mindspore 2.2.0__cp38-cp38-manylinux1_x86_64.whl → 2.2.11__cp38-cp38-manylinux1_x86_64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of mindspore might be problematic. Click here for more details.
- mindspore/.commit_id +1 -1
- mindspore/_akg/akg/composite/build_module.py +104 -20
- mindspore/_akg/akg/utils/ascend_profilier/cann_file_parser.py +76 -0
- mindspore/_akg/akg/utils/ascend_profilier/file_manager.py +56 -0
- mindspore/_akg/akg/utils/ascend_profilier/op_summary_bean.py +23 -0
- mindspore/_akg/akg/utils/ascend_profilier/op_summary_headers.py +8 -0
- mindspore/_akg/akg/utils/ascend_profilier/op_summary_parser.py +42 -0
- mindspore/_akg/akg/utils/ascend_profilier/path_manager.py +65 -0
- mindspore/_akg/akg/utils/composite_op_helper.py +7 -2
- mindspore/_akg/akg/utils/dump_ascend_meta.py +22 -3
- mindspore/_akg/akg/utils/kernel_exec.py +41 -15
- mindspore/_akg/akg/utils/tbe_codegen_utils.py +27 -6
- mindspore/_akg/akg/utils/util.py +56 -1
- mindspore/_c_dataengine.cpython-38-x86_64-linux-gnu.so +0 -0
- mindspore/_c_expression.cpython-38-x86_64-linux-gnu.so +0 -0
- mindspore/_checkparam.py +3 -3
- mindspore/_extends/graph_kernel/model/graph_split.py +84 -76
- mindspore/_extends/graph_kernel/splitter.py +3 -2
- mindspore/_extends/parallel_compile/akg_compiler/build_tbe_kernel.py +83 -66
- mindspore/_extends/parallel_compile/akg_compiler/tbe_topi.py +4 -4
- mindspore/_extends/parallel_compile/akg_compiler/util.py +10 -7
- mindspore/_extends/parallel_compile/tbe_compiler/tbe_helper.py +2 -1
- mindspore/_extends/parse/__init__.py +3 -2
- mindspore/_extends/parse/parser.py +6 -1
- mindspore/_extends/parse/standard_method.py +14 -11
- mindspore/_extends/remote/kernel_build_server.py +2 -1
- mindspore/_mindspore_offline_debug.cpython-38-x86_64-linux-gnu.so +0 -0
- mindspore/bin/cache_admin +0 -0
- mindspore/bin/cache_server +0 -0
- mindspore/common/_utils.py +16 -0
- mindspore/common/api.py +1 -1
- mindspore/common/auto_dynamic_shape.py +81 -85
- mindspore/common/dump.py +1 -1
- mindspore/common/tensor.py +3 -20
- mindspore/config/op_info.config +1 -1
- mindspore/context.py +11 -4
- mindspore/dataset/engine/cache_client.py +8 -5
- mindspore/dataset/engine/datasets_standard_format.py +5 -0
- mindspore/dataset/vision/transforms.py +21 -21
- mindspore/experimental/optim/adam.py +1 -1
- mindspore/gen_ops.py +1 -1
- mindspore/include/api/model.h +17 -0
- mindspore/include/api/status.h +8 -3
- mindspore/lib/libdnnl.so.2 +0 -0
- mindspore/lib/libmindspore.so +0 -0
- mindspore/lib/libmindspore_backend.so +0 -0
- mindspore/lib/libmindspore_common.so +0 -0
- mindspore/lib/libmindspore_core.so +0 -0
- mindspore/lib/libmindspore_glog.so.0 +0 -0
- mindspore/lib/libmindspore_gpr.so.15 +0 -0
- mindspore/lib/libmindspore_grpc++.so.1 +0 -0
- mindspore/lib/libmindspore_grpc.so.15 +0 -0
- mindspore/lib/libmindspore_shared_lib.so +0 -0
- mindspore/lib/libnnacl.so +0 -0
- mindspore/lib/libopencv_core.so.4.5 +0 -0
- mindspore/lib/libopencv_imgcodecs.so.4.5 +0 -0
- mindspore/lib/libopencv_imgproc.so.4.5 +0 -0
- mindspore/lib/plugin/ascend/custom_aicore_ops/op_impl/ai_core/tbe/config/ascend310/aic-ascend310-ops-info.json +123 -0
- mindspore/lib/plugin/ascend/custom_aicore_ops/op_impl/ai_core/tbe/config/ascend310p/aic-ascend310p-ops-info.json +123 -0
