mindspore 2.1.0__cp37-cp37m-manylinux1_x86_64.whl → 2.2.11__cp37-cp37m-manylinux1_x86_64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- mindspore/.commit_id +1 -1
- mindspore/__init__.py +4 -1
- mindspore/_akg/akg/build_module.py +5 -6
- mindspore/_akg/akg/composite/build_module.py +139 -22
- mindspore/_akg/akg/composite/split_stitch.py +10 -11
- mindspore/_akg/akg/ms/info_version_adapt.py +67 -1
- mindspore/_akg/akg/tvm/api.py +4 -3
- mindspore/_akg/akg/tvm/autotvm/__init__.py +1 -2
- mindspore/_akg/akg/tvm/autotvm/graph_tuner/base_graph_tuner.py +1 -5
- mindspore/_akg/akg/tvm/autotvm/measure/__init__.py +1 -1
- mindspore/_akg/akg/tvm/autotvm/measure/measure.py +1 -10
- mindspore/_akg/akg/tvm/autotvm/measure/measure_methods.py +1 -372
- mindspore/_akg/akg/tvm/build_module.py +16 -1
- mindspore/_akg/akg/tvm/contrib/graph_runtime.py +0 -53
- mindspore/_akg/akg/tvm/hybrid/parser.py +7 -6
- mindspore/_akg/akg/tvm/ir_builder.py +1 -1
- mindspore/_akg/akg/tvm/module.py +1 -2
- mindspore/_akg/akg/tvm/stmt.py +2 -2
- mindspore/_akg/akg/utils/ascend_profilier/cann_file_parser.py +76 -0
- mindspore/_akg/akg/utils/ascend_profilier/file_manager.py +56 -0
- mindspore/_akg/akg/utils/ascend_profilier/op_summary_bean.py +23 -0
- mindspore/_akg/akg/utils/ascend_profilier/op_summary_headers.py +8 -0
- mindspore/_akg/akg/utils/ascend_profilier/op_summary_parser.py +42 -0
- mindspore/_akg/akg/utils/ascend_profilier/path_manager.py +65 -0
- mindspore/_akg/akg/utils/composite_op_helper.py +16 -12
- mindspore/_akg/akg/utils/dump_ascend_meta.py +22 -3
- mindspore/_akg/akg/utils/kernel_exec.py +98 -274
- mindspore/_akg/akg/utils/result_analysis.py +4 -24
- mindspore/_akg/akg/utils/tbe_codegen_utils.py +219 -0
- mindspore/_akg/akg/utils/util.py +56 -1
- mindspore/_c_dataengine.cpython-37m-x86_64-linux-gnu.so +0 -0
- mindspore/_c_expression.cpython-37m-x86_64-linux-gnu.so +0 -0
- mindspore/_c_mindrecord.cpython-37m-x86_64-linux-gnu.so +0 -0
- mindspore/_check_jit_forbidden_api.py +3 -1
- mindspore/_checkparam.py +23 -29
- mindspore/_extends/graph_kernel/__init__.py +0 -1
- mindspore/_extends/graph_kernel/model/graph_split.py +84 -76
- mindspore/_extends/graph_kernel/model/model_builder.py +9 -50
- mindspore/_extends/graph_kernel/splitter.py +4 -11
- mindspore/_extends/parallel_compile/akg_compiler/akg_process.py +122 -15
- mindspore/_extends/parallel_compile/akg_compiler/build_tbe_kernel.py +84 -67
- mindspore/_extends/parallel_compile/akg_compiler/tbe_topi.py +4 -2
- mindspore/_extends/parallel_compile/akg_compiler/util.py +10 -7
- mindspore/_extends/parallel_compile/tbe_compiler/tbe_adapter.py +2 -2
- mindspore/_extends/parallel_compile/tbe_compiler/tbe_helper.py +6 -5
- mindspore/_extends/parallel_compile/tbe_compiler/tbe_job.py +1 -1
- mindspore/_extends/parallel_compile/tbe_compiler/tbe_job_manager.py +1 -1
- mindspore/_extends/parse/__init__.py +13 -15
- mindspore/_extends/parse/namespace.py +7 -33
- mindspore/_extends/parse/parser.py +67 -72
- mindspore/_extends/parse/resources.py +1 -1
- mindspore/_extends/parse/standard_method.py +86 -106
- mindspore/_extends/parse/trope.py +1 -1
- mindspore/_extends/remote/kernel_build_server.py +25 -7
- mindspore/_extends/remote/kernel_build_server_akg_v2.py +55 -0
- mindspore/_install_custom.py +43 -0
- mindspore/_mindspore_offline_debug.cpython-37m-x86_64-linux-gnu.so +0 -0
- mindspore/amp.py +47 -11
- mindspore/bin/cache_admin +0 -0
- mindspore/bin/cache_server +0 -0
- mindspore/boost/boost.py +1 -8
- mindspore/boost/boost_cell_wrapper.py +3 -2
- mindspore/boost/grad_accumulation.py +1 -1
- mindspore/boost/group_loss_scale_manager.py +8 -7
- mindspore/common/__init__.py +5 -3
- mindspore/common/_jit_fallback_utils.py +6 -0
- mindspore/common/_register_for_adapter.py +2 -0
- mindspore/common/_register_for_tensor.py +2 -2
- mindspore/common/_stub_tensor.py +13 -0
- mindspore/common/_utils.py +29 -0
- mindspore/common/api.py +174 -259
- mindspore/common/auto_dynamic_shape.py +494 -0
- mindspore/common/dtype.py +18 -11
- mindspore/common/dump.py +6 -4
- mindspore/common/initializer.py +14 -14
- mindspore/common/jit_config.py +33 -15
- mindspore/common/lazy_inline.py +126 -7
- mindspore/common/mindir_util.py +101 -0
- mindspore/common/parameter.py +51 -41
- mindspore/common/seed.py +4 -4
- mindspore/common/sparse_tensor.py +13 -14
- mindspore/common/tensor.py +243 -165
- mindspore/communication/__init__.py +7 -4
- mindspore/communication/_comm_helper.py +83 -4
- mindspore/communication/management.py +152 -84
- mindspore/config/op_info.config +14 -3
- mindspore/config/super_bar_config.json +4 -2
- mindspore/context.py +152 -61
- mindspore/dataset/__init__.py +5 -5
- mindspore/dataset/audio/__init__.py +2 -2
- mindspore/dataset/audio/transforms.py +52 -52
- mindspore/dataset/callback/ds_callback.py +16 -2
- mindspore/dataset/core/config.py +68 -51
- mindspore/dataset/engine/cache_client.py +33 -7
- mindspore/dataset/engine/datasets.py +250 -112
- mindspore/dataset/engine/datasets_audio.py +43 -211
- mindspore/dataset/engine/datasets_standard_format.py +16 -35
- mindspore/dataset/engine/datasets_text.py +43 -67
- mindspore/dataset/engine/datasets_user_defined.py +86 -100
- mindspore/dataset/engine/datasets_vision.py +219 -1029
- mindspore/dataset/engine/iterators.py +11 -4
- mindspore/dataset/engine/obs/obs_mindrecord_dataset.py +4 -0
- mindspore/dataset/engine/obs/util.py +3 -0
- mindspore/dataset/engine/samplers.py +1 -1
- mindspore/dataset/engine/validators.py +19 -5
- mindspore/dataset/text/__init__.py +3 -3
- mindspore/dataset/text/transforms.py +101 -127
- mindspore/dataset/text/utils.py +205 -138
- mindspore/dataset/transforms/__init__.py +1 -1
- mindspore/dataset/transforms/py_transforms_util.py +40 -12
- mindspore/dataset/transforms/transforms.py +95 -40
- mindspore/dataset/utils/browse_dataset.py +8 -2
- mindspore/dataset/utils/line_reader.py +17 -19
- mindspore/dataset/vision/__init__.py +3 -3
- mindspore/dataset/vision/c_transforms.py +6 -3
- mindspore/dataset/vision/transforms.py +409 -287
- mindspore/dataset/vision/utils.py +13 -14
- mindspore/dataset/vision/validators.py +11 -1
- mindspore/experimental/map_parameter.py +14 -0
- mindspore/{nn/optim_ex → experimental/optim}/__init__.py +30 -29
- mindspore/{nn/optim_ex → experimental/optim}/adam.py +60 -67
- mindspore/{nn/optim_ex → experimental/optim}/adamw.py +181 -203
- mindspore/experimental/optim/lr_scheduler.py +1427 -0
- mindspore/{nn/optim_ex → experimental/optim}/optimizer.py +252 -259
- mindspore/{nn/optim_ex → experimental/optim}/sgd.py +147 -152
- mindspore/gen_ops.py +273 -0
- mindspore/include/OWNERS +0 -1
- mindspore/include/api/data_type.h +2 -1
- mindspore/include/api/graph.h +0 -15
- mindspore/include/api/kernel.h +2 -0
- mindspore/include/api/kernel_api.h +37 -12
- mindspore/include/api/model.h +17 -14
- mindspore/include/api/status.h +8 -3
- mindspore/include/api/types.h +37 -4
- mindspore/include/c_api/ms/abstract.h +67 -0
- mindspore/include/c_api/ms/attribute.h +197 -0
- mindspore/include/c_api/ms/base/handle_types.h +43 -0
- mindspore/include/c_api/ms/base/macros.h +32 -0
- mindspore/include/c_api/ms/base/status.h +33 -0
- mindspore/include/c_api/ms/base/types.h +282 -0
- mindspore/include/c_api/ms/context.h +102 -0
- mindspore/include/c_api/ms/graph.h +160 -0
- mindspore/include/c_api/ms/node.h +606 -0
- mindspore/include/c_api/ms/tensor.h +161 -0
- mindspore/include/c_api/ms/value.h +84 -0
- mindspore/include/dataset/constants.h +6 -5
- mindspore/include/dataset/execute.h +23 -13
- mindspore/include/dataset/text.h +26 -26
- mindspore/include/dataset/transforms.h +13 -13
- mindspore/include/dataset/vision.h +60 -60
- mindspore/include/dataset/vision_ascend.h +5 -6
- mindspore/include/dataset/vision_lite.h +17 -17
- mindspore/include/mindapi/base/type_id.h +1 -0
- mindspore/include/mindapi/base/types.h +1 -0
- mindspore/lib/libdnnl.so.2 +0 -0
- mindspore/lib/libjemalloc.so.2 +0 -0
- mindspore/lib/libmindspore.so +0 -0
- mindspore/lib/libmindspore_backend.so +0 -0
