mindspore 2.1.0__cp38-none-any.whl → 2.2.10__cp38-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of mindspore might be problematic. Click here for more details.
- mindspore/.commit_id +1 -1
- mindspore/__init__.py +4 -1
- mindspore/_akg/akg/build_module.py +5 -6
- mindspore/_akg/akg/composite/build_module.py +46 -19
- mindspore/_akg/akg/composite/split_stitch.py +10 -11
- mindspore/_akg/akg/ms/info_version_adapt.py +67 -1
- mindspore/_akg/akg/tvm/api.py +4 -3
- mindspore/_akg/akg/tvm/autotvm/__init__.py +1 -2
- mindspore/_akg/akg/tvm/autotvm/graph_tuner/base_graph_tuner.py +1 -5
- mindspore/_akg/akg/tvm/autotvm/measure/__init__.py +1 -1
- mindspore/_akg/akg/tvm/autotvm/measure/measure.py +1 -10
- mindspore/_akg/akg/tvm/autotvm/measure/measure_methods.py +1 -372
- mindspore/_akg/akg/tvm/build_module.py +16 -1
- mindspore/_akg/akg/tvm/contrib/graph_runtime.py +0 -53
- mindspore/_akg/akg/tvm/hybrid/parser.py +7 -6
- mindspore/_akg/akg/tvm/ir_builder.py +1 -1
- mindspore/_akg/akg/tvm/module.py +1 -2
- mindspore/_akg/akg/tvm/stmt.py +2 -2
- mindspore/_akg/akg/utils/ascend_profilier/__init__.py +0 -0
- mindspore/_akg/akg/utils/ascend_profilier/cann_file_parser.py +76 -0
- mindspore/_akg/akg/utils/ascend_profilier/file_manager.py +56 -0
- mindspore/_akg/akg/utils/ascend_profilier/op_summary_bean.py +23 -0
- mindspore/_akg/akg/utils/ascend_profilier/op_summary_headers.py +8 -0
- mindspore/_akg/akg/utils/ascend_profilier/op_summary_parser.py +42 -0
- mindspore/_akg/akg/utils/ascend_profilier/path_manager.py +65 -0
- mindspore/_akg/akg/utils/composite_op_helper.py +9 -10
- mindspore/_akg/akg/utils/kernel_exec.py +98 -274
- mindspore/_akg/akg/utils/result_analysis.py +4 -24
- mindspore/_akg/akg/utils/tbe_codegen_utils.py +219 -0
- mindspore/_akg/akg/utils/util.py +38 -0
- mindspore/_c_dataengine.cpython-38-aarch64-linux-gnu.so +0 -0
- mindspore/_c_expression.cpython-38-aarch64-linux-gnu.so +0 -0
- mindspore/_c_mindrecord.cpython-38-aarch64-linux-gnu.so +0 -0
- mindspore/_check_jit_forbidden_api.py +3 -1
- mindspore/_checkparam.py +23 -29
- mindspore/_extends/graph_kernel/__init__.py +0 -1
- mindspore/_extends/graph_kernel/model/graph_split.py +84 -76
- mindspore/_extends/graph_kernel/model/model_builder.py +9 -50
- mindspore/_extends/graph_kernel/splitter.py +4 -11
- mindspore/_extends/parallel_compile/akg_compiler/akg_process.py +122 -15
- mindspore/_extends/parallel_compile/akg_compiler/build_tbe_kernel.py +84 -67
- mindspore/_extends/parallel_compile/akg_compiler/tbe_topi.py +4 -2
- mindspore/_extends/parallel_compile/akg_compiler/util.py +10 -7
- mindspore/_extends/parallel_compile/tbe_compiler/tbe_adapter.py +2 -2
- mindspore/_extends/parallel_compile/tbe_compiler/tbe_helper.py +6 -5
- mindspore/_extends/parallel_compile/tbe_compiler/tbe_job.py +1 -1
- mindspore/_extends/parallel_compile/tbe_compiler/tbe_job_manager.py +1 -1
- mindspore/_extends/parse/__init__.py +12 -15
- mindspore/_extends/parse/namespace.py +7 -33
- mindspore/_extends/parse/parser.py +61 -71
- mindspore/_extends/parse/resources.py +1 -1
- mindspore/_extends/parse/standard_method.py +74 -104
- mindspore/_extends/parse/trope.py +1 -1
- mindspore/_extends/remote/kernel_build_server.py +25 -7
- mindspore/_extends/remote/kernel_build_server_akg_v2.py +55 -0
- mindspore/_install_custom.py +43 -0
- mindspore/_mindspore_offline_debug.cpython-38-aarch64-linux-gnu.so +0 -0
- mindspore/amp.py +47 -11
- mindspore/bin/cache_admin +0 -0
- mindspore/bin/cache_server +0 -0
- mindspore/boost/boost.py +1 -8
- mindspore/boost/boost_cell_wrapper.py +3 -2
- mindspore/boost/grad_accumulation.py +1 -1
- mindspore/boost/group_loss_scale_manager.py +8 -7
- mindspore/common/__init__.py +5 -3
- mindspore/common/_jit_fallback_utils.py +6 -0
- mindspore/common/_register_for_adapter.py +2 -0
- mindspore/common/_register_for_tensor.py +2 -2
- mindspore/common/_stub_tensor.py +13 -0
- mindspore/common/_utils.py +13 -0
- mindspore/common/api.py +174 -259
- mindspore/common/auto_dynamic_shape.py +494 -0
- mindspore/common/dtype.py +18 -11
- mindspore/common/dump.py +6 -4
- mindspore/common/initializer.py +14 -14
- mindspore/common/jit_config.py +33 -15
- mindspore/common/lazy_inline.py +126 -7
- mindspore/common/mindir_util.py +101 -0
- mindspore/common/parameter.py +51 -41
- mindspore/common/seed.py +4 -4
- mindspore/common/sparse_tensor.py +13 -14
- mindspore/common/tensor.py +243 -165
- mindspore/communication/__init__.py +7 -4
- mindspore/communication/_comm_helper.py +83 -4
- mindspore/communication/management.py +152 -84
- mindspore/config/op_info.config +14 -3
- mindspore/config/super_bar_config.json +4 -2
- mindspore/context.py +152 -61
- mindspore/dataset/__init__.py +5 -5
- mindspore/dataset/audio/__init__.py +2 -2
- mindspore/dataset/audio/transforms.py +52 -52
- mindspore/dataset/callback/ds_callback.py +16 -2
- mindspore/dataset/core/config.py +68 -51
- mindspore/dataset/engine/cache_client.py +28 -5
- mindspore/dataset/engine/datasets.py +250 -112
- mindspore/dataset/engine/datasets_audio.py +43 -211
- mindspore/dataset/engine/datasets_standard_format.py +16 -35
- mindspore/dataset/engine/datasets_text.py +43 -67
- mindspore/dataset/engine/datasets_user_defined.py +86 -100
- mindspore/dataset/engine/datasets_vision.py +219 -1029
- mindspore/dataset/engine/iterators.py +11 -4
- mindspore/dataset/engine/obs/obs_mindrecord_dataset.py +4 -0
- mindspore/dataset/engine/obs/util.py +3 -0
- mindspore/dataset/engine/samplers.py +1 -1
- mindspore/dataset/engine/validators.py +19 -5
- mindspore/dataset/text/__init__.py +3 -3
- mindspore/dataset/text/transforms.py +101 -127
- mindspore/dataset/text/utils.py +205 -138
- mindspore/dataset/transforms/__init__.py +1 -1
- mindspore/dataset/transforms/py_transforms_util.py +40 -12
- mindspore/dataset/transforms/transforms.py +95 -40
- mindspore/dataset/utils/browse_dataset.py +8 -2
- mindspore/dataset/utils/line_reader.py +17 -19
- mindspore/dataset/vision/__init__.py +3 -3
- mindspore/dataset/vision/c_transforms.py +6 -3
- mindspore/dataset/vision/transforms.py +409 -287
- mindspore/dataset/vision/utils.py +13 -14
- mindspore/dataset/vision/validators.py +11 -1
- mindspore/experimental/map_parameter.py +14 -0
- mindspore/{nn/optim_ex → experimental/optim}/__init__.py +30 -29
- mindspore/{nn/optim_ex → experimental/optim}/adam.py +60 -67
- mindspore/{nn/optim_ex → experimental/optim}/adamw.py +181 -203
- mindspore/experimental/optim/lr_scheduler.py +1427 -0
- mindspore/{nn/optim_ex → experimental/optim}/optimizer.py +252 -259
- mindspore/{nn/optim_ex → experimental/optim}/sgd.py +147 -152
- mindspore/gen_ops.py +273 -0
- mindspore/include/OWNERS +0 -1
- mindspore/include/api/data_type.h +2 -1
- mindspore/include/api/graph.h +0 -15
- mindspore/include/api/kernel.h +2 -0
- mindspore/include/api/kernel_api.h +37 -12
- mindspore/include/api/model.h +17 -14
- mindspore/include/api/status.h +8 -3
- mindspore/include/api/types.h +37 -4
- mindspore/include/c_api/ms/abstract.h +67 -0
- mindspore/include/c_api/ms/attribute.h +197 -0
- mindspore/include/c_api/ms/base/handle_types.h +43 -0
- mindspore/include/c_api/ms/base/macros.h +32 -0
- mindspore/include/c_api/ms/base/status.h +33 -0
- mindspore/include/c_api/ms/base/types.h +282 -0
- mindspore/include/c_api/ms/context.h +102 -0
- mindspore/include/c_api/ms/graph.h +160 -0
- mindspore/include/c_api/ms/node.h +606 -0
- mindspore/include/c_api/ms/tensor.h +161 -0
- mindspore/include/c_api/ms/value.h +84 -0
- mindspore/include/dataset/constants.h +6 -5
- mindspore/include/dataset/execute.h +23 -13
- mindspore/include/dataset/text.h +26 -26
- mindspore/include/dataset/transforms.h +13 -13
- mindspore/include/dataset/vision.h +60 -60
- mindspore/include/dataset/vision_ascend.h +5 -6
- mindspore/include/dataset/vision_lite.h +17 -17
- mindspore/include/mindapi/base/type_id.h +1 -0
- mindspore/include/mindapi/base/types.h +1 -0
- mindspore/lib/libdnnl.so.2 +0 -0
- mindspore/lib/libjemalloc.so.2 +0 -0
- mindspore/lib/libmindspore.so +0 -0
