":"False",
3914
- "functionName":"RunCpuKernel",
3915
- "kernelSo":"libcust_cpu_kernels.so",
3916
- "opKernelLib":"CUSTAICPUKernel",
3917
- "opsFlag":"OPS_FLAG_CLOSE",
3918
- "subTypeOfInferShape":"1",
3919
- "userDefined":"True",
3920
- "workspaceSize":"1024"
3921
- },
3922
- "output0":{
3923
- "name":"output",
3924
- "type":"DT_INT32,DT_INT64"
3925
- }
3926
- },
3927
3926
  "CustMvlgamma":{
3928
3927
  "input0":{
3929
3928
  "name":"x",
@@ -4599,7 +4598,7 @@
4599
4598
  "CustResizeBicubic":{
4600
4599
  "input0":{
4601
4600
  "name":"images",
4602
- "type":"DT_INT8,DT_UINT8,DT_INT16,DT_UINT16,DT_INT32,DT_INT64,DT_FLOAT16,DT_FLOAT,DT_DOUBLE"
4601
+ "type":"DT_FLOAT16,DT_FLOAT,DT_DOUBLE"
4603
4602
  },
4604
4603
  "input1":{
4605
4604
  "name":"size",
@@ -4621,13 +4620,13 @@
4621
4620
  },
4622
4621
  "output0":{
4623
4622
  "name":"y",
4624
- "type":"DT_FLOAT"
4623
+ "type":"DT_FLOAT16,DT_FLOAT,DT_DOUBLE"
4625
4624
  }
4626
4625
  },
4627
4626
  "CustResizeBicubicGrad":{
4628
4627
  "input0":{
4629
4628
  "name":"grads",
4630
- "type":"DT_FLOAT"
4629
+ "type":"DT_FLOAT,DT_DOUBLE"
4631
4630
  },
4632
4631
  "input1":{
4633
4632
  "name":"original_image",
@@ -4671,7 +4670,7 @@
4671
4670
  "kernelSo":"libcust_cpu_kernels.so",
4672
4671
  "opKernelLib":"CUSTAICPUKernel",
4673
4672
  "opsFlag":"OPS_FLAG_CLOSE",
4674
- "subTypeOfInferShape":"4",
4673
+ "subTypeOfInferShape":"2",
4675
4674
  "userDefined":"True",
4676
4675
  "workspaceSize":"1024"
4677
4676
  },
@@ -6640,6 +6639,41 @@
6640
6639
  "type":"DT_DOUBLE,DT_FLOAT,DT_FLOAT16"
6641
6640
  }
6642
6641
  },
6642
+ "LinearSumAssignment":{
6643
+ "input0":{
6644
+ "name":"cost_matrix",
6645
+ "type":"DT_FLOAT16,DT_FLOAT,DT_DOUBLE,DT_INT16,DT_INT32,DT_INT64,DT_INT8,DT_UINT16,DT_UINT32,DT_UINT64,DT_UINT8,DT_BOOL"
6646
+ },
6647
+ "input1":{
6648
+ "name":"dimension_limit",
6649
+ "type":"DT_INT64"
6650
+ },
6651
+ "input2":{
6652
+ "name":"maximize",
6653
+ "type":"DT_BOOL"
6654
+ },
6655
+ "opInfo":{
6656
+ "computeCost":"100",
6657
+ "engine":"DNN_VM_AICPU",
6658
+ "flagAsync":"False",
6659
+ "flagPartial":"False",
6660
+ "formatAgnostic":"False",
6661
+ "functionName":"RunCpuKernel",
6662
+ "kernelSo":"libcust_cpu_kernels.so",
6663
+ "opKernelLib":"CUSTAICPUKernel",
6664
+ "opsFlag":"OPS_FLAG_OPEN",
6665
+ "subTypeOfInferShape":"1",
6666
+ "userDefined":"True"
6667
+ },
6668
+ "output0":{
6669
+ "name":"row_ind",
6670
+ "type":"DT_INT64"
6671
+ },
6672
+ "output1":{
6673
+ "name":"col_ind",
6674
+ "type":"DT_INT64"
6675
+ }
6676
+ },
6643
6677
  "ListDiff":{
6644
6678
  "input0":{
6645
6679
  "name":"x",
@@ -7236,42 +7270,6 @@
7236
7270
  "type":"DT_FLOAT,DT_FLOAT16,DT_DOUBLE"
7237
7271
  }
7238
7272
  },
7239
- "Multinomial":{
7240
- "input0":{
7241
- "name":"input",
7242
- "type":"DT_DOUBLE,DT_FLOAT,DT_FLOAT16"
7243
- },
7244
- "input1":{
7245
- "name":"num_sample",
7246
- "type":"DT_INT32"
