mindspore 2.1.0__cp38-none-any.whl → 2.2.11__cp38-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of mindspore might be problematic. Click here for more details.
- mindspore/.commit_id +1 -1
- mindspore/__init__.py +4 -1
- mindspore/_akg/akg/build_module.py +5 -6
- mindspore/_akg/akg/composite/build_module.py +139 -22
- mindspore/_akg/akg/composite/split_stitch.py +10 -11
- mindspore/_akg/akg/ms/info_version_adapt.py +67 -1
- mindspore/_akg/akg/tvm/api.py +4 -3
- mindspore/_akg/akg/tvm/autotvm/__init__.py +1 -2
- mindspore/_akg/akg/tvm/autotvm/graph_tuner/base_graph_tuner.py +1 -5
- mindspore/_akg/akg/tvm/autotvm/measure/__init__.py +1 -1
- mindspore/_akg/akg/tvm/autotvm/measure/measure.py +1 -10
- mindspore/_akg/akg/tvm/autotvm/measure/measure_methods.py +1 -372
- mindspore/_akg/akg/tvm/build_module.py +16 -1
- mindspore/_akg/akg/tvm/contrib/graph_runtime.py +0 -53
- mindspore/_akg/akg/tvm/hybrid/parser.py +7 -6
- mindspore/_akg/akg/tvm/ir_builder.py +1 -1
- mindspore/_akg/akg/tvm/module.py +1 -2
- mindspore/_akg/akg/tvm/stmt.py +2 -2
- mindspore/_akg/akg/utils/ascend_profilier/cann_file_parser.py +76 -0
- mindspore/_akg/akg/utils/ascend_profilier/file_manager.py +56 -0
- mindspore/_akg/akg/utils/ascend_profilier/op_summary_bean.py +23 -0
- mindspore/_akg/akg/utils/ascend_profilier/op_summary_headers.py +8 -0
- mindspore/_akg/akg/utils/ascend_profilier/op_summary_parser.py +42 -0
- mindspore/_akg/akg/utils/ascend_profilier/path_manager.py +65 -0
- mindspore/_akg/akg/utils/composite_op_helper.py +16 -12
- mindspore/_akg/akg/utils/dump_ascend_meta.py +22 -3
- mindspore/_akg/akg/utils/kernel_exec.py +98 -274
- mindspore/_akg/akg/utils/result_analysis.py +4 -24
- mindspore/_akg/akg/utils/tbe_codegen_utils.py +219 -0
- mindspore/_akg/akg/utils/util.py +56 -1
- mindspore/_c_dataengine.cpython-38-aarch64-linux-gnu.so +0 -0
- mindspore/_c_expression.cpython-38-aarch64-linux-gnu.so +0 -0
- mindspore/_c_mindrecord.cpython-38-aarch64-linux-gnu.so +0 -0
- mindspore/_check_jit_forbidden_api.py +3 -1
- mindspore/_checkparam.py +23 -29
- mindspore/_extends/graph_kernel/__init__.py +0 -1
- mindspore/_extends/graph_kernel/model/graph_split.py +84 -76
- mindspore/_extends/graph_kernel/model/model_builder.py +9 -50
- mindspore/_extends/graph_kernel/splitter.py +4 -11
- mindspore/_extends/parallel_compile/akg_compiler/akg_process.py +122 -15
- mindspore/_extends/parallel_compile/akg_compiler/build_tbe_kernel.py +84 -67
- mindspore/_extends/parallel_compile/akg_compiler/tbe_topi.py +4 -2
- mindspore/_extends/parallel_compile/akg_compiler/util.py +10 -7
- mindspore/_extends/parallel_compile/tbe_compiler/tbe_adapter.py +2 -2
- mindspore/_extends/parallel_compile/tbe_compiler/tbe_helper.py +6 -5
- mindspore/_extends/parallel_compile/tbe_compiler/tbe_job.py +1 -1
- mindspore/_extends/parallel_compile/tbe_compiler/tbe_job_manager.py +1 -1
- mindspore/_extends/parse/__init__.py +13 -15
- mindspore/_extends/parse/namespace.py +7 -33
- mindspore/_extends/parse/parser.py +67 -72
- mindspore/_extends/parse/resources.py +1 -1
- mindspore/_extends/parse/standard_method.py +86 -106
- mindspore/_extends/parse/trope.py +1 -1
- mindspore/_extends/remote/kernel_build_server.py +25 -7
- mindspore/_extends/remote/kernel_build_server_akg_v2.py +55 -0
- mindspore/_install_custom.py +43 -0
- mindspore/_mindspore_offline_debug.cpython-38-aarch64-linux-gnu.so +0 -0
- mindspore/amp.py +47 -11
- mindspore/bin/cache_admin +0 -0
- mindspore/bin/cache_server +0 -0
- mindspore/boost/boost.py +1 -8
- mindspore/boost/boost_cell_wrapper.py +3 -2
- mindspore/boost/grad_accumulation.py +1 -1
- mindspore/boost/group_loss_scale_manager.py +8 -7
- mindspore/common/__init__.py +5 -3
- mindspore/common/_jit_fallback_utils.py +6 -0
- mindspore/common/_register_for_adapter.py +2 -0
- mindspore/common/_register_for_tensor.py +2 -2
- mindspore/common/_stub_tensor.py +13 -0
- mindspore/common/_utils.py +29 -0
- mindspore/common/api.py +174 -259
- mindspore/common/auto_dynamic_shape.py +494 -0
- mindspore/common/dtype.py +18 -11
- mindspore/common/dump.py +6 -4
- mindspore/common/initializer.py +14 -14
- mindspore/common/jit_config.py +33 -15
- mindspore/common/lazy_inline.py +126 -7
- mindspore/common/mindir_util.py +101 -0
- mindspore/common/parameter.py +51 -41
- mindspore/common/seed.py +4 -4
- mindspore/common/sparse_tensor.py +13 -14
- mindspore/common/tensor.py +243 -165
- mindspore/communication/__init__.py +7 -4
- mindspore/communication/_comm_helper.py +83 -4
- mindspore/communication/management.py +152 -84
- mindspore/config/op_info.config +14 -3
- mindspore/config/super_bar_config.json +4 -2
- mindspore/context.py +152 -61
- mindspore/dataset/__init__.py +5 -5
- mindspore/dataset/audio/__init__.py +2 -2
- mindspore/dataset/audio/transforms.py +52 -52
- mindspore/dataset/callback/ds_callback.py +16 -2
- mindspore/dataset/core/config.py +68 -51
- mindspore/dataset/engine/cache_client.py +33 -7
- mindspore/dataset/engine/datasets.py +250 -112
- mindspore/dataset/engine/datasets_audio.py +43 -211
- mindspore/dataset/engine/datasets_standard_format.py +16 -35
- mindspore/dataset/engine/datasets_text.py +43 -67
- mindspore/dataset/engine/datasets_user_defined.py +86 -100
- mindspore/dataset/engine/datasets_vision.py +219 -1029
- mindspore/dataset/engine/iterators.py +11 -4
- mindspore/dataset/engine/obs/obs_mindrecord_dataset.py +4 -0
- mindspore/dataset/engine/obs/util.py +3 -0
- mindspore/dataset/engine/samplers.py +1 -1
- mindspore/dataset/engine/validators.py +19 -5
- mindspore/dataset/text/__init__.py +3 -3
- mindspore/dataset/text/transforms.py +101 -127
- mindspore/dataset/text/utils.py +205 -138
- mindspore/dataset/transforms/__init__.py +1 -1
- mindspore/dataset/transforms/py_transforms_util.py +40 -12
- mindspore/dataset/transforms/transforms.py +95 -40
- mindspore/dataset/utils/browse_dataset.py +8 -2
- mindspore/dataset/utils/line_reader.py +17 -19
- mindspore/dataset/vision/__init__.py +3 -3
- mindspore/dataset/vision/c_transforms.py +6 -3
- mindspore/dataset/vision/transforms.py +409 -287
- mindspore/dataset/vision/utils.py +13 -14
- mindspore/dataset/vision/validators.py +11 -1
- mindspore/experimental/map_parameter.py +14 -0
- mindspore/{nn/optim_ex → experimental/optim}/__init__.py +30 -29
- mindspore/{nn/optim_ex → experimental/optim}/adam.py +60 -67
- mindspore/{nn/optim_ex → experimental/optim}/adamw.py +181 -203
- mindspore/experimental/optim/lr_scheduler.py +1427 -0
- mindspore/{nn/optim_ex → experimental/optim}/optimizer.py +252 -259
- mindspore/{nn/optim_ex → experimental/optim}/sgd.py +147 -152
- mindspore/gen_ops.py +273 -0
- mindspore/include/OWNERS +0 -1
- mindspore/include/api/data_type.h +2 -1
- mindspore/include/api/graph.h +0 -15
- mindspore/include/api/kernel.h +2 -0
- mindspore/include/api/kernel_api.h +37 -12
- mindspore/include/api/model.h +17 -14
- mindspore/include/api/status.h +8 -3
- mindspore/include/api/types.h +37 -4
- mindspore/include/c_api/ms/abstract.h +67 -0
- mindspore/include/c_api/ms/attribute.h +197 -0
- mindspore/include/c_api/ms/base/handle_types.h +43 -0
- mindspore/include/c_api/ms/base/macros.h +32 -0
- mindspore/include/c_api/ms/base/status.h +33 -0
- mindspore/include/c_api/ms/base/types.h +282 -0
- mindspore/include/c_api/ms/context.h +102 -0
- mindspore/include/c_api/ms/graph.h +160 -0
- mindspore/include/c_api/ms/node.h +606 -0
- mindspore/include/c_api/ms/tensor.h +161 -0
- mindspore/include/c_api/ms/value.h +84 -0
- mindspore/include/dataset/constants.h +6 -5
- mindspore/include/dataset/execute.h +23 -13
- mindspore/include/dataset/text.h +26 -26
- mindspore/include/dataset/transforms.h +13 -13
- mindspore/include/dataset/vision.h +60 -60
- mindspore/include/dataset/vision_ascend.h +5 -6
- mindspore/include/dataset/vision_lite.h +17 -17
- mindspore/include/mindapi/base/type_id.h +1 -0
- mindspore/include/mindapi/base/types.h +1 -0