- mindspore/lib/plugin/ascend/custom_aicore_ops/op_impl/ai_core/tbe/config/ascend910/aic-ascend910-ops-info.json +158 -0
- mindspore/lib/plugin/ascend/custom_aicore_ops/op_impl/ai_core/tbe/config/ascend910b/aic-ascend910b-ops-info.json +37 -0
- mindspore/lib/plugin/ascend/custom_aicore_ops/op_impl/ai_core/tbe/custom_aicore_ops_impl/add_dsl.py +46 -0
- mindspore/lib/plugin/ascend/custom_aicore_ops/op_impl/ai_core/tbe/custom_aicore_ops_impl/add_tik.py +51 -0
- mindspore/lib/plugin/ascend/custom_aicore_ops/op_impl/ai_core/tbe/custom_aicore_ops_impl/kv_cache_mgr.py +241 -0
- mindspore/lib/plugin/ascend/custom_aicore_ops/op_impl/ai_core/tbe/custom_aicore_ops_impl/matmul_tik.py +212 -0
- mindspore/lib/plugin/ascend/custom_aicore_ops/op_impl/vector_core/tbe/custom_aicore_ops_impl/add_dsl.py +46 -0
- mindspore/lib/plugin/ascend/custom_aicore_ops/op_impl/vector_core/tbe/custom_aicore_ops_impl/add_tik.py +51 -0
- mindspore/lib/plugin/ascend/custom_aicore_ops/op_impl/vector_core/tbe/custom_aicore_ops_impl/kv_cache_mgr.py +241 -0
- mindspore/lib/plugin/ascend/custom_aicore_ops/op_impl/vector_core/tbe/custom_aicore_ops_impl/matmul_tik.py +212 -0
- mindspore/lib/plugin/ascend/custom_aicore_ops/op_proto/libop_proto.so +0 -0
- mindspore/lib/plugin/ascend/custom_aicpu_ops/op_impl/cpu/aicpu_kernel/impl/libcust_aicpu_kernels.so +0 -0
- mindspore/lib/plugin/ascend/custom_aicpu_ops/op_impl/cpu/aicpu_kernel/impl/libcust_cpu_kernels.so +0 -0
- mindspore/lib/plugin/ascend/custom_aicpu_ops/op_impl/cpu/config/cust_aicpu_kernel.json +78 -80
- mindspore/lib/plugin/ascend/custom_aicpu_ops/op_proto/libcust_op_proto.so +0 -0
- mindspore/lib/plugin/ascend/libakg.so +0 -0
- mindspore/lib/plugin/ascend/libhccl_plugin.so +0 -0
- mindspore/lib/plugin/ascend/libmindspore_aicpu_kernels.so +0 -0
- mindspore/lib/plugin/ascend/libmindspore_cpu_kernels.so +0 -0
- mindspore/lib/plugin/cpu/libakg.so +0 -0
- mindspore/lib/plugin/gpu/libcuda_ops.so.10 +0 -0
- mindspore/lib/plugin/gpu/libcuda_ops.so.11 +0 -0
- mindspore/lib/plugin/gpu10.1/libakg.so +0 -0
- mindspore/lib/plugin/gpu11.1/libakg.so +0 -0
- mindspore/lib/plugin/gpu11.1/libnccl.so.2 +0 -0
- mindspore/lib/plugin/gpu11.6/libakg.so +0 -0
- mindspore/lib/plugin/gpu11.6/libnccl.so.2 +0 -0
- mindspore/lib/plugin/libmindspore_ascend.so.1 +0 -0
- mindspore/lib/plugin/libmindspore_ascend.so.2 +0 -0
- mindspore/lib/plugin/libmindspore_gpu.so.10.1 +0 -0
- mindspore/lib/plugin/libmindspore_gpu.so.11.1 +0 -0
- mindspore/lib/plugin/libmindspore_gpu.so.11.6 +0 -0
- mindspore/nn/cell.py +0 -3
- mindspore/nn/layer/activation.py +4 -5
- mindspore/nn/layer/conv.py +39 -23
- mindspore/nn/layer/flash_attention.py +54 -129
- mindspore/nn/layer/math.py +3 -7
- mindspore/nn/layer/rnn_cells.py +5 -5
- mindspore/nn/wrap/__init__.py +4 -2
- mindspore/nn/wrap/cell_wrapper.py +12 -3
- mindspore/numpy/utils_const.py +5 -5
- mindspore/ops/_grad_experimental/grad_array_ops.py +1 -1
- mindspore/ops/_grad_experimental/grad_implementations.py +2 -2
- mindspore/ops/_grad_experimental/grad_math_ops.py +19 -18
- mindspore/ops/_grad_experimental/grad_sparse_ops.py +3 -3
- mindspore/ops/_op_impl/aicpu/add.py +3 -3
- mindspore/ops/_op_impl/aicpu/linear_sum_assignment.py +21 -2
