mindspore 2.2.0__cp37-cp37m-manylinux1_x86_64.whl → 2.2.11__cp37-cp37m-manylinux1_x86_64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- mindspore/.commit_id +1 -1
- mindspore/_akg/akg/composite/build_module.py +104 -20
- mindspore/_akg/akg/utils/ascend_profilier/cann_file_parser.py +76 -0
- mindspore/_akg/akg/utils/ascend_profilier/file_manager.py +56 -0
- mindspore/_akg/akg/utils/ascend_profilier/op_summary_bean.py +23 -0
- mindspore/_akg/akg/utils/ascend_profilier/op_summary_headers.py +8 -0
- mindspore/_akg/akg/utils/ascend_profilier/op_summary_parser.py +42 -0
- mindspore/_akg/akg/utils/ascend_profilier/path_manager.py +65 -0
- mindspore/_akg/akg/utils/composite_op_helper.py +7 -2
- mindspore/_akg/akg/utils/dump_ascend_meta.py +22 -3
- mindspore/_akg/akg/utils/kernel_exec.py +41 -15
- mindspore/_akg/akg/utils/tbe_codegen_utils.py +27 -6
- mindspore/_akg/akg/utils/util.py +56 -1
- mindspore/_c_dataengine.cpython-37m-x86_64-linux-gnu.so +0 -0
- mindspore/_c_expression.cpython-37m-x86_64-linux-gnu.so +0 -0
- mindspore/_checkparam.py +3 -3
- mindspore/_extends/graph_kernel/model/graph_split.py +84 -76
- mindspore/_extends/graph_kernel/splitter.py +3 -2
- mindspore/_extends/parallel_compile/akg_compiler/build_tbe_kernel.py +83 -66
- mindspore/_extends/parallel_compile/akg_compiler/tbe_topi.py +4 -4
- mindspore/_extends/parallel_compile/akg_compiler/util.py +10 -7
- mindspore/_extends/parallel_compile/tbe_compiler/tbe_helper.py +2 -1
- mindspore/_extends/parse/__init__.py +3 -2
- mindspore/_extends/parse/parser.py +6 -1
- mindspore/_extends/parse/standard_method.py +14 -11
- mindspore/_extends/remote/kernel_build_server.py +2 -1
- mindspore/_mindspore_offline_debug.cpython-37m-x86_64-linux-gnu.so +0 -0
- mindspore/bin/cache_admin +0 -0
- mindspore/bin/cache_server +0 -0
- mindspore/common/_utils.py +16 -0
- mindspore/common/api.py +1 -1
- mindspore/common/auto_dynamic_shape.py +81 -85
- mindspore/common/dump.py +1 -1
- mindspore/common/tensor.py +3 -20
- mindspore/config/op_info.config +1 -1
- mindspore/context.py +11 -4
- mindspore/dataset/engine/cache_client.py +8 -5
- mindspore/dataset/engine/datasets_standard_format.py +5 -0
- mindspore/dataset/vision/transforms.py +21 -21
- mindspore/experimental/optim/adam.py +1 -1
- mindspore/gen_ops.py +1 -1
- mindspore/include/api/model.h +17 -0
- mindspore/include/api/status.h +8 -3
- mindspore/lib/libdnnl.so.2 +0 -0
- mindspore/lib/libmindspore.so +0 -0
- mindspore/lib/libmindspore_backend.so +0 -0
- mindspore/lib/libmindspore_common.so +0 -0
- mindspore/lib/libmindspore_core.so +0 -0
- mindspore/lib/libmindspore_glog.so.0 +0 -0
- mindspore/lib/libmindspore_gpr.so.15 +0 -0
- mindspore/lib/libmindspore_grpc++.so.1 +0 -0
- mindspore/lib/libmindspore_grpc.so.15 +0 -0
- mindspore/lib/libmindspore_shared_lib.so +0 -0
- mindspore/lib/libnnacl.so +0 -0
- mindspore/lib/libopencv_core.so.4.5 +0 -0
- mindspore/lib/libopencv_imgcodecs.so.4.5 +0 -0
- mindspore/lib/libopencv_imgproc.so.4.5 +0 -0
- mindspore/lib/plugin/ascend/custom_aicore_ops/op_impl/ai_core/tbe/config/ascend310/aic-ascend310-ops-info.json +123 -0
- mindspore/lib/plugin/ascend/custom_aicore_ops/op_impl/ai_core/tbe/config/ascend310p/aic-ascend310p-ops-info.json +123 -0