- mindspore/lib/libmindspore_backend.so +0 -0
- mindspore/lib/libmindspore_common.so +0 -0
- mindspore/lib/libmindspore_core.so +0 -0
- mindspore/lib/libmindspore_glog.so.0 +0 -0
- mindspore/lib/libmindspore_gpr.so.15 +0 -0
- mindspore/lib/libmindspore_grpc++.so.1 +0 -0
- mindspore/lib/libmindspore_grpc.so.15 +0 -0
- mindspore/lib/libmindspore_shared_lib.so +0 -0
- mindspore/lib/libnnacl.so +0 -0
- mindspore/lib/libopencv_core.so.4.5 +0 -0
- mindspore/lib/libopencv_imgcodecs.so.4.5 +0 -0
- mindspore/lib/libopencv_imgproc.so.4.5 +0 -0
- mindspore/lib/libps_cache.so +0 -0
- mindspore/lib/plugin/ascend/custom_aicore_ops/op_impl/ai_core/tbe/config/ascend310/aic-ascend310-ops-info.json +123 -0
- mindspore/lib/plugin/ascend/custom_aicore_ops/op_impl/ai_core/tbe/config/ascend310p/aic-ascend310p-ops-info.json +123 -0
- mindspore/lib/plugin/ascend/custom_aicore_ops/op_impl/ai_core/tbe/config/ascend910/aic-ascend910-ops-info.json +158 -0
- mindspore/lib/plugin/ascend/custom_aicore_ops/op_impl/ai_core/tbe/config/ascend910b/aic-ascend910b-ops-info.json +37 -0
- mindspore/lib/plugin/ascend/custom_aicore_ops/op_impl/ai_core/tbe/custom_aicore_ops_impl/add_dsl.py +46 -0
- mindspore/lib/plugin/ascend/custom_aicore_ops/op_impl/ai_core/tbe/custom_aicore_ops_impl/add_tik.py +51 -0
- mindspore/lib/plugin/ascend/custom_aicore_ops/op_impl/ai_core/tbe/custom_aicore_ops_impl/kv_cache_mgr.py +241 -0
- mindspore/lib/plugin/ascend/custom_aicore_ops/op_impl/ai_core/tbe/custom_aicore_ops_impl/matmul_tik.py +212 -0
- mindspore/lib/plugin/ascend/custom_aicore_ops/op_impl/vector_core/tbe/custom_aicore_ops_impl/add_dsl.py +46 -0
- mindspore/lib/plugin/ascend/custom_aicore_ops/op_impl/vector_core/tbe/custom_aicore_ops_impl/add_tik.py +51 -0
- mindspore/lib/plugin/ascend/custom_aicore_ops/op_impl/vector_core/tbe/custom_aicore_ops_impl/kv_cache_mgr.py +241 -0
- mindspore/lib/plugin/ascend/custom_aicore_ops/op_impl/vector_core/tbe/custom_aicore_ops_impl/matmul_tik.py +212 -0
- mindspore/lib/plugin/ascend/custom_aicore_ops/op_proto/libop_proto.so +0 -0
- mindspore/lib/plugin/ascend/custom_aicpu_ops/op_impl/cpu/aicpu_kernel/impl/libcust_aicpu_kernels.so +0 -0
- mindspore/lib/plugin/ascend/custom_aicpu_ops/op_impl/cpu/aicpu_kernel/impl/libcust_cpu_kernels.so +0 -0
- mindspore/lib/plugin/ascend/custom_aicpu_ops/op_impl/cpu/config/cust_aicpu_kernel.json +8928 -0
- mindspore/lib/plugin/ascend/custom_aicpu_ops/op_proto/libcust_op_proto.so +0 -0
- mindspore/lib/plugin/ascend/libakg.so +0 -0
- mindspore/lib/plugin/ascend/libascend_collective.so +0 -0
- mindspore/lib/plugin/ascend/libdvpp_utils.so +0 -0
- mindspore/lib/plugin/ascend/libhccl_plugin.so +0 -0
- mindspore/lib/plugin/ascend/libmindspore_aicpu_kernels.so +0 -0
- mindspore/lib/plugin/ascend/libmindspore_cpu_kernels.so +0 -0
- mindspore/lib/plugin/cpu/libakg.so +0 -0
- mindspore/lib/plugin/libmindspore_ascend.so.1 +0 -0
- mindspore/lib/plugin/libmindspore_ascend.so.2 +0 -0
- mindspore/mindrecord/tools/imagenet_to_mr.py +1 -1
- mindspore/mindrecord/tools/mnist_to_mr.py +2 -2
- mindspore/nn/__init__.py +0 -2
- mindspore/nn/cell.py +313 -74
- mindspore/nn/dynamic_lr.py +21 -21
- mindspore/nn/layer/activation.py +22 -30
- mindspore/nn/layer/basic.py +15 -13
- mindspore/nn/layer/channel_shuffle.py +1 -1
- mindspore/nn/layer/container.py +271 -9
- mindspore/nn/layer/conv.py +323 -204
- mindspore/nn/layer/dense.py +8 -5
- mindspore/nn/layer/embedding.py +33 -27
- mindspore/nn/layer/flash_attention.py +141 -88
- mindspore/nn/layer/image.py +8 -6
- mindspore/nn/layer/math.py +16 -25
- mindspore/nn/layer/normalization.py +107 -66
- mindspore/nn/layer/padding.py +1 -1
- mindspore/nn/layer/pooling.py +131 -109
- mindspore/nn/layer/rnn_cells.py +27 -22
- mindspore/nn/layer/rnns.py +13 -16
- mindspore/nn/layer/thor_layer.py +1 -1
- mindspore/nn/layer/transformer.py +221 -154
- mindspore/nn/learning_rate_schedule.py +9 -1
- mindspore/nn/loss/loss.py +235 -174
- mindspore/nn/optim/ada_grad.py +2 -1
- mindspore/nn/optim/adadelta.py +1 -0
- mindspore/nn/optim/adafactor.py +2 -1
- mindspore/nn/optim/adam.py +7 -4
- mindspore/nn/optim/adamax.py +3 -2
- mindspore/nn/optim/adasum.py +2 -2
- mindspore/nn/optim/asgd.py +2 -3
- mindspore/nn/optim/ftrl.py +6 -5
- mindspore/nn/optim/lamb.py +7 -4
- mindspore/nn/optim/lars.py +1 -1
- mindspore/nn/optim/lazyadam.py +5 -3
- mindspore/nn/optim/momentum.py +2 -1
- mindspore/nn/optim/optimizer.py +53 -4
- mindspore/nn/optim/proximal_ada_grad.py +3 -4
- mindspore/nn/optim/rmsprop.py +4 -3
- mindspore/nn/optim/rprop.py +23 -12
- mindspore/nn/optim/sgd.py +26 -11
- mindspore/nn/optim/thor.py +9 -7
- mindspore/nn/probability/bijector/bijector.py +5 -5
- mindspore/nn/probability/bijector/power_transform.py +27 -27
- mindspore/nn/probability/bijector/softplus.py +3 -3
- mindspore/nn/probability/distribution/_utils/custom_ops.py +3 -3
- mindspore/nn/probability/distribution/bernoulli.py +5 -5
- mindspore/nn/probability/distribution/beta.py +3 -3
- mindspore/nn/probability/distribution/categorical.py +7 -7
- mindspore/nn/probability/distribution/cauchy.py +0 -1
- mindspore/nn/probability/distribution/distribution.py +3 -3
- mindspore/nn/probability/distribution/gamma.py +3 -3
- mindspore/nn/probability/distribution/geometric.py +4 -4
- mindspore/nn/probability/distribution/gumbel.py +4 -4
- mindspore/nn/probability/distribution/log_normal.py +2 -2
- mindspore/nn/probability/distribution/logistic.py +2 -2
- mindspore/nn/probability/distribution/poisson.py +4 -4
- mindspore/nn/probability/distribution/transformed_distribution.py +3 -3
- mindspore/nn/probability/distribution/uniform.py +6 -6
- mindspore/nn/wrap/cell_wrapper.py +84 -34
- mindspore/nn/wrap/grad_reducer.py +8 -5
- mindspore/nn/wrap/loss_scale.py +105 -42
- mindspore/numpy/array_creations.py +1 -2
- mindspore/numpy/array_ops.py +3 -2
- mindspore/numpy/utils_const.py +5 -5
- mindspore/offline_debug/convert_async.py +2 -2
- mindspore/ops/_grad_experimental/__init__.py +0 -5
- mindspore/ops/_grad_experimental/grad_array_ops.py +2 -3
- mindspore/ops/_grad_experimental/grad_comm_ops.py +15 -2
- mindspore/ops/_grad_experimental/grad_debug_ops.py +0 -37
- mindspore/ops/_grad_experimental/grad_implementations.py +11 -1
- mindspore/ops/_grad_experimental/grad_inner_ops.py +2 -216
- mindspore/ops/_grad_experimental/grad_math_ops.py +19 -199
- mindspore/ops/_grad_experimental/grad_sparse.py +15 -0
- mindspore/ops/_grad_experimental/grad_sparse_ops.py +3 -3
- mindspore/ops/_op_impl/_custom_op/dsd_back_impl.py +1 -1
- mindspore/ops/_op_impl/_custom_op/flash_attention/attention.py +165 -109
- mindspore/ops/_op_impl/_custom_op/flash_attention/flash_attention_bwd.py +144 -86
- mindspore/ops/_op_impl/_custom_op/flash_attention/flash_attention_fwd.py +172 -187
- mindspore/ops/_op_impl/_custom_op/flash_attention/flash_attention_impl.py +51 -57
- mindspore/ops/_op_impl/_custom_op/flash_attention/tik_ops_utils.py +6 -17
- mindspore/ops/_op_impl/_custom_op/flash_attention/tiling_strategy/wukong_tiling.py +1 -1
- mindspore/ops/_op_impl/aicpu/__init__.py +14 -2
- mindspore/ops/_op_impl/aicpu/add.py +3 -3
- mindspore/ops/_op_impl/aicpu/bias_add_grad.py +0 -1
- mindspore/ops/_op_impl/aicpu/count_nonzero.py +43 -0
- mindspore/ops/_op_impl/aicpu/eps.py +32 -0
- mindspore/ops/_op_impl/aicpu/gamma.py +2 -2
- mindspore/ops/_op_impl/aicpu/log_uniform_candidate_sampler.py +6 -3
- mindspore/ops/_op_impl/aicpu/lu_unpack_grad.py +0 -1
- mindspore/ops/_op_impl/aicpu/multinomial.py +3 -3
- mindspore/ops/_op_impl/aicpu/parameterized_truncated_normal.py +15 -7
- mindspore/ops/_op_impl/aicpu/random_categorical.py +39 -19
- mindspore/ops/_op_impl/aicpu/random_choice_with_mask.py +5 -2
- mindspore/ops/_op_impl/aicpu/random_poisson.py +103 -52
- mindspore/ops/_op_impl/aicpu/random_shuffle.py +17 -15
- mindspore/ops/_op_impl/aicpu/{sparseaddmm.py → sparse_addmm.py} +2 -2
- mindspore/ops/_op_impl/aicpu/{sparsesparsemaximum.py → sparse_sparse_maximum.py} +4 -4
- mindspore/ops/_op_impl/aicpu/standard_laplace.py +5 -5