- mindspore/ops/_utils/utils.py +2 -0
- mindspore/ops/composite/multitype_ops/_compile_utils.py +2 -1
- mindspore/ops/composite/multitype_ops/getitem_impl.py +2 -2
- mindspore/ops/function/array_func.py +10 -7
- mindspore/ops/function/grad/grad_func.py +0 -1
- mindspore/ops/function/nn_func.py +98 -9
- mindspore/ops/function/random_func.py +2 -1
- mindspore/ops/op_info_register.py +24 -21
- mindspore/ops/operations/__init__.py +6 -2
- mindspore/ops/operations/_grad_ops.py +25 -6
- mindspore/ops/operations/_inner_ops.py +155 -23
- mindspore/ops/operations/array_ops.py +9 -7
- mindspore/ops/operations/comm_ops.py +2 -2
- mindspore/ops/operations/custom_ops.py +85 -68
- mindspore/ops/operations/inner_ops.py +26 -3
- mindspore/ops/operations/math_ops.py +7 -6
- mindspore/ops/operations/nn_ops.py +193 -49
- mindspore/parallel/_parallel_serialization.py +10 -3
- mindspore/parallel/_tensor.py +4 -1
- mindspore/parallel/checkpoint_transform.py +13 -2
- mindspore/parallel/shard.py +17 -10
- mindspore/profiler/common/util.py +1 -0
- mindspore/profiler/parser/ascend_hccl_generator.py +232 -0
- mindspore/profiler/parser/ascend_msprof_exporter.py +86 -43
- mindspore/profiler/parser/ascend_msprof_generator.py +196 -9
- mindspore/profiler/parser/ascend_op_generator.py +1 -1
- mindspore/profiler/parser/ascend_timeline_generator.py +6 -182
- mindspore/profiler/parser/base_timeline_generator.py +1 -1
- mindspore/profiler/parser/cpu_gpu_timeline_generator.py +2 -2
- mindspore/profiler/parser/framework_parser.py +1 -1
- mindspore/profiler/parser/profiler_info.py +19 -0
- mindspore/profiler/profiling.py +46 -24
- mindspore/rewrite/api/pattern_engine.py +1 -1
- mindspore/rewrite/parsers/for_parser.py +7 -7
- mindspore/rewrite/parsers/module_parser.py +4 -4
- mindspore/rewrite/symbol_tree.py +1 -4
- mindspore/run_check/_check_version.py +5 -3
- mindspore/safeguard/rewrite_obfuscation.py +52 -28
- mindspore/scipy/ops.py +55 -5
- mindspore/scipy/optimize/__init__.py +3 -2
- mindspore/scipy/optimize/linear_sum_assignment.py +38 -33
- mindspore/train/callback/_summary_collector.py +1 -1
- mindspore/train/dataset_helper.py +1 -0
- mindspore/train/model.py +2 -2
- mindspore/train/serialization.py +97 -11
- mindspore/train/summary/_summary_adapter.py +1 -1
- mindspore/train/summary/summary_record.py +23 -7
- mindspore/version.py +1 -1
- {mindspore-2.2.0.dist-info → mindspore-2.2.11.dist-info}/METADATA +3 -2
- {mindspore-2.2.0.dist-info → mindspore-2.2.11.dist-info}/RECORD +160 -151
- mindspore/ops/_op_impl/_custom_op/flash_attention/attention.py +0 -406
- mindspore/ops/_op_impl/_custom_op/flash_attention/constants.py +0 -41
- mindspore/ops/_op_impl/_custom_op/flash_attention/flash_attention_bwd.py +0 -467
- mindspore/ops/_op_impl/_custom_op/flash_attention/flash_attention_fwd.py +0 -563
- mindspore/ops/_op_impl/_custom_op/flash_attention/flash_attention_impl.py +0 -193
- mindspore/ops/_op_impl/_custom_op/flash_attention/tik_ops_utils.py +0 -435
- mindspore/ops/_op_impl/_custom_op/flash_attention/tiling_strategy/__init__.py +0 -0
- mindspore/ops/_op_impl/_custom_op/flash_attention/tiling_strategy/sparse_tiling.py +0 -45
- mindspore/ops/_op_impl/_custom_op/flash_attention/tiling_strategy/strategy.py +0 -67