- mindspore/lib/plugin/ascend/custom_aicore_ops/op_impl/ai_core/tbe/config/ascend910/aic-ascend910-ops-info.json +158 -0
- mindspore/lib/plugin/ascend/custom_aicore_ops/op_impl/ai_core/tbe/config/ascend910b/aic-ascend910b-ops-info.json +37 -0
- mindspore/lib/plugin/ascend/custom_aicore_ops/op_impl/ai_core/tbe/custom_aicore_ops_impl/add_dsl.py +46 -0
- mindspore/lib/plugin/ascend/custom_aicore_ops/op_impl/ai_core/tbe/custom_aicore_ops_impl/add_tik.py +51 -0
- mindspore/lib/plugin/ascend/custom_aicore_ops/op_impl/ai_core/tbe/custom_aicore_ops_impl/kv_cache_mgr.py +241 -0
- mindspore/lib/plugin/ascend/custom_aicore_ops/op_impl/ai_core/tbe/custom_aicore_ops_impl/matmul_tik.py +212 -0
- mindspore/lib/plugin/ascend/custom_aicore_ops/op_impl/vector_core/tbe/custom_aicore_ops_impl/add_dsl.py +46 -0
- mindspore/lib/plugin/ascend/custom_aicore_ops/op_impl/vector_core/tbe/custom_aicore_ops_impl/add_tik.py +51 -0
- mindspore/lib/plugin/ascend/custom_aicore_ops/op_impl/vector_core/tbe/custom_aicore_ops_impl/kv_cache_mgr.py +241 -0
- mindspore/lib/plugin/ascend/custom_aicore_ops/op_impl/vector_core/tbe/custom_aicore_ops_impl/matmul_tik.py +212 -0
- mindspore/lib/plugin/ascend/custom_aicore_ops/op_proto/libop_proto.so +0 -0
- mindspore/lib/plugin/ascend/custom_aicpu_ops/op_impl/cpu/aicpu_kernel/impl/libcust_aicpu_kernels.so +0 -0
- mindspore/lib/plugin/ascend/custom_aicpu_ops/op_impl/cpu/aicpu_kernel/impl/libcust_cpu_kernels.so +0 -0
- mindspore/lib/plugin/ascend/custom_aicpu_ops/op_impl/cpu/config/cust_aicpu_kernel.json +78 -80
- mindspore/lib/plugin/ascend/custom_aicpu_ops/op_proto/libcust_op_proto.so +0 -0
- mindspore/lib/plugin/ascend/libakg.so +0 -0
- mindspore/lib/plugin/ascend/libhccl_plugin.so +0 -0
- mindspore/lib/plugin/ascend/libmindspore_aicpu_kernels.so +0 -0
- mindspore/lib/plugin/ascend/libmindspore_cpu_kernels.so +0 -0
- mindspore/lib/plugin/cpu/libakg.so +0 -0
- mindspore/lib/plugin/gpu/libcuda_ops.so.10 +0 -0
- mindspore/lib/plugin/gpu/libcuda_ops.so.11 +0 -0
- mindspore/lib/plugin/gpu10.1/libakg.so +0 -0
- mindspore/lib/plugin/gpu10.1/libnccl.so.2 +0 -0
- mindspore/lib/plugin/gpu11.1/libakg.so +0 -0
- mindspore/lib/plugin/gpu11.6/libakg.so +0 -0
- mindspore/lib/plugin/gpu11.6/libnccl.so.2 +0 -0
- mindspore/lib/plugin/libmindspore_ascend.so.1 +0 -0
- mindspore/lib/plugin/libmindspore_ascend.so.2 +0 -0
- mindspore/lib/plugin/libmindspore_gpu.so.10.1 +0 -0
- mindspore/lib/plugin/libmindspore_gpu.so.11.1 +0 -0
- mindspore/lib/plugin/libmindspore_gpu.so.11.6 +0 -0
- mindspore/nn/cell.py +0 -3
- mindspore/nn/layer/activation.py +4 -5
- mindspore/nn/layer/conv.py +39 -23
- mindspore/nn/layer/flash_attention.py +54 -129
- mindspore/nn/layer/math.py +3 -7
- mindspore/nn/layer/rnn_cells.py +5 -5
- mindspore/nn/wrap/__init__.py +4 -2
- mindspore/nn/wrap/cell_wrapper.py +12 -3
- mindspore/numpy/utils_const.py +5 -5
- mindspore/ops/_grad_experimental/grad_array_ops.py +1 -1
- mindspore/ops/_grad_experimental/grad_implementations.py +2 -2
- mindspore/ops/_grad_experimental/grad_math_ops.py +19 -18
- mindspore/ops/_grad_experimental/grad_sparse_ops.py +3 -3
- mindspore/ops/_op_impl/aicpu/add.py +3 -3
- mindspore/ops/_op_impl/aicpu/linear_sum_assignment.py +21 -2