- mindspore/ops/_op_impl/aicpu/standard_normal.py +5 -5
- mindspore/ops/_op_impl/aicpu/truncated_normal.py +9 -7
- mindspore/ops/_op_impl/aicpu/uniform.py +5 -3
- mindspore/ops/_op_impl/aicpu/uniform_candidate_sampler.py +8 -4
- mindspore/ops/_op_impl/aicpu/uniform_int.py +5 -5
- mindspore/ops/_op_impl/aicpu/uniform_real.py +4 -4
- mindspore/ops/_op_impl/tbe/__init__.py +4 -4
- mindspore/ops/_op_impl/tbe/inplace_index_add.py +7 -3
- mindspore/ops/_op_impl/tbe/trans_data_ds.py +2 -0
- mindspore/ops/_primitive_cache.py +1 -1
- mindspore/ops/_tracefunc.py +45 -13
- mindspore/ops/_utils/utils.py +6 -1
- mindspore/ops/_vmap/vmap_array_ops.py +3 -3
- mindspore/ops/_vmap/vmap_base.py +3 -3
- mindspore/ops/_vmap/vmap_convolution_ops.py +1 -1
- mindspore/ops/_vmap/vmap_grad_math_ops.py +6 -4
- mindspore/ops/_vmap/vmap_math_ops.py +5 -2
- mindspore/ops/_vmap/vmap_nn_ops.py +61 -7
- mindspore/ops/arg_dtype_cast.py +54 -0
- mindspore/ops/composite/base.py +37 -10
- mindspore/ops/composite/math_ops.py +5 -4
- mindspore/ops/composite/multitype_ops/_compile_utils.py +275 -73
- mindspore/ops/composite/multitype_ops/_constexpr_utils.py +16 -9
- mindspore/ops/composite/multitype_ops/add_impl.py +43 -4
- mindspore/ops/composite/multitype_ops/getitem_impl.py +42 -4
- mindspore/ops/composite/multitype_ops/ones_like_impl.py +6 -0
- mindspore/ops/composite/multitype_ops/setitem_impl.py +2 -1
- mindspore/ops/composite/multitype_ops/zeros_like_impl.py +9 -0
- mindspore/ops/deprecated.py +304 -0
- mindspore/ops/function/__init__.py +4 -1
- mindspore/ops/function/array_func.py +174 -193
- mindspore/ops/function/clip_func.py +81 -13
- mindspore/ops/function/debug_func.py +1 -1
- mindspore/ops/function/grad/grad_func.py +18 -9
- mindspore/ops/function/image_func.py +10 -4
- mindspore/ops/function/linalg_func.py +5 -5
- mindspore/ops/function/math_func.py +575 -386
- mindspore/ops/function/nn_func.py +568 -260
- mindspore/ops/function/random_func.py +88 -57
- mindspore/ops/function/sparse_func.py +1 -1
- mindspore/ops/function/sparse_unary_func.py +14 -12
- mindspore/ops/function/vmap_func.py +6 -5
- mindspore/ops/functional.py +15 -10
- mindspore/ops/op_info_register.py +244 -25
- mindspore/ops/operations/__init__.py +28 -19
- mindspore/ops/operations/_grad_ops.py +72 -7
- mindspore/ops/operations/_inner_ops.py +350 -17
- mindspore/ops/operations/_quant_ops.py +4 -8
- mindspore/ops/operations/_sequence_ops.py +42 -0
- mindspore/ops/operations/array_ops.py +68 -282
- mindspore/ops/operations/comm_ops.py +107 -59
- mindspore/ops/operations/custom_ops.py +94 -70
- mindspore/ops/operations/debug_ops.py +8 -4
- mindspore/ops/operations/image_ops.py +18 -12
- mindspore/ops/operations/inner_ops.py +26 -3
- mindspore/ops/operations/math_ops.py +189 -141
- mindspore/ops/operations/nn_ops.py +794 -489
- mindspore/ops/operations/other_ops.py +0 -22
- mindspore/ops/operations/random_ops.py +53 -111
- mindspore/ops/operations/sparse_ops.py +3 -1
- mindspore/ops/primitive.py +24 -18
- mindspore/parallel/_auto_parallel_context.py +68 -8
- mindspore/parallel/_cost_model_context.py +2 -2
- mindspore/parallel/_offload_context.py +17 -3
- mindspore/parallel/_parallel_serialization.py +12 -5
- mindspore/parallel/_ps_context.py +12 -0
- mindspore/parallel/_tensor.py +18 -13
- mindspore/parallel/_transformer/layers.py +5 -3
- mindspore/parallel/_transformer/loss.py +1 -0
- mindspore/parallel/_transformer/moe.py +2 -2
- mindspore/parallel/_transformer/op_parallel_config.py +12 -1
- mindspore/parallel/_transformer/transformer.py +23 -3
- mindspore/parallel/_utils.py +11 -7
- mindspore/parallel/algo_parameter_config.py +85 -5
- mindspore/parallel/checkpoint_transform.py +19 -12
- mindspore/parallel/shard.py +21 -14
- mindspore/profiler/common/struct_type.py +3 -3
- mindspore/profiler/common/util.py +4 -2
- mindspore/profiler/envprofiling.py +1 -1
- mindspore/profiler/parser/aicpu_data_parser.py +5 -3
- mindspore/profiler/parser/ascend_flops_generator.py +2 -2
- mindspore/profiler/parser/ascend_fpbp_generator.py +1 -1
- mindspore/profiler/parser/ascend_hccl_generator.py +249 -12
- mindspore/profiler/parser/ascend_msprof_exporter.py +150 -255
- mindspore/profiler/parser/ascend_msprof_generator.py +204 -17
- mindspore/profiler/parser/ascend_op_generator.py +6 -6
- mindspore/profiler/parser/ascend_steptrace_generator.py +6 -4
- mindspore/profiler/parser/ascend_timeline_generator.py +14 -187
- mindspore/profiler/parser/base_timeline_generator.py +10 -8
- mindspore/profiler/parser/cpu_gpu_timeline_generator.py +16 -12
- mindspore/profiler/parser/flops_parser.py +15 -11
- mindspore/profiler/parser/framework_parser.py +38 -22
- mindspore/profiler/parser/hccl_parser.py +16 -12
- mindspore/profiler/parser/integrator.py +22 -11
- mindspore/profiler/parser/memory_usage_parser.py +2 -2
- mindspore/profiler/parser/minddata_analyzer.py +12 -14
- mindspore/profiler/parser/minddata_pipeline_parser.py +1 -1
- mindspore/profiler/parser/msadvisor_parser.py +8 -4
- mindspore/profiler/parser/op_intermediate_parser.py +5 -2
- mindspore/profiler/parser/optime_parser.py +1 -1
- mindspore/profiler/parser/profiler_info.py +21 -2
- mindspore/profiler/parser/step_trace_parser.py +11 -14
- mindspore/profiler/profiling.py +179 -89
- mindspore/rewrite/api/node.py +102 -19
- mindspore/rewrite/api/node_type.py +5 -1
- mindspore/rewrite/api/pattern_engine.py +1 -1
- mindspore/rewrite/api/scoped_value.py +9 -17
- mindspore/rewrite/api/symbol_tree.py +131 -47
- mindspore/rewrite/ast_helpers/__init__.py +2 -1
- mindspore/rewrite/ast_helpers/ast_finder.py +129 -0
- mindspore/rewrite/ast_helpers/ast_modifier.py +116 -104
- mindspore/rewrite/ast_transformers/flatten_recursive_stmt.py +93 -46
- mindspore/rewrite/common/rewrite_elog.py +5 -1
- mindspore/rewrite/namer.py +33 -24
- mindspore/rewrite/namespace.py +14 -5
- mindspore/{_extends/graph_kernel/expanders/complex → rewrite/node}/__init__.py +9 -9
- mindspore/rewrite/node/call_function.py +79 -0
- mindspore/rewrite/node/cell_container.py +135 -0
- mindspore/rewrite/node/control_flow.py +88 -0
- mindspore/rewrite/{node.py → node/node.py} +273 -234
- mindspore/rewrite/node/node_manager.py +254 -0
- mindspore/rewrite/{topological_manager.py → node/node_topological_manager.py} +13 -46
- mindspore/rewrite/parsers/arguments_parser.py +22 -21
- mindspore/rewrite/parsers/assign_parser.py +216 -221
- mindspore/rewrite/parsers/attribute_parser.py +9 -7
- mindspore/rewrite/parsers/class_def_parser.py +174 -113
- mindspore/rewrite/parsers/constant_parser.py +9 -6
- mindspore/rewrite/parsers/container_parser.py +9 -7
- mindspore/rewrite/parsers/for_parser.py +36 -15
- mindspore/rewrite/parsers/function_def_parser.py +24 -16
- mindspore/rewrite/parsers/if_parser.py +28 -24
- mindspore/rewrite/parsers/module_parser.py +196 -25
- mindspore/rewrite/{parser.py → parsers/parser.py} +4 -2
- mindspore/rewrite/{parser_register.py → parsers/parser_register.py} +1 -1
- mindspore/rewrite/parsers/return_parser.py +6 -6
- mindspore/rewrite/sparsify/sparse_transformer.py +12 -3
- mindspore/rewrite/sparsify/utils.py +1 -1
- mindspore/rewrite/symbol_tree.py +523 -578
- mindspore/rewrite/symbol_tree_builder.py +9 -193
- mindspore/rewrite/symbol_tree_dumper.py +2 -2
- mindspore/run_check/_check_version.py +6 -4
- mindspore/{ops/bprop_mindir → safeguard}/__init__.py +4 -3
- mindspore/safeguard/rewrite_obfuscation.py +541 -0
- mindspore/scipy/linalg.py +1 -1
- mindspore/scipy/optimize/minimize.py +7 -3
- mindspore/train/_utils.py +7 -3
- mindspore/train/amp.py +323 -123
- mindspore/train/anf_ir_pb2.py +14 -2
- mindspore/train/callback/_backup_and_restore.py +2 -12
- mindspore/train/callback/_callback.py +29 -4
- mindspore/train/callback/_checkpoint.py +23 -8
- mindspore/train/callback/_early_stop.py +2 -2
- mindspore/train/callback/_landscape.py +4 -4
- mindspore/train/callback/_loss_monitor.py +2 -2
- mindspore/train/callback/_on_request_exit.py +2 -2
- mindspore/train/callback/_reduce_lr_on_plateau.py +3 -4