- mindspore/lib/libmindspore_common.so +0 -0
- mindspore/lib/libmindspore_core.so +0 -0
- mindspore/lib/libmindspore_glog.so.0 +0 -0
- mindspore/lib/libmindspore_gpr.so.15 +0 -0
- mindspore/lib/libmindspore_grpc++.so.1 +0 -0
- mindspore/lib/libmindspore_grpc.so.15 +0 -0
- mindspore/lib/libmindspore_shared_lib.so +0 -0
- mindspore/lib/libnnacl.so +0 -0
- mindspore/lib/libopencv_core.so.4.5 +0 -0
- mindspore/lib/libopencv_imgcodecs.so.4.5 +0 -0
- mindspore/lib/libopencv_imgproc.so.4.5 +0 -0
- mindspore/lib/libps_cache.so +0 -0
- mindspore/lib/plugin/ascend/custom_aicore_ops/op_impl/ai_core/tbe/config/ascend310/aic-ascend310-ops-info.json +123 -0
- mindspore/lib/plugin/ascend/custom_aicore_ops/op_impl/ai_core/tbe/config/ascend310p/aic-ascend310p-ops-info.json +123 -0
- mindspore/lib/plugin/ascend/custom_aicore_ops/op_impl/ai_core/tbe/config/ascend910/aic-ascend910-ops-info.json +158 -0
- mindspore/lib/plugin/ascend/custom_aicore_ops/op_impl/ai_core/tbe/config/ascend910b/aic-ascend910b-ops-info.json +37 -0
- mindspore/lib/plugin/ascend/custom_aicore_ops/op_impl/ai_core/tbe/custom_aicore_ops_impl/add_dsl.py +46 -0
- mindspore/lib/plugin/ascend/custom_aicore_ops/op_impl/ai_core/tbe/custom_aicore_ops_impl/add_tik.py +51 -0
- mindspore/lib/plugin/ascend/custom_aicore_ops/op_impl/ai_core/tbe/custom_aicore_ops_impl/kv_cache_mgr.py +241 -0
- mindspore/lib/plugin/ascend/custom_aicore_ops/op_impl/ai_core/tbe/custom_aicore_ops_impl/matmul_tik.py +212 -0
- mindspore/lib/plugin/ascend/custom_aicore_ops/op_impl/vector_core/tbe/custom_aicore_ops_impl/add_dsl.py +46 -0
- mindspore/lib/plugin/ascend/custom_aicore_ops/op_impl/vector_core/tbe/custom_aicore_ops_impl/add_tik.py +51 -0
- mindspore/lib/plugin/ascend/custom_aicore_ops/op_impl/vector_core/tbe/custom_aicore_ops_impl/kv_cache_mgr.py +241 -0
- mindspore/lib/plugin/ascend/custom_aicore_ops/op_impl/vector_core/tbe/custom_aicore_ops_impl/matmul_tik.py +212 -0
- mindspore/lib/plugin/ascend/custom_aicore_ops/op_proto/libop_proto.so +0 -0
- mindspore/lib/plugin/ascend/custom_aicpu_ops/op_impl/cpu/aicpu_kernel/impl/libcust_aicpu_kernels.so +0 -0
- mindspore/lib/plugin/ascend/custom_aicpu_ops/op_impl/cpu/aicpu_kernel/impl/libcust_cpu_kernels.so +0 -0
- mindspore/lib/plugin/ascend/custom_aicpu_ops/op_impl/cpu/config/cust_aicpu_kernel.json +8998 -0
- mindspore/lib/plugin/ascend/custom_aicpu_ops/op_proto/libcust_op_proto.so +0 -0
- mindspore/lib/plugin/ascend/libakg.so +0 -0
- mindspore/lib/plugin/ascend/libascend_collective.so +0 -0
- mindspore/lib/plugin/ascend/libdvpp_utils.so +0 -0
- mindspore/lib/plugin/ascend/libhccl_plugin.so +0 -0
- mindspore/lib/plugin/ascend/libmindspore_aicpu_kernels.so +0 -0
- mindspore/lib/plugin/ascend/libmindspore_cpu_kernels.so +0 -0
- mindspore/lib/plugin/cpu/libakg.so +0 -0
- mindspore/lib/plugin/gpu/libcuda_ops.so.10 +0 -0
- mindspore/lib/plugin/gpu/libcuda_ops.so.11 +0 -0
- mindspore/lib/plugin/gpu10.1/libakg.so +0 -0
- mindspore/lib/plugin/gpu10.1/libnccl.so.2 +0 -0
- mindspore/lib/plugin/gpu11.1/libakg.so +0 -0
- mindspore/lib/plugin/gpu11.1/libnccl.so.2 +0 -0
- mindspore/lib/plugin/gpu11.6/libakg.so +0 -0
- mindspore/lib/plugin/gpu11.6/libnccl.so.2 +0 -0
- mindspore/lib/plugin/libmindspore_ascend.so.1 +0 -0
- mindspore/lib/plugin/libmindspore_ascend.so.2 +0 -0
- mindspore/lib/plugin/libmindspore_gpu.so.10.1 +0 -0
- mindspore/lib/plugin/libmindspore_gpu.so.11.1 +0 -0
- mindspore/lib/plugin/libmindspore_gpu.so.11.6 +0 -0
- mindspore/mindrecord/tools/imagenet_to_mr.py +1 -1
- mindspore/mindrecord/tools/mnist_to_mr.py +2 -2
- mindspore/nn/__init__.py +0 -2
- mindspore/nn/cell.py +313 -74
- mindspore/nn/dynamic_lr.py +21 -21
- mindspore/nn/layer/activation.py +22 -30
- mindspore/nn/layer/basic.py +15 -13
- mindspore/nn/layer/channel_shuffle.py +1 -1
- mindspore/nn/layer/container.py +271 -9
- mindspore/nn/layer/conv.py +323 -204
- mindspore/nn/layer/dense.py +8 -5
- mindspore/nn/layer/embedding.py +33 -27
- mindspore/nn/layer/flash_attention.py +61 -95
- mindspore/nn/layer/image.py +8 -6
- mindspore/nn/layer/math.py +16 -25
- mindspore/nn/layer/normalization.py +107 -66
- mindspore/nn/layer/padding.py +1 -1
- mindspore/nn/layer/pooling.py +131 -109
- mindspore/nn/layer/rnn_cells.py +27 -22
- mindspore/nn/layer/rnns.py +13 -16
- mindspore/nn/layer/thor_layer.py +1 -1
- mindspore/nn/layer/transformer.py +221 -154
- mindspore/nn/learning_rate_schedule.py +9 -1
- mindspore/nn/loss/loss.py +235 -174
- mindspore/nn/optim/ada_grad.py +2 -1
- mindspore/nn/optim/adadelta.py +1 -0
- mindspore/nn/optim/adafactor.py +2 -1
- mindspore/nn/optim/adam.py +7 -4
- mindspore/nn/optim/adamax.py +3 -2
- mindspore/nn/optim/adasum.py +2 -2
- mindspore/nn/optim/asgd.py +2 -3
- mindspore/nn/optim/ftrl.py +6 -5
- mindspore/nn/optim/lamb.py +7 -4
- mindspore/nn/optim/lars.py +1 -1
- mindspore/nn/optim/lazyadam.py +5 -3
- mindspore/nn/optim/momentum.py +2 -1
- mindspore/nn/optim/optimizer.py +53 -4
- mindspore/nn/optim/proximal_ada_grad.py +3 -4
- mindspore/nn/optim/rmsprop.py +4 -3
- mindspore/nn/optim/rprop.py +23 -12
- mindspore/nn/optim/sgd.py +26 -11
- mindspore/nn/optim/thor.py +9 -7
- mindspore/nn/probability/bijector/bijector.py +5 -5
- mindspore/nn/probability/bijector/power_transform.py +27 -27
- mindspore/nn/probability/bijector/softplus.py +3 -3
- mindspore/nn/probability/distribution/_utils/custom_ops.py +3 -3
- mindspore/nn/probability/distribution/bernoulli.py +5 -5
- mindspore/nn/probability/distribution/beta.py +3 -3
- mindspore/nn/probability/distribution/categorical.py +7 -7
- mindspore/nn/probability/distribution/cauchy.py +0 -1
- mindspore/nn/probability/distribution/distribution.py +3 -3
- mindspore/nn/probability/distribution/gamma.py +3 -3
- mindspore/nn/probability/distribution/geometric.py +4 -4
- mindspore/nn/probability/distribution/gumbel.py +4 -4
- mindspore/nn/probability/distribution/log_normal.py +2 -2
- mindspore/nn/probability/distribution/logistic.py +2 -2
- mindspore/nn/probability/distribution/poisson.py +4 -4
- mindspore/nn/probability/distribution/transformed_distribution.py +3 -3
- mindspore/nn/probability/distribution/uniform.py +6 -6
- mindspore/nn/wrap/__init__.py +4 -2
- mindspore/nn/wrap/cell_wrapper.py +87 -34
- mindspore/nn/wrap/grad_reducer.py +8 -5
- mindspore/nn/wrap/loss_scale.py +105 -42
- mindspore/numpy/array_creations.py +1 -2
- mindspore/numpy/array_ops.py +3 -2
- mindspore/numpy/utils_const.py +5 -5
- mindspore/offline_debug/convert_async.py +2 -2
- mindspore/ops/_grad_experimental/__init__.py +0 -5
- mindspore/ops/_grad_experimental/grad_array_ops.py +2 -3
- mindspore/ops/_grad_experimental/grad_comm_ops.py +15 -2
- mindspore/ops/_grad_experimental/grad_debug_ops.py +0 -37
- mindspore/ops/_grad_experimental/grad_implementations.py +11 -1
- mindspore/ops/_grad_experimental/grad_inner_ops.py +2 -216
- mindspore/ops/_grad_experimental/grad_math_ops.py +19 -199
- mindspore/ops/_grad_experimental/grad_sparse.py +15 -0
- mindspore/ops/_grad_experimental/grad_sparse_ops.py +3 -3
- mindspore/ops/_op_impl/_custom_op/dsd_back_impl.py +1 -1
- mindspore/ops/_op_impl/aicpu/__init__.py +14 -2
- mindspore/ops/_op_impl/aicpu/add.py +3 -3
- mindspore/ops/_op_impl/aicpu/bias_add_grad.py +0 -1
- mindspore/ops/_op_impl/aicpu/count_nonzero.py +43 -0
- mindspore/ops/_op_impl/{_custom_op/flash_attention/constants.py → aicpu/eps.py} +18 -27
- mindspore/ops/_op_impl/aicpu/gamma.py +2 -2
- mindspore/ops/_op_impl/aicpu/linear_sum_assignment.py +21 -2
- mindspore/ops/_op_impl/aicpu/log_uniform_candidate_sampler.py +6 -3
- mindspore/ops/_op_impl/aicpu/lu_unpack_grad.py +0 -1
- mindspore/ops/_op_impl/aicpu/multinomial.py +3 -3
- mindspore/ops/_op_impl/aicpu/parameterized_truncated_normal.py +15 -7
- mindspore/ops/_op_impl/aicpu/random_categorical.py +39 -19
- mindspore/ops/_op_impl/aicpu/random_choice_with_mask.py +5 -2
- mindspore/ops/_op_impl/aicpu/random_poisson.py +103 -52
- mindspore/ops/_op_impl/aicpu/random_shuffle.py +17 -15
- mindspore/ops/_op_impl/aicpu/{sparseaddmm.py → sparse_addmm.py} +2 -2
- mindspore/ops/_op_impl/aicpu/{sparsesparsemaximum.py → sparse_sparse_maximum.py} +4 -4