- mindspore/lib/libdnnl.so.2 +0 -0
- mindspore/lib/libjemalloc.so.2 +0 -0
- mindspore/lib/libmindspore.so +0 -0
- mindspore/lib/libmindspore_backend.so +0 -0
- mindspore/lib/libmindspore_common.so +0 -0
- mindspore/lib/libmindspore_core.so +0 -0
- mindspore/lib/libmindspore_glog.so.0 +0 -0
- mindspore/lib/libmindspore_gpr.so.15 +0 -0
- mindspore/lib/libmindspore_grpc++.so.1 +0 -0
- mindspore/lib/libmindspore_grpc.so.15 +0 -0
- mindspore/lib/libmindspore_shared_lib.so +0 -0
- mindspore/lib/libnnacl.so +0 -0
- mindspore/lib/libopencv_core.so.4.5 +0 -0
- mindspore/lib/libopencv_imgcodecs.so.4.5 +0 -0
- mindspore/lib/libopencv_imgproc.so.4.5 +0 -0
- mindspore/lib/libps_cache.so +0 -0
- mindspore/lib/plugin/ascend/custom_aicore_ops/op_impl/ai_core/tbe/config/ascend310/aic-ascend310-ops-info.json +123 -0
- mindspore/lib/plugin/ascend/custom_aicore_ops/op_impl/ai_core/tbe/config/ascend310p/aic-ascend310p-ops-info.json +123 -0
- mindspore/lib/plugin/ascend/custom_aicore_ops/op_impl/ai_core/tbe/config/ascend910/aic-ascend910-ops-info.json +158 -0
- mindspore/lib/plugin/ascend/custom_aicore_ops/op_impl/ai_core/tbe/config/ascend910b/aic-ascend910b-ops-info.json +37 -0
- mindspore/lib/plugin/ascend/custom_aicore_ops/op_impl/ai_core/tbe/custom_aicore_ops_impl/add_dsl.py +46 -0
- mindspore/lib/plugin/ascend/custom_aicore_ops/op_impl/ai_core/tbe/custom_aicore_ops_impl/add_tik.py +51 -0
- mindspore/lib/plugin/ascend/custom_aicore_ops/op_impl/ai_core/tbe/custom_aicore_ops_impl/kv_cache_mgr.py +241 -0
- mindspore/lib/plugin/ascend/custom_aicore_ops/op_impl/ai_core/tbe/custom_aicore_ops_impl/matmul_tik.py +212 -0
- mindspore/lib/plugin/ascend/custom_aicore_ops/op_impl/vector_core/tbe/custom_aicore_ops_impl/add_dsl.py +46 -0
- mindspore/lib/plugin/ascend/custom_aicore_ops/op_impl/vector_core/tbe/custom_aicore_ops_impl/add_tik.py +51 -0
- mindspore/lib/plugin/ascend/custom_aicore_ops/op_impl/vector_core/tbe/custom_aicore_ops_impl/kv_cache_mgr.py +241 -0
- mindspore/lib/plugin/ascend/custom_aicore_ops/op_impl/vector_core/tbe/custom_aicore_ops_impl/matmul_tik.py +212 -0
- mindspore/lib/plugin/ascend/custom_aicore_ops/op_proto/libop_proto.so +0 -0
- mindspore/lib/plugin/ascend/custom_aicpu_ops/op_impl/cpu/aicpu_kernel/impl/libcust_aicpu_kernels.so +0 -0
- mindspore/lib/plugin/ascend/custom_aicpu_ops/op_impl/cpu/aicpu_kernel/impl/libcust_cpu_kernels.so +0 -0
- mindspore/lib/plugin/ascend/custom_aicpu_ops/op_impl/cpu/config/cust_aicpu_kernel.json +8998 -0
- mindspore/lib/plugin/ascend/custom_aicpu_ops/op_proto/libcust_op_proto.so +0 -0
- mindspore/lib/plugin/ascend/libakg.so +0 -0
- mindspore/lib/plugin/ascend/libascend_collective.so +0 -0
- mindspore/lib/plugin/ascend/libdvpp_utils.so +0 -0
- mindspore/lib/plugin/ascend/libhccl_plugin.so +0 -0
- mindspore/lib/plugin/ascend/libmindspore_aicpu_kernels.so +0 -0
- mindspore/lib/plugin/ascend/libmindspore_cpu_kernels.so +0 -0
- mindspore/lib/plugin/cpu/libakg.so +0 -0
- mindspore/lib/plugin/libmindspore_ascend.so.1 +0 -0
- mindspore/lib/plugin/libmindspore_ascend.so.2 +0 -0
- mindspore/mindrecord/tools/imagenet_to_mr.py +1 -1
- mindspore/mindrecord/tools/mnist_to_mr.py +2 -2
- mindspore/nn/__init__.py +0 -2
- mindspore/nn/cell.py +313 -74
- mindspore/nn/dynamic_lr.py +21 -21
- mindspore/nn/layer/activation.py +22 -30
- mindspore/nn/layer/basic.py +15 -13
- mindspore/nn/layer/channel_shuffle.py +1 -1
- mindspore/nn/layer/container.py +271 -9
- mindspore/nn/layer/conv.py +323 -204
- mindspore/nn/layer/dense.py +8 -5
- mindspore/nn/layer/embedding.py +33 -27
- mindspore/nn/layer/flash_attention.py +61 -95
- mindspore/nn/layer/image.py +8 -6
- mindspore/nn/layer/math.py +16 -25
- mindspore/nn/layer/normalization.py +107 -66
- mindspore/nn/layer/padding.py +1 -1
- mindspore/nn/layer/pooling.py +131 -109
- mindspore/nn/layer/rnn_cells.py +27 -22
- mindspore/nn/layer/rnns.py +13 -16
- mindspore/nn/layer/thor_layer.py +1 -1
- mindspore/nn/layer/transformer.py +221 -154
- mindspore/nn/learning_rate_schedule.py +9 -1
- mindspore/nn/loss/loss.py +235 -174
- mindspore/nn/optim/ada_grad.py +2 -1
- mindspore/nn/optim/adadelta.py +1 -0
- mindspore/nn/optim/adafactor.py +2 -1
- mindspore/nn/optim/adam.py +7 -4
- mindspore/nn/optim/adamax.py +3 -2
- mindspore/nn/optim/adasum.py +2 -2
- mindspore/nn/optim/asgd.py +2 -3
- mindspore/nn/optim/ftrl.py +6 -5
- mindspore/nn/optim/lamb.py +7 -4
- mindspore/nn/optim/lars.py +1 -1
- mindspore/nn/optim/lazyadam.py +5 -3
- mindspore/nn/optim/momentum.py +2 -1
- mindspore/nn/optim/optimizer.py +53 -4
- mindspore/nn/optim/proximal_ada_grad.py +3 -4
- mindspore/nn/optim/rmsprop.py +4 -3
- mindspore/nn/optim/rprop.py +23 -12
- mindspore/nn/optim/sgd.py +26 -11
- mindspore/nn/optim/thor.py +9 -7
- mindspore/nn/probability/bijector/bijector.py +5 -5
- mindspore/nn/probability/bijector/power_transform.py +27 -27
- mindspore/nn/probability/bijector/softplus.py +3 -3
- mindspore/nn/probability/distribution/_utils/custom_ops.py +3 -3
- mindspore/nn/probability/distribution/bernoulli.py +5 -5
- mindspore/nn/probability/distribution/beta.py +3 -3
- mindspore/nn/probability/distribution/categorical.py +7 -7
- mindspore/nn/probability/distribution/cauchy.py +0 -1
- mindspore/nn/probability/distribution/distribution.py +3 -3
- mindspore/nn/probability/distribution/gamma.py +3 -3
- mindspore/nn/probability/distribution/geometric.py +4 -4
- mindspore/nn/probability/distribution/gumbel.py +4 -4
- mindspore/nn/probability/distribution/log_normal.py +2 -2
- mindspore/nn/probability/distribution/logistic.py +2 -2
- mindspore/nn/probability/distribution/poisson.py +4 -4
- mindspore/nn/probability/distribution/transformed_distribution.py +3 -3
- mindspore/nn/probability/distribution/uniform.py +6 -6
- mindspore/nn/wrap/__init__.py +4 -2
- mindspore/nn/wrap/cell_wrapper.py +87 -34
- mindspore/nn/wrap/grad_reducer.py +8 -5
- mindspore/nn/wrap/loss_scale.py +105 -42
- mindspore/numpy/array_creations.py +1 -2
- mindspore/numpy/array_ops.py +3 -2
- mindspore/numpy/utils_const.py +5 -5
- mindspore/offline_debug/convert_async.py +2 -2
- mindspore/ops/_grad_experimental/__init__.py +0 -5
- mindspore/ops/_grad_experimental/grad_array_ops.py +2 -3
- mindspore/ops/_grad_experimental/grad_comm_ops.py +15 -2
- mindspore/ops/_grad_experimental/grad_debug_ops.py +0 -37
- mindspore/ops/_grad_experimental/grad_implementations.py +11 -1
- mindspore/ops/_grad_experimental/grad_inner_ops.py +2 -216
- mindspore/ops/_grad_experimental/grad_math_ops.py +19 -199
- mindspore/ops/_grad_experimental/grad_sparse.py +15 -0
- mindspore/ops/_grad_experimental/grad_sparse_ops.py +3 -3
- mindspore/ops/_op_impl/_custom_op/dsd_back_impl.py +1 -1
- mindspore/ops/_op_impl/aicpu/__init__.py +14 -2
- mindspore/ops/_op_impl/aicpu/add.py +3 -3
- mindspore/ops/_op_impl/aicpu/bias_add_grad.py +0 -1
- mindspore/ops/_op_impl/aicpu/count_nonzero.py +43 -0
- mindspore/ops/_op_impl/{_custom_op/flash_attention/constants.py → aicpu/eps.py} +18 -27
- mindspore/ops/_op_impl/aicpu/gamma.py +2 -2
- mindspore/ops/_op_impl/aicpu/linear_sum_assignment.py +21 -2
- mindspore/ops/_op_impl/aicpu/log_uniform_candidate_sampler.py +6 -3
- mindspore/ops/_op_impl/aicpu/lu_unpack_grad.py +0 -1
- mindspore/ops/_op_impl/aicpu/multinomial.py +3 -3
- mindspore/ops/_op_impl/aicpu/parameterized_truncated_normal.py +15 -7
- mindspore/ops/_op_impl/aicpu/random_categorical.py +39 -19
- mindspore/ops/_op_impl/aicpu/random_choice_with_mask.py +5 -2
- mindspore/ops/_op_impl/aicpu/random_poisson.py +103 -52
- mindspore/ops/_op_impl/aicpu/random_shuffle.py +17 -15
- mindspore/ops/_op_impl/aicpu/{sparseaddmm.py → sparse_addmm.py} +2 -2
- mindspore/ops/_op_impl/aicpu/{sparsesparsemaximum.py → sparse_sparse_maximum.py} +4 -4
- mindspore/ops/_op_impl/aicpu/standard_laplace.py +5 -5
- mindspore/ops/_op_impl/aicpu/standard_normal.py +5 -5
- mindspore/ops/_op_impl/aicpu/truncated_normal.py +9 -7