- mindspore/ops/_op_impl/_custom_op/flash_attention/tiling_strategy/wukong_tiling.py +0 -62
- /mindspore/{ops/_op_impl/_custom_op/flash_attention → _akg/akg/utils/ascend_profilier}/__init__.py +0 -0
- {mindspore-2.2.0.dist-info → mindspore-2.2.11.dist-info}/WHEEL +0 -0
- {mindspore-2.2.0.dist-info → mindspore-2.2.11.dist-info}/entry_points.txt +0 -0
- {mindspore-2.2.0.dist-info → mindspore-2.2.11.dist-info}/top_level.txt +0 -0
|
@@ -3292,6 +3292,41 @@
|
|
|
3292
3292
|
"type":"DT_DOUBLE,DT_FLOAT,DT_FLOAT16"
|
|
3293
3293
|
}
|
|
3294
3294
|
},
|
|
3295
|
+
"CustLinearSumAssignment":{
|
|
3296
|
+
"input0":{
|
|
3297
|
+
"name":"cost_matrix",
|
|
3298
|
+
"type":"DT_FLOAT16,DT_FLOAT,DT_DOUBLE,DT_INT16,DT_INT32,DT_INT64,DT_INT8,DT_UINT16,DT_UINT32,DT_UINT64,DT_UINT8,DT_BOOL"
|
|
3299
|
+
},
|
|
3300
|
+
"input1":{
|
|
3301
|
+
"name":"dimension_limit",
|
|
3302
|
+
"type":"DT_INT64"
|
|
3303
|
+
},
|
|
3304
|
+
"input2":{
|
|
3305
|
+
"name":"maximize",
|
|
3306
|
+
"type":"DT_BOOL"
|
|
3307
|
+
},
|
|
3308
|
+
"opInfo":{
|
|
3309
|
+
"computeCost":"100",
|
|
3310
|
+
"engine":"DNN_VM_AICPU",
|
|
3311
|
+
"flagAsync":"False",
|
|
3312
|
+
"flagPartial":"False",
|
|
3313
|
+
"formatAgnostic":"False",
|
|
3314
|
+
"functionName":"RunCpuKernel",
|
|
3315
|
+
"kernelSo":"libcust_cpu_kernels.so",
|
|
3316
|
+
"opKernelLib":"CUSTAICPUKernel",
|
|
3317
|
+
"opsFlag":"OPS_FLAG_OPEN",
|
|
3318
|
+
"subTypeOfInferShape":"1",
|
|
3319
|
+
"userDefined":"True"
|
|
3320
|
+
},
|
|
3321
|
+
"output0":{
|
|
3322
|
+
"name":"row_ind",
|
|
3323
|
+
"type":"DT_INT64"
|
|
3324
|
+
},
|
|
3325
|
+
"output1":{
|
|
3326
|
+
"name":"col_ind",
|
|
3327
|
+
"type":"DT_INT64"
|
|
3328
|
+
}
|
|
3329
|
+
},
|
|
3295
3330
|
"CustListDiff":{
|
|
3296
3331
|
"input0":{
|
|
3297
3332
|
"name":"x",
|
|
@@ -3888,42 +3923,6 @@
|
|
|
3888
3923
|
"type":"DT_FLOAT,DT_FLOAT16,DT_DOUBLE"
|
|
3889
3924
|
}
|
|
3890
3925
|
},
|
|
3891
|
-
"CustMultinomial":{
|
|
3892
|
-
"input0":{
|
|
3893
|
-
"name":"input",
|
|
3894
|
-
"type":"DT_DOUBLE,DT_FLOAT,DT_FLOAT16"
|
|
3895
|
-
},
|
|
3896
|
-
"input1":{
|
|
3897
|
-
"name":"num_sample",
|
|
3898
|
-
"type":"DT_INT32"
|
|
3899
|
-
},
|
|
3900
|
-
"input2":{
|
|
3901
|
-
"name":"count",
|
|
3902
|
-
"type":"DT_UINT64"
|
|
3903
|
-
},
|
|
3904
|
-
"input3":{
|
|
3905
|
-
"name":"state",
|
|
3906
|
-
"type":"DT_UINT64"
|
|
3907
|
-
},
|
|
3908
|
-
"opInfo":{
|
|
3909
|
-
"computeCost":"100",
|
|
3910
|
-
"engine":"DNN_VM_AICPU",
|
|
3911
|
-
"flagAsync":"False",
|
|
3912
|
-
"flagPartial":"False",
|
|
3913
|
-
"formatAgnostic":"False",
|
|
3914
|
-
"functionName":"RunCpuKernel",
|
|
3915
|
-
"kernelSo":"libcust_cpu_kernels.so",
|
|
3916
|
-
"opKernelLib":"CUSTAICPUKernel",
|
|
3917
|
-
"opsFlag":"OPS_FLAG_CLOSE",
|
|
3918
|
-
"subTypeOfInferShape":"1",
|
|
3919
|
-
"userDefined":"True",
|
|
3920
|
-
"workspaceSize":"1024"
|
|
3921
|
-
},
|
|
3922
|
-
"output0":{
|
|
3923
|
-
"name":"output",
|
|
3924
|
-
"type":"DT_INT32,DT_INT64"
|
|
3925
|
-
}
|
|
3926
|
-
},
|
|
3927
3926
|
"CustMvlgamma":{
|
|
3928
3927
|
"input0":{
|
|
3929
3928
|
"name":"x",
|
|
@@ -4599,7 +4598,7 @@
|
|
|
4599
4598
|
"CustResizeBicubic":{
|
|
4600
4599
|
"input0":{
|
|
4601
4600
|