- mindspore/ops/_op_impl/aicpu/standard_laplace.py +5 -5
- mindspore/ops/_op_impl/aicpu/standard_normal.py +5 -5
- mindspore/ops/_op_impl/aicpu/truncated_normal.py +9 -7
- mindspore/ops/_op_impl/aicpu/uniform.py +5 -3
- mindspore/ops/_op_impl/aicpu/uniform_candidate_sampler.py +8 -4
- mindspore/ops/_op_impl/aicpu/uniform_int.py +5 -5
- mindspore/ops/_op_impl/aicpu/uniform_real.py +4 -4
- mindspore/ops/_op_impl/tbe/__init__.py +4 -4
- mindspore/ops/_op_impl/tbe/inplace_index_add.py +7 -3
- mindspore/ops/_op_impl/tbe/trans_data_ds.py +2 -0
- mindspore/ops/_primitive_cache.py +1 -1
- mindspore/ops/_tracefunc.py +45 -13
- mindspore/ops/_utils/utils.py +6 -1
- mindspore/ops/_vmap/vmap_array_ops.py +3 -3
- mindspore/ops/_vmap/vmap_base.py +3 -3
- mindspore/ops/_vmap/vmap_convolution_ops.py +1 -1
- mindspore/ops/_vmap/vmap_grad_math_ops.py +6 -4
- mindspore/ops/_vmap/vmap_math_ops.py +5 -2
- mindspore/ops/_vmap/vmap_nn_ops.py +61 -7
- mindspore/ops/arg_dtype_cast.py +54 -0
- mindspore/ops/composite/base.py +37 -10
- mindspore/ops/composite/math_ops.py +5 -4
- mindspore/ops/composite/multitype_ops/_compile_utils.py +275 -73
- mindspore/ops/composite/multitype_ops/_constexpr_utils.py +16 -9
- mindspore/ops/composite/multitype_ops/add_impl.py +43 -4
- mindspore/ops/composite/multitype_ops/getitem_impl.py +42 -4
- mindspore/ops/composite/multitype_ops/ones_like_impl.py +6 -0
- mindspore/ops/composite/multitype_ops/setitem_impl.py +2 -1
- mindspore/ops/composite/multitype_ops/zeros_like_impl.py +9 -0
- mindspore/ops/deprecated.py +304 -0
- mindspore/ops/function/__init__.py +4 -1
- mindspore/ops/function/array_func.py +174 -193
- mindspore/ops/function/clip_func.py +81 -13
- mindspore/ops/function/debug_func.py +1 -1
- mindspore/ops/function/grad/grad_func.py +18 -9
- mindspore/ops/function/image_func.py +10 -4
- mindspore/ops/function/linalg_func.py +5 -5
- mindspore/ops/function/math_func.py +575 -386
- mindspore/ops/function/nn_func.py +568 -260
- mindspore/ops/function/random_func.py +88 -57
- mindspore/ops/function/sparse_func.py +1 -1
- mindspore/ops/function/sparse_unary_func.py +14 -12
- mindspore/ops/function/vmap_func.py +6 -5
- mindspore/ops/functional.py +15 -10
- mindspore/ops/op_info_register.py +244 -25
- mindspore/ops/operations/__init__.py +31 -19
- mindspore/ops/operations/_grad_ops.py +71 -7
- mindspore/ops/operations/_inner_ops.py +350 -17
- mindspore/ops/operations/_quant_ops.py +4 -8
- mindspore/ops/operations/_sequence_ops.py +42 -0
- mindspore/ops/operations/array_ops.py +68 -282
- mindspore/ops/operations/comm_ops.py +107 -59
- mindspore/ops/operations/custom_ops.py +94 -70
- mindspore/ops/operations/debug_ops.py +8 -4
- mindspore/ops/operations/image_ops.py +18 -12
- mindspore/ops/operations/inner_ops.py +26 -3
- mindspore/ops/operations/math_ops.py +192 -144
- mindspore/ops/operations/nn_ops.py +857 -489
- mindspore/ops/operations/other_ops.py +0 -22
- mindspore/ops/operations/random_ops.py +53 -111
- mindspore/ops/operations/sparse_ops.py +3 -1
- mindspore/ops/primitive.py +24 -18
- mindspore/parallel/_auto_parallel_context.py +68 -8
- mindspore/parallel/_cost_model_context.py +2 -2
- mindspore/parallel/_offload_context.py +17 -3
- mindspore/parallel/_parallel_serialization.py +12 -5
- mindspore/parallel/_ps_context.py +12 -0
- mindspore/parallel/_tensor.py +18 -13
- mindspore/parallel/_transformer/layers.py +5 -3
- mindspore/parallel/_transformer/loss.py +1 -0
- mindspore/parallel/_transformer/moe.py +2 -2
- mindspore/parallel/_transformer/op_parallel_config.py +12 -1
- mindspore/parallel/_transformer/transformer.py +23 -3
- mindspore/parallel/_utils.py +11 -7
- mindspore/parallel/algo_parameter_config.py +85 -5
- mindspore/parallel/checkpoint_transform.py +19 -12
- mindspore/parallel/shard.py +21 -14
- mindspore/profiler/common/struct_type.py +3 -3
- mindspore/profiler/common/util.py +4 -2
- mindspore/profiler/envprofiling.py +1 -1
- mindspore/profiler/parser/aicpu_data_parser.py +5 -3
- mindspore/profiler/parser/ascend_flops_generator.py +2 -2
- mindspore/profiler/parser/ascend_fpbp_generator.py +1 -1
- mindspore/profiler/parser/ascend_hccl_generator.py +249 -12
- mindspore/profiler/parser/ascend_msprof_exporter.py +150 -255
- mindspore/profiler/parser/ascend_msprof_generator.py +204 -17
- mindspore/profiler/parser/ascend_op_generator.py +6 -6
- mindspore/profiler/parser/ascend_steptrace_generator.py +6 -4
- mindspore/profiler/parser/ascend_timeline_generator.py +14 -187
- mindspore/profiler/parser/base_timeline_generator.py +10 -8
- mindspore/profiler/parser/cpu_gpu_timeline_generator.py +16 -12
- mindspore/profiler/parser/flops_parser.py +15 -11
- mindspore/profiler/parser/framework_parser.py +38 -22
- mindspore/profiler/parser/hccl_parser.py +16 -12
- mindspore/profiler/parser/integrator.py +22 -11
- mindspore/profiler/parser/memory_usage_parser.py +2 -2
- mindspore/profiler/parser/minddata_analyzer.py +12 -14
- mindspore/profiler/parser/minddata_pipeline_parser.py +1 -1
- mindspore/profiler/parser/msadvisor_parser.py +8 -4
- mindspore/profiler/parser/op_intermediate_parser.py +5 -2
- mindspore/profiler/parser/optime_parser.py +1 -1
- mindspore/profiler/parser/profiler_info.py +21 -2
- mindspore/profiler/parser/step_trace_parser.py +11 -14
- mindspore/profiler/profiling.py +179 -89
- mindspore/rewrite/api/node.py +102 -19
- mindspore/rewrite/api/node_type.py +5 -1
- mindspore/rewrite/api/pattern_engine.py +1 -1
- mindspore/rewrite/api/scoped_value.py +9 -17
- mindspore/rewrite/api/symbol_tree.py +131 -47
- mindspore/rewrite/ast_helpers/__init__.py +2 -1
- mindspore/rewrite/ast_helpers/ast_finder.py +129 -0
- mindspore/rewrite/ast_helpers/ast_modifier.py +116 -104
- mindspore/rewrite/ast_transformers/flatten_recursive_stmt.py +93 -46
- mindspore/rewrite/common/rewrite_elog.py +5 -1
- mindspore/rewrite/namer.py +33 -24
- mindspore/rewrite/namespace.py +14 -5
- mindspore/{_extends/graph_kernel/expanders/complex → rewrite/node}/__init__.py +9 -9
- mindspore/rewrite/node/call_function.py +79 -0
- mindspore/rewrite/node/cell_container.py +135 -0
- mindspore/rewrite/node/control_flow.py +88 -0
- mindspore/rewrite/{node.py → node/node.py} +273 -234
- mindspore/rewrite/node/node_manager.py +254 -0
- mindspore/rewrite/{topological_manager.py → node/node_topological_manager.py} +13 -46
- mindspore/rewrite/parsers/arguments_parser.py +22 -21
- mindspore/rewrite/parsers/assign_parser.py +216 -221
- mindspore/rewrite/parsers/attribute_parser.py +9 -7
- mindspore/rewrite/parsers/class_def_parser.py +174 -113
- mindspore/rewrite/parsers/constant_parser.py +9 -6
- mindspore/rewrite/parsers/container_parser.py +9 -7
- mindspore/rewrite/parsers/for_parser.py +42 -21
- mindspore/rewrite/parsers/function_def_parser.py +24 -16
- mindspore/rewrite/parsers/if_parser.py +28 -24
- mindspore/rewrite/parsers/module_parser.py +196 -25
- mindspore/rewrite/{parser.py → parsers/parser.py} +4 -2
- mindspore/rewrite/{parser_register.py → parsers/parser_register.py} +1 -1
- mindspore/rewrite/parsers/return_parser.py +6 -6
- mindspore/rewrite/sparsify/sparse_transformer.py +12 -3
- mindspore/rewrite/sparsify/utils.py +1 -1
- mindspore/rewrite/symbol_tree.py +523 -578
- mindspore/rewrite/symbol_tree_builder.py +9 -193
- mindspore/rewrite/symbol_tree_dumper.py +2 -2
- mindspore/run_check/_check_version.py +6 -4
- mindspore/{ops/bprop_mindir → safeguard}/__init__.py +4 -3
- mindspore/safeguard/rewrite_obfuscation.py +541 -0
- mindspore/scipy/linalg.py +1 -1
- mindspore/scipy/ops.py +55 -5
- mindspore/scipy/optimize/__init__.py +3 -2
- mindspore/scipy/optimize/linear_sum_assignment.py +38 -33
- mindspore/scipy/optimize/minimize.py +7 -3
- mindspore/train/_utils.py +7 -3
- mindspore/train/amp.py +323 -123
- mindspore/train/anf_ir_pb2.py +14 -2
- mindspore/train/callback/_backup_and_restore.py +2 -12
- mindspore/train/callback/_callback.py +29 -4
- mindspore/train/callback/_checkpoint.py +23 -8
- mindspore/train/callback/_early_stop.py +2 -2
- mindspore/train/callback/_landscape.py +4 -4