- mindspore/ops/_utils/utils.py +2 -0
- mindspore/ops/composite/multitype_ops/_compile_utils.py +2 -1
- mindspore/ops/composite/multitype_ops/getitem_impl.py +2 -2
- mindspore/ops/function/array_func.py +10 -7
- mindspore/ops/function/grad/grad_func.py +0 -1
- mindspore/ops/function/nn_func.py +98 -9
- mindspore/ops/function/random_func.py +2 -1
- mindspore/ops/op_info_register.py +24 -21
- mindspore/ops/operations/__init__.py +6 -2
- mindspore/ops/operations/_grad_ops.py +25 -6
- mindspore/ops/operations/_inner_ops.py +155 -23
- mindspore/ops/operations/array_ops.py +9 -7
- mindspore/ops/operations/comm_ops.py +2 -2
- mindspore/ops/operations/custom_ops.py +85 -68
- mindspore/ops/operations/inner_ops.py +26 -3
- mindspore/ops/operations/math_ops.py +7 -6
- mindspore/ops/operations/nn_ops.py +193 -49
- mindspore/parallel/_parallel_serialization.py +10 -3
- mindspore/parallel/_tensor.py +4 -1
- mindspore/parallel/checkpoint_transform.py +13 -2
- mindspore/parallel/shard.py +17 -10
- mindspore/profiler/common/util.py +1 -0
- mindspore/profiler/parser/ascend_hccl_generator.py +232 -0
- mindspore/profiler/parser/ascend_msprof_exporter.py +86 -43
- mindspore/profiler/parser/ascend_msprof_generator.py +196 -9
- mindspore/profiler/parser/ascend_op_generator.py +1 -1
- mindspore/profiler/parser/ascend_timeline_generator.py +6 -182
- mindspore/profiler/parser/base_timeline_generator.py +1 -1
- mindspore/profiler/parser/cpu_gpu_timeline_generator.py +2 -2
- mindspore/profiler/parser/framework_parser.py +1 -1
- mindspore/profiler/parser/profiler_info.py +19 -0
- mindspore/profiler/profiling.py +46 -24
- mindspore/rewrite/api/pattern_engine.py +1 -1
- mindspore/rewrite/parsers/for_parser.py +7 -7
- mindspore/rewrite/parsers/module_parser.py +4 -4
- mindspore/rewrite/symbol_tree.py +1 -4
- mindspore/run_check/_check_version.py +5 -3
- mindspore/safeguard/rewrite_obfuscation.py +52 -28
- mindspore/scipy/ops.py +55 -5
- mindspore/scipy/optimize/__init__.py +3 -2
- mindspore/scipy/optimize/linear_sum_assignment.py +38 -33
- mindspore/train/callback/_summary_collector.py +1 -1
- mindspore/train/dataset_helper.py +1 -0
- mindspore/train/model.py +2 -2
- mindspore/train/serialization.py +97 -11
- mindspore/train/summary/_summary_adapter.py +1 -1
- mindspore/train/summary/summary_record.py +23 -7
- mindspore/version.py +1 -1
- {mindspore-2.2.0.dist-info → mindspore-2.2.11.dist-info}/METADATA +3 -2
- {mindspore-2.2.0.dist-info → mindspore-2.2.11.dist-info}/RECORD +160 -151
- mindspore/ops/_op_impl/_custom_op/flash_attention/attention.py +0 -406
- mindspore/ops/_op_impl/_custom_op/flash_attention/constants.py +0 -41
- mindspore/ops/_op_impl/_custom_op/flash_attention/flash_attention_bwd.py +0 -467
- mindspore/ops/_op_impl/_custom_op/flash_attention/flash_attention_fwd.py +0 -563
- mindspore/ops/_op_impl/_custom_op/flash_attention/flash_attention_impl.py +0 -193
- mindspore/ops/_op_impl/_custom_op/flash_attention/tik_ops_utils.py +0 -435
- mindspore/ops/_op_impl/_custom_op/flash_attention/tiling_strategy/__init__.py +0 -0
- mindspore/ops/_op_impl/_custom_op/flash_attention/tiling_strategy/sparse_tiling.py +0 -45
- mindspore/ops/_op_impl/_custom_op/flash_attention/tiling_strategy/strategy.py +0 -67