- mindspore/ops/_op_impl/aicpu/uniform.py +5 -3
- mindspore/ops/_op_impl/aicpu/uniform_candidate_sampler.py +8 -4
- mindspore/ops/_op_impl/aicpu/uniform_int.py +5 -5
- mindspore/ops/_op_impl/aicpu/uniform_real.py +4 -4
- mindspore/ops/_op_impl/tbe/__init__.py +4 -4
- mindspore/ops/_op_impl/tbe/inplace_index_add.py +7 -3
- mindspore/ops/_op_impl/tbe/trans_data_ds.py +2 -0
- mindspore/ops/_primitive_cache.py +1 -1
- mindspore/ops/_tracefunc.py +45 -13
- mindspore/ops/_utils/utils.py +6 -1
- mindspore/ops/_vmap/vmap_array_ops.py +3 -3
- mindspore/ops/_vmap/vmap_base.py +3 -3
- mindspore/ops/_vmap/vmap_convolution_ops.py +1 -1
- mindspore/ops/_vmap/vmap_grad_math_ops.py +6 -4
- mindspore/ops/_vmap/vmap_math_ops.py +5 -2
- mindspore/ops/_vmap/vmap_nn_ops.py +61 -7
- mindspore/ops/arg_dtype_cast.py +54 -0
- mindspore/ops/composite/base.py +37 -10
- mindspore/ops/composite/math_ops.py +5 -4
- mindspore/ops/composite/multitype_ops/_compile_utils.py +275 -73
- mindspore/ops/composite/multitype_ops/_constexpr_utils.py +16 -9
- mindspore/ops/composite/multitype_ops/add_impl.py +43 -4
- mindspore/ops/composite/multitype_ops/getitem_impl.py +42 -4
- mindspore/ops/composite/multitype_ops/ones_like_impl.py +6 -0
- mindspore/ops/composite/multitype_ops/setitem_impl.py +2 -1
- mindspore/ops/composite/multitype_ops/zeros_like_impl.py +9 -0
- mindspore/ops/deprecated.py +304 -0
- mindspore/ops/function/__init__.py +4 -1
- mindspore/ops/function/array_func.py +174 -193
- mindspore/ops/function/clip_func.py +81 -13
- mindspore/ops/function/debug_func.py +1 -1
- mindspore/ops/function/grad/grad_func.py +18 -9
- mindspore/ops/function/image_func.py +10 -4
- mindspore/ops/function/linalg_func.py +5 -5
- mindspore/ops/function/math_func.py +575 -386
- mindspore/ops/function/nn_func.py +568 -260
- mindspore/ops/function/random_func.py +88 -57
- mindspore/ops/function/sparse_func.py +1 -1
- mindspore/ops/function/sparse_unary_func.py +14 -12
- mindspore/ops/function/vmap_func.py +6 -5
- mindspore/ops/functional.py +15 -10
- mindspore/ops/op_info_register.py +244 -25
- mindspore/ops/operations/__init__.py +31 -19
- mindspore/ops/operations/_grad_ops.py +71 -7
- mindspore/ops/operations/_inner_ops.py +350 -17
- mindspore/ops/operations/_quant_ops.py +4 -8
- mindspore/ops/operations/_sequence_ops.py +42 -0
- mindspore/ops/operations/array_ops.py +68 -282
- mindspore/ops/operations/comm_ops.py +107 -59
- mindspore/ops/operations/custom_ops.py +94 -70
- mindspore/ops/operations/debug_ops.py +8 -4
- mindspore/ops/operations/image_ops.py +18 -12
- mindspore/ops/operations/inner_ops.py +26 -3
- mindspore/ops/operations/math_ops.py +192 -144
- mindspore/ops/operations/nn_ops.py +857 -489
- mindspore/ops/operations/other_ops.py +0 -22
- mindspore/ops/operations/random_ops.py +53 -111
- mindspore/ops/operations/sparse_ops.py +3 -1
- mindspore/ops/primitive.py +24 -18
- mindspore/parallel/_auto_parallel_context.py +68 -8
- mindspore/parallel/_cost_model_context.py +2 -2
- mindspore/parallel/_offload_context.py +17 -3
- mindspore/parallel/_parallel_serialization.py +12 -5
- mindspore/parallel/_ps_context.py +12 -0
- mindspore/parallel/_tensor.py +18 -13
- mindspore/parallel/_transformer/layers.py +5 -3
- mindspore/parallel/_transformer/loss.py +1 -0
- mindspore/parallel/_transformer/moe.py +2 -2
- mindspore/parallel/_transformer/op_parallel_config.py +12 -1
- mindspore/parallel/_transformer/transformer.py +23 -3
- mindspore/parallel/_utils.py +11 -7
- mindspore/parallel/algo_parameter_config.py +85 -5
- mindspore/parallel/checkpoint_transform.py +19 -12
- mindspore/parallel/shard.py +21 -14
- mindspore/profiler/common/struct_type.py +3 -3
- mindspore/profiler/common/util.py +4 -2
- mindspore/profiler/envprofiling.py +1 -1
- mindspore/profiler/parser/aicpu_data_parser.py +5 -3
- mindspore/profiler/parser/ascend_flops_generator.py +2 -2
- mindspore/profiler/parser/ascend_fpbp_generator.py +1 -1
- mindspore/profiler/parser/ascend_hccl_generator.py +249 -12
- mindspore/profiler/parser/ascend_msprof_exporter.py +150 -255
- mindspore/profiler/parser/ascend_msprof_generator.py +204 -17
- mindspore/profiler/parser/ascend_op_generator.py +6 -6
- mindspore/profiler/parser/ascend_steptrace_generator.py +6 -4
- mindspore/profiler/parser/ascend_timeline_generator.py +14 -187
- mindspore/profiler/parser/base_timeline_generator.py +10 -8
- mindspore/profiler/parser/cpu_gpu_timeline_generator.py +16 -12
- mindspore/profiler/parser/flops_parser.py +15 -11
- mindspore/profiler/parser/framework_parser.py +38 -22
- mindspore/profiler/parser/hccl_parser.py +16 -12
- mindspore/profiler/parser/integrator.py +22 -11
- mindspore/profiler/parser/memory_usage_parser.py +2 -2
- mindspore/profiler/parser/minddata_analyzer.py +12 -14
- mindspore/profiler/parser/minddata_pipeline_parser.py +1 -1
- mindspore/profiler/parser/msadvisor_parser.py +8 -4
- mindspore/profiler/parser/op_intermediate_parser.py +5 -2
- mindspore/profiler/parser/optime_parser.py +1 -1
- mindspore/profiler/parser/profiler_info.py +21 -2
- mindspore/profiler/parser/step_trace_parser.py +11 -14
- mindspore/profiler/profiling.py +179 -89
- mindspore/rewrite/api/node.py +102 -19
- mindspore/rewrite/api/node_type.py +5 -1
- mindspore/rewrite/api/pattern_engine.py +1 -1
- mindspore/rewrite/api/scoped_value.py +9 -17
- mindspore/rewrite/api/symbol_tree.py +131 -47
- mindspore/rewrite/ast_helpers/__init__.py +2 -1
- mindspore/rewrite/ast_helpers/ast_finder.py +129 -0
- mindspore/rewrite/ast_helpers/ast_modifier.py +116 -104
- mindspore/rewrite/ast_transformers/flatten_recursive_stmt.py +93 -46
- mindspore/rewrite/common/rewrite_elog.py +5 -1
- mindspore/rewrite/namer.py +33 -24
- mindspore/rewrite/namespace.py +14 -5
- mindspore/{_extends/graph_kernel/expanders/complex → rewrite/node}/__init__.py +9 -9
- mindspore/rewrite/node/call_function.py +79 -0
- mindspore/rewrite/node/cell_container.py +135 -0
- mindspore/rewrite/node/control_flow.py +88 -0
- mindspore/rewrite/{node.py → node/node.py} +273 -234
- mindspore/rewrite/node/node_manager.py +254 -0
- mindspore/rewrite/{topological_manager.py → node/node_topological_manager.py} +13 -46
- mindspore/rewrite/parsers/arguments_parser.py +22 -21
- mindspore/rewrite/parsers/assign_parser.py +216 -221
- mindspore/rewrite/parsers/attribute_parser.py +9 -7
- mindspore/rewrite/parsers/class_def_parser.py +174 -113
- mindspore/rewrite/parsers/constant_parser.py +9 -6
- mindspore/rewrite/parsers/container_parser.py +9 -7
- mindspore/rewrite/parsers/for_parser.py +42 -21
- mindspore/rewrite/parsers/function_def_parser.py +24 -16
- mindspore/rewrite/parsers/if_parser.py +28 -24
- mindspore/rewrite/parsers/module_parser.py +196 -25
- mindspore/rewrite/{parser.py → parsers/parser.py} +4 -2
- mindspore/rewrite/{parser_register.py → parsers/parser_register.py} +1 -1
- mindspore/rewrite/parsers/return_parser.py +6 -6
- mindspore/rewrite/sparsify/sparse_transformer.py +12 -3
- mindspore/rewrite/sparsify/utils.py +1 -1
- mindspore/rewrite/symbol_tree.py +523 -578
- mindspore/rewrite/symbol_tree_builder.py +9 -193
- mindspore/rewrite/symbol_tree_dumper.py +2 -2
- mindspore/run_check/_check_version.py +6 -4
- mindspore/{ops/bprop_mindir → safeguard}/__init__.py +4 -3
- mindspore/safeguard/rewrite_obfuscation.py +541 -0
- mindspore/scipy/linalg.py +1 -1
- mindspore/scipy/ops.py +55 -5
- mindspore/scipy/optimize/__init__.py +3 -2
- mindspore/scipy/optimize/linear_sum_assignment.py +38 -33
- mindspore/scipy/optimize/minimize.py +7 -3
- mindspore/train/_utils.py +7 -3
- mindspore/train/amp.py +323 -123
- mindspore/train/anf_ir_pb2.py +14 -2
- mindspore/train/callback/_backup_and_restore.py +2 -12
- mindspore/train/callback/_callback.py +29 -4
- mindspore/train/callback/_checkpoint.py +23 -8
- mindspore/train/callback/_early_stop.py +2 -2
- mindspore/train/callback/_landscape.py +4 -4