- mindspore/train/callback/_loss_monitor.py +2 -2
- mindspore/train/callback/_on_request_exit.py +2 -2
- mindspore/train/callback/_reduce_lr_on_plateau.py +3 -4
- mindspore/train/callback/_summary_collector.py +15 -8
- mindspore/train/callback/_time_monitor.py +58 -5
- mindspore/train/data_sink.py +5 -11
- mindspore/train/dataset_helper.py +84 -57
- mindspore/train/loss_scale_manager.py +2 -2
- mindspore/train/metrics/__init__.py +3 -3
- mindspore/train/metrics/cosine_similarity.py +1 -1
- mindspore/train/metrics/hausdorff_distance.py +3 -2
- mindspore/train/metrics/mean_surface_distance.py +3 -2
- mindspore/train/metrics/metric.py +39 -19
- mindspore/train/metrics/roc.py +2 -2
- mindspore/train/metrics/root_mean_square_surface_distance.py +4 -3
- mindspore/train/mind_ir_pb2.py +85 -36
- mindspore/train/model.py +187 -47
- mindspore/train/serialization.py +487 -161
- mindspore/train/summary/_summary_adapter.py +1 -1
- mindspore/train/summary/_writer_pool.py +3 -2
- mindspore/train/summary/summary_record.py +37 -17
- mindspore/train/train_thor/convert_utils.py +3 -3
- mindspore/train/train_thor/dataset_helper.py +1 -1
- mindspore/version.py +1 -1
- {mindspore-2.1.0.dist-info → mindspore-2.2.11.dist-info}/METADATA +8 -8
- {mindspore-2.1.0.dist-info → mindspore-2.2.11.dist-info}/RECORD +488 -539
- {mindspore-2.1.0.dist-info → mindspore-2.2.11.dist-info}/entry_points.txt +0 -1
- mindspore/_akg/akg/tvm/contrib/debugger/__init__.py +0 -16
- mindspore/_akg/akg/tvm/contrib/debugger/debug_result.py +0 -274
- mindspore/_akg/akg/tvm/contrib/debugger/debug_runtime.py +0 -259
- mindspore/_akg/akg/tvm/contrib/peak.py +0 -341
- mindspore/_akg/akg/tvm/contrib/rpc.py +0 -25
- mindspore/_akg/akg/tvm/contrib/xcode.py +0 -257
- mindspore/_akg/akg/tvm/exec/__init__.py +0 -17
- mindspore/_akg/akg/tvm/exec/autotvm_log_editor.py +0 -60
- mindspore/_akg/akg/tvm/exec/measure_peak.py +0 -48
- mindspore/_akg/akg/tvm/exec/query_rpc_tracker.py +0 -48
- mindspore/_akg/akg/tvm/exec/rpc_proxy.py +0 -98
- mindspore/_akg/akg/tvm/exec/rpc_server.py +0 -88
- mindspore/_akg/akg/tvm/exec/rpc_tracker.py +0 -62
- mindspore/_akg/akg/tvm/rpc/__init__.py +0 -29
- mindspore/_akg/akg/tvm/rpc/base.py +0 -182
- mindspore/_akg/akg/tvm/rpc/client.py +0 -436
- mindspore/_akg/akg/tvm/rpc/proxy.py +0 -595
- mindspore/_akg/akg/tvm/rpc/server.py +0 -413
- mindspore/_akg/akg/tvm/rpc/tornado_util.py +0 -121
- mindspore/_akg/akg/tvm/rpc/tracker.py +0 -431
- mindspore/_extends/graph_kernel/expander.py +0 -80
- mindspore/_extends/graph_kernel/expanders/__init__.py +0 -54
- mindspore/_extends/graph_kernel/expanders/_utils.py +0 -269
- mindspore/_extends/graph_kernel/expanders/addn.py +0 -33
- mindspore/_extends/graph_kernel/expanders/batchnorm.py +0 -152
- mindspore/_extends/graph_kernel/expanders/batchnorm_grad.py +0 -105
- mindspore/_extends/graph_kernel/expanders/clip_by_norm_no_div_sum.py +0 -33
- mindspore/_extends/graph_kernel/expanders/complex/abs.py +0 -30
- mindspore/_extends/graph_kernel/expanders/complex/add.py +0 -44
- mindspore/_extends/graph_kernel/expanders/complex/div.py +0 -62
- mindspore/_extends/graph_kernel/expanders/complex/mul.py +0 -52
- mindspore/_extends/graph_kernel/expanders/complex/real_div.py +0 -62
- mindspore/_extends/graph_kernel/expanders/complex/sub.py +0 -45
- mindspore/_extends/graph_kernel/expanders/conv2d.py +0 -200
- mindspore/_extends/graph_kernel/expanders/dropout_grad.py +0 -30
- mindspore/_extends/graph_kernel/expanders/equal_count.py +0 -50
- mindspore/_extends/graph_kernel/expanders/erfc.py +0 -35
- mindspore/_extends/graph_kernel/expanders/expand_dims.py +0 -50
- mindspore/_extends/graph_kernel/expanders/fused_adam.py +0 -44
- mindspore/_extends/graph_kernel/expanders/fused_adam_weight_decay.py +0 -47
- mindspore/_extends/graph_kernel/expanders/fused_mul_add.py +0 -28
- mindspore/_extends/graph_kernel/expanders/gelu_grad.py +0 -70
- mindspore/_extends/graph_kernel/expanders/gkdropout.py +0 -40
- mindspore/_extends/graph_kernel/expanders/identity.py +0 -25
- mindspore/_extends/graph_kernel/expanders/layernorm.py +0 -93
- mindspore/_extends/graph_kernel/expanders/layernorm_grad.py +0 -113
- mindspore/_extends/graph_kernel/expanders/logsoftmax.py +0 -46
- mindspore/_extends/graph_kernel/expanders/logsoftmax_grad.py +0 -36
- mindspore/_extends/graph_kernel/expanders/matmul.py +0 -80
- mindspore/_extends/graph_kernel/expanders/maximum_grad.py +0 -59
- mindspore/_extends/graph_kernel/expanders/minimum_grad.py +0 -80
- mindspore/_extends/graph_kernel/expanders/oneslike.py +0 -26
- mindspore/_extends/graph_kernel/expanders/reduce_mean.py +0 -43
- mindspore/_extends/graph_kernel/expanders/relu_grad.py +0 -32
- mindspore/_extends/graph_kernel/expanders/sigmoid_cross_entropy_with_logits.py +0 -41
- mindspore/_extends/graph_kernel/expanders/sigmoid_cross_entropy_with_logits_grad.py +0 -35
- mindspore/_extends/graph_kernel/expanders/sigmoid_grad.py +0 -31
- mindspore/_extends/graph_kernel/expanders/slice.py +0 -35
- mindspore/_extends/graph_kernel/expanders/softmax_cross_entropy_with_logits.py +0 -42
- mindspore/_extends/graph_kernel/expanders/softmax_grad_ext.py +0 -41
- mindspore/_extends/graph_kernel/expanders/softsign.py +0 -28
- mindspore/_extends/graph_kernel/expanders/sqrt_grad.py +0 -29
- mindspore/_extends/graph_kernel/expanders/square_sum_all.py +0 -44
- mindspore/_extends/graph_kernel/expanders/square_sum_v1.py +0 -37
- mindspore/_extends/graph_kernel/expanders/squared_difference.py +0 -43
- mindspore/_extends/graph_kernel/expanders/tanh_grad.py +0 -31
- mindspore/_extends/graph_kernel/model/op_infer.py +0 -506
- mindspore/dataset/datapreprocess/__init__.py +0 -20
- mindspore/dataset/datapreprocess/preprocess_imagenet_validate_dataset.py +0 -54
- mindspore/include/api/net.h +0 -142
- mindspore/nn/lr_scheduler.py +0 -262
- mindspore/ops/_grad_experimental/grad_image_ops.py +0 -248
- mindspore/ops/_grad_experimental/grad_linalg_ops.py +0 -181
- mindspore/ops/_grad_experimental/grad_other_ops.py +0 -72
- mindspore/ops/_grad_experimental/grad_scalar_ops.py +0 -112
- mindspore/ops/_grad_experimental/grad_sequence_ops.py +0 -351
- mindspore/ops/_op_impl/_custom_op/flash_attention/attention.py +0 -350
- mindspore/ops/_op_impl/_custom_op/flash_attention/flash_attention_bwd.py +0 -409
- mindspore/ops/_op_impl/_custom_op/flash_attention/flash_attention_fwd.py +0 -578
- mindspore/ops/_op_impl/_custom_op/flash_attention/flash_attention_impl.py +0 -199
- mindspore/ops/_op_impl/_custom_op/flash_attention/tik_ops_utils.py +0 -446
- mindspore/ops/_op_impl/_custom_op/flash_attention/tiling_strategy/__init__.py +0 -0
- mindspore/ops/_op_impl/_custom_op/flash_attention/tiling_strategy/sparse_tiling.py +0 -45
- mindspore/ops/_op_impl/_custom_op/flash_attention/tiling_strategy/strategy.py +0 -67
- mindspore/ops/_op_impl/_custom_op/flash_attention/tiling_strategy/wukong_tiling.py +0 -62
- mindspore/ops/bprop_mindir/BNTrainingReduce_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/Broadcast_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/Depend_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/DepthwiseConv2dNative_bprop.mindir +0 -138
- mindspore/ops/bprop_mindir/EmbeddingLookup_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/Load_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/ScatterNonAliasingAdd_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/SparseGatherV2_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/SparseSoftmaxCrossEntropyWithLogits_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/Switch_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/TransShape_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/TupleGetItem_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/Unique_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/Unstack_bprop.mindir +0 -0
- mindspore/ops/bprop_mindir/generate_mindir.py +0 -114
- mindspore/rewrite/node_visitor.py +0 -44
- /mindspore/{ops/_op_impl/_custom_op/flash_attention → _akg/akg/utils/ascend_profilier}/__init__.py +0 -0