7247
- },
7248
- "input2":{
7249
- "name":"count",
7250
- "type":"DT_UINT64"
7251
- },
7252
- "input3":{
7253
- "name":"state",
7254
- "type":"DT_UINT64"
7255
- },
7256
- "opInfo":{
7257
- "computeCost":"100",
7258
- "engine":"DNN_VM_AICPU",
7259
- "flagAsync":"False",
7260
- "flagPartial":"False",
7261
- "formatAgnostic":"False",
7262
- "functionName":"RunCpuKernel",
7263
- "kernelSo":"libcust_cpu_kernels.so",
7264
- "opKernelLib":"CUSTAICPUKernel",
7265
- "opsFlag":"OPS_FLAG_CLOSE",
7266
- "subTypeOfInferShape":"1",
7267
- "userDefined":"True",
7268
- "workspaceSize":"1024"
7269
- },
7270
- "output0":{
7271
- "name":"output",
7272
- "type":"DT_INT32,DT_INT64"
7273
- }
7274
- },
7275
7273
  "Mvlgamma":{
7276
7274
  "input0":{
7277
7275
  "name":"x",
@@ -7947,7 +7945,7 @@
7947
7945
  "ResizeBicubic":{
7948
7946
  "input0":{
7949
7947
  "name":"images",
7950
- "type":"DT_INT8,DT_UINT8,DT_INT16,DT_UINT16,DT_INT32,DT_INT64,DT_FLOAT16,DT_FLOAT,DT_DOUBLE"
7948
+ "type":"DT_FLOAT16,DT_FLOAT,DT_DOUBLE"
7951
7949
  },
7952
7950
  "input1":{
7953
7951
  "name":"size",
@@ -7969,13 +7967,13 @@
7969
7967
  },
7970
7968
  "output0":{
7971
7969
  "name":"y",
7972
- "type":"DT_FLOAT"
7970
+ "type":"DT_FLOAT16,DT_FLOAT,DT_DOUBLE"
7973
7971
  }
7974
7972
  },
7975
7973
  "ResizeBicubicGrad":{
7976
7974
  "input0":{
7977
7975
  "name":"grads",
7978
- "type":"DT_FLOAT"
7976
+ "type":"DT_FLOAT,DT_DOUBLE"
7979
7977
  },
7980
7978
  "input1":{
7981
7979
  "name":"original_image",
@@ -8019,7 +8017,7 @@
8019
8017
  "kernelSo":"libcust_cpu_kernels.so",
8020
8018
  "opKernelLib":"CUSTAICPUKernel",
8021
8019
  "opsFlag":"OPS_FLAG_CLOSE",
8022
- "subTypeOfInferShape":"4",
8020
+ "subTypeOfInferShape":"2",
8023
8021
  "userDefined":"True",
8024
8022
  "workspaceSize":"1024"
8025
8023
  },
Binary file
Binary file
Binary file
Binary file
Binary file
Binary file
Binary file
Binary file
Binary file
mindspore/nn/cell.py CHANGED
@@ -1081,9 +1081,6 @@ class Cell(Cell_):
1081
1081
  if not isinstance(param, Parameter) and param is not None:
1082
1082
  raise TypeError(f"For 'insert_param_to_cell', the argument 'param' must be 'Parameter' if not None, "
1083
1083
  f"but got {type(param)}.")
1084
- if param is None:
1085
- raise TypeError(f"For 'insert_param_to_cell', the argument 'param' must not be None, "
1086
- f"but got None.")
1087
1084
  if isinstance(param, Parameter) and param.name == PARAMETER_NAME_DEFAULT:
1088
1085
  param.name = param_name
1089
1086
  self._params[param_name] = param
@@ -932,10 +932,8 @@ class GELU(Cell):
932
932
  """Initialize GELU."""
933
933
  super(GELU, self).__init__()
934
934
  validator.check_bool(approximate, 'approximate', self.cls_name)
935
- self.approximate = approximate
936
- if approximate:
937
- self.approximate = 'tanh'
938
- else:
935
+ self.approximate = 'tanh'
936
+ if not approximate:
939
937
  self.approximate = 'none'
940
938
 