- mindspore/ops/_op_impl/_custom_op/flash_attention/tiling_strategy/wukong_tiling.py +0 -62
- /mindspore/{ops/_op_impl/_custom_op/flash_attention → _akg/akg/utils/ascend_profilier}/__init__.py +0 -0
- {mindspore-2.2.0.dist-info → mindspore-2.2.11.dist-info}/WHEEL +0 -0
- {mindspore-2.2.0.dist-info → mindspore-2.2.11.dist-info}/entry_points.txt +0 -0
- {mindspore-2.2.0.dist-info → mindspore-2.2.11.dist-info}/top_level.txt +0 -0
|
@@ -3292,6 +3292,41 @@
|
|
|
3292
3292
|
"type":"DT_DOUBLE,DT_FLOAT,DT_FLOAT16"
|
|
3293
3293
|
}
|
|
3294
3294
|
},
|
|
3295
|
+
"CustLinearSumAssignment":{
|
|
3296
|
+
"input0":{
|
|
3297
|
+
"name":"cost_matrix",
|
|
3298
|
+
"type":"DT_FLOAT16,DT_FLOAT,DT_DOUBLE,DT_INT16,DT_INT32,DT_INT64,DT_INT8,DT_UINT16,DT_UINT32,DT_UINT64,DT_UINT8,DT_BOOL"
|
|
3299
|
+
},
|
|
3300
|
+
"input1":{
|
|
3301
|
+
"name":"dimension_limit",
|
|
3302
|
+
"type":"DT_INT64"
|
|
3303
|
+
},
|
|
3304
|
+
"input2":{
|
|
3305
|
+
"name":"maximize",
|
|
3306
|
+
"type":"DT_BOOL"
|
|
3307
|
+
},
|
|
3308
|
+
"opInfo":{
|
|
3309
|
+
"computeCost":"100",
|
|
3310
|
+
"engine":"DNN_VM_AICPU",
|
|
3311
|
+
"flagAsync":"False",
|
|
3312
|
+
"flagPartial":"False",
|
|
3313
|
+
"formatAgnostic":"False",
|
|
3314
|
+
"functionName":"RunCpuKernel",
|
|
3315
|
+
"kernelSo":"libcust_cpu_kernels.so",
|
|
3316
|
+
"opKernelLib":"CUSTAICPUKernel",
|
|
3317
|
+
"opsFlag":"OPS_FLAG_OPEN",
|
|
3318
|
+
"subTypeOfInferShape":"1",
|
|
3319
|
+
"userDefined":"True"
|
|
3320
|
+
},
|
|
3321
|
+
"output0":{
|
|
3322
|
+
"name":"row_ind",
|
|
3323
|
+
"type":"DT_INT64"
|
|
3324
|
+
},
|
|
3325
|
+
"output1":{
|
|
3326
|
+
"name":"col_ind",
|
|
3327
|
+
"type":"DT_INT64"
|
|
3328
|
+
}
|
|
3329
|
+
},
|
|
3295
3330
|
"CustListDiff":{
|
|
3296
3331
|
"input0":{
|
|
3297
3332
|
"name":"x",
|
|
@@ -3888,42 +3923,6 @@
|
|
|
3888
3923
|
"type":"DT_FLOAT,DT_FLOAT16,DT_DOUBLE"
|
|
3889
3924
|
}
|
|
3890
3925
|
},
|
|
3891
|
-
"CustMultinomial":{
|
|
3892
|
-
"input0":{
|
|
3893
|
-
"name":"input",
|
|
3894
|
-
"type":"DT_DOUBLE,DT_FLOAT,DT_FLOAT16"
|
|
3895
|
-
},
|
|
3896
|
-
"input1":{
|
|
3897
|
-
"name":"num_sample",
|
|
3898
|
-
"type":"DT_INT32"
|
|
3899
|
-
},
|
|
3900
|
-
"input2":{
|
|
3901
|
-
"name":"count",
|
|
3902
|
-
"type":"DT_UINT64"
|
|
3903
|
-
},
|
|
3904
|
-
"input3":{
|
|
3905
|
-
"name":"state",
|
|
3906
|
-
"type":"DT_UINT64"
|
|
3907
|
-
},
|
|
3908
|
-
"opInfo":{
|
|
3909
|
-
"computeCost":"100",
|
|
3910
|
-
"engine":"DNN_VM_AICPU",
|
|
3911
|
-
"flagAsync":"False",
|
|
3912
|
-
"flagPartial":"False",
|
|
3913
|
-
"formatAgnostic":"False",
|
|
3914
|
-
"functionName":"RunCpuKernel",
|
|
3915
|
-
"kernelSo":"libcust_cpu_kernels.so",
|
|
3916
|
-
"opKernelLib":"CUSTAICPUKernel",
|
|
3917
|
-
"opsFlag":"OPS_FLAG_CLOSE",
|
|
3918
|
-
"subTypeOfInferShape":"1",
|
|
3919
|
-
"userDefined":"True",
|
|
3920
|
-
"workspaceSize":"1024"
|
|
3921
|
-
},
|
|
3922
|
-
"output0":{
|
|
3923
|
-
"name":"output",
|
|
3924
|
-
"type":"DT_INT32,DT_INT64"
|
|
3925
|
-
}
|
|
3926
|
-
},
|
|
3927
3926
|
"CustMvlgamma":{
|
|
3928
3927
|
"input0":{
|
|
3929
3928
|
"name":"x",
|
|
@@ -4599,7 +4598,7 @@
|
|
|
4599
4598
|
"CustResizeBicubic":{
|
|
4600
4599
|
"input0":{
|
|
4601
4600
|
"name":"images",
|
|
4602
|