- mindspore/train/callback/_loss_monitor.py +2 -2
- mindspore/train/callback/_on_request_exit.py +2 -2
- mindspore/train/callback/_reduce_lr_on_plateau.py +3 -4
- mindspore/train/callback/_summary_collector.py +15 -8
- mindspore/train/callback/_time_monitor.py +58 -5
- mindspore/train/data_sink.py +5 -11
- mindspore/train/dataset_helper.py +84 -57
- mindspore/train/loss_scale_manager.py +2 -2
- mindspore/train/metrics/__init__.py +3 -3
- mindspore/train/metrics/cosine_similarity.py +1 -1
- mindspore/train/metrics/hausdorff_distance.py +3 -2
- mindspore/train/metrics/mean_surface_distance.py +3 -2
- mindspore/train/metrics/metric.py +39 -19
- mindspore/train/metrics/roc.py +2 -2
- mindspore/train/metrics/root_mean_square_surface_distance.py +4 -3
- mindspore/train/mind_ir_pb2.py +85 -36
- mindspore/train/model.py +187 -47
- mindspore/train/serialization.py +487 -161
- mindspore/train/summary/_summary_adapter.py +1 -1
- mindspore/train/summary/_writer_pool.py +3 -2
- mindspore/train/summary/summary_record.py +37 -17
- mindspore/train/train_thor/convert_utils.py +3 -3
- mindspore/train/train_thor/dataset_helper.py +1 -1
- mindspore/version.py +1 -1
- {mindspore-2.1.0.dist-info → mindspore-2.2.11.dist-info}/METADATA +8 -8
- {mindspore-2.1.0.dist-info → mindspore-2.2.11.dist-info}/RECORD +477 -528
- {mindspore-2.1.0.dist-info → mindspore-2.2.11.dist-info}/entry_points.txt +0 -1
- mindspore/_akg/akg/tvm/contrib/debugger/__init__.py +0 -16
- mindspore/_akg/akg/tvm/contrib/debugger/debug_result.py +0 -274
- mindspore/_akg/akg/tvm/contrib/debugger/debug_runtime.py +0 -259
- mindspore/_akg/akg/tvm/contrib/peak.py +0 -341
- mindspore/_akg/akg/tvm/contrib/rpc.py +0 -25
- mindspore/_akg/akg/tvm/contrib/xcode.py +0 -257
- mindspore/_akg/akg/tvm/exec/__init__.py +0 -17
- mindspore/_akg/akg/tvm/exec/autotvm_log_editor.py +0 -60
- mindspore/_akg/akg/tvm/exec/measure_peak.py +0 -48
- mindspore/_akg/akg/tvm/exec/query_rpc_tracker.py +0 -48
- mindspore/_akg/akg/tvm/exec/rpc_proxy.py +0 -98
- mindspore/_akg/akg/tvm/exec/rpc_server.py +0 -88
- mindspore/_akg/akg/tvm/exec/rpc_tracker.py +0 -62
- mindspore/_akg/akg/tvm/rpc/__init__.py +0 -29
- mindspore/_akg/akg/tvm/rpc/base.py +0 -182
- mindspore/_akg/akg/tvm/rpc/client.py +0 -436
- mindspore/_akg/akg/tvm/rpc/proxy.py +0 -595
- mindspore/_akg/akg/tvm/rpc/server.py +0 -413
- mindspore/_akg/akg/tvm/rpc/tornado_util.py +0 -121
- mindspore/_akg/akg/tvm/rpc/tracker.py +0 -431
- mindspore/_extends/graph_kernel/expander.py +0 -80
- mindspore/_extends/graph_kernel/expanders/__init__.py +0 -54
- mindspore/_extends/graph_kernel/expanders/_utils.py +0 -269
- mindspore/_extends/graph_kernel/expanders/addn.py +0 -33
- mindspore/_extends/graph_kernel/expanders/batchnorm.py +0 -152
- mindspore/_extends/graph_kernel/expanders/batchnorm_grad.py +0 -105
- mindspore/_extends/graph_kernel/expanders/clip_by_norm_no_div_sum.py +0 -33
- mindspore/_extends/graph_kernel/expanders/complex/abs.py +0 -30
- mindspore/_extends/graph_kernel/expanders/complex/add.py +0 -44
- mindspore/_extends/graph_kernel/expanders/complex/div.py +0 -62
- mindspore/_extends/graph_kernel/expanders/complex/mul.py +0 -52
- mindspore/_extends/graph_kernel/expanders/complex/real_div.py +0 -62
- mindspore/_extends/graph_kernel/expanders/complex/sub.py +0 -45
- mindspore/_extends/graph_kernel/expanders/conv2d.py +0 -200
- mindspore/_extends/graph_kernel/expanders/dropout_grad.py +0 -30
- mindspore/_extends/graph_kernel/expanders/equal_count.py +0 -50
- mindspore/_extends/graph_kernel/expanders/erfc.py +0 -35
- mindspore/_extends/graph_kernel/expanders/expand_dims.py +0 -50
- mindspore/_extends/graph_kernel/expanders/fused_adam.py +0 -44
- mindspore/_extends/graph_kernel/expanders/fused_adam_weight_decay.py +0 -47
- mindspore/_extends/graph_kernel/expanders/fused_mul_add.py +0 -28
- mindspore/_extends/graph_kernel/expanders/gelu_grad.py +0 -70
- mindspore/_extends/graph_kernel/expanders/gkdropout.py +0 -40
- mindspore/_extends/graph_kernel/expanders/identity.py +0 -25
- mindspore/_extends/graph_kernel/expanders/layernorm.py +0 -93
- mindspore/_extends/graph_kernel/expanders/layernorm_grad.py +0 -113
- mindspore/_extends/graph_kernel/expanders/logsoftmax.py +0 -46
- mindspore/_extends/graph_kernel/expanders/logsoftmax_grad.py +0 -36
- mindspore/_extends/graph_kernel/expanders/matmul.py +0 -80
- mindspore/_extends/graph_kernel/expanders/maximum_grad.py +0 -59
- mindspore/_extends/graph_kernel/expanders/minimum_grad.py +0 -80
- mindspore/_extends/graph_kernel/expanders/oneslike.py +0 -26
- mindspore/_extends/graph_kernel/expanders/reduce_mean.py +0 -43
- mindspore/_extends/graph_kernel/expanders/relu_grad.py +0 -32
- mindspore/_extends/graph_kernel/expanders/sigmoid_cross_entropy_with_logits.py +0 -41
- mindspore/_extends/graph_kernel/expanders/sigmoid_cross_entropy_with_logits_grad.py +0 -35
- mindspore/_extends/graph_kernel/expanders/sigmoid_grad.py +0 -31
- mindspore/_extends/graph_kernel/expanders/slice.py +0 -35
- mindspore/_extends/graph_kernel/expanders/softmax_cross_entropy_with_logits.py +0 -42
- mindspore/_extends/graph_kernel/expanders/softmax_grad_ext.py +0 -41
- mindspore/_extends/graph_kernel/expanders/softsign.py +0 -28
- mindspore/_extends/graph_kernel/expanders/sqrt_grad.py +0 -29
- mindspore/_extends/graph_kernel/expanders/square_sum_all.py +0 -44
- mindspore/_extends/graph_kernel/expanders/square_sum_v1.py +0 -37
- mindspore/_extends/graph_kernel/expanders/squared_difference.py +0 -43
- mindspore/_extends/graph_kernel/expanders/tanh_grad.py +0 -31
- mindspore/_extends/graph_kernel/model/op_infer.py +0 -506
- mindspore/dataset/datapreprocess/__init__.py +0 -20
- mindspore/dataset/datapreprocess/preprocess_imagenet_validate_dataset.py +0 -54
- mindspore/include/api/net.h +0 -142
- mindspore/nn/lr_scheduler.py +0 -262
- mindspore/ops/_grad_experimental/grad_image_ops.py +0 -248
- mindspore/ops/_grad_experimental/grad_linalg_ops.py +0 -181
- mindspore/ops/_grad_experimental/grad_other_ops.py +0 -72
- mindspore/ops/_grad_experimental/grad_scalar_ops.py +0 -112
- mindspore/ops/_grad_experimental/grad_sequence_ops.py +0 -351
- mindspore/ops/_op_impl/_custom_op/flash_attention/attention.py +0 -350
- mindspore/ops/_op_impl/_custom_op/flash_attention/flash_attention_bwd.py +0 -409
- mindspore/ops/_op_impl/_custom_op/flash_attention/flash_attention_fwd.py +0 -578
- mindspore/ops/_op_impl/_custom_op/flash_attention/flash_attention_impl.py +0 -199
- mindspore/ops/_op_impl/_custom_op/flash_attention/tik_ops_utils.py +0 -446
- mindspore/ops/_op_impl/_custom_op/flash_attention/tiling_strategy/__init__.py +0 -0
- mindspore/ops/_op_impl/_custom_op/flash_attention/tiling_strategy/sparse_tiling.py +0 -45
- mindspore/ops/_op_impl/_custom_op/flash_attention/tiling_strategy/strategy.py +0 -67
- mindspore/ops/_op_impl/_custom_op/flash_attention/tiling_strategy/wukong_tiling.py +0 -62
- mindspore/ops/bprop_mindir/BNTrainingReduce_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/Broadcast_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/Depend_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/DepthwiseConv2dNative_bprop.mindir +0 -138
- mindspore/ops/bprop_mindir/EmbeddingLookup_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/Load_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/ScatterNonAliasingAdd_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/SparseGatherV2_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/SparseSoftmaxCrossEntropyWithLogits_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/Switch_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/TransShape_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/TupleGetItem_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/Unique_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/Unstack_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/generate_mindir.py +0 -114