- mindspore/train/callback/_summary_collector.py +15 -8
- mindspore/train/callback/_time_monitor.py +58 -5
- mindspore/train/data_sink.py +5 -11
- mindspore/train/dataset_helper.py +84 -57
- mindspore/train/loss_scale_manager.py +2 -2
- mindspore/train/metrics/__init__.py +3 -3
- mindspore/train/metrics/cosine_similarity.py +1 -1
- mindspore/train/metrics/hausdorff_distance.py +3 -2
- mindspore/train/metrics/mean_surface_distance.py +3 -2
- mindspore/train/metrics/metric.py +39 -19
- mindspore/train/metrics/roc.py +2 -2
- mindspore/train/metrics/root_mean_square_surface_distance.py +4 -3
- mindspore/train/mind_ir_pb2.py +85 -36
- mindspore/train/model.py +187 -47
- mindspore/train/serialization.py +487 -161
- mindspore/train/summary/_summary_adapter.py +1 -1
- mindspore/train/summary/_writer_pool.py +3 -2
- mindspore/train/summary/summary_record.py +37 -17
- mindspore/train/train_thor/convert_utils.py +3 -3
- mindspore/train/train_thor/dataset_helper.py +1 -1
- mindspore/version.py +1 -1
- {mindspore-2.1.0.dist-info → mindspore-2.2.10.dist-info}/METADATA +6 -7
- {mindspore-2.1.0.dist-info → mindspore-2.2.10.dist-info}/RECORD +477 -517
- {mindspore-2.1.0.dist-info → mindspore-2.2.10.dist-info}/entry_points.txt +0 -1
- mindspore/_akg/akg/tvm/contrib/debugger/__init__.py +0 -16
- mindspore/_akg/akg/tvm/contrib/debugger/debug_result.py +0 -274
- mindspore/_akg/akg/tvm/contrib/debugger/debug_runtime.py +0 -259
- mindspore/_akg/akg/tvm/contrib/peak.py +0 -341
- mindspore/_akg/akg/tvm/contrib/rpc.py +0 -25
- mindspore/_akg/akg/tvm/contrib/xcode.py +0 -257
- mindspore/_akg/akg/tvm/exec/__init__.py +0 -17
- mindspore/_akg/akg/tvm/exec/autotvm_log_editor.py +0 -60
- mindspore/_akg/akg/tvm/exec/measure_peak.py +0 -48
- mindspore/_akg/akg/tvm/exec/query_rpc_tracker.py +0 -48
- mindspore/_akg/akg/tvm/exec/rpc_proxy.py +0 -98
- mindspore/_akg/akg/tvm/exec/rpc_server.py +0 -88
- mindspore/_akg/akg/tvm/exec/rpc_tracker.py +0 -62
- mindspore/_akg/akg/tvm/rpc/__init__.py +0 -29
- mindspore/_akg/akg/tvm/rpc/base.py +0 -182
- mindspore/_akg/akg/tvm/rpc/client.py +0 -436
- mindspore/_akg/akg/tvm/rpc/proxy.py +0 -595
- mindspore/_akg/akg/tvm/rpc/server.py +0 -413
- mindspore/_akg/akg/tvm/rpc/tornado_util.py +0 -121
- mindspore/_akg/akg/tvm/rpc/tracker.py +0 -431
- mindspore/_extends/graph_kernel/expander.py +0 -80
- mindspore/_extends/graph_kernel/expanders/__init__.py +0 -54
- mindspore/_extends/graph_kernel/expanders/_utils.py +0 -269
- mindspore/_extends/graph_kernel/expanders/addn.py +0 -33
- mindspore/_extends/graph_kernel/expanders/batchnorm.py +0 -152
- mindspore/_extends/graph_kernel/expanders/batchnorm_grad.py +0 -105
- mindspore/_extends/graph_kernel/expanders/clip_by_norm_no_div_sum.py +0 -33
- mindspore/_extends/graph_kernel/expanders/complex/abs.py +0 -30
- mindspore/_extends/graph_kernel/expanders/complex/add.py +0 -44
- mindspore/_extends/graph_kernel/expanders/complex/div.py +0 -62
- mindspore/_extends/graph_kernel/expanders/complex/mul.py +0 -52
- mindspore/_extends/graph_kernel/expanders/complex/real_div.py +0 -62
- mindspore/_extends/graph_kernel/expanders/complex/sub.py +0 -45
- mindspore/_extends/graph_kernel/expanders/conv2d.py +0 -200
- mindspore/_extends/graph_kernel/expanders/dropout_grad.py +0 -30
- mindspore/_extends/graph_kernel/expanders/equal_count.py +0 -50
- mindspore/_extends/graph_kernel/expanders/erfc.py +0 -35
- mindspore/_extends/graph_kernel/expanders/expand_dims.py +0 -50
- mindspore/_extends/graph_kernel/expanders/fused_adam.py +0 -44
- mindspore/_extends/graph_kernel/expanders/fused_adam_weight_decay.py +0 -47
- mindspore/_extends/graph_kernel/expanders/fused_mul_add.py +0 -28
- mindspore/_extends/graph_kernel/expanders/gelu_grad.py +0 -70
- mindspore/_extends/graph_kernel/expanders/gkdropout.py +0 -40
- mindspore/_extends/graph_kernel/expanders/identity.py +0 -25
- mindspore/_extends/graph_kernel/expanders/layernorm.py +0 -93
- mindspore/_extends/graph_kernel/expanders/layernorm_grad.py +0 -113
- mindspore/_extends/graph_kernel/expanders/logsoftmax.py +0 -46
- mindspore/_extends/graph_kernel/expanders/logsoftmax_grad.py +0 -36
- mindspore/_extends/graph_kernel/expanders/matmul.py +0 -80
- mindspore/_extends/graph_kernel/expanders/maximum_grad.py +0 -59
- mindspore/_extends/graph_kernel/expanders/minimum_grad.py +0 -80
- mindspore/_extends/graph_kernel/expanders/oneslike.py +0 -26
- mindspore/_extends/graph_kernel/expanders/reduce_mean.py +0 -43
- mindspore/_extends/graph_kernel/expanders/relu_grad.py +0 -32
- mindspore/_extends/graph_kernel/expanders/sigmoid_cross_entropy_with_logits.py +0 -41
- mindspore/_extends/graph_kernel/expanders/sigmoid_cross_entropy_with_logits_grad.py +0 -35
- mindspore/_extends/graph_kernel/expanders/sigmoid_grad.py +0 -31
- mindspore/_extends/graph_kernel/expanders/slice.py +0 -35
- mindspore/_extends/graph_kernel/expanders/softmax_cross_entropy_with_logits.py +0 -42
- mindspore/_extends/graph_kernel/expanders/softmax_grad_ext.py +0 -41
- mindspore/_extends/graph_kernel/expanders/softsign.py +0 -28
- mindspore/_extends/graph_kernel/expanders/sqrt_grad.py +0 -29
- mindspore/_extends/graph_kernel/expanders/square_sum_all.py +0 -44
- mindspore/_extends/graph_kernel/expanders/square_sum_v1.py +0 -37
- mindspore/_extends/graph_kernel/expanders/squared_difference.py +0 -43
- mindspore/_extends/graph_kernel/expanders/tanh_grad.py +0 -31
- mindspore/_extends/graph_kernel/model/op_infer.py +0 -506
- mindspore/dataset/datapreprocess/__init__.py +0 -20
- mindspore/dataset/datapreprocess/preprocess_imagenet_validate_dataset.py +0 -54
- mindspore/include/api/net.h +0 -142
- mindspore/nn/lr_scheduler.py +0 -262
- mindspore/ops/_grad_experimental/grad_image_ops.py +0 -248
- mindspore/ops/_grad_experimental/grad_linalg_ops.py +0 -181
- mindspore/ops/_grad_experimental/grad_other_ops.py +0 -72
- mindspore/ops/_grad_experimental/grad_scalar_ops.py +0 -112
- mindspore/ops/_grad_experimental/grad_sequence_ops.py +0 -351
- mindspore/ops/bprop_mindir/BNTrainingReduce_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/Broadcast_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/Depend_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/DepthwiseConv2dNative_bprop.mindir +0 -138
- mindspore/ops/bprop_mindir/EmbeddingLookup_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/Load_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/ScatterNonAliasingAdd_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/SparseGatherV2_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/SparseSoftmaxCrossEntropyWithLogits_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/Switch_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/TransShape_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/TupleGetItem_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/Unique_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/Unstack_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/generate_mindir.py +0 -114
- mindspore/rewrite/node_visitor.py +0 -44
- {mindspore-2.1.0.dist-info → mindspore-2.2.10.dist-info}/WHEEL +0 -0
- {mindspore-2.1.0.dist-info → mindspore-2.2.10.dist-info}/top_level.txt +0 -0
|
@@ -33,12 +33,12 @@ class FlashAttentionFwd(FlashAttention):
|
|
|
33
33
|
"""
|
|
34
34
|
|
|
35
35
|
def __init__(self, query, key, value,
|
|
36
|
-
|
|
36
|
+
attn_mask, dropout_mask, alibi_mask,
|
|
37
37
|
kernel_name,
|
|
38
38
|
tiling_stgy: TilingStrategy,
|
|
39
39
|
prev_block_num=65536,
|
|
40
40
|
next_block_num=65536, high_precision=False, disable_debug=True):
|
|
41
|
-
super(FlashAttentionFwd, self).__init__(query, key, value,
|
|
41
|
+
super(FlashAttentionFwd, self).__init__(query, key, value, attn_mask, dropout_mask, alibi_mask,
|
|
42
42
|
kernel_name,
|
|
43
43
|
tiling_stgy, prev_block_num, next_block_num, high_precision,
|
|
44
44
|
disable_debug)
|
|
@@ -55,25 +55,49 @@ class FlashAttentionFwd(FlashAttention):
|
|
|
55
55
|
self.O_gm = self.tik_instance.Tensor(FP16, self.O_shape, name="O_gm", scope=GM, is_atomic_add=True)
|
|
56
56
|