-
"type":"
|
|
4601
|
+
"type":"DT_FLOAT16,DT_FLOAT,DT_DOUBLE"
|
|
4603
4602
|
},
|
|
4604
4603
|
"input1":{
|
|
4605
4604
|
"name":"size",
|
|
@@ -4621,13 +4620,13 @@
|
|
|
4621
4620
|
},
|
|
4622
4621
|
"output0":{
|
|
4623
4622
|
"name":"y",
|
|
4624
|
-
"type":"DT_FLOAT"
|
|
4623
|
+
"type":"DT_FLOAT16,DT_FLOAT,DT_DOUBLE"
|
|
4625
4624
|
}
|
|
4626
4625
|
},
|
|
4627
4626
|
"CustResizeBicubicGrad":{
|
|
4628
4627
|
"input0":{
|
|
4629
4628
|
"name":"grads",
|
|
4630
|
-
"type":"DT_FLOAT"
|
|
4629
|
+
"type":"DT_FLOAT,DT_DOUBLE"
|
|
4631
4630
|
},
|
|
4632
4631
|
"input1":{
|
|
4633
4632
|
"name":"original_image",
|
|
@@ -4671,7 +4670,7 @@
|
|
|
4671
4670
|
"kernelSo":"libcust_cpu_kernels.so",
|
|
4672
4671
|
"opKernelLib":"CUSTAICPUKernel",
|
|
4673
4672
|
"opsFlag":"OPS_FLAG_CLOSE",
|
|
4674
|
-
"subTypeOfInferShape":"
|
|
4673
|
+
"subTypeOfInferShape":"2",
|
|
4675
4674
|
"userDefined":"True",
|
|
4676
4675
|
"workspaceSize":"1024"
|
|
4677
4676
|
},
|
|
@@ -6640,6 +6639,41 @@
|
|
|
6640
6639
|
"type":"DT_DOUBLE,DT_FLOAT,DT_FLOAT16"
|
|
6641
6640
|
}
|
|
6642
6641
|
},
|
|
6642
|
+
"LinearSumAssignment":{
|
|
6643
|
+
"input0":{
|
|
6644
|
+
"name":"cost_matrix",
|
|
6645
|
+
"type":"DT_FLOAT16,DT_FLOAT,DT_DOUBLE,DT_INT16,DT_INT32,DT_INT64,DT_INT8,DT_UINT16,DT_UINT32,DT_UINT64,DT_UINT8,DT_BOOL"
|
|
6646
|
+
},
|
|
6647
|
+
"input1":{
|
|
6648
|
+
"name":"dimension_limit",
|
|
6649
|
+
"type":"DT_INT64"
|
|
6650
|
+
},
|
|
6651
|
+
"input2":{
|
|
6652
|
+
"name":"maximize",
|
|
6653
|
+
"type":"DT_BOOL"
|
|
6654
|
+
},
|
|
6655
|
+
"opInfo":{
|
|
6656
|
+
"computeCost":"100",
|
|
6657
|
+
"engine":"DNN_VM_AICPU",
|
|
6658
|
+
"flagAsync":"False",
|
|
6659
|
+
"flagPartial":"False",
|
|
6660
|
+
"formatAgnostic":"False",
|
|
6661
|
+
"functionName":"RunCpuKernel",
|
|
6662
|
+
"kernelSo":"libcust_cpu_kernels.so",
|
|
6663
|
+
"opKernelLib":"CUSTAICPUKernel",
|
|
6664
|
+
"opsFlag":"OPS_FLAG_OPEN",
|
|
6665
|
+
"subTypeOfInferShape":"1",
|
|
6666
|
+
"userDefined":"True"
|
|
6667
|
+
},
|
|
6668
|
+
"output0":{
|
|
6669
|
+
"name":"row_ind",
|
|
6670
|
+
"type":"DT_INT64"
|
|
6671
|
+
},
|
|
6672
|
+
"output1":{
|
|
6673
|
+
"name":"col_ind",
|
|
6674
|
+
"type":"DT_INT64"
|
|
6675
|
+
}
|
|
6676
|
+
},
|
|
6643
6677
|
"ListDiff":{
|
|
6644
6678
|
"input0":{
|
|
6645
6679
|
"name":"x",
|
|
@@ -7236,42 +7270,6 @@
|
|
|
7236
7270
|
"type":"DT_FLOAT,DT_FLOAT16,DT_DOUBLE"
|
|
7237
7271
|
}
|
|
7238
7272
|
},
|
|
7239
|
-
"Multinomial":{
|
|
7240
|
-
"input0":{
|
|
7241
|
-
"name":"input",
|
|
7242
|
-
"type":"DT_DOUBLE,DT_FLOAT,DT_FLOAT16"
|
|
7243
|
-
},
|
|
7244
|
-
"input1":{
|
|
7245
|
-
"name":"num_sample",
|
|
7246
|
-
"type":"DT_INT32"
|
|
7247
|
-
},
|
|
7248
|
-
"input2":{
|
|
7249
|
-
"name":"count",
|
|
7250
|
-
"type":"DT_UINT64"
|
|
7251
|
-
},
|
|
7252
|
-
"input3":{
|
|
7253
|
-
"name":"state",
|
|
7254
|
-
"type":"DT_UINT64"
|
|
7255
|
-
},
|
|
7256
|
-
"opInfo":{
|
|
7257
|
-
"computeCost":"100",
|
|
7258
|
-
"engine":"DNN_VM_AICPU",
|
|
7259
|
-
"flagAsync":"False",
|
|
7260
|
-
"flagPartial":"False",
|
|
7261
|
-
"formatAgnostic":"False",
|
|
7262
|
-
"functionName":"RunCpuKernel",
|
|
7263
|
-
"kernelSo":"libcust_cpu_kernels.so",
|
|
7264
|
-