- mindspore/rewrite/node_visitor.py +0 -44
- /mindspore/{ops/_op_impl/_custom_op/flash_attention → _akg/akg/utils/ascend_profilier}/__init__.py +0 -0
- {mindspore-2.1.0.dist-info → mindspore-2.2.11.dist-info}/WHEEL +0 -0
- {mindspore-2.1.0.dist-info → mindspore-2.2.11.dist-info}/top_level.txt +0 -0
mindspore/lib/plugin/ascend/custom_aicore_ops/op_impl/ai_core/tbe/custom_aicore_ops_impl/add_dsl.py
ADDED
|
@@ -0,0 +1,46 @@
|
|
|
1
|
+
# Copyright 2022 Huawei Technologies Co., Ltd
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
# ============================================================================
|
|
15
|
+
"""ascend custom op: add by dsl"""
|
|
16
|
+
import tbe.dsl as tbe
|
|
17
|
+
from tbe import tvm
|
|
18
|
+
from tbe.common.register import register_op_compute
|
|
19
|
+
from tbe.common.utils import para_check
|
|
20
|
+
|
|
21
|
+
|
|
22
|
+
@register_op_compute("add_dsl")
|
|
23
|
+
def add_dsl_compute(x1, x2, y, kernel_name="add_dsl"):
|
|
24
|
+
res = tbe.vadd(x1, x2)
|
|
25
|
+
return res
|
|
26
|
+
|
|
27
|
+
|
|
28
|
+
@para_check.check_op_params(para_check.REQUIRED_INPUT, para_check.REQUIRED_INPUT,
|
|
29
|
+
para_check.REQUIRED_OUTPUT, para_check.KERNEL_NAME)
|
|
30
|
+
def add_dsl(x1, x2, y, kernel_name="add_dsl"):
|
|
31
|
+
"""add dsl impl function"""
|
|
32
|
+
data_x1 = tvm.placeholder(
|
|
33
|
+
x1.get("shape"), dtype=x1.get("dtype"), name="data_x1")
|
|
34
|
+
data_x2 = tvm.placeholder(
|
|
35
|
+
x2.get("shape"), dtype=x2.get("dtype"), name="data_x2")
|
|
36
|
+
|
|
37
|
+
res = add_dsl_compute(data_x1, data_x2, y, kernel_name)
|
|
38
|
+
|
|
39
|
+
# auto schedule
|
|
40
|
+
with tvm.target.cce():
|
|
41
|
+
schedule = tbe.auto_schedule(res)
|
|
42
|
+
|
|
43
|
+
# operator build
|
|
44
|
+
config = {"name": kernel_name,
|
|
45
|
+
"tensor_list": [data_x1, data_x2, res]}
|
|
46
|
+
tbe.build(schedule, config)
|
mindspore/lib/plugin/ascend/custom_aicore_ops/op_impl/ai_core/tbe/custom_aicore_ops_impl/add_tik.py
ADDED
|
@@ -0,0 +1,51 @@
|
|
|
1
|
+
# Copyright 2022 Huawei Technologies Co., Ltd
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
# ============================================================================
|
|
15
|
+
"""ascend custom op: add by tik"""
|
|
16
|
+
from tbe.common.register import register_op_compute
|
|
17
|
+
from tbe.common.utils import para_check
|
|
18
|
+
from tbe import tik
|
|
19
|
+
|
|
20
|
+
|
|
21
|
+
@register_op_compute("AddTik")
|
|
22
|
+
@para_check.check_op_params(para_check.REQUIRED_INPUT, para_check.REQUIRED_INPUT,
|
|
23
|
+
para_check.REQUIRED_OUTPUT, para_check.KERNEL_NAME)
|
|
24
|
+
def add_tik(x1, x2, y, kernel_name="add_tik"):
|
|
25
|
+
"""add dsl impl function"""
|
|
26
|
+
tik_instance = tik.Tik()
|
|
27
|
+
x1_shape = x1.get("shape")
|
|
28
|
+
x2_shape = x2.get("shape")
|
|
29
|
+
y_shape = y.get("shape")
|
|
30
|
+
|
|
31
|
+
data_a = tik_instance.Tensor(
|
|
32
|
+
"float16", x1_shape, name="x1", scope=tik.scope_gm)
|
|
33
|
+
data_b = tik_instance.Tensor(
|
|
34
|
+
"float16", x2_shape, name="x2", scope=tik.scope_gm)
|
|
35
|
+
data_c = tik_instance.Tensor(
|
|
36
|
+
"float16", y_shape, name="y", scope=tik.scope_gm)
|
|
37
|
+
data_a_ub = tik_instance.Tensor(
|
|
38
|
+
"float16", x1_shape, name="data_A_ub", scope=tik.scope_ubuf)
|
|
39
|
+
data_b_ub = tik_instance.Tensor(
|
|
40
|
+
"float16", x2_shape, name="data_B_ub", scope=tik.scope_ubuf)
|
|
41
|
+
data_c_ub = tik_instance.Tensor(
|
|
42
|
+
"float16", y_shape, name="data_C_ub", scope=tik.scope_ubuf)
|
|
43
|
+
|
|
44
|
+
tik_instance.data_move(data_a_ub, data_a, 0, 1, 128 // 16, 0, 0)
|
|
45
|
+
tik_instance.data_move(data_b_ub, data_b, 0, 1, 128 // 16, 0, 0)
|
|
46
|
+
tik_instance.vec_add(
|
|
47
|
+
128, data_c_ub[0], data_a_ub[0], data_b_ub[0], 1, 8, 8, 8)
|
|
48
|
+
tik_instance.data_move(data_c, data_c_ub, 0, 1, 128 // 16, 0, 0)
|
|
49
|
+
tik_instance.BuildCCE(kernel_name=kernel_name, inputs=[data_a, data_b], outputs=[data_c])
|
|
50
|
+
|
|
51
|
+
return tik_instance
|
|
@@ -0,0 +1,241 @@
|
|
|
1
|
+
#!/usr/bin/python
|
|
2
|
+
# -*- coding: utf-8 -*-
|
|
3
|
+
# Copyright 2023 Huawei Technologies Co., Ltd
|
|
4
|
+
#
|
|
5
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
6
|
+
# you may not use this file except in compliance with the License.
|
|
7
|
+
# You may obtain a copy of the License at
|
|
8
|
+
#
|
|
9
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
10
|
+
#
|
|
11
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
12
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
13
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
14
|
+
# See the License for the specific language governing permissions and
|
|
15
|
+
# limitations under the License.
|
|
16
|
+
# ============================================================================
|
|
17
|
+
"""ascend custom op: kv_cache_mgr by tik"""
|
|
18
|
+
|
|
19
|
+
import functools
|
|
20
|
+
from tbe import tik
|
|
21
|
+
import tbe.common.platform as tbe_platform
|
|
22
|
+
from tbe.common.utils import para_check
|
|
23
|
+
|
|
24
|
+
|
|
25
|
+
# 'pylint: disable=unused-argument,unused-variable,too-many-arguments,too-many-locals
|
|
26
|
+
def check_supported(past, cur, index, out, kernel_name="kv_cache_mgr"):
|
|
27
|
+
"""check data type and shape"""
|
|
28
|
+
# check data type
|
|
29
|
+
past_dtype = past.get("dtype").lower()
|
|
30
|
+
cur_dtype = cur.get("dtype").lower()
|
|
31
|
+
out_dtype = out.get("dtype").lower()
|
|
32
|
+
|
|
33
|
+
if past_dtype != cur_dtype or past_dtype != out_dtype:
|
|
34
|
+
reason = "past_dtype is %s, cur_dtype is %s, out_dtype is %s" % (past_dtype, cur_dtype, out_dtype)
|
|
35
|
+
return False, reason
|
|
36
|
+
|
|
37
|
+
support_dtype_list = ["float32", "int32", "uint32",
|
|
38
|
+
"float16", "int16", "uint16",
|
|
39
|
+
"int8", "uint8"]
|
|
40
|
+
if past_dtype not in support_dtype_list:
|
|
41
|
+
reason = "past_dtype(%s) is not support" % (past_dtype)
|
|
42
|
+
return False, reason
|
|
43
|
+
|
|
44
|
+
index_dtype = index.get("dtype").lower()
|
|
45
|
+
if index_dtype != "int32":
|
|
46
|
+
reason = "index_dtype is %s, not int32" % (index_dtype)
|
|
47
|
+
return False, reason
|
|
48
|
+
|
|
49
|
+
# check shape
|
|
50
|
+
past_shape = past.get("shape")
|
|
51
|
+
cur_shape = cur.get("shape")
|
|
52
|
+
|
|
53
|
+
if len(past_shape) != 4 or len(cur_shape) != 4:
|
|
54
|
+
reason = "len(past_shape) != 4 or len(cur_shape) != 4 "
|
|
55
|
+
return False, reason
|
|
56
|
+
|
|
57
|
+
# key_past shape: (bs, num_heads, size_per_head, seq_length)
|
|
58
|
+
# value_past shape: (bs, num_heads, seq_length, size_per_head)
|
|
59
|
+
# key shape: (bs, num_heads, 1, size_per_head)
|
|
60
|
+
# value shape: (bs, num_heads, 1, size_per_head)
|
|
61
|
+
|
|
62
|
+
if past_shape[0] != cur_shape[0] or past_shape[1] != cur_shape[1]:
|
|
63
|
+
reason = "past_shape[0] != cur_shape[0] or past_shape[1] != cur_shape[1] "
|
|
64
|
+
return False, reason
|
|
65
|
+
|
|
66
|
+
if past_shape[3] != cur_shape[3]:
|
|
67
|
+
reason = "past_shape[3] != cur_shape[3]"
|
|
68
|
+
return False, reason
|
|
69
|
+
|
|
70
|
+
return True, ""
|
|
71
|
+
|
|
72
|
+
|
|
73
|
+
def ceil_div(dividend, divisor):
|
|
74
|
+
return (dividend + divisor - 1) // divisor
|
|
75
|
+
|
|
76
|
+
|
|
77
|
+
def get_loop_info(total_num, each_loop_num):
|
|
78
|
+
loop_times = ceil_div(total_num, each_loop_num)
|
|
79
|
+
last_loop_num = total_num - each_loop_num * (loop_times - 1)
|
|
80
|
+
return loop_times, last_loop_num
|
|
81
|
+
|
|
82
|
+
|
|
83
|
+
def elements_align(index_elements, data_size, align_size):
|
|
84
|
+
"""Get element num align to align_size"""
|
|
85
|
+
total_size = index_elements * data_size
|
|
86
|
+
aligned_total_size = (total_size + align_size - 1) // align_size * align_size
|
|
87
|
+
return aligned_total_size // data_size
|
|
88
|
+
|
|
89
|
+
|
|
90
|
+
class TilingHelper:
|
|
91