if self.high_precision:
|
|
57
57
|
self.O_gm_workspace = self.tik_instance.Tensor(FP32, self.O_shape, name="O_gm_workspace", scope=GM,
|
|
58
|
-
is_workspace=True)
|
|
58
|
+
is_workspace=True, is_atomic_add=True)
|
|
59
59
|
self.l_gm = self.tik_instance.Tensor(self.precision_type, self.l_shape, name="l_gm", scope=GM,
|
|
60
60
|
is_atomic_add=True)
|
|
61
61
|
self.m_gm = self.tik_instance.Tensor(FP16, self.m_shape, name="m_gm", scope=GM, is_atomic_add=True)
|
|
62
62
|
|
|
63
|
+
def prepare_global_ones(self):
|
|
64
|
+
"""Prepare global ones tensor in L1 for cube impl row_sum"""
|
|
65
|
+
Bc_aligned = (self.Bc + 15) // 16 * 16
|
|
66
|
+
last_Bc_aligned = (self.last_Bc + 15) // 16 * 16
|
|
67
|
+
self.ones_l1 = self.tik_instance.Tensor(FP16, (Bc_aligned, 16), name="ones_l1", scope=L1)
|
|
68
|
+
self.last_ones_l1 = self.tik_instance.Tensor(FP16, (last_Bc_aligned, 16), name="last_ones_l1", scope=L1)
|
|
69
|
+
with self.tik_instance.new_stmt_scope(disable_sync=False):
|
|
70
|
+
ones_ub = self.tik_instance.Tensor(FP16, (Bc_aligned, 16), name="ones_ub", scope=UB)
|
|
71
|
+
self.tik_instance.h_duplicate(ones_ub, 1.0)
|
|
72
|
+
self.cont_data_mv_1_bust(dst=self.ones_l1, src=ones_ub, burst=Bc_aligned)
|
|
73
|
+
last_ones_ub = self.tik_instance.Tensor(FP16, (last_Bc_aligned, 16), name="last_ones_ub", scope=UB)
|
|
74
|
+
self.tik_instance.h_duplicate(ones_ub, 1.0)
|
|
75
|
+
self.cont_data_mv_1_bust(dst=self.last_ones_l1, src=last_ones_ub, burst=last_Bc_aligned)
|
|
76
|
+
|
|
63
77
|
def softmax_compute(self, Sij_ub, mij_ub, lij_ub, m, n):
|
|
64
78
|
"""Refer to Algorithm 2 line12"""
|
|
65
|
-
# mij = rowmax(Sij) 计算Sij每行的最大值
|
|
66
|
-
self.tik_instance.h_reduce_max(mij_ub, Sij_ub[:, 0:n], 1)
|
|
67
79
|
m_aligned = self.tik_ops_utils.up_align_to_K0(m)
|
|
68
80
|
n_aligned = self.tik_ops_utils.up_align_to_K0(n)
|
|
81
|
+
n0 = 16
|
|
82
|
+
n1 = n // 16
|
|
83
|
+
# only support n % 16 == 0
|
|
84
|
+
with self.tik_instance.new_stmt_scope(disable_sync=False):
|
|
85
|
+
mn0_block_max = self.tik_instance.Tensor(FP16, (1, m, n0), name="mn0_block_max", scope=UB)
|
|
86
|
+
self.cont_data_mv_1_bust(dst=mn0_block_max, src=Sij_ub, burst=m)
|
|
87
|
+
with self.tik_instance.for_range(1, n1) as idx:
|
|
88
|
+
self.tik_instance.h_max(mn0_block_max, mn0_block_max, Sij_ub[idx, :, :])
|
|
89
|
+
mn0_block_max = mn0_block_max.reshape((m, n0))
|
|
90
|
+
self.tik_instance.h_reduce_max(mij_ub, mn0_block_max, 1)
|
|
69
91
|
# Sij - mij
|
|
70
92
|
with self.tik_instance.new_stmt_scope(disable_sync=False):
|
|
71
|
-
broadcast_mij_ub = self.tik_ops_utils.broadcast(mij_ub, (
|
|
72
|
-
|
|
93
|
+
broadcast_mij_ub = self.tik_ops_utils.broadcast(mij_ub, (m, n0))
|
|
94
|
+
broadcast_mij_ub = broadcast_mij_ub.reshape((1, m, n0))
|
|
95
|
+
for idx in range(n1):
|
|
96
|
+
self.tik_instance.h_sub(Sij_ub[idx, :, :], Sij_ub[idx, :, :], broadcast_mij_ub)
|
|
73
97
|
# exp
|
|
74
98
|
if self.high_precision:
|
|
75
99
|
Sij_ub_fp32 = self.tik_instance.Tensor(
|
|
76
|
-
FP32, (m_aligned,
|
|
100
|
+
FP32, (n_aligned // 16, m_aligned, 16), name="Sij_ub_fp32", scope=UB
|
|
77
101
|
)
|
|
78
102
|
with self.tik_instance.new_stmt_scope(disable_sync=False):
|
|
79
103
|
self.tik_instance.h_cast(Sij_ub_fp32, Sij_ub, "none")
|
|
@@ -83,15 +107,21 @@ class FlashAttentionFwd(FlashAttention):
|
|
|
83
107
|
self.tik_instance.h_exp(Sij_ub, Sij_ub)
|
|
84
108
|
|
|
85
109
|
# cube impl rowsum
|
|
86
|
-
|
|
87
|
-
name="
|
|
88
|
-
Sij_l1_K1MK0_ed =
|
|
89
|
-
|
|
110
|
+
Sij_l1_K1MK0_ed = self.tik_instance.Tensor(FP16, (n_aligned // 16, m_aligned, 16),
|
|
111
|
+
name="Sij_l1_K1MK0_ed", scope=L1)
|
|
112
|
+
self.cont_data_mv_1_bust(dst=Sij_l1_K1MK0_ed, src=Sij_ub, burst=m * n // 16)
|
|
113
|
+
if n == self.Bc:
|
|
114
|
+
Sij_row_sum_ub = self.tik_ops_utils.row_sum_cube_impl(Sij_l1_K1MK0_ed, self.ones_l1,
|
|
115
|
+
lij_ub, m, n, self.precision_type)
|
|
116
|
+
else:
|
|
117
|
+
Sij_row_sum_ub = self.tik_ops_utils.row_sum_cube_impl(Sij_l1_K1MK0_ed, self.last_ones_l1,
|
|
118
|
+
lij_ub, m, n, self.precision_type)
|
|
90
119
|
|
|
91
120
|
if self.high_precision:
|
|
92
121
|
return Sij_ub_fp32, mij_ub, Sij_row_sum_ub
|
|
93
|
-
|
|
94
|
-
|
|
122
|
+
if self.has_drop_mask:
|
|
123
|
+
return Sij_ub, mij_ub, Sij_row_sum_ub
|
|
124
|
+
return Sij_l1_K1MK0_ed, mij_ub, Sij_row_sum_ub
|
|
95
125
|
|
|
96
126
|
def update_m_l(self, mi_old_ub, mij_ub, li_old_ub, lij_ub, vec_len):
|
|
97
127
|
"""Refer to Algorithm 2 line13
|
|
@@ -146,34 +176,36 @@ class FlashAttentionFwd(FlashAttention):
|
|
|
146
176
|
:param block_h:
|
|
147
177
|
:return: None
|
|
148
178
|
"""
|
|
149
|
-
vec_gm_offset = (batch_start
|
|
179
|
+
vec_gm_offset = self.get_l_m_gm_offset(batch_start, batch_idx, self.Nq, self.Br, q_blk_idx)
|
|
150
180
|
o_gm_offset = self.get_gm_offset(batch_start, batch_idx, self.Nq, self.d, self.Br, q_blk_idx)
|
|
151
181
|
block_h_aligned = self.tik_ops_utils.up_align_to_K0(block_h)
|
|
152
182
|
block_k_aligned_aligned = self.tik_ops_utils.up_align_to_K0(kv_blk_height)
|
|
153
|
-
|
|
154
|
-
dtype_size = DTYPE_SIZE[FP32]
|
|
155
|
-
except KeyError:
|
|
156
|
-
raise ValueError("The argument 'FP32' is not valid.")
|
|
183
|
+
n1 = block_k_aligned_aligned // self.N0
|
|
157
184
|
with self.tik_instance.if_scope(tik.any(kv_blk_idx == 0, kv_blk_idx + self.prev_block_num == q_blk_idx)):
|
|
158
185
|
self.tik_ops_utils.move_vector_from_ub_to_gm(self.l_gm, lij_ub, vec_gm_offset, block_h)
|
|
159
186
|
self.tik_ops_utils.move_vector_from_ub_to_gm(self.m_gm, mij_ub, vec_gm_offset, block_h)
|
|
160
187
|
li_new_rec_ub = self.tik_ops_utils.calc_vec_rec(lij_ub, block_h)
|
|
188
|
+
vec_ub = self.tik_instance.Tensor(FP32, (block_h, self.N0), name="vec_ub", scope=UB)
|
|
161
189
|
for i in range(block_h):
|
|
162
190
|
src_scalar = self.tik_instance.Scalar(init_value=li_new_rec_ub[i], dtype=FP32)
|
|
163
|
-
self.tik_instance.
|
|
164
|
-
|
|
191
|
+
self.tik_instance.h_duplicate(vec_ub[i, :], src_scalar)
|
|
192
|
+
vec_ub = vec_ub.reshape((1, block_h, self.N0))
|
|
193
|
+
with self.tik_instance.for_range(0, n1) as idx:
|
|
194
|
+
self.tik_instance.h_mul(Pij_ub_fp32[idx, :, :],
|
|
195
|
+
Pij_ub_fp32[idx, :, :],
|
|
196
|
+
vec_ub)
|
|
165
197
|
self.tik_instance.h_cast(Pij_ub, Pij_ub_fp32, "none")
|
|
166
198
|
Pij_l1_K1MK0_ed = self.tik_instance.Tensor(
|
|
167
199
|
FP16, (block_k_aligned_aligned // 16, block_h_aligned, 16), name="Pij_l1_K1MK0_ed", scope=L1
|
|
168
200
|
)
|
|
169
|
-
|
|
201
|
+
self.cont_data_mv_1_bust(dst=Pij_l1_K1MK0_ed, src=Pij_ub,
|
|
202
|
+
burst=block_k_aligned_aligned * block_h_aligned // 16)
|
|
170
203
|
Pij_Vj_matmul_res_ub = self.tik_ops_utils.matmul_compute(Pij_l1_K1MK0_ed, Vj_l1_K1NK0_ed, block_h,
|
|
171
|
-
kv_blk_height, self.actual_d, N1MN0_to_MN=
|
|
204
|
+
kv_blk_height, self.actual_d, N1MN0_to_MN=False,
|
|
172
205
|
precision_type=self.precision_type) # Pij*Vj
|
|
173
|
-
self.
|
|
174
|
-
|
|
175
|
-
|
|
176
|
-
|
|
206
|
+
self.tik_instance.data_move(dst=self.O_gm_workspace[o_gm_offset], src=Pij_Vj_matmul_res_ub, sid=0,
|
|
207
|
+
nburst=self.N1, burst=block_h * self.N0 // 8,
|
|
208
|
+
src_stride=0, dst_stride=(self.Nq - block_h_aligned) * self.N0 // 8)
|
|
177
209
|
with self.tik_instance.else_scope():
|
|
178
210
|
mi_ub = self.tik_instance.Tensor(FP16, (block_h_aligned,), name="mi_old_ub", scope=UB)
|
|
179
211
|
li_ub = self.tik_instance.Tensor(FP32, (block_h_aligned,), name="li_ub", scope=UB)
|
|
@@ -190,124 +222,59 @@ class FlashAttentionFwd(FlashAttention):
|
|
|
190
222
|
|
|
191
223
|
li_new_rec_ub = self.tik_ops_utils.calc_vec_rec(li_new_ub, block_h)
|
|
192
224
|
self.tik_instance.h_mul(exp_m_cur_fp32, exp_m_cur_fp32, li_new_rec_ub)
|
|
225
|
+
exp_m_cur_fp32_vec_ub = self.tik_instance.Tensor(FP32, (block_h, self.N0), name="exp_m_cur_fp32_vec_ub",
|
|
226
|
+
scope=UB)
|
|
193
227
|
for i in range(block_h):
|
|
194
228
|
src_scalar = self.tik_instance.Scalar(init_value=exp_m_cur_fp32[i], dtype=FP32)
|
|
195
|
-
self.tik_instance.