"opKernelLib":"CUSTAICPUKernel",
|
|
7265
|
-
"opsFlag":"OPS_FLAG_CLOSE",
|
|
7266
|
-
"subTypeOfInferShape":"1",
|
|
7267
|
-
"userDefined":"True",
|
|
7268
|
-
"workspaceSize":"1024"
|
|
7269
|
-
},
|
|
7270
|
-
"output0":{
|
|
7271
|
-
"name":"output",
|
|
7272
|
-
"type":"DT_INT32,DT_INT64"
|
|
7273
|
-
}
|
|
7274
|
-
},
|
|
7275
7273
|
"Mvlgamma":{
|
|
7276
7274
|
"input0":{
|
|
7277
7275
|
"name":"x",
|
|
@@ -7947,7 +7945,7 @@
|
|
|
7947
7945
|
"ResizeBicubic":{
|
|
7948
7946
|
"input0":{
|
|
7949
7947
|
"name":"images",
|
|
7950
|
-
"type":"
|
|
7948
|
+
"type":"DT_FLOAT16,DT_FLOAT,DT_DOUBLE"
|
|
7951
7949
|
},
|
|
7952
7950
|
"input1":{
|
|
7953
7951
|
"name":"size",
|
|
@@ -7969,13 +7967,13 @@
|
|
|
7969
7967
|
},
|
|
7970
7968
|
"output0":{
|
|
7971
7969
|
"name":"y",
|
|
7972
|
-
"type":"DT_FLOAT"
|
|
7970
|
+
"type":"DT_FLOAT16,DT_FLOAT,DT_DOUBLE"
|
|
7973
7971
|
}
|
|
7974
7972
|
},
|
|
7975
7973
|
"ResizeBicubicGrad":{
|
|
7976
7974
|
"input0":{
|
|
7977
7975
|
"name":"grads",
|
|
7978
|
-
"type":"DT_FLOAT"
|
|
7976
|
+
"type":"DT_FLOAT,DT_DOUBLE"
|
|
7979
7977
|
},
|
|
7980
7978
|
"input1":{
|
|
7981
7979
|
"name":"original_image",
|
|
@@ -8019,7 +8017,7 @@
|
|
|
8019
8017
|
"kernelSo":"libcust_cpu_kernels.so",
|
|
8020
8018
|
"opKernelLib":"CUSTAICPUKernel",
|
|
8021
8019
|
"opsFlag":"OPS_FLAG_CLOSE",
|
|
8022
|
-
"subTypeOfInferShape":"
|
|
8020
|
+
"subTypeOfInferShape":"2",
|
|
8023
8021
|
"userDefined":"True",
|
|
8024
8022
|
"workspaceSize":"1024"
|
|
8025
8023
|
},
|
|
Binary file
|
|
Binary file
|
|
Binary file
|
|
Binary file
|
|
Binary file
|
|
Binary file
|
|
Binary file
|
|
Binary file
|
|
Binary file
|
|
Binary file
|
|
Binary file
|
|
Binary file
|
|
Binary file
|
|
Binary file
|
|
Binary file
|
|
Binary file
|
|
Binary file
|
|
Binary file
|
mindspore/nn/cell.py
CHANGED
|
@@ -1081,9 +1081,6 @@ class Cell(Cell_):
|
|
|
1081
1081
|
if not isinstance(param, Parameter) and param is not None:
|
|
1082
1082
|
raise TypeError(f"For 'insert_param_to_cell', the argument 'param' must be 'Parameter' if not None, "
|
|
1083
1083
|
f"but got {type(param)}.")
|
|
1084
|
-
if param is None:
|
|
1085
|
-
raise TypeError(f"For 'insert_param_to_cell', the argument 'param' must not be None, "
|
|
1086
|
-
f"but got None.")
|
|
1087
1084
|
if isinstance(param, Parameter) and param.name == PARAMETER_NAME_DEFAULT:
|
|
1088
1085
|
param.name = param_name
|
|
1089
1086
|
self._params[param_name] = param
|
mindspore/nn/layer/activation.py
CHANGED
|
@@ -932,10 +932,8 @@ class GELU(Cell):
|
|
|
932
932
|
"""Initialize GELU."""
|
|
933
933
|
super(GELU, self).__init__()
|
|
934
934
|
validator.check_bool(approximate, 'approximate', self.cls_name)
|
|
935
|
-
self.approximate =
|
|
936
|
-
if approximate:
|
|
937
|
-
self.approximate = 'tanh'
|
|
938
|
-
else:
|
|
935
|
+
self.approximate = 'tanh'
|
|
936
|
+
if not approximate:
|
|
939
937
|
self.approximate = 'none'
|
|
940
938
|
|
|
941
939
|
def construct(self, x):
|
|
@@ -1335,7 +1333,8 @@ class LRN(Cell):
|
|
|
1335
1333
|
|
|
1336
1334
|
.. warning::
|
|
1337
1335
|
LRN is deprecated on Ascend due to potential accuracy problem. It's recommended to use other
|
|
1338
|
-
normalization methods, e.g. :class:`mindspore.nn.