- {mindspore-2.1.0.dist-info → mindspore-2.2.11.dist-info}/WHEEL +0 -0
- {mindspore-2.1.0.dist-info → mindspore-2.2.11.dist-info}/top_level.txt +0 -0
|
@@ -1,199 +0,0 @@
|
|
|
1
|
-
# Copyright 2023 Huawei Technologies Co., Ltd
|
|
2
|
-
#
|
|
3
|
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
-
# you may not use this file except in compliance with the License.
|
|
5
|
-
# You may obtain a copy of the License at
|
|
6
|
-
#
|
|
7
|
-
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
-
#
|
|
9
|
-
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
-
# See the License for the specific language governing permissions and
|
|
13
|
-
# limitations under the License.
|
|
14
|
-
# ============================================================================
|
|
15
|
-
"""The impl of flash attention"""
|
|
16
|
-
from __future__ import absolute_import
|
|
17
|
-
import mindspore.ops as ops
|
|
18
|
-
from mindspore import dtype as mstype
|
|
19
|
-
from mindspore.ops import Custom
|
|
20
|
-
from mindspore.ops import DataType
|
|
21
|
-
from mindspore.ops import TBERegOp
|
|
22
|
-
from mindspore.ops._op_impl._custom_op.flash_attention.flash_attention_bwd import flash_attention_grad
|
|
23
|
-
from mindspore.ops._op_impl._custom_op.flash_attention.flash_attention_fwd import flash_attention
|
|
24
|
-
from mindspore.ops.composite.multitype_ops.zeros_like_impl import zeros_like
|
|
25
|
-
|
|
26
|
-
KERNEL_NAME = "flash_attention"
|
|
27
|
-
|
|
28
|
-
cus_flash_atten_op_info = TBERegOp("FlashAttentionPrimitive") \
|
|
29
|
-
.fusion_type("OPAQUE") \
|
|
30
|
-
.partial_flag(True) \
|
|
31
|
-
.async_flag(False) \
|
|
32
|
-
.binfile_name("flash_attention.so") \
|
|
33
|
-
.compute_cost(10) \
|
|
34
|
-
.kernel_name(KERNEL_NAME) \
|
|
35
|
-
.attr("prev_block_num", "required", "int", "all", "65536") \
|
|
36
|
-
.attr("next_block_num", "required", "int", "all", "65536") \
|
|
37
|
-
.attr("high_precision", "required", "bool", "all", "false") \
|
|
38
|
-
.attr("tiling_stgy_name", "required", "str", "all", "sparse") \
|
|
39
|
-
.input(0, "query", False, "required", "all") \
|
|
40
|
-
.input(1, "key", False, "required", "all") \
|
|
41
|
-
.input(2, "value", False, "required", "all") \
|
|
42
|
-
.input(3, "dim_mask", False, "required", "all") \
|
|
43
|
-
.input(4, "attn_mask", False, "optional", "all") \
|
|
44
|
-
.input(5, "dropout_mask", False, "optional", "all") \
|
|
45
|
-
.input(6, "alibi_mask", False, "optional", "all") \
|
|
46
|
-
.output(0, "output", False, "required", "all") \
|
|
47
|
-
.output(1, "rowsum", False, "required", "all") \
|
|
48
|
-
.output(2, "rowmax", False, "required", "all") \
|
|
49
|
-
.dtype_format(DataType.F16_Default,
|
|
50
|
-
DataType.F16_Default,
|
|
51
|
-
DataType.F16_Default,
|
|
52
|
-
DataType.I8_Default,
|
|
53
|
-
DataType.F16_Default,
|
|
54
|
-
DataType.F16_Default,
|
|
55
|
-
DataType.F16_Default,
|
|
56
|
-
DataType.F16_Default,
|
|
57
|
-
DataType.F16_Default,
|
|
58
|
-
DataType.F16_Default) \
|
|
59
|
-
.dtype_format(DataType.F16_Default,
|
|
60
|
-
DataType.F16_Default,
|
|
61
|
-
DataType.F16_Default,
|
|
62
|
-
DataType.I8_Default,
|
|
63
|
-
DataType.F16_Default,
|
|
64
|
-
DataType.F16_Default,
|
|
65
|
-
DataType.F16_Default,
|
|
66
|
-
DataType.F16_Default,
|
|
67
|
-
DataType.F32_Default,
|
|
68
|
-
DataType.F16_Default) \
|
|
69
|
-
.get_op_info()
|
|
70
|
-
|
|
71
|
-
GRAD_KERNEL_NAME = "flash_attention_grad"
|
|
72
|
-
|
|
73
|
-
cus_flash_atten_grad_op_info = TBERegOp("FlashAttentionGradPrimitive") \
|
|
74
|
-
.fusion_type("OPAQUE") \
|
|
75
|
-
.partial_flag(True) \
|
|
76
|
-
.async_flag(False) \
|
|
77
|
-
.binfile_name("flash_attention_grad.so") \
|
|
78
|
-
.compute_cost(10) \
|
|
79
|
-
.kernel_name(GRAD_KERNEL_NAME) \
|
|
80
|
-
.attr("prev_block_num", "required", "int", "all", "65536") \
|
|
81
|
-
.attr("next_block_num", "required", "int", "all", "65536") \
|
|
82
|
-
.attr("high_precision", "required", "bool", "all", "false") \
|
|
83
|
-
.attr("tiling_stgy_name", "required", "str", "all", "sparse") \
|
|
84
|
-
.input(0, "query", False, "required", "all") \
|
|
85
|
-
.input(1, "key", False, "required", "all") \
|
|
86
|
-
.input(2, "value", False, "required", "all") \
|
|
87
|
-
.input(3, "output", False, "required", "all") \
|
|
88
|
-
.input(4, "do", False, "required", "all") \
|
|
89
|
-
.input(5, "rowsum", False, "required", "all") \
|
|
90
|
-
.input(6, "rowmax", False, "required", "all") \
|
|
91
|
-
.input(7, "dim_mask", False, "required", "all") \
|
|
92
|
-
.input(8, "attn_mask", False, "optional", "all") \
|
|
93
|
-
.input(9, "dropout_mask", False, "optional", "all") \
|
|
94
|
-
.input(10, "alibi_mask", False, "optional", "all") \
|
|
95
|
-
.output(0, "dq", False, "required", "all") \
|
|
96
|
-
.output(1, "dk", False, "required", "all") \
|
|
97
|
-
.output(2, "dv", False, "required", "all") \
|
|
98
|
-
.dtype_format(DataType.F16_Default,
|
|
99
|
-
DataType.F16_Default,
|
|
100
|
-
DataType.F16_Default,
|
|
101
|
-
DataType.F16_Default,
|
|
102
|
-
DataType.F16_Default,
|
|
103
|
-
DataType.F16_Default,
|
|
104
|
-
DataType.F16_Default,
|
|
105
|
-
DataType.I8_Default,
|
|
106
|
-
DataType.F16_Default,
|
|
107
|
-
DataType.F16_Default,
|
|
108
|
-
DataType.F16_Default,
|
|
109
|
-
DataType.F32_Default,
|
|
110
|
-
DataType.F32_Default,
|
|
111
|
-
DataType.F32_Default) \
|
|
112
|
-
.dtype_format(DataType.F16_Default,
|
|
113
|
-
DataType.F16_Default,
|
|
114
|
-
DataType.F16_Default,
|
|
115
|
-
DataType.F16_Default,
|
|
116
|
-
DataType.F16_Default,
|
|
117
|
-
DataType.F32_Default,
|
|
118
|
-
DataType.F16_Default,
|
|
119
|
-
DataType.I8_Default,
|
|
120
|
-
DataType.F16_Default,
|
|
121
|
-
DataType.F16_Default,
|
|
122
|
-
DataType.F16_Default,
|
|
123
|
-
DataType.F32_Default,
|
|
124
|
-
DataType.F32_Default,
|
|
125
|
-
DataType.F32_Default) \
|
|
126
|
-
.get_op_info()
|
|
127
|
-
|
|
128
|
-
|
|
129
|
-
def get_flash_attention_grad(prev_block_num=65536, next_block_num=65536,
|
|
130
|
-
tiling_stgy_name='sparse', high_precision=False):
|
|
131
|
-
"""get flash attention grad"""
|
|
132
|
-
|
|
133
|
-
def infer_shape(q_shape, k_shape, v_shape, o_shape, do_shape, l_shape, m_shape,
|
|
134
|
-
dim_mask_shape, att_mask_shape, dropout_mask_shape, alibi_mask_shape):
|
|
135
|
-
return q_shape, k_shape, v_shape
|
|
136
|
-
|
|
137
|
-
def infer_dtype(q_dtype, k_dtype, v_dtype, o_dytpe, do_dtype, l_dtype, m_dtype,
|
|
138
|
-
dim_mask_dtype, attn_mask_dtype, dropout_mask_dtype, alibi_mask_type):
|
|
139
|
-
return mstype.float32, mstype.float32, mstype.float32
|
|
140
|
-
|
|
141
|
-
fa_grad = Custom(flash_attention_grad, out_shape=infer_shape,
|
|
142
|
-
out_dtype=infer_dtype, func_type="tbe", reg_info=cus_flash_atten_grad_op_info)
|
|
143
|
-
fa_grad.add_prim_attr("prev_block_num", prev_block_num)
|
|
144
|
-
fa_grad.add_prim_attr("next_block_num", next_block_num)
|
|
145
|
-
fa_grad.add_prim_attr("high_precision", high_precision)
|
|
146
|
-
fa_grad.add_prim_attr("tiling_stgy_name", tiling_stgy_name)
|
|
147
|
-
fa_grad.init_prim_io_names(
|
|
148
|
-
inputs=["query", "key", "value", "output", "do", "rowsum", "rowmax", "dim_mask", "attn_mask", "dropout_mask",
|
|
149
|
-
"alibi_mask"],
|
|
150
|
-
outputs=["dq", "dk", "dv"]
|
|
151
|
-
)
|
|
152
|
-
|
|
153
|
-
def bprop(query, key, value, dim_mask, attn_mask, dropout_mask, alibi_mask, out, douts):
|
|
154
|
-
output, rowsum, rowmax = out
|
|
155
|
-
dout, _, _ = douts
|
|
156
|
-
dq, dk, dv = fa_grad(query, key, value, output, dout, rowsum, rowmax, dim_mask, attn_mask, dropout_mask,
|
|
157
|
-
alibi_mask)
|
|
158
|
-
dq = ops.cast(dq, mstype.float16)
|
|
159
|
-
dk = ops.cast(dk, mstype.float16)
|
|
160
|
-
dv = ops.cast(dv, mstype.float16)
|
|
161
|
-
return dq, dk, dv, zeros_like(dim_mask), zeros_like(attn_mask), \
|
|
162
|
-
zeros_like(dropout_mask), zeros_like(alibi_mask)
|
|
163
|
-
|
|
164
|
-
return bprop
|
|
165
|
-
|
|
166
|
-
|
|
167
|
-
def get_flash_attention(prev_block_num=65536, next_block_num=65536, tiling_stgy_name='sparse', high_precision=False):
|
|
168
|
-
"""get_flash_attention"""
|
|
169
|
-
|
|
170
|
-
def infer_shape(q_shape, k_shape, v_shape, dim_mask_shape, attn_mask_shape=None,
|
|
171
|
-
dropout_mask_shape=None, alibi_mask_shape=None):
|
|
172
|
-
"""infer shape"""
|
|
173
|
-
batch, hidden_size, seq_len, _ = q_shape
|
|
174
|
-
l_shape = (batch, hidden_size, seq_len)
|
|
175
|
-
m_shape = (batch, hidden_size, seq_len)
|
|
176
|
-
return q_shape, l_shape, m_shape
|
|
177
|
-
|
|
178
|
-
def infer_dtype(q_dtype, k_dtype, v_dtype, dim_mask_dtype, attn_mask_dtype=None,
|
|
179
|
-
dropout_mask_dtype=None, alibi_mask_type=None):
|
|
180
|
-
"""infer type"""
|
|
181
|
-
l_dtype = mstype.float16
|
|
182
|
-
if high_precision:
|
|
183
|
-
l_dtype = mstype.float32
|
|
184
|
-
return q_dtype, l_dtype, q_dtype
|
|
185
|
-
|
|
186
|
-
fa_grad = get_flash_attention_grad(prev_block_num, next_block_num, tiling_stgy_name, high_precision)
|
|
187
|
-
fa_forward = Custom(flash_attention, out_shape=infer_shape,
|
|
188
|
-
out_dtype=infer_dtype, func_type="tbe", bprop=fa_grad,
|
|
189
|
-
reg_info=cus_flash_atten_op_info)
|
|
190
|
-
fa_forward.add_prim_attr("prev_block_num", prev_block_num)
|
|
191
|
-
fa_forward.add_prim_attr("next_block_num", next_block_num)
|
|
192
|
-
fa_forward.add_prim_attr("high_precision", high_precision)
|
|
193
|
-
fa_forward.add_prim_attr("tiling_stgy_name", tiling_stgy_name)
|
|
194
|
-
fa_forward.init_prim_io_names(
|
|
195
|
-
inputs=["query", "key", "value", "dim_mask", "attn_mask", "dropout_mask", "alibi_mask"],
|
|
196
|
-
outputs=["output", "rowsum", "rowmax"]
|
|
197
|
-
)