|
|
196
|
-
|
|
229
|
+
self.tik_instance.h_duplicate(exp_m_cur_fp32_vec_ub[i, :], src_scalar)
|
|
230
|
+
exp_m_cur_fp32_vec_ub = exp_m_cur_fp32_vec_ub.reshape((1, block_h, self.N0))
|
|
231
|
+
with self.tik_instance.for_range(0, n1) as idx:
|
|
232
|
+
self.tik_instance.h_mul(Pij_ub_fp32[idx, :, :],
|
|
233
|
+
Pij_ub_fp32[idx, :, :],
|
|
234
|
+
exp_m_cur_fp32_vec_ub)
|
|
197
235
|
self.tik_instance.h_cast(Pij_ub, Pij_ub_fp32, "none")
|
|
198
|
-
# ub -> l1
|
|
199
236
|
Pij_l1_K1MK0_ed = self.tik_instance.Tensor(
|
|
200
237
|
FP16, (block_k_aligned_aligned // 16, block_h_aligned, 16), name="Pij_l1_K1MK0_ed", scope=L1
|
|
201
238
|
)
|
|
202
|
-
|
|
239
|
+
self.cont_data_mv_1_bust(dst=Pij_l1_K1MK0_ed, src=Pij_ub,
|
|
240
|
+
burst=block_k_aligned_aligned * block_h_aligned // 16)
|
|
203
241
|
Pij_Vj_matmul_res_ub = self.tik_ops_utils.matmul_compute(Pij_l1_K1MK0_ed, Vj_l1_K1NK0_ed, block_h,
|
|
204
|
-
kv_blk_height, self.actual_d, N1MN0_to_MN=
|
|
242
|
+
kv_blk_height, self.actual_d, N1MN0_to_MN=False,
|
|
205
243
|
precision_type=self.precision_type) # Pij*Vj
|
|
206
|
-
|
|
207
|
-
self.
|
|
208
|
-
|
|
244
|
+
n1, m, n0 = Pij_Vj_matmul_res_ub.shape
|
|
245
|
+
Oi_ub = self.tik_instance.Tensor(FP32, (n1, m, n0), name="Oi_ub", scope=UB)
|
|
246
|
+
self.tik_instance.data_move(dst=Oi_ub, src=self.O_gm_workspace[o_gm_offset],
|
|
247
|
+
sid=0, nburst=self.N1, burst=m * self.N0 // 8,
|
|
248
|
+
src_stride=(self.Nq - m) * self.N0 // 8, dst_stride=0)
|
|
209
249
|
|
|
210
250
|
self.tik_instance.h_mul(li_new_rec_ub, li_new_rec_ub, li_ub)
|
|
211
251
|
self.tik_instance.h_mul(li_new_rec_ub, li_new_rec_ub, exp_m_old_fp32)
|
|
212
|
-
|
|
213
|
-
|
|
214
|
-
|
|
215
|
-
|
|
216
|
-
|
|
217
|
-
|
|
252
|
+
li_new_rec_vec_ub = self.tik_instance.Tensor(FP32, (block_h, self.N0), name="li_new_rec_vec_ub",
|
|
253
|
+
scope=UB)
|
|
254
|
+
for i in range(block_h):
|
|
255
|
+
src_scalar = self.tik_instance.Scalar(init_value=li_new_rec_ub[i], dtype=FP32)
|
|
256
|
+
self.tik_instance.h_duplicate(li_new_rec_vec_ub[i, :], src_scalar)
|
|
257
|
+
li_new_rec_vec_ub = li_new_rec_vec_ub.reshape((1, block_h, self.N0))
|
|
258
|
+
with self.tik_instance.for_range(0, n1) as idx:
|
|
259
|
+
self.tik_instance.h_mul(Oi_ub[idx, :, :],
|
|
260
|
+
Oi_ub[idx, :, :],
|
|
261
|
+
li_new_rec_vec_ub)
|
|
218
262
|
self.tik_instance.h_add(Oi_ub, Oi_ub, Pij_Vj_matmul_res_ub)
|
|
219
|
-
self.
|
|
220
|
-
|
|
221
|
-
|
|
222
|
-
|
|
223
|
-
def update_o_gm(self, block_h, li_new_rec_ub, o_gm_offset, ub_data):
|
|
224
|
-
"""Load o from gm and update it, then write it back to gm"""
|
|
225
|
-
block_h_aligned = self.tik_ops_utils.up_align_to_K0(block_h)
|
|
226
|
-
half_block_h1 = self.tik_ops_utils.up_align_to_K0(block_h // 2)
|
|
227
|
-
half_block_h2 = block_h_aligned - half_block_h1
|
|
228
|
-
# double buffer: vec and mte3 parallel
|
|
229
|
-
with self.tik_instance.for_range(0, 2, thread_num=2) as t_idx:
|
|
230
|
-
with self.tik_instance.if_scope(t_idx == 0):
|
|
231
|
-
row_begin = 0
|
|
232
|
-
row_end = half_block_h1
|
|
233
|
-
broadcast_li_new_rec_ub = self.tik_ops_utils.broadcast(
|
|
234
|
-
li_new_rec_ub[row_begin:row_end], (half_block_h1, self.d)
|
|
235
|
-
)
|
|
236
|
-
self.tik_instance.h_mul(ub_data[row_begin:row_end, :],
|
|
237
|
-
ub_data[row_begin:row_end, :],
|
|
238
|
-
broadcast_li_new_rec_ub)
|
|
239
|
-
if half_block_h1 <= block_h:
|
|
240
|
-
self.cont_data_mv_1_bust(dst=self.O_gm[o_gm_offset],
|
|
241
|
-
src=ub_data[row_begin:row_end, :],
|
|
242
|
-
burst=half_block_h1 * self.d // 16)
|
|
243
|
-
else:
|
|
244
|
-
self.cont_data_mv_1_bust(dst=self.O_gm[o_gm_offset],
|
|
245
|
-
src=ub_data[row_begin:row_end, :],
|
|
246
|
-
burst=block_h * self.d // 16)
|
|
247
|
-
with self.tik_instance.else_scope():
|
|
248
|
-
if half_block_h2 > 0:
|
|
249
|
-
row_begin = half_block_h1
|
|
250
|
-
row_end = row_begin + half_block_h2
|
|
251
|
-
broadcast_li_new_rec_ub = self.tik_ops_utils.broadcast(
|
|
252
|
-
li_new_rec_ub[row_begin:row_end], (half_block_h2, self.d)
|
|
253
|
-
)
|
|
254
|
-
self.tik_instance.h_mul(ub_data[row_begin:row_end, :],
|
|
255
|
-
ub_data[row_begin:row_end, :],
|
|
256
|
-
broadcast_li_new_rec_ub)
|
|
257
|
-
cur_o_gm_offset = o_gm_offset + half_block_h1 * self.d
|
|
258
|
-
self.cont_data_mv_1_bust(dst=self.O_gm[cur_o_gm_offset],
|
|
259
|
-
src=ub_data[row_begin:row_end, :],
|
|
260
|
-
burst=(block_h - half_block_h1) * self.d // 16)
|
|
261
|
-
|
|
262
|
-
def update_Oi(
|
|
263
|
-
self,
|
|
264
|
-
Oi_ub,
|
|
265
|
-
exp_mi_sub_mi_new,
|
|
266
|
-
Pij_Vj_ub,
|
|
267
|
-
exp_mij_sub_mi_new,
|
|
268
|
-
li_new_rec_ub,
|
|
269
|
-
li_ub,
|
|
270
|
-
o_gm_offset,
|
|
271
|
-
block_h
|
|
272
|
-
):
|
|
273
|
-
"""Refer to Algorithm 2 line15"""
|
|
274
|
-
block_h_aligned = self.tik_ops_utils.up_align_to_K0(block_h)
|
|
275
|
-
diag_exp_Oi_ub = self.diag_exp_Oi(li_ub, exp_mi_sub_mi_new, Oi_ub, block_h_aligned)
|
|
276
|
-
# exp_mij_sub_mi_new * Pij_Vj_ub
|
|
277
|
-
exp_Pij_Vj_ub = self.exp_Pij_Vj(exp_mij_sub_mi_new, Pij_Vj_ub, block_h_aligned)
|
|
278
|
-
|
|
279
|
-
# (diag(li)_exp_Oi + exp_P_V)
|
|
280
|
-
sum_diag_exp_Oi_and_exp_Pij_Vj_ub = diag_exp_Oi_ub
|
|
281
|
-
self.tik_instance.h_add(
|
|
282
|
-
sum_diag_exp_Oi_and_exp_Pij_Vj_ub,
|
|
283
|
-
sum_diag_exp_Oi_and_exp_Pij_Vj_ub,
|
|
284
|
-
exp_Pij_Vj_ub
|
|
285
|
-
)
|
|
286
|
-
self.update_o_gm(block_h, li_new_rec_ub, o_gm_offset, sum_diag_exp_Oi_and_exp_Pij_Vj_ub)
|
|
287
|
-
|
|
288
|
-
def diag_exp_Oi(self, li_ub, exp_mi_sub_mi_new, Oi_ub, block_h_aligned):
|
|
289
|
-
"""Refer to Algorithm 2 line15
|
|
290
|
-
li * exp(mi - mi_new) * Oi
|
|
291
|
-
"""
|
|
292
|
-
self.tik_instance.h_mul(exp_mi_sub_mi_new, exp_mi_sub_mi_new, li_ub)
|
|
293
|
-
diag_exp = exp_mi_sub_mi_new
|
|
294
|
-
with self.tik_instance.new_stmt_scope(disable_sync=False):
|
|
295
|
-
broadcast_diag_exp = self.tik_ops_utils.broadcast(diag_exp, (block_h_aligned, self.d))
|
|
296
|
-
self.tik_instance.h_mul(Oi_ub, Oi_ub, broadcast_diag_exp)
|
|
297
|
-
return Oi_ub
|
|
263
|
+
self.tik_instance.data_move(dst=self.O_gm_workspace[o_gm_offset], src=Oi_ub, sid=0,
|
|
264
|
+
nburst=self.N1, burst=block_h * self.N0 // 8,
|
|
265
|
+
src_stride=0, dst_stride=(self.Nq - block_h_aligned) * self.N0 // 8)
|
|
298
266
|
|
|
299
267
|
def exp_Pij_Vj(self, exp_mij_sub_mi_new, Pij_Vj_ub, block_h_aligned):
|
|
300
268
|
"""Refer to Algorithm 2 line15
|
|
301
269
|
exp(mij - mi_new) * Pij * Vj
|
|
302
270
|
"""
|
|
303
271
|
with self.tik_instance.new_stmt_scope(disable_sync=False):
|
|
304
|
-
broadcast_exp_mij_sub_mi_new = self.tik_ops_utils.broadcast(exp_mij_sub_mi_new,
|
|
305
|
-
(block_h_aligned, self.d))
|
|
272
|
+
broadcast_exp_mij_sub_mi_new = self.tik_ops_utils.broadcast(exp_mij_sub_mi_new, (block_h_aligned, self.d))
|
|
306
273
|
self.tik_instance.h_mul(Pij_Vj_ub, Pij_Vj_ub, broadcast_exp_mij_sub_mi_new)