"name":"images",
|
|
4602
|
-
"type":"
|
|
4601
|
+
"type":"DT_FLOAT16,DT_FLOAT,DT_DOUBLE"
|
|
4603
4602
|
},
|
|
4604
4603
|
"input1":{
|
|
4605
4604
|
"name":"size",
|
|
@@ -4621,13 +4620,13 @@
|
|
|
4621
4620
|
},
|
|
4622
4621
|
"output0":{
|
|
4623
4622
|
"name":"y",
|
|
4624
|
-
"type":"DT_FLOAT"
|
|
4623
|
+
"type":"DT_FLOAT16,DT_FLOAT,DT_DOUBLE"
|
|
4625
4624
|
}
|
|
4626
4625
|
},
|
|
4627
4626
|
"CustResizeBicubicGrad":{
|
|
4628
4627
|
"input0":{
|
|
4629
4628
|
"name":"grads",
|
|
4630
|
-
"type":"DT_FLOAT"
|
|
4629
|
+
"type":"DT_FLOAT,DT_DOUBLE"
|
|
4631
4630
|
},
|
|
4632
4631
|
"input1":{
|
|
4633
4632
|
"name":"original_image",
|
|
@@ -4671,7 +4670,7 @@
|
|
|
4671
4670
|
"kernelSo":"libcust_cpu_kernels.so",
|
|
4672
4671
|
"opKernelLib":"CUSTAICPUKernel",
|
|
4673
4672
|
"opsFlag":"OPS_FLAG_CLOSE",
|
|
4674
|
-
"subTypeOfInferShape":"
|
|
4673
|
+
"subTypeOfInferShape":"2",
|
|
4675
4674
|
"userDefined":"True",
|
|
4676
4675
|
"workspaceSize":"1024"
|
|
4677
4676
|
},
|
|
@@ -6640,6 +6639,41 @@
|
|
|
6640
6639
|
"type":"DT_DOUBLE,DT_FLOAT,DT_FLOAT16"
|
|
6641
6640
|
}
|
|
6642
6641
|
},
|
|
6642
|
+
"LinearSumAssignment":{
|
|
6643
|
+
"input0":{
|
|
6644
|
+
"name":"cost_matrix",
|
|
6645
|
+
"type":"DT_FLOAT16,DT_FLOAT,DT_DOUBLE,DT_INT16,DT_INT32,DT_INT64,DT_INT8,DT_UINT16,DT_UINT32,DT_UINT64,DT_UINT8,DT_BOOL"
|
|
6646
|
+
},
|
|
6647
|
+
"input1":{
|
|
6648
|
+
"name":"dimension_limit",
|
|
6649
|
+
"type":"DT_INT64"
|
|
6650
|
+
},
|
|
6651
|
+
"input2":{
|
|
6652
|
+
"name":"maximize",
|
|
6653
|
+
"type":"DT_BOOL"
|
|
6654
|
+
},
|
|
6655
|
+
"opInfo":{
|
|
6656
|
+
"computeCost":"100",
|
|
6657
|
+
"engine":"DNN_VM_AICPU",
|
|
6658
|
+
"flagAsync":"False",
|
|
6659
|
+
"flagPartial":"False",
|
|
6660
|
+
"formatAgnostic":"False",
|
|
6661
|
+
"functionName":"RunCpuKernel",
|
|
6662
|
+
"kernelSo":"libcust_cpu_kernels.so",
|
|
6663
|
+
"opKernelLib":"CUSTAICPUKernel",
|
|
6664
|
+
"opsFlag":"OPS_FLAG_OPEN",
|
|
6665
|
+
"subTypeOfInferShape":"1",
|
|
6666
|
+
"userDefined":"True"
|
|
6667
|
+
},
|
|
6668
|
+
"output0":{
|
|
6669
|
+
"name":"row_ind",
|
|
6670
|
+
"type":"DT_INT64"
|
|
6671
|
+
},
|
|
6672
|
+
"output1":{
|
|
6673
|
+
"name":"col_ind",
|
|
6674
|
+
"type":"DT_INT64"
|
|
6675
|
+
}
|
|
6676
|
+
},
|
|
6643
6677
|
"ListDiff":{
|
|
6644
6678
|
"input0":{
|
|
6645
6679
|
"name":"x",
|
|
@@ -7236,42 +7270,6 @@
|
|
|
7236
7270
|
"type":"DT_FLOAT,DT_FLOAT16,DT_DOUBLE"
|
|
7237
7271
|
}
|
|
7238
7272
|
},
|
|
7239
|
-
"Multinomial":{
|
|
7240
|
-
"input0":{
|
|
7241
|
-
"name":"input",
|
|
7242
|
-
"type":"DT_DOUBLE,DT_FLOAT,DT_FLOAT16"
|
|
7243
|
-
},
|
|
7244
|
-
"input1":{
|
|
7245
|
-
"name":"num_sample",
|
|
7246
|
-
"type":"DT_INT32"
|
|
7247
|
-
},
|
|
7248
|
-
"input2":{
|
|
7249
|
-
"name":"count",
|
|
7250
|
-
"type":"DT_UINT64"
|
|
7251
|
-
},
|
|
7252
|
-
"input3":{
|
|
7253
|
-
"name":"state",
|
|
7254
|
-
"type":"DT_UINT64"
|
|
7255
|
-
},
|
|
7256
|
-
"opInfo":{
|
|
7257
|
-
"computeCost":"100",
|
|
7258
|
-
"engine":"DNN_VM_AICPU",
|
|
7259
|
-
"flagAsync":"False",
|
|
7260
|
-
"flagPartial":"False",
|
|
7261
|
-
"formatAgnostic":"False",
|
|
7262
|
-
"functionName":"RunCpuKernel",
|
|
7263
|
-
"kernelSo":"libcust_cpu_kernels.so",
|
|
7264
|