|
|
198
|
-
|
|
199
|
-
return fa_forward
|
|
@@ -1,446 +0,0 @@
|
|
|
1
|
-
# Copyright 2023 Huawei Technologies Co., Ltd
|
|
2
|
-
#
|
|
3
|
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
-
# you may not use this file except in compliance with the License.
|
|
5
|
-
# You may obtain a copy of the License at
|
|
6
|
-
#
|
|
7
|
-
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
-
#
|
|
9
|
-
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
-
# See the License for the specific language governing permissions and
|
|
13
|
-
# limitations under the License.
|
|
14
|
-
# ============================================================================
|
|
15
|
-
"""the common about tik ops"""
|
|
16
|
-
from functools import partial
|
|
17
|
-
|
|
18
|
-
from mindspore.ops._op_impl._custom_op.flash_attention.constants import DTYPE_SIZE
|
|
19
|
-
from mindspore.ops._op_impl._custom_op.flash_attention.constants import FP16
|
|
20
|
-
from mindspore.ops._op_impl._custom_op.flash_attention.constants import FP32
|
|
21
|
-
from mindspore.ops._op_impl._custom_op.flash_attention.constants import L0C
|
|
22
|
-
from mindspore.ops._op_impl._custom_op.flash_attention.constants import L1
|
|
23
|
-
from mindspore.ops._op_impl._custom_op.flash_attention.constants import UB
|
|
24
|
-
|
|
25
|
-
|
|
26
|
-
class TikOpsUtils:
|
|
27
|
-
"""Utils function class about tik ops"""
|
|
28
|
-
|
|
29
|
-
def __init__(self, tik_instance):
|
|
30
|
-
self.tik_instance = tik_instance
|
|
31
|
-
self.dtype = "float16"
|
|
32
|
-
self.cont_data_mv_1_bust = partial(self.tik_instance.data_move, sid=0, nburst=1,
|
|
33
|
-
src_stride=0,
|
|
34
|
-
dst_stride=0)
|
|
35
|
-
|
|
36
|
-
def MK_TO_K1MK0(self, mk_input_tensor, workspace_tensor=None):
|
|
37
|
-
"""change data shape from (M, K) to (K1, M, K0), K1 = K // K0, the effect is equant to:
|
|
38
|
-
new_tensor = np.stack(np.hsplit(mk_input_tensor, K1), axis=0)
|
|
39
|
-
|
|
40
|
-
:param mk_input_tensor: input tensor in GM with shape: (M, K)
|
|
41
|
-
:param workspace_tensor: workspace tensor with shape: (K1, M, K0)
|
|
42
|
-
tensor will be changed, otherwise the new data will be copied to the workspace tensor,
|
|
43
|
-
and input tensor will stay unchanged.
|
|
44
|
-
:return: Tensor with shape (K1,M, K0)
|
|
45
|
-
"""
|
|
46
|
-
dtype = mk_input_tensor.dtype
|
|
47
|
-
m, k = mk_input_tensor.shape
|
|
48
|
-
K0 = 16
|
|
49
|
-
K1 = k // K0
|
|
50
|
-
M = self.up_align_to_K0(m)
|
|
51
|
-
try:
|
|
52
|
-
dtype_size = DTYPE_SIZE[dtype]
|
|
53
|
-
except KeyError:
|
|
54
|
-
raise ValueError("The argument 'dtype' is not valid.")
|
|
55
|
-
if workspace_tensor is not None:
|
|
56
|
-
with self.tik_instance.for_range(0, K1) as i:
|
|
57
|
-
self.tik_instance.data_move(
|
|
58
|
-
workspace_tensor[i * M * K0:],
|
|
59
|
-
mk_input_tensor[i * K0:],
|
|
60
|
-
0,
|
|
61
|
-
M,
|
|
62
|
-
K0 * dtype_size // 32,
|
|
63
|
-
(K1 - 1) * K0 * dtype_size // 32,
|
|
64
|
-
0,
|
|
65
|
-
)
|
|
66
|
-
return workspace_tensor.reshape((K1, M, K0))
|
|
67
|
-
|
|
68
|
-
with self.tik_instance.new_stmt_scope(disable_sync=False):
|
|
69
|
-
tmp_ub = self.tik_instance.Tensor(dtype, (K1, M, K0), name="tmp_ub", scope=UB)
|
|
70
|
-
# data_move(m,k) --> (k1,m,K0)
|
|
71
|
-
with self.tik_instance.for_range(0, K1) as i:
|
|
72
|
-
self.tik_instance.data_move(
|
|
73
|
-
tmp_ub[i * M * K0:],
|
|
74
|
-
mk_input_tensor[i * K0:],
|
|
75
|
-
0,
|
|
76
|
-
M,
|
|
77
|
-
K0 * dtype_size // 32,
|
|
78
|
-
(K1 - 1) * K0 * dtype_size // 32,
|
|
79
|
-
0,
|
|
80
|
-
)
|
|
81
|
-
self.cont_data_mv_1_bust(
|
|
82
|
-
dst=mk_input_tensor, src=tmp_ub, burst=K1 * M * K0 * dtype_size // 32)
|
|
83
|
-
return mk_input_tensor.reshape((K1, M, K0))
|
|
84
|
-
|
|
85
|
-
def transpose_matrix(self, src_ub, dst_ub, N, nk0=False):
|
|
86
|
-
""" transpose matrix, default support shape: (16, n) -> (n, 16)
|
|
87
|
-
if nk0 is true, support shape: (n, 16) -> (16, n)
|
|
88
|
-
"""
|
|
89
|
-
K0 = 16
|
|
90
|
-
rep_times = N // K0
|
|
91
|
-
if nk0:
|
|
92
|
-
src_list = [src_ub[16 * i] for i in range(16)]
|
|
93
|
-
dst_list = [dst_ub[N * i] for i in range(16)]
|
|
94
|
-
else:
|
|
95
|
-
src_list = [src_ub[N * i] for i in range(16)]
|
|
96
|
-
dst_list = [dst_ub[16 * i] for i in range(16)]
|
|
97
|
-
|
|
98
|
-
dst_rep_stride = K0
|
|
99
|
-
src_rep_stride = 1
|
|
100
|
-
if rep_times == 1:
|
|
101
|
-
dst_rep_stride = 0
|
|
102
|
-
src_rep_stride = 0
|
|
103
|
-
|
|
104
|
-
if nk0:
|
|
105
|
-
src_rep_stride, dst_rep_stride = dst_rep_stride, src_rep_stride
|
|
106
|
-
|
|
107
|
-
self.tik_instance.vec_trans_scatter(
|
|
108
|
-
False, False, dst_list, src_list, rep_times, dst_rep_stride, src_rep_stride
|
|
109
|
-
)
|
|
110
|
-
return dst_ub
|
|
111
|
-
|
|
112
|
-
def KN_TO_K1NK0(self, kn_input_tensor, workspace_tensor=None):
|
|
113
|
-
"""change data shape from (K,N) to (K1, N, K0), K1 = K // K0, the effect is equvilent to:
|
|
114
|
-
new_tensor = np.reshape(kn_input_tensor, newshape=(K1, K0, N)).swapaxes(1, 2)
|
|
115
|
-
|
|
116
|
-
:param kn_input_tensor: input tensor with shape: (K, N)
|
|
117
|
-
:param workspace_tensor: workspace tensor with shape: (K1, N, K0)
|
|
118
|
-
tensor will be changed, otherwise the new data will be copied to the workspace tensor,
|
|
119
|
-
and input tensor will stay unchanged.
|
|
120
|
-
:return: Tensor with shape: (K1, N, K0)
|
|
121
|
-
"""
|
|
122
|
-
dtype = kn_input_tensor.dtype
|
|
123
|
-
k, n = kn_input_tensor.shape
|
|
124
|
-
K0 = 16
|
|
125
|
-
K1 = k // K0
|
|
126
|
-
N = n
|
|
127
|
-
try:
|
|
128
|
-
dtype_size = DTYPE_SIZE[dtype]
|
|
129
|
-
except KeyError:
|
|
130
|
-
raise ValueError("The argument 'dtype' is not valid.")
|
|
131
|
-
with self.tik_instance.for_range(0, K1) as index:
|
|
132
|
-
k1nk0_ub = self.tik_instance.Tensor(dtype, (N, K0), UB, "k1nk0_ub")
|
|
133
|
-
src_ub = self.tik_instance.Tensor(dtype, (K0, N), UB, "src_ub")
|
|
134
|
-
burst_len = K0 * N * dtype_size // 32
|
|
135
|
-
self.cont_data_mv_1_bust(dst=src_ub, src=kn_input_tensor[index * K0 * N],
|
|
136
|
-
burst=burst_len)
|
|
137
|
-
k1nk0_ub = self.transpose_matrix(src_ub, k1nk0_ub, N)
|
|
138
|
-
if workspace_tensor is None:
|
|
139
|
-
self.cont_data_mv_1_bust(dst=kn_input_tensor[index * K0 * N], src=k1nk0_ub,
|
|
140
|
-
burst=burst_len)
|
|
141
|
-
else:
|
|
142
|
-
self.cont_data_mv_1_bust(dst=workspace_tensor[index * K0 * N], src=k1nk0_ub,
|
|
143
|
-
burst=burst_len)
|
|
144
|
-
if workspace_tensor is None:
|
|
145
|
-
return kn_input_tensor.reshape((K1, N, K0))
|
|
146
|
-
|
|
147
|
-
return workspace_tensor.reshape((K1, N, K0))
|
|
148
|
-
|
|
149
|
-
def N1MN0_TO_MN(self, N1MN0_input):
|
|
150
|
-
"""change data shape from (N1, M, N0) to (M, N), N0=16, N = N1 * K0, the effect is equant to:
|
|
151
|
-
N1MN0_input = np.concatenate(list(map(np.squeeze, np.split(N1MN0_input, N1))), axis=1)
|
|
152
|
-
|
|
153
|
-
:param N1MN0_input: input tensor with shape (N, M, N0) in GM or L1.