|
|
307
274
|
return Pij_Vj_ub
|
|
308
275
|
|
|
309
276
|
def update_o_m_l(self,
|
|
310
|
-
|
|
277
|
+
Pij_l1_K1MK0_ed,
|
|
311
278
|
Vj_l1_K1NK0_ed,
|
|
312
279
|
mij_ub,
|
|
313
280
|
lij_ub,
|
|
@@ -318,76 +285,89 @@ class FlashAttentionFwd(FlashAttention):
|
|
|
318
285
|
q_blk_idx,
|
|
319
286
|
block_h):
|
|
320
287
|
"""Refer to Algorithm 2 line13 and line15 in FlashAttention"""
|
|
321
|
-
vec_gm_offset = (batch_start
|
|
288
|
+
vec_gm_offset = self.get_l_m_gm_offset(batch_start, batch_idx, self.Nq, self.Br, q_blk_idx)
|
|
322
289
|
o_gm_offset = self.get_gm_offset(
|
|
323
290
|
batch_start, batch_idx, self.Nq, self.d, self.Br, q_blk_idx
|
|
324
291
|
)
|
|
325
292
|
block_h_aligned = self.tik_ops_utils.up_align_to_K0(block_h)
|
|
326
|
-
|
|
327
|
-
Pij_l1_K1MK0_ed = self.tik_instance.Tensor(
|
|
328
|
-
FP16, (kv_blk_h_aligned // 16, block_h_aligned, 16), name="Pij_l1", scope=L1
|
|
329
|
-
)
|
|
330
|
-
Pij_l1_K1MK0_ed = self.tik_ops_utils.MK_TO_K1MK0(Pij_ub, workspace_tensor=Pij_l1_K1MK0_ed)
|
|
293
|
+
|
|
331
294
|
Pij_Vj_matmul_res_ub = self.tik_ops_utils.matmul_compute(Pij_l1_K1MK0_ed, Vj_l1_K1NK0_ed, block_h,
|
|
332
295
|
kv_blk_height, self.actual_d,
|
|
333
|
-
N1MN0_to_MN=
|
|
334
|
-
|
|
335
|
-
|
|
296
|
+
N1MN0_to_MN=False) # Pij*Vj
|
|
297
|
+
n1, m, n0 = Pij_Vj_matmul_res_ub.shape
|
|
298
|
+
with self.tik_instance.if_scope(tik.any(kv_blk_idx == 0, kv_blk_idx + self.prev_block_num == q_blk_idx)):
|
|
336
299
|
self.tik_ops_utils.move_vector_from_ub_to_gm(self.l_gm, lij_ub, vec_gm_offset, block_h)
|
|
337
300
|
self.tik_ops_utils.move_vector_from_ub_to_gm(self.m_gm, mij_ub, vec_gm_offset, block_h)
|
|
338
301
|
li_new_rec_ub = self.tik_ops_utils.calc_vec_rec(lij_ub, block_h)
|
|
339
|
-
self.
|
|
302
|
+
broadcast_li_new_rec_ub = self.tik_ops_utils.broadcast(li_new_rec_ub, (m, n0))
|
|
303
|
+
broadcast_li_new_rec_ub = broadcast_li_new_rec_ub.reshape((1, m, n0))
|
|
304
|
+
with self.tik_instance.for_range(0, n1) as idx:
|
|
305
|
+
self.tik_instance.h_mul(Pij_Vj_matmul_res_ub[idx, :, :],
|
|
306
|
+
Pij_Vj_matmul_res_ub[idx, :, :],
|
|
307
|
+
broadcast_li_new_rec_ub)
|
|
308
|
+
self.tik_instance.data_move(dst=self.O_gm[o_gm_offset], src=Pij_Vj_matmul_res_ub, sid=0,
|
|
309
|
+
nburst=self.N1, burst=block_h * self.N0 // 16,
|
|
310
|
+
src_stride=0, dst_stride=(self.Nq - block_h_aligned) * self.N0 // 16)
|
|
311
|
+
|
|
340
312
|
with self.tik_instance.else_scope():
|
|
341
313
|
mi_ub = self.tik_instance.Tensor(FP16, (block_h_aligned,), name="mi_old_ub", scope=UB)
|
|
342
314
|
li_ub = self.tik_instance.Tensor(FP16, (block_h_aligned,), name="li_ub", scope=UB)
|
|
343
315
|
self.tik_ops_utils.move_vector_from_gm_to_ub(mi_ub, self.m_gm, vec_gm_offset, block_h)
|
|
344
316
|
self.tik_ops_utils.move_vector_from_gm_to_ub(li_ub, self.l_gm, vec_gm_offset, block_h)
|
|
345
|
-
|
|
346
|
-
# 更新 l, m
|
|
347
317
|
mi_new_ub, li_new_ub = self.update_m_l(mi_ub, mij_ub, li_ub, lij_ub, block_h)
|
|
348
318
|
self.tik_ops_utils.move_vector_from_ub_to_gm(self.l_gm, li_new_ub, vec_gm_offset, block_h)
|
|
349
319
|
self.tik_ops_utils.move_vector_from_ub_to_gm(self.m_gm, mi_new_ub, vec_gm_offset, block_h)
|
|
350
|
-
|
|
351
320
|
exp_mi_sub_mi_new = mi_ub
|
|
352
321
|
exp_mij_sub_mi_new = mij_ub
|
|
353
|
-
# 载入Oi 到 UB
|
|
354
|
-
Oi_ub = self.tik_instance.Tensor(FP16, (block_h_aligned, self.d), scope=UB, name="Oi_ub")
|
|
355
|
-
self.cont_data_mv_1_bust(dst=Oi_ub, src=self.O_gm[o_gm_offset],
|
|
356
|
-
burst=block_h * self.d // 16)
|
|
357
322
|
|
|
358
323
|
li_new_rec_ub = self.tik_ops_utils.calc_vec_rec(li_new_ub, block_h)
|
|
359
|
-
|
|
360
|
-
self.
|
|
361
|
-
|
|
362
|
-
|
|
363
|
-
|
|
364
|
-
|
|
365
|
-
|
|
366
|
-
|
|
367
|
-
|
|
368
|
-
|
|
369
|
-
)
|
|
324
|
+
self.tik_instance.h_mul(li_ub, li_ub, exp_mi_sub_mi_new)
|
|
325
|
+
self.tik_instance.h_mul(li_ub, li_ub, li_new_rec_ub)
|
|
326
|
+
scale1 = li_ub
|
|
327
|
+
self.tik_instance.h_mul(exp_mij_sub_mi_new, exp_mij_sub_mi_new, li_new_rec_ub)
|
|
328
|
+
scale2 = exp_mij_sub_mi_new
|
|
329
|
+
Oi_ub = self.tik_instance.Tensor(FP16, (n1, m, n0), name="Oi_ub", scope=UB)
|
|
330
|
+
self.tik_instance.data_move(dst=Oi_ub, src=self.O_gm[o_gm_offset],
|
|
331
|
+
sid=0, nburst=self.N1, burst=m * self.N0 // 16,
|
|
332
|
+
src_stride=(self.Nq - m) * self.N0 // 16, dst_stride=0)
|
|
333
|
+
broadcast_scale1 = self.tik_ops_utils.broadcast(scale1, (m, n0))
|
|
334
|
+
broadcast_scale1 = broadcast_scale1.reshape((1, m, n0))
|
|
335
|
+
with self.tik_instance.for_range(0, n1) as idx:
|
|
336
|
+
self.tik_instance.h_mul(Oi_ub[idx, :, :], Oi_ub[idx, :, :], broadcast_scale1)
|
|
337
|
+
broadcast_scale2 = self.tik_ops_utils.broadcast(scale2, (m, n0))
|
|
338
|
+
broadcast_scale2 = broadcast_scale2.reshape((1, m, n0))
|
|
339
|
+
with self.tik_instance.for_range(0, n1) as idx:
|
|
340
|
+
self.tik_instance.h_mul(Pij_Vj_matmul_res_ub[idx, :, :],
|
|
341
|
+
Pij_Vj_matmul_res_ub[idx, :, :],
|
|
342
|
+
broadcast_scale2)
|
|
343
|
+
self.tik_instance.h_add(Oi_ub, Oi_ub, Pij_Vj_matmul_res_ub)
|
|
344
|
+
self.tik_instance.data_move(dst=self.O_gm[o_gm_offset], src=Oi_ub, sid=0,
|
|
345
|
+
nburst=self.N1, burst=block_h * self.N0 // 16,
|
|
346
|
+
src_stride=0, dst_stride=(self.Nq - block_h_aligned) * self.N0 // 16)
|
|
370
347
|
|
|
371
348
|
def compute_in_each_kv_block(self, batch_start, batch_idx, kv_blk_idx, kv_blk_height,
|
|
372
349
|
core_idx_to_tr_info, core_idx):
|
|
373
350
|
"""The forward computation in each outer loop"""
|
|
374
351
|
kv_blk_height_aligned = self.tik_ops_utils.up_align_to_K0(kv_blk_height)
|
|
375
|
-
|
|
376
|
-
|
|
377
|
-
|
|
378
|
-
|
|
379
|
-
|
|
380
|
-
|
|
381
|
-
|
|
382
|
-
burst=kv_blk_height * self.d // 16)
|
|
383
|
-
KjT_l1_K1MK0_ed = self.tik_ops_utils.MK_TO_K1MK0(Kj_ub, workspace_tensor=Kj_l1)
|
|
352
|
+
kv_gm_offset = self.get_gm_offset(batch_start, batch_idx, self.N, self.d, self.Bc, kv_blk_idx)
|
|
353
|
+
# load Kj (kv_blk_idx_th block of K_gm)
|
|
354
|
+
KjT_l1_K1MK0_ed = self.tik_instance.Tensor(FP16, (self.d // self.N0, kv_blk_height_aligned, self.N0),
|
|
355
|
+
name="KjT_l1_K1MK0_ed", scope=L1)
|
|
356
|
+
self.tik_instance.data_move(dst=KjT_l1_K1MK0_ed, src=self.K_gm[kv_gm_offset],
|
|
357
|
+
sid=0, nburst=self.N1, burst=kv_blk_height_aligned * self.N0 // 16,
|
|
358
|
+
src_stride=(self.N - kv_blk_height_aligned) * self.N0 // 16, dst_stride=0)
|
|
384
359
|
|
|
385
360
|
# load Vj (kv_blk_idx_th block of V_gm), then reorder for Pij*Vj
|
|
386
361
|
Vj_l1 = self.tik_instance.Tensor(FP16, (kv_blk_height_aligned, self.d), name="Vj_l1", scope=L1)
|
|
387
362
|
with self.tik_instance.new_stmt_scope(disable_sync=False):
|
|
388
|
-
Vj_ub = self.tik_instance.Tensor(FP16, (
|
|
389
|
-
|
|
390
|
-
|
|
363
|
+
Vj_ub = self.tik_instance.Tensor(FP16, (self.d // self.N0, kv_blk_height_aligned, self.N0),
|
|
364
|
+