941
939
  def construct(self, x):
@@ -1335,7 +1333,8 @@ class LRN(Cell):
1335
1333
 
1336
1334
  .. warning::
1337
1335
  LRN is deprecated on Ascend due to potential accuracy problem. It's recommended to use other
1338
- normalization methods, e.g. :class:`mindspore.nn.BatchNorm`.
1336
+ normalization methods, e.g. :class:`mindspore.nn.BatchNorm1d` ,
1337
+ :class:`mindspore.nn.BatchNorm2d` , :class:`mindspore.nn.BatchNorm3d`.
1339
1338
 
1340
1339
  Refer to :func:`mindspore.ops.lrn` for more details.
1341
1340
 
@@ -718,9 +718,9 @@ class Conv3d(_Conv):
718
718
 
719
719
  .. math::
720
720
  \begin{array}{ll} \\
721
- D_{out} \left \lceil{\frac{D_{in}}{\text{stride[0]}}} \right \rceil \\
722
- H_{out} \left \lceil{\frac{H_{in}}{\text{stride[1]}}} \right \rceil \\
723
- W_{out} \left \lceil{\frac{W_{in}}{\text{stride[2]}}} \right \rceil \\
721
+ D_{out} = \left \lceil{\frac{D_{in}}{\text{stride[0]}}} \right \rceil \\
722
+ H_{out} = \left \lceil{\frac{H_{in}}{\text{stride[1]}}} \right \rceil \\
723
+ W_{out} = \left \lceil{\frac{W_{in}}{\text{stride[2]}}} \right \rceil \\
724
724
  \end{array}
725
725
 
726
726
 
@@ -728,11 +728,11 @@ class Conv3d(_Conv):
728
728
 
729
729
  .. math::
730
730
  \begin{array}{ll} \\
731
- D_{out} \left \lfloor{\frac{D_{in} - \text{dilation[0]} \times (\text{kernel_size[0]} - 1) }
731
+ D_{out} = \left \lfloor{\frac{D_{in} - \text{dilation[0]} \times (\text{kernel_size[0]} - 1) }
732
732
  {\text{stride[0]}} + 1} \right \rfloor \\
733
- H_{out} \left \lfloor{\frac{H_{in} - \text{dilation[1]} \times (\text{kernel_size[1]} - 1) }
733
+ H_{out} = \left \lfloor{\frac{H_{in} - \text{dilation[1]} \times (\text{kernel_size[1]} - 1) }
734
734
  {\text{stride[1]}} + 1} \right \rfloor \\
735
- W_{out} \left \lfloor{\frac{W_{in} - \text{dilation[2]} \times (\text{kernel_size[2]} - 1) }
735
+ W_{out} = \left \lfloor{\frac{W_{in} - \text{dilation[2]} \times (\text{kernel_size[2]} - 1) }
736
736
  {\text{stride[2]}} + 1} \right \rfloor \\
737
737
  \end{array}
738
738
 
@@ -740,11 +740,11 @@ class Conv3d(_Conv):
740
740
 
741
741
  .. math::
742
742
  \begin{array}{ll} \\
743
- D_{out} \left \lfloor{\frac{D_{in} + padding[0] + padding[1] - (\text{dilation[0]} - 1) \times
743
+ D_{out} = \left \lfloor{\frac{D_{in} + padding[0] + padding[1] - (\text{dilation[0]} - 1) \times
744
744
  \text{kernel_size[0]} - 1 }{\text{stride[0]}} + 1} \right \rfloor \\
745
- H_{out} \left \lfloor{\frac{H_{in} + padding[2] + padding[3] - (\text{dilation[1]} - 1) \times
745
+ H_{out} = \left \lfloor{\frac{H_{in} + padding[2] + padding[3] - (\text{dilation[1]} - 1) \times
746
746
  \text{kernel_size[1]} - 1 }{\text{stride[1]}} + 1} \right \rfloor \\
747
- W_{out} \left \lfloor{\frac{W_{in} + padding[4] + padding[5] - (\text{dilation[2]} - 1) \times
747
+ W_{out} = \left \lfloor{\frac{W_{in} + padding[4] + padding[5] - (\text{dilation[2]} - 1) \times
748
748
  \text{kernel_size[2]} - 1 }{\text{stride[2]}} + 1} \right \rfloor \\
749
749
  \end{array}
750
750
 
@@ -812,7 +812,7 @@ class Conv3d(_Conv):
812
812
  bias_init,
813
813
  data_format,
814
814
  dtype=dtype)
815
- out_channels = self.out_channels
815
+ out_channels = self.out_channels // group
816
816
  self.conv3d = P.Conv3D(out_channel=out_channels,
817
817
  kernel_size=self.kernel_size,
818
818
  mode=1,
@@ -820,17 +820,33 @@ class Conv3d(_Conv):
820
820
  pad=self.padding,
821
821
  stride=self.stride,
822
822
  dilation=self.dilation,
823
- group=group,
823
+ group=1,
824
824
  data_format=self.data_format)
825
825
  self.bias_add = P.BiasAdd(data_format=self.data_format)
826
826
  self.shape = P.Shape()
827
+ self.concat = P.Concat(1)
828
+ self.split_0 = P.Split(0, self.group)
829
+ self.split_1 = P.Split(1, self.group)
827
830
 