-
"opKernelLib":"CUSTAICPUKernel",
|
|
7265
|
-
"opsFlag":"OPS_FLAG_CLOSE",
|
|
7266
|
-
"subTypeOfInferShape":"1",
|
|
7267
|
-
"userDefined":"True",
|
|
7268
|
-
"workspaceSize":"1024"
|
|
7269
|
-
},
|
|
7270
|
-
"output0":{
|
|
7271
|
-
"name":"output",
|
|
7272
|
-
"type":"DT_INT32,DT_INT64"
|
|
7273
|
-
}
|
|
7274
|
-
},
|
|
7275
7273
|
"Mvlgamma":{
|
|
7276
7274
|
"input0":{
|
|
7277
7275
|
"name":"x",
|
|
@@ -7947,7 +7945,7 @@
|
|
|
7947
7945
|
"ResizeBicubic":{
|
|
7948
7946
|
"input0":{
|
|
7949
7947
|
"name":"images",
|
|
7950
|
-
"type":"
|
|
7948
|
+
"type":"DT_FLOAT16,DT_FLOAT,DT_DOUBLE"
|
|
7951
7949
|
},
|
|
7952
7950
|
"input1":{
|
|
7953
7951
|
"name":"size",
|
|
@@ -7969,13 +7967,13 @@
|
|
|
7969
7967
|
},
|
|
7970
7968
|
"output0":{
|
|
7971
7969
|
"name":"y",
|
|
7972
|
-
"type":"DT_FLOAT"
|
|
7970
|
+
"type":"DT_FLOAT16,DT_FLOAT,DT_DOUBLE"
|
|
7973
7971
|
}
|
|
7974
7972
|
},
|
|
7975
7973
|
"ResizeBicubicGrad":{
|
|
7976
7974
|
"input0":{
|
|
7977
7975
|
"name":"grads",
|
|
7978
|
-
"type":"DT_FLOAT"
|
|
7976
|
+
"type":"DT_FLOAT,DT_DOUBLE"
|
|
7979
7977
|
},
|
|
7980
7978
|
"input1":{
|
|
7981
7979
|
"name":"original_image",
|
|
@@ -8019,7 +8017,7 @@
|
|
|
8019
8017
|
"kernelSo":"libcust_cpu_kernels.so",
|
|
8020
8018
|
"opKernelLib":"CUSTAICPUKernel",
|
|
8021
8019
|
"opsFlag":"OPS_FLAG_CLOSE",
|
|
8022
|
-
"subTypeOfInferShape":"
|
|
8020
|
+
"subTypeOfInferShape":"2",
|
|
8023
8021
|
"userDefined":"True",
|
|
8024
8022
|
"workspaceSize":"1024"
|
|
8025
8023
|
},
|
|
Binary file
|
|
Binary file
|
|
Binary file
|
|
Binary file
|
|
Binary file
|
|
Binary file
|
|
Binary file
|
|
Binary file
|
|
Binary file
|
|
Binary file
|
|
Binary file
|
|
Binary file
|
|
Binary file
|
|
Binary file
|
|
Binary file
|
|
Binary file
|
|
Binary file
|
|
Binary file
|
mindspore/nn/cell.py
CHANGED
|
@@ -1081,9 +1081,6 @@ class Cell(Cell_):
|
|
|
1081
1081
|
if not isinstance(param, Parameter) and param is not None:
|
|
1082
1082
|
raise TypeError(f"For 'insert_param_to_cell', the argument 'param' must be 'Parameter' if not None, "
|
|
1083
1083
|
f"but got {type(param)}.")
|
|
1084
|
-
if param is None:
|
|
1085
|
-
raise TypeError(f"For 'insert_param_to_cell', the argument 'param' must not be None, "
|
|
1086
|
-
f"but got None.")
|
|
1087
1084
|
if isinstance(param, Parameter) and param.name == PARAMETER_NAME_DEFAULT:
|
|
1088
1085
|
param.name = param_name
|
|
1089
1086
|
self._params[param_name] = param
|
mindspore/nn/layer/activation.py
CHANGED
|
@@ -932,10 +932,8 @@ class GELU(Cell):
|
|
|
932
932
|
"""Initialize GELU."""
|
|
933
933
|
super(GELU, self).__init__()
|
|
934
934
|
validator.check_bool(approximate, 'approximate', self.cls_name)
|
|
935
|
-
self.approximate =
|
|
936
|
-
if approximate:
|
|
937
|
-
self.approximate = 'tanh'
|
|
938
|
-
else:
|
|
935
|
+
self.approximate = 'tanh'
|
|
936
|
+
if not approximate:
|
|
939
937
|
self.approximate = 'none'
|
|
940
938
|
|
|
941
939
|
def construct(self, x):
|
|
@@ -1335,7 +1333,8 @@ class LRN(Cell):
|
|
|
1335
1333
|
|
|
1336
1334
|
.. warning::
|
|
1337
1335
|
LRN is deprecated on Ascend due to potential accuracy problem. It's recommended to use other
|
|
1338
|
-
normalization methods, e.g. :class:`mindspore.nn.