name="Vj_ub", scope=UB)
|
|
365
|
+
self.tik_instance.data_move(dst=Vj_ub, src=self.V_gm[kv_gm_offset],
|
|
366
|
+
sid=0, nburst=self.N1, burst=kv_blk_height_aligned * self.N0 // 16,
|
|
367
|
+
src_stride=(self.N - kv_blk_height_aligned) * self.N0 // 16, dst_stride=0)
|
|
368
|
+
# (N1, K, N0) -> (K, N)
|
|
369
|
+
Vj_ub = self.tik_ops_utils.N1MN0_TO_MN(Vj_ub)
|
|
370
|
+
# (K, N) -> (K1, N, K0)
|
|
391
371
|
Vj_l1_K1NK0_ed = self.tik_ops_utils.KN_TO_K1NK0(Vj_ub, workspace_tensor=Vj_l1)
|
|
392
372
|
|
|
393
373
|
tr_start_s = self.tik_instance.Scalar("int32", name="tr_start_s")
|
|
@@ -413,46 +393,51 @@ class FlashAttentionFwd(FlashAttention):
|
|
|
413
393
|
kv_blk_h_aligned = self.tik_ops_utils.up_align_to_K0(kv_blk_height)
|
|
414
394
|
q_blk_h_aligned = self.tik_ops_utils.up_align_to_K0(q_blk_height)
|
|
415
395
|
# load Qi (q_blk_idx_th block of Q_gm), then reorder it fo Qi*KjT
|
|
416
|
-
Qi_l1 = self.tik_instance.Tensor(FP16, (q_blk_h_aligned, self.d), scope=L1, name="Qi_l1")
|
|
417
396
|
q_gm_offset = self.get_gm_offset(batch_start, batch_idx, self.Nq, self.d, self.Br, q_blk_idx)
|
|
418
|
-
|
|
419
|
-
|
|
420
|
-
|
|
421
|
-
|
|
422
|
-
|
|
397
|
+
Qi_l1_K1MK0_ed = self.tik_instance.Tensor(FP16, (self.d // self.N0, q_blk_h_aligned, self.N0),
|
|
398
|
+
scope=L1, name="Qi_l1_K1MK0_ed")
|
|
399
|
+
self.tik_instance.data_move(dst=Qi_l1_K1MK0_ed, src=self.Q_gm[q_gm_offset],
|
|
400
|
+
sid=0, nburst=self.N1, burst=q_blk_h_aligned * self.N0 // 16,
|
|
401
|
+
src_stride=(self.Nq - q_blk_h_aligned) * self.N0 // 16, dst_stride=0)
|
|
423
402
|
|
|
424
403
|
lij_ub = self.tik_instance.Tensor(self.precision_type, (q_blk_h_aligned,), scope=UB, name="lij_ub")
|
|
425
404
|
mij_ub = self.tik_instance.Tensor(FP16, (q_blk_h_aligned,), scope=UB, name="mij_ub")
|
|
426
|
-
|
|
427
|
-
|
|
405
|
+
|
|
406
|
+
Sij_ub_N1MN0 = self.tik_ops_utils.matmul_compute(Qi_l1_K1MK0_ed, KjT_l1_K1MK0_ed, m=q_blk_height,
|
|
428
407
|
k=self.actual_d, n=kv_blk_height,
|
|
429
|
-
N1MN0_to_MN=
|
|
408
|
+
N1MN0_to_MN=False) # Qi*KjT
|
|
430
409
|
if self.has_alibi_mask:
|
|
431
410
|
alibi_mask_gm_offset = self.get_alibi_gm_offset(batch_start, batch_idx, self.N, self.Bc, kv_blk_idx)
|
|
432
|
-
self.do_alibi_mask(
|
|
411
|
+
self.do_alibi_mask(Sij_ub_N1MN0, alibi_mask_gm_offset, q_blk_h_aligned, kv_blk_h_aligned)
|
|
433
412
|
|
|
434
413
|
# att_mask
|
|
435
414
|
if self.has_attn_mask:
|
|
436
415
|
attn_mask_gm_offset = self.get_attn_mask_gm_offset(batch_start, batch_idx, self.Nq, self.N,
|
|
437
416
|
self.Br, q_blk_idx, self.Bc, kv_blk_idx)
|
|
438
|
-
self.do_att_mask(
|
|
417
|
+
self.do_att_mask(Sij_ub_N1MN0, attn_mask_gm_offset, q_blk_height, kv_blk_height,
|
|
439
418
|
q_blk_h_aligned, kv_blk_h_aligned)
|
|
440
419
|
|
|
441
|
-
|
|
442
|
-
|
|
420
|
+
Pij_N1MN0, mij_ub, lij_ub = self.softmax_compute(
|
|
421
|
+
Sij_ub_N1MN0, mij_ub, lij_ub, q_blk_height, kv_blk_height
|
|
443
422
|
) # self.high_precision=True, Pij_ub return type fp32
|
|
444
423
|
# dropout_mask
|
|
445
424
|
if self.has_drop_mask:
|
|
446
425
|
dropout_mask_gm_offset = self.get_drop_mask_gm_offset(batch_start, batch_idx, self.Nq,
|
|
447
|
-
self.N, self.Br, q_blk_idx, self.Bc,
|
|
448
|
-
|
|
449
|
-
self.do_dropout_mask(Pij_ub, dropout_mask_gm_offset, kv_blk_h_aligned, kv_blk_height,
|
|
426
|
+
self.N, self.Br, q_blk_idx, self.Bc, kv_blk_idx)
|
|
427
|
+
self.do_dropout_mask(Pij_N1MN0, dropout_mask_gm_offset, kv_blk_h_aligned, kv_blk_height,
|
|
450
428
|
q_blk_h_aligned, q_blk_height, precision_type=self.precision_type)
|
|
429
|
+
if not self.high_precision:
|
|
430
|
+
Pij_l1_K1MK0_ed = self.tik_instance.Tensor(FP16,
|
|
431
|
+
(kv_blk_h_aligned // self.N0, q_blk_h_aligned, self.N0),
|
|
432
|
+
name="Pij_l1_K1MK0_ed", scope=L1)
|
|
433
|
+
self.cont_data_mv_1_bust(dst=Pij_l1_K1MK0_ed, src=Pij_N1MN0,
|
|
434
|
+
burst=kv_blk_h_aligned * q_blk_h_aligned // 16)
|
|
435
|
+
Pij_N1MN0 = Pij_l1_K1MK0_ed
|
|
451
436
|
if self.high_precision:
|
|
452
437
|
self.update_o_m_l_fp32(
|
|
453
|
-
|
|
438
|
+
Pij_N1MN0,
|
|
454
439
|
Vj_l1_K1NK0_ed,
|
|
455
|
-
|
|
440
|
+
Sij_ub_N1MN0,
|
|
456
441
|
mij_ub,
|
|
457
442
|
lij_ub,
|
|
458
443
|
batch_start,
|
|
@@ -464,7 +449,7 @@ class FlashAttentionFwd(FlashAttention):
|
|
|
464
449
|
)
|
|
465
450
|
else:
|
|
466
451
|
self.update_o_m_l(
|
|
467
|
-
|
|
452
|
+
Pij_N1MN0,
|
|
468
453
|
Vj_l1_K1NK0_ed,
|
|
469
454
|
mij_ub,
|
|
470
455
|
lij_ub,
|
|
@@ -523,7 +508,7 @@ class FlashAttentionFwd(FlashAttention):
|
|
|
523
508
|
"""collect all input gm tensors into input_gm_list,
|
|
524
509
|
the input list should keep order with the para order in Primitive and init
|
|
525
510
|
"""
|
|
526
|
-
input_gm_list = [self.Q_gm, self.K_gm, self.V_gm
|
|
511
|
+
input_gm_list = [self.Q_gm, self.K_gm, self.V_gm]
|
|
527
512
|
if self.has_attn_mask:
|
|
528
513
|
input_gm_list.append(self.att_mask_gm)
|
|
529
514
|
if self.has_drop_mask:
|
|
@@ -537,10 +522,11 @@ class FlashAttentionFwd(FlashAttention):
|
|
|
537
522
|
"""collect all output gm tensors into output_gm_list,
|
|
538
523
|
the output list should keep order with the para order in Primitive and init
|
|
539
524
|
"""
|
|
540
|
-
|
|
525
|
+
output_gm_list = [self.O_gm, self.l_gm, self.m_gm]
|
|
526
|
+
return output_gm_list
|
|
541
527
|
|
|
542
528
|
|
|
543
|
-
def flash_attention(query, key, value,
|
|
529
|
+
def flash_attention(query, key, value, attn_mask, dropout_mask, alibi_mask, output, rowsum, rowmax,
|
|
544
530
|
prev_block_num=65536, next_block_num=65536, high_precision=False, tiling_stgy_name='sparse',
|
|
545
531
|
kernel_name="flash_attention", disable_debug=True):
|
|
546
532
|
"""
|
|
@@ -551,7 +537,6 @@ def flash_attention(query, key, value, dim_mask, attn_mask, dropout_mask, alibi_
|
|
|
551
537
|
query : dict. shape and dtype of input, only support float16
|
|
552
538
|
key : dict. shape and dtype of input, only support float16
|
|
553
539
|
value: dict. shape and dtype of input, only support float16
|
|
554
|
-
dim_mask: dict. shape and dtype of input, only support int8
|
|
555
540
|
attn_mask: dict. shape and dtype of input, only support float16
|
|
556
541
|
dropout_mask: dict. shape and dtype of input, only support float16
|
|
557
542
|
dropout_mask: dict. shape and dtype of input, only support float16
|
|
@@ -569,7 +554,7 @@ def flash_attention(query, key, value, dim_mask, attn_mask, dropout_mask, alibi_
|
|
|
569
554
|
-------
|
|
570
555
|
tik_instance
|
|
571
556
|
"""
|
|
572
|
-
fa = FlashAttentionFwd(query=query, key=key, value=value,
|
|
557
|
+
fa = FlashAttentionFwd(query=query, key=key, value=value, attn_mask=attn_mask,
|
|
573
558
|
dropout_mask=dropout_mask, alibi_mask=alibi_mask, kernel_name=kernel_name,
|
|
574
559
|
tiling_stgy=TilingStrategy.from_strategy_name(tiling_stgy_name),
|
|
575
560
|
prev_block_num=prev_block_num, next_block_num=next_block_num,
|