|
+
"""Tiling parameter"""
|
|
92
|
+
def __init__(self, past, cur, index, out, kernel_name="kv_cache_mgr"):
|
|
93
|
+
self.kernel_name = kernel_name
|
|
94
|
+
|
|
95
|
+
# sys info
|
|
96
|
+
self.core_num = tbe_platform.get_soc_spec(tbe_platform.CORE_NUM)
|
|
97
|
+
self.ub_size = tbe_platform.get_soc_spec(tbe_platform.UB_SIZE)
|
|
98
|
+
|
|
99
|
+
self.past_shape = past.get("shape")
|
|
100
|
+
self.cur_shape = cur.get("shape")
|
|
101
|
+
self.index_shape = index.get("shape")
|
|
102
|
+
|
|
103
|
+
self.gm_type = past.get("dtype").lower()
|
|
104
|
+
self.ub_type = self.gm_type
|
|
105
|
+
self.index_ub_type = "int32"
|
|
106
|
+
self.int32_size = 4
|
|
107
|
+
|
|
108
|
+
self.gm_dtype_size = 2
|
|
109
|
+
if self.gm_type in ["int8", "uint8"]:
|
|
110
|
+
self.gm_dtype_size = 1
|
|
111
|
+
elif self.gm_type in ["float16", "int16", "uint16"]:
|
|
112
|
+
self.gm_dtype_size = 2
|
|
113
|
+
elif self.gm_type in ["float32", "int32", "uint32"]:
|
|
114
|
+
self.gm_dtype_size = 4
|
|
115
|
+
|
|
116
|
+
# tiling policy
|
|
117
|
+
self.seq_length = self.past_shape[2]
|
|
118
|
+
self.size_per_head = self.past_shape[3]
|
|
119
|
+
self.update_seq_length = self.cur_shape[2]
|
|
120
|
+
|
|
121
|
+
self.num_head = self.past_shape[1]
|
|
122
|
+
|
|
123
|
+
self.past_elements = functools.reduce(lambda a, b: a * b, self.past_shape)
|
|
124
|
+
self.cur_elements = functools.reduce(lambda a, b: a * b, self.cur_shape)
|
|
125
|
+
|
|
126
|
+
# The `burst` unit is 32B
|
|
127
|
+
index_elements = functools.reduce(lambda a, b: a * b, self.index_shape)
|
|
128
|
+
self.index_elements = elements_align(index_elements, self.int32_size, 32)
|
|
129
|
+
|
|
130
|
+
# split cur
|
|
131
|
+
self.cur_bs = self.cur_shape[0] * self.cur_shape[1]
|
|
132
|
+
self.each_core_bs_num = ceil_div(self.cur_bs, self.core_num)
|
|
133
|
+
self.core_num, self.last_core_bs_num = get_loop_info(self.cur_bs, self.each_core_bs_num)
|
|
134
|
+
self.cur_ub_elements = self.each_core_bs_num * self.update_seq_length * self.size_per_head
|
|
135
|
+
self.last_cure_ub_elements = self.last_core_bs_num * self.update_seq_length * self.size_per_head
|
|
136
|
+
|
|
137
|
+
|
|
138
|
+
class KVCacheImpl(TilingHelper):
|
|
139
|
+
"""KVCacheImpl"""
|
|
140
|
+
def __init__(self, past, cur, index, out, kernel_name):
|
|
141
|
+
super().__init__(past, cur, index, out, kernel_name)
|
|
142
|
+
# key_past or value_past shape: (bs, num_heads, seq_length, size_per_head)
|
|
143
|
+
# batch_valid_length
|
|
144
|
+
# cur update shape: (bs, num_heads, 1, size_per_head)
|
|
145
|
+
|
|
146
|
+
self.tik_inst = tik.Tik(disable_debug=True)
|
|
147
|
+
self.past_gm = self.tik_inst.Tensor(self.gm_type, (self.past_elements,), name="past_gm", scope=tik.scope_gm)
|
|
148
|
+
self.cur_gm = self.tik_inst.Tensor(self.gm_type, (self.cur_elements,), name="cur_gm", scope=tik.scope_gm)
|
|
149
|
+
self.index_gm = self.tik_inst.Tensor(self.index_ub_type, (self.index_elements,), name="index_gm",
|
|
150
|
+
scope=tik.scope_gm)
|
|
151
|
+
# we use is_atomic_add=True to set the out_gm zeros. But if inplace update out_gm, no need to set this flag.
|
|
152
|
+
self.out_gm = self.tik_inst.Tensor(self.gm_type, (self.past_elements,), name="out_gm", scope=tik.scope_gm)
|
|
153
|
+
|
|
154
|
+
def valid_cur_ub_load(self, core_idx):
|
|
155
|
+
"""KVCacheImpl.valid_cur_ub_load"""
|
|
156
|
+
cur_ub = self.tik_inst.Tensor(self.ub_type, (self.cur_ub_elements,), name="valid_cur_ub",
|
|
157
|
+
scope=tik.scope_ubuf)
|
|
158
|
+
cur_gm_offset = core_idx * self.cur_ub_elements
|
|
159
|
+
with self.tik_inst.if_scope(core_idx != self.core_num -1):
|
|
160
|
+
self.tik_inst.data_move(cur_ub, self.cur_gm[cur_gm_offset:], 0, 1,
|
|
161
|
+
self.cur_ub_elements * self.gm_dtype_size // 32, 0, 0)
|
|
162
|
+
with self.tik_inst.else_scope():
|
|
163
|
+
self.tik_inst.data_move(cur_ub, self.cur_gm[cur_gm_offset:], 0, 1,
|
|
164
|
+
self.last_cure_ub_elements * self.gm_dtype_size // 32, 0, 0)
|
|
165
|
+
return cur_ub
|
|
166
|
+
|
|
167
|
+
def valid_index_ub_load(self):
|
|
168
|
+
"""KVCacheImpl.valid_index_ub_load"""
|
|
169
|
+
index_ub = self.tik_inst.Tensor(self.index_ub_type, (self.index_elements,), name="valid_index_ub",
|
|
170
|
+
scope=tik.scope_ubuf)
|
|
171
|
+
self.tik_inst.data_move(index_ub, self.index_gm, 0, 1, self.index_elements * self.int32_size // 32, 0, 0)
|
|
172
|
+
return index_ub
|
|
173
|
+
|
|
174
|
+
def valid_pos_update(self, core_idx, cur_ub, index_ub, each_core_bs_num):
|
|
175
|
+
"""KVCacheImpl.valid_pos_update"""
|
|
176
|
+
src_bs_stride = self.update_seq_length * self.size_per_head
|
|
177
|
+
dst_bs_stride = self.seq_length * self.size_per_head
|
|
178
|
+
burst_len = self.update_seq_length * self.size_per_head * self.gm_dtype_size // 32
|
|
179
|
+
|
|
180
|
+
valid_idx = self.tik_inst.Scalar(dtype="int32")
|
|
181
|
+
with self.tik_inst.for_range(0, each_core_bs_num) as each_core_bs_idx:
|
|
182
|
+
bs_idx = core_idx * self.each_core_bs_num + each_core_bs_idx
|
|
183
|
+
# because we fused bs * num_head, we need get the real bs_idx
|
|
184
|
+
valid_idx.set_as(index_ub[bs_idx // self.num_head])
|
|
185
|
+
with self.tik_inst.if_scope(valid_idx >= 0):
|
|
186
|
+
dst_offset = bs_idx * dst_bs_stride + valid_idx * self.size_per_head
|
|
187
|
+
src_offset = each_core_bs_idx * src_bs_stride
|
|
188
|
+
if burst_len < 65536:
|
|
189
|
+
self.tik_inst.data_move(self.out_gm[dst_offset], cur_ub[src_offset],
|
|
190
|
+
0, 1, burst_len, 0, 0)
|
|
191
|
+
else:
|
|
192
|
+
nburst = 1
|
|
193
|
+
each_burst_len = burst_len
|
|
194
|
+
while each_burst_len > 65535:
|
|
195
|
+
nburst += 1
|
|
196
|
+
each_burst_len = burst_len // nburst
|
|
197
|
+
self.tik_inst.data_move(self.out_gm[dst_offset], cur_ub[src_offset], 0,
|
|
198
|
+
nburst, each_burst_len, 0, 0)
|
|
199
|
+
|
|
200
|
+
# 'pylint: disable=too-many-arguments
|
|
201
|
+
def compute_each_core(self, core_idx, core_bs_num):
|
|
202
|
+
"""KVCacheImpl.compute_each_core"""
|
|
203
|
+
index_ub = self.valid_index_ub_load()
|
|
204
|
+
cur_ub = self.valid_cur_ub_load(core_idx)
|
|
205
|
+
self.valid_pos_update(core_idx, cur_ub, index_ub, core_bs_num)
|
|
206
|
+
|
|
207
|
+
def compute(self):
|
|
208
|
+
"""KVCacheImpl.compute"""
|
|
209
|
+
if self.each_core_bs_num == self.last_core_bs_num:
|
|
210
|
+
with self.tik_inst.for_range(0, self.core_num, block_num=self.core_num) as core_index:
|
|
211
|
+
self.compute_each_core(core_idx=core_index, core_bs_num=self.each_core_bs_num)
|
|
212
|
+
else:
|
|
213
|
+
with self.tik_inst.for_range(0, self.core_num, block_num=self.core_num) as core_index:
|
|
214
|
+
with self.tik_inst.if_scope(core_index < self.core_num - 1):
|
|
215
|
+
self.compute_each_core(core_idx=core_index, core_bs_num=self.each_core_bs_num)
|
|
216
|
+
with self.tik_inst.else_scope():
|
|
217
|
+
self.compute_each_core(core_idx=core_index, core_bs_num=self.last_core_bs_num)
|
|
218
|
+
|
|
219
|
+
self.tik_inst.BuildCCE(kernel_name=self.kernel_name,
|
|
220
|
+
inputs=[self.past_gm, self.cur_gm, self.index_gm],
|
|
221
|
+
outputs=[self.out_gm],
|
|
222
|
+
)
|
|
223
|
+
return self.tik_inst
|
|
224
|
+
|
|
225
|
+
|
|
226
|
+
# 'pylint: disable = unused-argument
|
|
227
|
+
# 'pylint: disable=too-many-arguments,too-many-locals
|
|
228
|
+
@para_check.check_op_params(para_check.REQUIRED_INPUT, para_check.REQUIRED_INPUT,
|
|
229
|
+
para_check.REQUIRED_INPUT, para_check.REQUIRED_OUTPUT,
|
|
230
|
+
para_check.KERNEL_NAME)
|
|
231
|
+
def kv_cache_mgr(past, cur, index, out, kernel_name="kv_cache_mgr"):
|
|
232
|
+
"""
|
|
233
|
+
:param past: key_past or value_past. shape: (bs, num_head, seq_length, size_pre_head)
|
|
234
|
+
:param cur: key_current or value_current. shape: (bs, num_head, update_seq_length, size_pre_head)
|
|
235
|
+
:param index: which index to update. shape * len(dtype) need be multiples of 32. Option Input.