|
|
1336
|
+
normalization methods, e.g. :class:`mindspore.nn.BatchNorm1d` ,
|
|
1337
|
+
:class:`mindspore.nn.BatchNorm2d` , :class:`mindspore.nn.BatchNorm3d`.
|
|
1339
1338
|
|
|
1340
1339
|
Refer to :func:`mindspore.ops.lrn` for more details.
|
|
1341
1340
|
|
mindspore/nn/layer/conv.py
CHANGED
|
@@ -718,9 +718,9 @@ class Conv3d(_Conv):
|
|
|
718
718
|
|
|
719
719
|
.. math::
|
|
720
720
|
\begin{array}{ll} \\
|
|
721
|
-
D_{out}
|
|
722
|
-
H_{out}
|
|
723
|
-
W_{out}
|
|
721
|
+
D_{out} = \left \lceil{\frac{D_{in}}{\text{stride[0]}}} \right \rceil \\
|
|
722
|
+
H_{out} = \left \lceil{\frac{H_{in}}{\text{stride[1]}}} \right \rceil \\
|
|
723
|
+
W_{out} = \left \lceil{\frac{W_{in}}{\text{stride[2]}}} \right \rceil \\
|
|
724
724
|
\end{array}
|
|
725
725
|
|
|
726
726
|
|
|
@@ -728,11 +728,11 @@ class Conv3d(_Conv):
|
|
|
728
728
|
|
|
729
729
|
.. math::
|
|
730
730
|
\begin{array}{ll} \\
|
|
731
|
-
D_{out}
|
|
731
|
+
D_{out} = \left \lfloor{\frac{D_{in} - \text{dilation[0]} \times (\text{kernel_size[0]} - 1) }
|
|
732
732
|
{\text{stride[0]}} + 1} \right \rfloor \\
|
|
733
|
-
H_{out}
|
|
733
|
+
H_{out} = \left \lfloor{\frac{H_{in} - \text{dilation[1]} \times (\text{kernel_size[1]} - 1) }
|
|
734
734
|
{\text{stride[1]}} + 1} \right \rfloor \\
|
|
735
|
-
W_{out}
|
|
735
|
+
W_{out} = \left \lfloor{\frac{W_{in} - \text{dilation[2]} \times (\text{kernel_size[2]} - 1) }
|
|
736
736
|
{\text{stride[2]}} + 1} \right \rfloor \\
|
|
737
737
|
\end{array}
|
|
738
738
|
|
|
@@ -740,11 +740,11 @@ class Conv3d(_Conv):
|
|
|
740
740
|
|
|
741
741
|
.. math::
|
|
742
742
|
\begin{array}{ll} \\
|
|
743
|
-
D_{out}
|
|
743
|
+
D_{out} = \left \lfloor{\frac{D_{in} + padding[0] + padding[1] - (\text{dilation[0]} - 1) \times
|
|
744
744
|
\text{kernel_size[0]} - 1 }{\text{stride[0]}} + 1} \right \rfloor \\
|
|
745
|
-
H_{out}
|
|
745
|
+
H_{out} = \left \lfloor{\frac{H_{in} + padding[2] + padding[3] - (\text{dilation[1]} - 1) \times
|
|
746
746
|
\text{kernel_size[1]} - 1 }{\text{stride[1]}} + 1} \right \rfloor \\
|
|
747
|
-
W_{out}
|
|
747
|
+
W_{out} = \left \lfloor{\frac{W_{in} + padding[4] + padding[5] - (\text{dilation[2]} - 1) \times
|
|
748
748
|
\text{kernel_size[2]} - 1 }{\text{stride[2]}} + 1} \right \rfloor \\
|
|
749
749
|
\end{array}
|
|
750
750
|
|
|
@@ -812,7 +812,7 @@ class Conv3d(_Conv):
|
|
|
812
812
|
bias_init,
|
|
813
813
|
data_format,
|
|
814
814
|
dtype=dtype)
|
|
815
|
-
out_channels = self.out_channels
|
|
815
|
+
out_channels = self.out_channels // group
|
|
816
816
|
self.conv3d = P.Conv3D(out_channel=out_channels,
|
|
817
817
|
kernel_size=self.kernel_size,
|
|
818
818
|
mode=1,
|
|
@@ -820,17 +820,33 @@ class Conv3d(_Conv):
|
|
|
820
820
|
pad=self.padding,
|
|
821
821
|
stride=self.stride,
|
|
822
822
|
dilation=self.dilation,
|
|
823
|
-
group=
|
|
823
|
+
group=1,
|
|
824
824
|
data_format=self.data_format)
|
|
825
825
|
self.bias_add = P.BiasAdd(data_format=self.data_format)
|
|
826
826
|
self.shape = P.Shape()
|
|
827
|
+
self.concat = P.Concat(1)
|