828
831
  def construct(self, x):
829
832
  x_shape = self.shape(x)
830
833
  _check_input_5dims(x_shape, self.cls_name)
831
- out = self.conv3d(x, self.weight)
832
- if self.has_bias:
833
- out = self.bias_add(out, self.bias)
834
+ if self.group == 1:
835
+ out = self.conv3d(x, self.weight)
836
+ if self.has_bias:
837
+ out = self.bias_add(out, self.bias)
838
+ else:
839
+ features = self.split_1(x)
840
+ weights = self.split_0(self.weight)
841
+ outputs = ()
842
+ for i in range(self.group):
843
+ output = self.conv3d(features[i], weights[i])
844
+ outputs = outputs + (output,)
845
+ out = self.concat(outputs)
846
+ if self.bias is not None:
847
+ new_shape = [1 for _ in range(out.ndim)]
848
+ new_shape[1] = self.out_channels
849
+ out = out + self.bias.reshape(new_shape)
834
850
  return out
835
851
 
836
852
 
@@ -921,9 +937,9 @@ class Conv3dTranspose(_Conv):
921
937
 
922
938
  .. math::
923
939
  \begin{array}{ll} \\
924
- D_{out} \left \lfloor{\frac{D_{in}}{\text{stride[0]}} + 1} \right \rfloor \\
925
- H_{out} \left \lfloor{\frac{H_{in}}{\text{stride[1]}} + 1} \right \rfloor \\
926
- W_{out} \left \lfloor{\frac{W_{in}}{\text{stride[2]}} + 1} \right \rfloor \\
940
+ D_{out} = \left \lfloor{\frac{D_{in}}{\text{stride[0]}} + 1} \right \rfloor \\
941
+ H_{out} = \left \lfloor{\frac{H_{in}}{\text{stride[1]}} + 1} \right \rfloor \\
942
+ W_{out} = \left \lfloor{\frac{W_{in}}{\text{stride[2]}} + 1} \right \rfloor \\
927
943
  \end{array}
928
944
 
929
945
 
@@ -931,11 +947,11 @@ class Conv3dTranspose(_Conv):
931
947
 
932
948
  .. math::
933
949
  \begin{array}{ll} \\
934
- D_{out} \left \lfloor{\frac{D_{in} - \text{dilation[0]} \times (\text{kernel_size[0]} - 1) }
950
+ D_{out} = \left \lfloor{\frac{D_{in} - \text{dilation[0]} \times (\text{kernel_size[0]} - 1) }
935
951
  {\text{stride[0]}} + 1} \right \rfloor \\
936
- H_{out} \left \lfloor{\frac{H_{in} - \text{dilation[1]} \times (\text{kernel_size[1]} - 1) }
952
+ H_{out} = \left \lfloor{\frac{H_{in} - \text{dilation[1]} \times (\text{kernel_size[1]} - 1) }
937
953
  {\text{stride[1]}} + 1} \right \rfloor \\
938
- W_{out} \left \lfloor{\frac{W_{in} - \text{dilation[2]} \times (\text{kernel_size[2]} - 1) }
954
+ W_{out} = \left \lfloor{\frac{W_{in} - \text{dilation[2]} \times (\text{kernel_size[2]} - 1) }
939
955
  {\text{stride[2]}} + 1} \right \rfloor \\
940
956
  \end{array}
941
957
 
@@ -943,11 +959,11 @@ class Conv3dTranspose(_Conv):
943
959
 
944
960
  .. math::
945
961
  \begin{array}{ll} \\
946
- D_{out} \left \lfloor{\frac{D_{in} + padding[0] + padding[1] - (\text{dilation[0]} - 1) \times
962
+ D_{out} = \left \lfloor{\frac{D_{in} + padding[0] + padding[1] - (\text{dilation[0]} - 1) \times
947
963
  \text{kernel_size[0]} - 1 }{\text{stride[0]}} + 1} \right \rfloor \\
948
- H_{out} \left \lfloor{\frac{H_{in} + padding[2] + padding[3] - (\text{dilation[1]} - 1) \times
964
+ H_{out} = \left \lfloor{\frac{H_{in} + padding[2] + padding[3] - (\text{dilation[1]} - 1) \times
949
965
  \text{kernel_size[1]} - 1 }{\text{stride[1]}} + 1} \right \rfloor \\
950
- W_{out} \left \lfloor{\frac{W_{in} + padding[4] + padding[5] - (\text{dilation[2]} - 1) \times
966
+ W_{out} = \left \lfloor{\frac{W_{in} + padding[4] + padding[5] - (\text{dilation[2]} - 1) \times
951
967
  \text{kernel_size[2]} - 1 }{\text{stride[2]}} + 1} \right \rfloor \\
952
968
  \end{array}
953
969