|
|
236
|
+
:param out: output shape: (bs, num_head, seq_length, size_pre_head)
|
|
237
|
+
:param kernel_name: the name of the op
|
|
238
|
+
:return:
|
|
239
|
+
"""
|
|
240
|
+
obj = KVCacheImpl(past, cur, index, out, kernel_name)
|
|
241
|
+
return obj.compute()
|
|
@@ -0,0 +1,212 @@
|
|
|
1
|
+
"""
|
|
2
|
+
Copyright 2020 Huawei Technologies Co., Ltd. All rights reserved.
|
|
3
|
+
|
|
4
|
+
Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
+
you may not use this file except in compliance with the License.
|
|
6
|
+
You may obtain a copy of the License at
|
|
7
|
+
|
|
8
|
+
http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
+
|
|
10
|
+
Unless required by applicable law or agreed to in writing, software
|
|
11
|
+
distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
+
See the License for the specific language governing permissions and
|
|
14
|
+
limitations under the License.
|
|
15
|
+
|
|
16
|
+
matmul_tik
|
|
17
|
+
"""
|
|
18
|
+
|
|
19
|
+
from tbe import tik
|
|
20
|
+
from tbe.common.platform import get_soc_spec
|
|
21
|
+
|
|
22
|
+
DTYPE_SIZE = {
|
|
23
|
+
'bool': 1,
|
|
24
|
+
'uint8': 1,
|
|
25
|
+
'int8': 1,
|
|
26
|
+
'uint16': 2,
|
|
27
|
+
'int16': 2,
|
|
28
|
+
'int24': 3,
|
|
29
|
+
'uint32': 4,
|
|
30
|
+
'int32': 4,
|
|
31
|
+
'float16': 2,
|
|
32
|
+
'float32': 4,
|
|
33
|
+
'int48': 6,
|
|
34
|
+
'int64': 8,
|
|
35
|
+
'uint64': 8,
|
|
36
|
+
'float64': 8
|
|
37
|
+
}
|
|
38
|
+
|
|
39
|
+
|
|
40
|
+
def MK_TO_K1MK0(tik_instance, mk_input_tensor, k1mk0_tensor, dtype, k1, m, k0):
|
|
41
|
+
"""data move mk to k1mk0"""
|
|
42
|
+
src_ub = tik_instance.Tensor(dtype, (k1, m, k0), name='src_ub', scope=tik.scope_ubuf)
|
|
43
|
+
|
|
44
|
+
# data_move(m, k) ---> (k1, m, k0)
|
|
45
|
+
with tik_instance.for_range(0, k1) as i:
|
|
46
|
+
tik_instance.data_move(src_ub[i * m * k0:], mk_input_tensor[i * k0:], 0, m, k0 * DTYPE_SIZE[dtype] // 32,
|
|
47
|
+
(k1 - 1) * k0 * DTYPE_SIZE[dtype] // 32, 0)
|
|
48
|
+
|
|
49
|
+
tik_instance.data_move(k1mk0_tensor, src_ub, 0, 1, k1 * m * k0 * DTYPE_SIZE[dtype] // 32, 0, 0)
|
|
50
|
+
|
|
51
|
+
|
|
52
|
+
def KN_TO_K1NK0(tik_instance, kn_input_tensor, k1nk0_tensor, dtype, k1, n, k0):
|
|
53
|
+
"""data move kn to k1nk0"""
|
|
54
|
+
|
|
55
|
+
with tik_instance.for_range(0, k1) as index:
|
|
56
|
+
k1nk0_ub = tik_instance.Tensor(dtype, (n, k0), tik.scope_ubuf, "k1nk0_ub")
|
|
57
|
+
src_ub = tik_instance.Tensor(dtype, (k0, n), tik.scope_ubuf, "src_ub")
|
|
58
|
+
burst_len = k0 * n * DTYPE_SIZE[dtype] // 32
|
|
59
|
+
tik_instance.data_move(src_ub, kn_input_tensor[index * k0 * n], 0, 1, burst_len, 0, 0)
|
|
60
|
+
dst_list = [k1nk0_ub[16 * i] for i in range(16)]
|
|
61
|
+
src_list = [src_ub[n * i] for i in range(16)]
|
|
62
|
+
rep_times = n // k0
|
|
63
|
+
dst_rep_stride = k0
|
|
64
|
+
src_rep_stride = 1
|
|
65
|
+
tik_instance.vec_trans_scatter(False, False, dst_list, src_list, rep_times, dst_rep_stride, src_rep_stride)
|
|
66
|
+
tik_instance.data_move(k1nk0_tensor[index * k0 * n], k1nk0_ub, 0, 1, burst_len, 0, 0)
|
|
67
|
+
|
|
68
|
+
|
|
69
|
+
def N1MN0_TO_MN(tik_instance, mn_output_tensor, n1mn0_tensor, dtype, n1, m, n0):
|
|
70
|
+
"""data move mn to n1mn0"""
|
|
71
|
+
src_ub = tik_instance.Tensor(dtype, (m, n1 * n0), name='src_ub', scope=tik.scope_ubuf)
|
|
72
|
+
|
|
73
|
+
# data_move(n1, m, n0) ---> (m, n)
|
|
74
|
+
with tik_instance.for_range(0, n1) as i:
|
|
75
|
+
tik_instance.data_move(src_ub[i * n0:], n1mn0_tensor[i * m * n0:], 0, m,
|
|
76
|
+
n0 * DTYPE_SIZE[dtype] // 32, 0, (n1 - 1) * n0 * DTYPE_SIZE[dtype] // 32)
|
|
77
|
+
|
|
78
|
+
tik_instance.data_move(mn_output_tensor, src_ub, 0, 1, m * n1 * n0 * DTYPE_SIZE[dtype] // 32, 0, 0)
|
|
79
|
+
|
|
80
|
+
|
|
81
|
+
def matmul_tik_compute(params, kernel_name):
|
|
82
|
+
"""
|
|
83
|
+
matmul tik compute
|
|
84
|
+
@param params: matmul data
|
|
85
|
+
@param kernel_name: kernel name
|
|
86
|
+
@return: tik instance
|
|
87
|
+
"""
|
|
88
|
+
tik_instance = tik.Tik()
|
|
89
|
+
if not isinstance(params, dict):
|
|
90
|
+
params = params.__dict__
|
|
91
|
+
m_size, k_size, n_size = params['M'], params['K'], params['N']
|
|
92
|
+
data_type = params["data_type"]
|
|
93
|
+
m_tiling_size = int(params["m_tiling_size"])
|
|
94
|
+
n_tiling_size = int(params["n_tiling_size"])
|
|
95
|
+
k_tiling_size = int(params['k_tiling_size'])
|
|
96
|
+
|
|
97
|
+
m_cycle_times = params["m_cycle_times"]
|
|
98
|
+
n_cycle_times = params["n_cycle_times"]
|
|
99
|
+
k_cycle_times = params["k_cycle_times"]
|
|
100
|
+
|
|
101
|
+
# Determine the output type
|
|
102
|
+
if data_type == "float16":
|
|
103
|
+
if get_soc_spec("SOC_VERSION") in ["SD3403", "OPTG", "Hi3796CV300CS", "TsnsC"]:
|
|
104
|
+
C_loc_out_type = "float16"
|
|
105
|
+
else:
|
|
106
|
+
C_loc_out_type = "float32"
|
|
107
|
+
K0 = 16
|
|
108
|
+
else:
|
|
109
|
+
C_loc_out_type = "int32"
|
|
110
|
+
K0 = 32
|
|
111
|
+
block_size = 16
|
|
112
|
+
|
|
113
|
+
n_thread_num = params['n_thread_num']
|
|
114
|
+
m_thread_num = params['m_thread_num']
|
|
115
|
+
k_thread_num = params['k_thread_num']
|
|
116
|
+
|
|
117
|
+
mk_gm_input = tik_instance.Tensor(data_type, (m_size, k_size), name="mk_input_gm", scope=tik.scope_gm)
|
|
118
|
+
kn_gm_input = tik_instance.Tensor(data_type, (k_size, n_size), name="kn_input_gm", scope=tik.scope_gm)
|
|
119
|
+
|
|
120
|
+
k1mk0_workspace = tik_instance.Tensor(data_type, (k_size // K0, m_size, K0), name="k1mk0_workspace",
|
|
121
|
+
scope=tik.scope_gm, is_workspace=True)
|
|
122
|
+
|
|
123
|
+
k1nk0_workspace = tik_instance.Tensor(data_type, (k_size // K0, n_size, K0), name="k1nk0_workspace",
|
|
124
|
+
scope=tik.scope_gm, is_workspace=True)
|
|
125
|
+
|
|
126
|
+
mn_gm_output = tik_instance.Tensor(C_loc_out_type, (m_size, n_size), tik.scope_gm, name="mn_output_gm")
|
|
127
|
+
nmk0_workspace = tik_instance.Tensor(C_loc_out_type, (n_size // block_size, m_size, block_size),
|
|
128
|
+
name="nmk0_workspace", scope=tik.scope_gm, is_workspace=True)
|
|
129
|
+
|
|
130
|
+
MK_TO_K1MK0(tik_instance, mk_gm_input, k1mk0_workspace, data_type, k_size // K0, m_size, K0)
|
|
131
|
+
KN_TO_K1NK0(tik_instance, kn_gm_input, k1nk0_workspace, data_type, k_size // K0, n_size, K0)
|
|
132
|
+
|
|
133
|
+
# Tiling is realized through the for_range() loop.
|
|
134
|
+
with tik_instance.for_range(0, 2, block_num=1) as core_id:
|
|
135
|
+
with tik_instance.for_range(0, n_cycle_times // 2, thread_num=n_thread_num) as n_idx:
|
|
136
|
+
with tik_instance.for_range(0, m_cycle_times, thread_num=m_thread_num) as m_idx:
|
|
137
|
+
dst_l0c = tik_instance.Tensor(C_loc_out_type, [n_tiling_size // 16, m_tiling_size, 16], name='dst_l0c',
|
|
138
|
+
scope=tik.scope_cbuf_out)
|
|
139
|
+
with tik_instance.for_range(0, k_cycle_times,
|
|
140
|
+
thread_num=k_thread_num) as k_idx:
|
|
141
|
+
# Calculation result data transfer.
|
|
142
|
+
inputa_l1 = tik_instance.Tensor(params['data_type'], [k_tiling_size // K0, m_tiling_size, K0],
|
|
143
|
+
name="A_tiling_l1", scope=tik.scope_cbuf)
|
|
144
|
+
tik_instance.data_move(inputa_l1,
|
|
145
|
+
k1mk0_workspace[k_idx * k_tiling_size // K0, m_idx * m_tiling_size, :],
|
|
146
|
+
0, k_tiling_size // K0, m_tiling_size, m_size - m_tiling_size, 0)
|
|
147
|
+
inputb_l1 = tik_instance.Tensor(params["data_type"], [k_tiling_size // K0, n_tiling_size, K0],
|
|
148
|
+
name="B_tiling_l1", scope=tik.scope_cbuf)
|
|
149
|
+
if n_size - n_tiling_size > 65535:
|
|
150
|
+
with tik_instance.for_range(0, k_tiling_size // K0) \
|
|
151
|
+
as dma_k_idx:
|
|
152
|
+
tik_instance.data_move(inputb_l1[dma_k_idx, :, :],
|
|
153
|
+
k1nk0_workspace[k_idx * k_tiling_size // K0 + dma_k_idx,
|
|
154
|
+
(core_id * n_cycle_times // 2 + n_idx)
|
|
155
|
+
* n_tiling_size, :],
|
|
156
|
+
0, 1, n_tiling_size, 0, 0)
|
|
157
|
+
else:
|
|
158
|
+
tik_instance.data_move(inputb_l1, k1nk0_workspace[k_idx * k_tiling_size // K0,
|
|
159
|
+
(core_id * n_cycle_times // 2 + n_idx)
|
|
160
|
+
* n_tiling_size, :],
|
|
161
|
+
0, k_tiling_size // K0, n_tiling_size, n_size - n_tiling_size, 0)
|
|
162
|
+
# Call matmul API to matrix multiplication calculation.
|
|
163
|
+
with tik_instance.if_scope(k_idx == 0):
|
|
164
|
+
tik_instance.matmul(dst_l0c, inputa_l1, inputb_l1, m_tiling_size, k_tiling_size, n_tiling_size,
|
|
165
|
+
init_l1out=True)
|
|
166
|
+
with tik_instance.else_scope():
|
|
167
|
+
tik_instance.matmul(dst_l0c, inputa_l1, inputb_l1, m_tiling_size, k_tiling_size, n_tiling_size,
|
|
168
|
+
init_l1out=False)
|
|
169
|
+
tik_instance.fixpipe(nmk0_workspace[n_tiling_size // 16 * (core_id * n_cycle_times // 2 + n_idx),
|
|
170
|
+
m_idx * m_tiling_size, :],
|
|
171
|
+
dst_l0c, n_tiling_size // 16,
|
|
172
|
+
m_tiling_size * 16 * DTYPE_SIZE[C_loc_out_type] // 32,
|
|
173
|
+
(m_size - m_tiling_size) * 16 * DTYPE_SIZE[C_loc_out_type] // 32, 0)
|
|
174
|
+
|
|
175
|
+
N1MN0_TO_MN(tik_instance, mn_gm_output, nmk0_workspace, C_loc_out_type, n_size // K0, m_size, K0)
|
|
176
|
+
|
|
177
|
+
tik_instance.BuildCCE(kernel_name=kernel_name, inputs=[mk_gm_input, kn_gm_input], outputs=[mn_gm_output])
|
|
178
|
+
return tik_instance
|
|
179
|
+
|
|
180
|
+
|
|
181
|
+
def matmul_tik(input_x1, input_x2, output_y=None, kernel_name="simple_matmul"):
|
|
182
|
+
"""
|
|
183
|
+
matmul_tik main func
|
|
184
|
+
Parameters
|
|
185
|
+
----------
|
|
186
|
+
input_x1: input data 1
|
|
187
|
+
input_x2: input data 2
|
|
188
|
+
output_y: output dta
|
|
189
|
+
"""
|
|
190
|
+
shape_a = input_x1.get("ori_shape")
|
|
191
|
+
shape_b = input_x2.get("ori_shape")
|
|
192
|
+
m = shape_a[0]
|
|
193
|
+
k = shape_a[1]
|
|
194
|
+
n = shape_b[1]
|
|
195
|
+
data_type = input_x1.get("dtype").lower()
|
|
196
|
+
params = {
|
|
197
|
+
'M': m,
|
|
198
|
+
'K': k,
|
|
199
|
+
'N': n,
|
|
200
|
+
'data_type': data_type,
|
|
201
|
+
'm_tiling_size': 16,
|
|
202
|
+
'm_cycle_times': 1,
|
|
203
|
+
'm_thread_num': 1,
|
|
204
|
+
'n_tiling_size': 64,
|
|
205
|
+
'n_cycle_times': 16,
|
|
206
|
+
'n_thread_num': 1,
|
|
207
|
+
'k_tiling_size': 32,
|
|
208
|
+
'k_cycle_times': 2,
|
|
209
|
+
'k_thread_num': 2,
|
|
210
|
+
'output_y': output_y
|
|
211
|
+
}
|
|
212
|
+
return matmul_tik_compute(params, kernel_name)
|
|
@@ -0,0 +1,46 @@
|
|
|
1
|
+
# Copyright 2022 Huawei Technologies Co., Ltd
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
# ============================================================================
|
|
15
|
+
"""ascend custom op: add by dsl"""
|
|
16
|
+
import tbe.dsl as tbe
|
|
17
|
+
from tbe import tvm
|
|
18
|
+
from tbe.common.register import register_op_compute
|
|
19
|
+
from tbe.common.utils import para_check
|
|
20
|
+
|
|
21
|
+
|
|
22
|
+
@register_op_compute("add_dsl")
|
|
23
|
+
def add_dsl_compute(x1, x2, y, kernel_name="add_dsl"):
|
|
24
|
+
res = tbe.vadd(x1, x2)
|
|
25
|
+
return res
|
|
26
|
+
|
|
27
|
+
|
|
28
|
+
@para_check.check_op_params(para_check.REQUIRED_INPUT, para_check.REQUIRED_INPUT,
|
|
29
|
+
para_check.REQUIRED_OUTPUT, para_check.KERNEL_NAME)
|
|
30
|
+
def add_dsl(x1, x2, y, kernel_name="add_dsl"):
|
|
31
|
+
"""add dsl impl function"""
|
|
32
|
+
data_x1 = tvm.placeholder(
|
|
33
|
+
x1.get("shape"), dtype=x1.get("dtype"), name="data_x1")
|
|
34
|
+
data_x2 = tvm.placeholder(
|
|
35
|
+
x2.get("shape"), dtype=x2.get("dtype"), name="data_x2")
|
|
36
|
+
|
|
37
|
+
res = add_dsl_compute(data_x1, data_x2, y, kernel_name)
|
|
38
|
+
|
|
39
|
+
# auto schedule
|
|
40
|
+
with tvm.target.cce():
|
|
41
|
+
schedule = tbe.auto_schedule(res)
|
|
42
|
+
|
|
43
|
+
# operator build
|
|
44
|
+
config = {"name": kernel_name,
|
|
45
|
+
"tensor_list": [data_x1, data_x2, res]}
|
|
46
|
+
tbe.build(schedule, config)
|
|
@@ -0,0 +1,51 @@
|
|
|
1
|
+
# Copyright 2022 Huawei Technologies Co., Ltd
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
# ============================================================================
|
|
15
|
+
"""ascend custom op: add by tik"""
|
|
16
|
+
from tbe.common.register import register_op_compute
|
|
17
|
+
from tbe.common.utils import para_check
|
|
18
|
+
from tbe import tik
|
|
19
|
+
|
|
20
|
+
|
|
21
|
+
@register_op_compute("AddTik")
|
|
22
|
+
@para_check.check_op_params(para_check.REQUIRED_INPUT, para_check.REQUIRED_INPUT,
|
|
23
|
+
para_check.REQUIRED_OUTPUT, para_check.KERNEL_NAME)
|
|
24
|
+
def add_tik(x1, x2, y, kernel_name="add_tik"):
|
|
25
|
+
"""add dsl impl function"""
|
|
26
|
+
tik_instance = tik.Tik()
|
|
27
|
+
x1_shape = x1.get("shape")
|
|
28
|
+
x2_shape = x2.get("shape")
|
|
29
|
+
y_shape = y.get("shape")
|
|
30
|
+
|
|
31
|
+
data_a = tik_instance.Tensor(
|
|
32
|
+
"float16", x1_shape, name="x1", scope=tik.scope_gm)
|
|
33
|
+
data_b = tik_instance.Tensor(
|
|
34
|
+
"float16", x2_shape, name="x2", scope=tik.scope_gm)
|
|
35
|
+
data_c = tik_instance.Tensor(
|
|
36
|
+
"float16", y_shape, name="y", scope=tik.scope_gm)
|
|
37
|
+
data_a_ub = tik_instance.Tensor(
|
|
38
|
+
"float16", x1_shape, name="data_A_ub", scope=tik.scope_ubuf)
|
|
39
|
+
data_b_ub = tik_instance.Tensor(
|
|
40
|
+
"float16", x2_shape, name="data_B_ub", scope=tik.scope_ubuf)
|
|
41
|
+
data_c_ub = tik_instance.Tensor(
|
|
42
|
+
"float16", y_shape, name="data_C_ub", scope=tik.scope_ubuf)
|
|
43
|
+
|
|
44
|
+
tik_instance.data_move(data_a_ub, data_a, 0, 1, 128 // 16, 0, 0)
|
|
45
|
+
tik_instance.data_move(data_b_ub, data_b, 0, 1, 128 // 16, 0, 0)
|
|
46
|
+
tik_instance.vec_add(
|
|
47
|
+
128, data_c_ub[0], data_a_ub[0], data_b_ub[0], 1, 8, 8, 8)
|
|
48
|
+
tik_instance.data_move(data_c, data_c_ub, 0, 1, 128 // 16, 0, 0)
|
|
49
|
+
tik_instance.BuildCCE(kernel_name=kernel_name, inputs=[data_a, data_b], outputs=[data_c])
|
|
50
|
+
|
|
51
|
+
return tik_instance
|