|
828
|
+
self.split_0 = P.Split(0, self.group)
|
|
829
|
+
self.split_1 = P.Split(1, self.group)
|
|
827
830
|
|
|
828
831
|
def construct(self, x):
|
|
829
832
|
x_shape = self.shape(x)
|
|
830
833
|
_check_input_5dims(x_shape, self.cls_name)
|
|
831
|
-
|
|
832
|
-
|
|
833
|
-
|
|
834
|
+
if self.group == 1:
|
|
835
|
+
out = self.conv3d(x, self.weight)
|
|
836
|
+
if self.has_bias:
|
|
837
|
+
out = self.bias_add(out, self.bias)
|
|
838
|
+
else:
|
|
839
|
+
features = self.split_1(x)
|
|
840
|
+
weights = self.split_0(self.weight)
|
|
841
|
+
outputs = ()
|
|
842
|
+
for i in range(self.group):
|
|
843
|
+
output = self.conv3d(features[i], weights[i])
|
|
844
|
+
outputs = outputs + (output,)
|
|
845
|
+
out = self.concat(outputs)
|
|
846
|
+
if self.bias is not None:
|
|
847
|
+
new_shape = [1 for _ in range(out.ndim)]
|
|
848
|
+
new_shape[1] = self.out_channels
|
|
849
|
+
out = out + self.bias.reshape(new_shape)
|
|
834
850
|
return out
|
|
835
851
|
|
|
836
852
|
|
|
@@ -921,9 +937,9 @@ class Conv3dTranspose(_Conv):
|
|
|
921
937
|
|
|
922
938
|
.. math::
|
|
923
939
|
\begin{array}{ll} \\
|
|
924
|
-
D_{out}
|
|
925
|
-
H_{out}
|
|
926
|
-
W_{out}
|
|
940
|
+
D_{out} = \left \lfloor{\frac{D_{in}}{\text{stride[0]}} + 1} \right \rfloor \\
|
|
941
|
+
H_{out} = \left \lfloor{\frac{H_{in}}{\text{stride[1]}} + 1} \right \rfloor \\
|
|
942
|
+
W_{out} = \left \lfloor{\frac{W_{in}}{\text{stride[2]}} + 1} \right \rfloor \\
|
|
927
943
|
\end{array}
|
|
928
944
|
|
|
929
945
|
|
|
@@ -931,11 +947,11 @@ class Conv3dTranspose(_Conv):
|
|
|
931
947
|
|
|
932
948
|
.. math::
|
|
933
949
|
\begin{array}{ll} \\
|
|
934
|
-
D_{out}
|
|
950
|
+
D_{out} = \left \lfloor{\frac{D_{in} - \text{dilation[0]} \times (\text{kernel_size[0]} - 1) }
|
|
935
951
|
{\text{stride[0]}} + 1} \right \rfloor \\
|
|
936
|
-
H_{out}
|
|
952
|
+
H_{out} = \left \lfloor{\frac{H_{in} - \text{dilation[1]} \times (\text{kernel_size[1]} - 1) }
|
|
937
953
|
{\text{stride[1]}} + 1} \right \rfloor \\
|
|
938
|
-
W_{out}
|
|
954
|
+
W_{out} = \left \lfloor{\frac{W_{in} - \text{dilation[2]} \times (\text{kernel_size[2]} - 1) }
|
|
939
955
|
{\text{stride[2]}} + 1} \right \rfloor \\
|
|
940
956
|
\end{array}
|
|
941
957
|
|
|
@@ -943,11 +959,11 @@ class Conv3dTranspose(_Conv):
|
|
|
943
959
|
|
|
944
960
|
.. math::
|
|
945
961
|
\begin{array}{ll} \\
|
|
946
|
-
D_{out}
|
|
962
|
+
D_{out} = \left \lfloor{\frac{D_{in} + padding[0] + padding[1] - (\text{dilation[0]} - 1) \times
|
|
947
963
|
\text{kernel_size[0]} - 1 }{\text{stride[0]}} + 1} \right \rfloor \\
|
|
948
|
-
H_{out}
|
|
964
|
+
H_{out} = \left \lfloor{\frac{H_{in} + padding[2] + padding[3] - (\text{dilation[1]} - 1) \times
|
|
949
965
|
\text{kernel_size[1]} - 1 }{\text{stride[1]}} + 1} \right \rfloor \\
|
|
950
|
-
W_{out}
|
|
966
|
+
W_{out} = \left \lfloor{\frac{W_{in} + padding[4] + padding[5] - (\text{dilation[2]} - 1) \times
|
|
951
967
|
\text{kernel_size[2]} - 1 }{\text{stride[2]}} + 1} \right \rfloor \\
|
|
952
968
|
\end{array}
|
|
953
969
|
|