|
|
1336
|
+
normalization methods, e.g. :class:`mindspore.nn.BatchNorm1d` ,
|
|
1337
|
+
:class:`mindspore.nn.BatchNorm2d` , :class:`mindspore.nn.BatchNorm3d`.
|
|
1339
1338
|
|
|
1340
1339
|
Refer to :func:`mindspore.ops.lrn` for more details.
|
|
1341
1340
|
|
mindspore/nn/layer/conv.py
CHANGED
|
@@ -718,9 +718,9 @@ class Conv3d(_Conv):
|
|
|
718
718
|
|
|
719
719
|
.. math::
|
|
720
720
|
\begin{array}{ll} \\
|
|
721
|
-
D_{out}
|
|
722
|
-
H_{out}
|
|
723
|
-
W_{out}
|
|
721
|
+
D_{out} = \left \lceil{\frac{D_{in}}{\text{stride[0]}}} \right \rceil \\
|
|
722
|
+
H_{out} = \left \lceil{\frac{H_{in}}{\text{stride[1]}}} \right \rceil \\
|
|
723
|
+
W_{out} = \left \lceil{\frac{W_{in}}{\text{stride[2]}}} \right \rceil \\
|
|
724
724
|
\end{array}
|
|
725
725
|
|
|
726
726
|
|
|
@@ -728,11 +728,11 @@ class Conv3d(_Conv):
|
|
|
728
728
|
|
|
729
729
|
.. math::
|
|
730
730
|
\begin{array}{ll} \\
|
|
731
|
-
D_{out}
|
|
731
|
+
D_{out} = \left \lfloor{\frac{D_{in} - \text{dilation[0]} \times (\text{kernel_size[0]} - 1) }
|
|
732
732
|
{\text{stride[0]}} + 1} \right \rfloor \\
|
|
733
|
-
H_{out}
|
|
733
|
+
H_{out} = \left \lfloor{\frac{H_{in} - \text{dilation[1]} \times (\text{kernel_size[1]} - 1) }
|
|
734
734
|
{\text{stride[1]}} + 1} \right \rfloor \\
|
|
735
|
-
W_{out}
|
|
735
|
+
W_{out} = \left \lfloor{\frac{W_{in} - \text{dilation[2]} \times (\text{kernel_size[2]} - 1) }
|
|
736
736
|
{\text{stride[2]}} + 1} \right \rfloor \\
|
|
737
737
|
\end{array}
|
|
738
738
|
|
|
@@ -740,11 +740,11 @@ class Conv3d(_Conv):
|
|
|
740
740
|
|
|
741
741
|
.. math::
|
|
742
742
|
\begin{array}{ll} \\
|
|
743
|
-
D_{out}
|
|
743
|
+
D_{out} = \left \lfloor{\frac{D_{in} + padding[0] + padding[1] - (\text{dilation[0]} - 1) \times
|
|
744
744
|
\text{kernel_size[0]} - 1 }{\text{stride[0]}} + 1} \right \rfloor \\
|
|
745
|
-
H_{out}
|
|
745
|
+
H_{out} = \left \lfloor{\frac{H_{in} + padding[2] + padding[3] - (\text{dilation[1]} - 1) \times
|
|
746
746
|
\text{kernel_size[1]} - 1 }{\text{stride[1]}} + 1} \right \rfloor \\
|
|
747
|
-
W_{out}
|
|
747
|
+
W_{out} = \left \lfloor{\frac{W_{in} + padding[4] + padding[5] - (\text{dilation[2]} - 1) \times
|
|
748
748
|
\text{kernel_size[2]} - 1 }{\text{stride[2]}} + 1} \right \rfloor \\
|
|
749
749
|
\end{array}
|
|
750
750
|
|
|
@@ -812,7 +812,7 @@ class Conv3d(_Conv):
|
|
|
812
812
|
bias_init,
|
|
813
813
|
data_format,
|
|
814
814
|
dtype=dtype)
|
|
815
|
-
out_channels = self.out_channels
|
|
815
|
+
out_channels = self.out_channels // group
|
|
816
816
|
self.conv3d = P.Conv3D(out_channel=out_channels,
|
|
817
817
|
kernel_size=self.kernel_size,
|
|
818
818
|
mode=1,
|
|
@@ -820,17 +820,33 @@ class Conv3d(_Conv):
|
|
|
820
820
|
pad=self.padding,
|
|
821
821
|
stride=self.stride,
|
|
822
822
|
dilation=self.dilation,
|
|
823
|
-
group=
|
|
823
|
+
group=1,
|
|
824
824
|
data_format=self.data_format)
|
|
825
825
|
self.bias_add = P.BiasAdd(data_format=self.data_format)
|
|
826
826
|
self.shape = P.Shape()
|
|
827
|
+
self.concat = P.Concat(1)
|