|
|
154
|
-
:return:
|
|
155
|
-
"""
|
|
156
|
-
dtype = N1MN0_input.dtype
|
|
157
|
-
N1, M, N0 = N1MN0_input.shape
|
|
158
|
-
try:
|
|
159
|
-
dtype_size = DTYPE_SIZE[dtype]
|
|
160
|
-
except KeyError:
|
|
161
|
-
raise ValueError("The argument 'dtype' is not valid.")
|
|
162
|
-
with self.tik_instance.new_stmt_scope(disable_sync=False):
|
|
163
|
-
tmp_ub = self.tik_instance.Tensor(dtype, (M, N1 * N0), name="tmp_ub", scope=UB)
|
|
164
|
-
# data_move (n1,m,n0) --> (m,n)
|
|
165
|
-
with self.tik_instance.for_range(0, N1) as i:
|
|
166
|
-
self.tik_instance.data_move(
|
|
167
|
-
tmp_ub[i * N0:],
|
|
168
|
-
N1MN0_input[i * M * N0:],
|
|
169
|
-
0,
|
|
170
|
-
M,
|
|
171
|
-
N0 * dtype_size // 32,
|
|
172
|
-
0,
|
|
173
|
-
(N1 - 1) * N0 * dtype_size // 32,
|
|
174
|
-
)
|
|
175
|
-
# data_move out
|
|
176
|
-
self.cont_data_mv_1_bust(dst=N1MN0_input, src=tmp_ub, burst=M * N1 * N0 * dtype_size // 32)
|
|
177
|
-
return N1MN0_input.reshape((M, N1 * N0))
|
|
178
|
-
|
|
179
|
-
def broadcast(self, vec_ub, shape):
|
|
180
|
-
""" broadcast a vector to a matrix
|
|
181
|
-
:param vec_ub: a tensor in UB with shape of (M,), and dtype is float16
|
|
182
|
-
:param shape: the target shape, a tuple with value (M, N),M and N are integer multiples of 16
|
|
183
|
-
:return: a tensor in UB with shape of (M, N)
|
|
184
|
-
"""
|
|
185
|
-
M, N = shape
|
|
186
|
-
dst_ub = self.tik_instance.Tensor(FP16, shape, name="dst_ub", scope=UB)
|
|
187
|
-
|
|
188
|
-
with self.tik_instance.new_stmt_scope(disable_sync=False):
|
|
189
|
-
# (M,) -> (2, M) -> (4, M) -> (8, M) -> (16, M)
|
|
190
|
-
tmp_ub1 = self.tik_instance.Tensor(FP16, (16, M), name="tmp_ub1", scope=UB)
|
|
191
|
-
self.tik_instance.data_move(tmp_ub1, vec_ub, 0, 1, M // 16, 0, 0)
|
|
192
|
-
times = self.tik_instance.Scalar("int32", name="times", init_value=1)
|
|
193
|
-
with self.tik_instance.for_range(begint=0, endt=16):
|
|
194
|
-
with self.tik_instance.if_scope(times <= 8):
|
|
195
|
-
offset = times * M
|
|
196
|
-
burst = times * M // 16
|
|
197
|
-
self.cont_data_mv_1_bust(dst=tmp_ub1[offset], src=tmp_ub1, burst=burst)
|
|
198
|
-
with self.tik_instance.else_scope():
|
|
199
|
-
self.tik_instance.tik_break()
|
|
200
|
-
times.set_as(times * 2)
|
|
201
|
-
|
|
202
|
-
# (16, M) -> (M, 16)
|
|
203
|
-
tmp_ub2 = self.tik_instance.Tensor(FP16, (M, 16), name="tmp_ub2", scope=UB)
|
|
204
|
-
tmp_ub2_transposed = self.transpose_matrix(tmp_ub1, tmp_ub2, M)
|
|
205
|
-
|
|
206
|
-
# (M, 16) -> (M, 32) -> (M, 64) -> ... -> (M, N)
|
|
207
|
-
self.tik_instance.data_move(dst_ub, tmp_ub2_transposed, 0, M, 1, 0, N // 16 - 1)
|
|
208
|
-
times.set_as(1)
|
|
209
|
-
with self.tik_instance.for_range(begint=0, endt=N):
|
|
210
|
-
offset = times * 16
|
|
211
|
-
with self.tik_instance.if_scope(offset * 2 <= N):
|
|
212
|
-
burst = offset // 16
|
|
213
|
-
src_stride = N // 16 - burst
|
|
214
|
-
dst_stride = N // 16 - burst
|
|
215
|
-
self.tik_instance.data_move(dst_ub[offset], dst_ub, 0, M, burst, src_stride,
|
|
216
|
-
dst_stride)
|
|
217
|
-
with self.tik_instance.else_scope():
|
|
218
|
-
burst = (N - offset) // 16
|
|
219
|
-
src_stride = N // 16 - burst
|
|
220
|
-
dst_stride = N // 16 - burst
|
|
221
|
-
with self.tik_instance.if_scope(burst > 0):
|
|
222
|
-
self.tik_instance.data_move(dst_ub[offset], dst_ub, 0, M, burst, src_stride,
|
|
223
|
-
dst_stride)
|
|
224
|
-
self.tik_instance.tik_break()
|
|
225
|
-
times.set_as(times * 2)
|
|
226
|
-
return dst_ub
|
|
227
|
-
|
|
228
|
-
def broadcast_row(self, vec_ub, shape):
|
|
229
|
-
"""broadcast row"""
|
|
230
|
-
M, N = shape
|
|
231
|
-
dst_ub = self.tik_instance.Tensor(FP16, shape, name="dst_ub", scope=UB)
|
|
232
|
-
self.tik_instance.data_move(dst_ub, vec_ub, 0, 1, N // 16, 0, 0)
|
|
233
|
-
times = self.tik_instance.Scalar("int32", name="times", init_value=1)
|
|
234
|
-
# (1, N) -> (2, M) -> (4, N) -> ... -> (M, N)
|
|
235
|
-
with self.tik_instance.for_range(begint=0, endt=M):
|
|
236
|
-
with self.tik_instance.if_scope(times * 2 <= M):
|
|
237
|
-
burst = times * N // 16
|
|
238
|
-
offset = times * N
|
|
239
|
-
self.tik_instance.data_move(dst_ub[offset], dst_ub, 0, 1, burst, 0, 0)
|
|
240
|
-
with self.tik_instance.else_scope():
|
|
241
|
-
burst = (M - times) * N // 16
|
|
242
|
-
offset = times * N
|
|
243
|
-
with self.tik_instance.if_scope(burst > 0):
|
|
244
|
-
self.tik_instance.data_move(dst_ub[offset], dst_ub, 0, 1, burst, 0, 0)
|
|
245
|
-
self.tik_instance.tik_break()
|
|
246
|
-
times.set_as(times * 2)
|
|
247
|
-
return dst_ub
|
|
248
|
-
|
|
249
|
-
def get_K0(self, dtype=None):
|
|
250
|
-
"""get K0"""
|
|
251
|
-
if dtype is None:
|
|
252
|
-
dtype = self.dtype
|
|
253
|
-
try:
|
|
254
|
-
dtype_size = DTYPE_SIZE[dtype]
|
|
255
|
-
except KeyError:
|
|
256
|
-
raise ValueError("The argument 'dtype' is not valid.")
|
|
257
|
-
return 32 // dtype_size
|
|
258
|
-
|
|
259
|
-
def up_align_to_K0(self, n, dtype=None):
|
|
260
|
-
"""byte alignment by dtype"""
|
|
261
|
-
if dtype is None:
|
|
262
|
-
dtype = self.dtype
|
|
263
|
-
try:
|
|
264
|
-
dtype_size = DTYPE_SIZE[dtype]
|
|
265
|
-
except KeyError:
|
|
266
|
-
raise ValueError("The argument 'dtype' is not valid.")
|
|
267
|
-
K0 = 32 // dtype_size
|
|
268
|
-
return (n + K0 - 1) // K0 * K0
|
|
269
|
-
|
|
270
|
-
def calc_vec_rec(self, vec_ub, vec_len):
|
|
271
|
-
"""cal the reciprocal of a vector"""
|
|
272
|
-
dtype = vec_ub.dtype
|
|
273
|
-
vec_len_aligned = self.up_align_to_K0(vec_len)
|
|
274
|
-
vec_rec_ub = self.tik_instance.Tensor(dtype, (vec_len_aligned,), scope=UB, name="li_new_rec_ub")
|
|
275
|
-
try:
|
|
276
|
-
dtype_size = DTYPE_SIZE[dtype]
|
|
277
|
-
except KeyError:
|
|
278
|
-
raise ValueError("The argument 'dtype' is not valid.")
|
|
279
|
-
mask_len = 256 // dtype_size
|
|
280
|
-
block_len = 32 // dtype_size
|
|
281
|
-
work_size = 8 // dtype_size
|
|
282
|
-
|
|
283
|
-
with self.tik_instance.new_stmt_scope(disable_sync=False):
|
|
284
|
-
repeat_times = vec_len // mask_len
|
|
285
|
-
if repeat_times > 0:
|
|
286
|
-
dst_rep_stride = 8
|
|
287
|
-
src_rep_stride = 8
|
|
288
|
-
|
|
289
|
-
src_extent_size = (repeat_times - 1) * src_rep_stride * block_len + mask_len
|
|
290
|
-
wk_size_unit = ((src_extent_size + block_len - 1) // block_len) * block_len
|
|
291
|
-
wk_size = work_size * wk_size_unit
|
|
292
|
-
# 定义work_tensor
|
|
293
|
-
work_tensor_ub = self.tik_instance.Tensor(
|
|
294
|
-
"float32", (wk_size,), name="work_tensor_ub", scope=UB
|
|
295
|
-
)
|
|
296
|
-
# 如果work_tensor有索引,需要写成 work_tensor[index:]
|
|
297
|
-
self.tik_instance.vec_rec_high_preci(
|
|
298
|
-
mask_len,
|
|
299
|
-
vec_rec_ub[0:],
|
|
300
|
-
vec_ub[0:],
|
|
301
|
-
work_tensor_ub[0:],
|
|
302
|
-
repeat_times,
|
|
303
|
-
dst_rep_stride,
|
|
304
|
-
src_rep_stride,
|
|
305
|
-
)
|
|
306
|
-
|
|
307
|
-
mask_len = vec_len - repeat_times * mask_len
|
|
308
|
-
if mask_len > 0:
|
|
309
|
-
wk_size = work_size * ((mask_len + block_len - 1) // block_len) * block_len
|
|
310
|
-
work_tensor_ub2 = self.tik_instance.Tensor(
|
|
311
|
-
"float32", (wk_size,), name="work_tensor_ub2", scope=UB
|
|
312
|
-
)
|
|
313
|
-
self.tik_instance.vec_rec_high_preci(
|
|
314
|
-
mask_len,
|
|
315
|
-
vec_rec_ub[repeat_times * 128:],
|
|
316
|
-
vec_ub[repeat_times * 128:],
|
|
317
|
-
work_tensor_ub2[0:],
|
|
318
|
-
1,
|
|
319
|
-
0,
|
|
320
|
-
0,
|
|
321
|
-
)
|
|
322
|
-
return vec_rec_ub
|
|
323
|
-
|
|
324
|
-
def row_sum_cube_impl(self, matrix_l1_K1MK0_ed, rowsum_ub, m, k, precision_type):
|
|
325
|
-
"""用cube实现矩阵行和:右乘一个shape=(n,1)全一矩阵
|
|
326
|
-
:param matrix_l1_K1MK0_ed: input tensor with shape (K1, M, K0)
|
|
327
|
-
:param rowsum_ub: output tensor stores the row sum of input tensor.
|
|
328
|
-
:param m: actual tensor height
|
|
329
|
-
:param k: actual tensor width
|
|
330
|
-
:return: row sum of the output tensor
|
|
331
|
-
"""
|
|
332
|
-
K1, M, K0 = matrix_l1_K1MK0_ed.shape
|
|
333
|
-
K = K1 * K0
|
|
334
|
-
|
|
335
|
-
# 构造全一右矩阵,由于cube无法处理shape=(n, 1),所以shape=(n, 16),全一矩阵不需分形
|
|
336
|
-
right_all_one_matrix_ub = self.tik_instance.Tensor(
|
|
337
|
-
FP16, (K, 16), name="right_all_one_matrix_ub", scope=UB
|
|
338
|
-
)
|
|
339
|
-
self.tik_instance.h_duplicate(right_all_one_matrix_ub, 1.0)
|
|
340
|
-
right_all_one_matrix_l1 = self.tik_instance.Tensor(
|
|
341
|
-
FP16, (K1 * K0, 16), name="right_all_one_matrix_l1", scope=L1
|
|
342
|
-
)
|
|
343
|
-
self.cont_data_mv_1_bust(dst=right_all_one_matrix_l1, src=right_all_one_matrix_ub, burst=K)
|
|
344
|
-
|
|
345
|
-
# 调用matmul实现rowsum,结果shape=(m, 16),取每行的第一个数
|
|
346
|
-
with self.tik_instance.new_stmt_scope(disable_sync=False):
|
|
347
|
-
row_sum_ub_N1MN0 = self.matmul_compute(matrix_l1_K1MK0_ed, right_all_one_matrix_l1, m, k, 16,
|
|
348
|
-
N1MN0_to_MN=False, precision_type=precision_type)
|
|
349
|
-
row_sum_ub_MN_ed = row_sum_ub_N1MN0.reshape((M, 16))
|
|
350
|
-
if precision_type == FP32:
|
|
351
|
-
for idx in range(0, m):
|
|
352
|
-
cur_row_sum = self.tik_instance.Scalar(FP32, init_value=row_sum_ub_MN_ed[idx, 0])
|
|
353
|
-
rowsum_ub[idx].set_as(cur_row_sum)
|
|
354
|
-
else:
|
|
355
|
-
row_sum_ub_trans = self.tik_instance.Tensor(FP16, (16, M), name="row_sum_ub_trans", scope=UB)
|
|
356
|
-
row_sum_ub_trans = self.transpose_matrix(row_sum_ub_MN_ed, row_sum_ub_trans, M, True)
|
|
357
|
-
self.cont_data_mv_1_bust(dst=rowsum_ub, src=row_sum_ub_trans, burst=M // 16)
|
|
358
|
-
|
|
359
|
-
return rowsum_ub
|
|
360
|
-
|
|
361
|
-
def matmul_compute(self, A_l1, B_l1, m, k, n, N1MN0_to_MN=True, precision_type=FP16):
|
|
362
|
-
"""calculate matrix multiplication A_l1 * B_l1, and move the result to C_ub,
|
|
363
|
-
then rearrange C_ub
|
|
364
|
-
:param A_l1: input tensor in L1 with shape of (K1, M, K0)
|
|
365
|
-
:param B_l1: input tensor in L1 with shape of (K1, N, K0)
|
|
366
|
-
:param m: the actual number of rows of A_l1
|
|
367
|
-
:param k: the actual number of cols of A_l1
|
|
368
|
-
:param n: the actual number of cols of B_l1
|
|
369
|
-
:param N1MN0_to_MN: Whether reorder the result tensor.
|
|
370
|
-
:return: C_ub with tensor with shape of (M, N) if N1MN0_to_MN else (N1, M, N0)
|
|
371
|
-
"""
|
|
372
|
-
M = self.up_align_to_K0(m)
|
|
373
|
-
N = self.up_align_to_K0(n)
|
|
374
|
-
C_ub = self.tik_instance.Tensor(precision_type, (N // 16, M, 16), name="C_ub", scope=UB)
|
|
375
|
-
try:
|
|
376
|
-
dtype_size = DTYPE_SIZE[FP32]
|
|
377
|
-
except KeyError:
|
|
378
|
-
raise ValueError("The argument 'dtype' is not valid.")
|
|
379
|
-
with self.tik_instance.new_stmt_scope(disable_sync=False):
|
|
380
|
-
# matmul
|
|
381
|
-
C_l0c = self.tik_instance.Tensor(
|
|
382
|
-
FP32, (N // 16, M, 16), scope=L0C, name="C_l0c"
|
|
383
|
-
) # n1mn0 (n0=16)
|
|
384
|
-
self.tik_instance.matmul(C_l0c, A_l1, B_l1, m, k, n)
|
|
385
|
-
# L0C -> ub, fp32 -> fp16 (tensor_mov可做随路转换)
|
|
386
|
-
self.tik_instance.tensor_mov(C_ub, C_l0c, "m", 1, M * N * dtype_size // 1024, 0, 0)
|
|
387
|
-
if N1MN0_to_MN:
|
|
388
|
-
return self.N1MN0_TO_MN(C_ub)
|
|
389
|
-
return C_ub
|
|
390
|
-
|
|
391
|
-
def move_vector_from_gm_to_ub(self, dst_tensor, src_tensor, gm_offset, vec_len):
|
|
392
|
-
"""load the vector from gm to ub
|
|
393
|
-
:param dst_tensor:
|
|
394
|
-
:param src_tensor:
|
|
395
|
-
:param gm_offset:
|
|
396
|
-
:return:
|
|
397
|
-
"""
|
|
398
|
-
try:
|
|
399
|
-
dtype_size = DTYPE_SIZE[src_tensor.dtype]
|
|
400
|
-
except KeyError:
|
|
401
|
-
raise ValueError("The argument 'src_tensor dtype' is not valid.")
|
|
402
|
-
a_burst_num = 32 // dtype_size
|
|
403
|
-
full_tik_blk_num, tail_num = divmod(vec_len, a_burst_num)
|
|
404
|
-
with self.tik_instance.if_scope(full_tik_blk_num > 0):
|
|
405
|
-
self.cont_data_mv_1_bust(dst=dst_tensor, src=src_tensor[gm_offset],
|
|
406
|
-
burst=full_tik_blk_num)
|
|
407
|
-
# 地址回退处理尾部数据
|
|
408
|
-
with self.tik_instance.if_scope(tail_num > 0):
|
|
409
|
-
offset = vec_len - a_burst_num
|
|
410
|
-
last_blk_ub = self.tik_instance.Tensor(FP16, (a_burst_num,), name="last_blk_ub", scope=UB)
|
|
411
|
-
self.cont_data_mv_1_bust(dst=last_blk_ub, src=src_tensor[gm_offset + offset], burst=1)
|
|
412
|
-
with self.tik_instance.for_range(0, a_burst_num) as idx: # offset非32bytes对齐,无法用datamove
|
|
413
|
-
dst_tensor[offset + idx].set_as(last_blk_ub[idx])
|
|
414
|
-
|
|
415
|
-
def move_vector_from_ub_to_gm(self, dst_tensor, src_tensor, gm_offset, block_h):
|
|
416
|
-
"""write the vector back to gm
|
|
417
|
-
:param dst_tensor:
|
|
418
|
-
:param src_tensor:
|
|
419
|
-
:param gm_offset:
|
|
420
|
-
:param block_h:
|
|
421
|
-
:return:
|
|
422
|
-
"""
|
|
423
|
-
try:
|
|
424
|
-
dtype_size = DTYPE_SIZE[src_tensor.dtype]
|
|
425
|
-
except KeyError:
|
|
426
|
-
raise ValueError("The argument 'src_tensor dtype' is not valid.")
|
|
427
|
-
a_burst_num = 32 // dtype_size
|
|
428
|
-
full_tik_blk_num = block_h // a_burst_num
|
|
429
|
-
with self.tik_instance.if_scope(full_tik_blk_num > 0):
|
|
430
|
-
self.cont_data_mv_1_bust(dst=dst_tensor[gm_offset], src=src_tensor,
|
|
431
|
-
burst=full_tik_blk_num)
|
|
432
|
-
tail_num = block_h % a_burst_num
|
|
433
|
-
with self.tik_instance.if_scope(tail_num > 0):
|
|
434
|
-
offset = block_h - a_burst_num
|
|
435
|
-
tmp_ub = self.tik_instance.Tensor(FP16, (a_burst_num,), name="tmp_ub", scope=UB)
|
|
436
|
-
with self.tik_instance.for_range(0, a_burst_num) as idx:
|
|
437
|
-
tmp_ub[idx].set_as(src_tensor[offset + idx])
|
|
438
|
-
self.cont_data_mv_1_bust(dst=dst_tensor[gm_offset + offset], src=tmp_ub, burst=1)
|
|
439
|
-
|
|
440
|
-
def scale_compute_vector(self, Sij_ub, dim):
|
|
441
|
-
"""scale compute vector"""
|
|
442
|
-
scale_value = dim ** -0.5
|
|
443
|
-
scale = self.tik_instance.Scalar(dtype=FP16)
|
|
444
|
-
scale.set_as(scale_value)
|
|
445
|
-
self.tik_instance.h_mul(Sij_ub, Sij_ub, scale)
|
|
446
|
-
return Sij_ub
|
|
File without changes
|