|
828
|
+
self.split_0 = P.Split(0, self.group)
|
|
829
|
+
self.split_1 = P.Split(1, self.group)
|
|
827
830
|
|
|
828
831
|
def construct(self, x):
|
|
829
832
|
x_shape = self.shape(x)
|
|
830
833
|
_check_input_5dims(x_shape, self.cls_name)
|
|
831
|
-
|
|
832
|
-
|
|
833
|
-
|
|
834
|
+
if self.group == 1:
|
|
835
|
+
out = self.conv3d(x, self.weight)
|
|
836
|
+
if self.has_bias:
|
|
837
|
+
out = self.bias_add(out, self.bias)
|
|
838
|
+
else:
|
|
839
|
+
features = self.split_1(x)
|
|
840
|
+
weights = self.split_0(self.weight)
|
|
841
|
+
outputs = ()
|
|
842
|
+
for i in range(self.group):
|
|
843
|
+
output = self.conv3d(features[i], weights[i])
|
|
844
|
+
outputs = outputs + (output,)
|
|
845
|
+
out = self.concat(outputs)
|
|
846
|
+
if self.bias is not None:
|
|
847
|
+
new_shape = [1 for _ in range(out.ndim)]
|
|
848
|
+
new_shape[1] = self.out_channels
|
|
849
|
+
out = out + self.bias.reshape(new_shape)
|
|
834
850
|
return out
|
|
835
851
|
|
|
836
852
|
|
|
@@ -921,9 +937,9 @@ class Conv3dTranspose(_Conv):
|
|
|
921
937
|
|
|
922
938
|
.. math::
|
|
923
939
|
\begin{array}{ll} \\
|
|
924
|
-
D_{out}
|
|
925
|
-
H_{out}
|
|
926
|
-
W_{out}
|
|
940
|
+
D_{out} = \left \lfloor{\frac{D_{in}}{\text{stride[0]}} + 1} \right \rfloor \\
|
|
941
|
+
H_{out} = \left \lfloor{\frac{H_{in}}{\text{stride[1]}} + 1} \right \rfloor \\
|
|
942
|
+
W_{out} = \left \lfloor{\frac{W_{in}}{\text{stride[2]}} + 1} \right \rfloor \\
|
|
927
943
|
\end{array}
|
|
928
944
|
|
|
929
945
|
|
|
@@ -931,11 +947,11 @@ class Conv3dTranspose(_Conv):
|
|
|
931
947
|
|
|
932
948
|
.. math::
|
|
933
949
|
\begin{array}{ll} \\
|
|
934
|
-
D_{out}
|
|
950
|
+
D_{out} = \left \lfloor{\frac{D_{in} - \text{dilation[0]} \times (\text{kernel_size[0]} - 1) }
|
|
935
951
|
{\text{stride[0]}} + 1} \right \rfloor \\
|
|
936
|
-
H_{out}
|
|
952
|
+
H_{out} = \left \lfloor{\frac{H_{in} - \text{dilation[1]} \times (\text{kernel_size[1]} - 1) }
|
|
937
953
|
{\text{stride[1]}} + 1} \right \rfloor \\
|
|
938
|
-
W_{out}
|
|
954
|
+
W_{out} = \left \lfloor{\frac{W_{in} - \text{dilation[2]} \times (\text{kernel_size[2]} - 1) }
|
|
939
955
|
{\text{stride[2]}} + 1} \right \rfloor \\
|
|
940
956
|
\end{array}
|
|
941
957
|
|
|
@@ -943,11 +959,11 @@ class Conv3dTranspose(_Conv):
|
|
|
943
959
|
|
|
944
960
|
.. math::
|
|
945
961
|
\begin{array}{ll} \\
|
|
946
|
-
D_{out}
|
|
962
|
+
D_{out} = \left \lfloor{\frac{D_{in} + padding[0] + padding[1] - (\text{dilation[0]} - 1) \times
|
|
947
963
|
\text{kernel_size[0]} - 1 }{\text{stride[0]}} + 1} \right \rfloor \\
|
|
948
|
-
H_{out}
|
|
964
|
+
H_{out} = \left \lfloor{\frac{H_{in} + padding[2] + padding[3] - (\text{dilation[1]} - 1) \times
|
|
949
965
|
\text{kernel_size[1]} - 1 }{\text{stride[1]}} + 1} \right \rfloor \\
|
|
950
|
-
W_{out}
|
|
966
|
+
W_{out} = \left \lfloor{\frac{W_{in} + padding[4] + padding[5] - (\text{dilation[2]} - 1) \times
|
|
951
967
|
\text{kernel_size[2]} - 1 }{\text{stride[2]}} + 1} \right \rfloor \\
|
|
952
968
|
\end{array}
|
|
953
969
|
|