mindspore 2.0.0a0__cp37-none-any.whl → 2.0.0rc1__cp37-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of mindspore might be problematic. Click here for more details.

Files changed (693) hide show
  1. mindspore/.commit_id +1 -1
  2. mindspore/Third_Party_Open_Source_Software_Notice +9064 -0
  3. mindspore/__init__.py +4 -2
  4. mindspore/_akg/akg/composite/build_module.py +11 -0
  5. mindspore/_akg/akg/config/repository_cuda.json +11 -0
  6. mindspore/_akg/akg/tvm/contrib/nvcc.py +4 -3
  7. mindspore/_c_dataengine.cpython-37m-aarch64-linux-gnu.so +0 -0
  8. mindspore/_c_expression.cpython-37m-aarch64-linux-gnu.so +0 -0
  9. mindspore/_c_mindrecord.cpython-37m-aarch64-linux-gnu.so +0 -0
  10. mindspore/_check_jit_forbidden_api.py +102 -0
  11. mindspore/_checkparam.py +1066 -1001
  12. mindspore/_extends/parallel_compile/akg_compiler/akg_process.py +4 -3
  13. mindspore/_extends/parallel_compile/akg_compiler/tbe_topi.py +50 -48
  14. mindspore/_extends/parallel_compile/akg_compiler/util.py +9 -4
  15. mindspore/_extends/parallel_compile/tbe_compiler/tbe_adapter.py +4 -4
  16. mindspore/_extends/parallel_compile/tbe_compiler/tbe_helper.py +9 -4
  17. mindspore/_extends/parse/__init__.py +5 -3
  18. mindspore/_extends/parse/namespace.py +16 -1
  19. mindspore/_extends/parse/parser.py +107 -22
  20. mindspore/_extends/parse/resources.py +0 -7
  21. mindspore/_extends/parse/standard_method.py +885 -413
  22. mindspore/_mindspore_offline_debug.cpython-37m-aarch64-linux-gnu.so +0 -0
  23. mindspore/amp.py +52 -57
  24. mindspore/bin/cache_admin +0 -0
  25. mindspore/bin/cache_server +0 -0
  26. mindspore/boost/boost.py +2 -2
  27. mindspore/boost/boost_cell_wrapper.py +38 -20
  28. mindspore/boost/dim_reduce.py +3 -3
  29. mindspore/boost/group_loss_scale_manager.py +1 -1
  30. mindspore/common/__init__.py +4 -6
  31. mindspore/common/_decorator.py +2 -0
  32. mindspore/common/_register_for_adapter.py +55 -0
  33. mindspore/common/_stub_tensor.py +201 -0
  34. mindspore/common/_utils.py +41 -7
  35. mindspore/common/api.py +215 -141
  36. mindspore/common/dtype.py +8 -1
  37. mindspore/common/dump.py +2 -2
  38. mindspore/common/initializer.py +4 -2
  39. mindspore/common/jit_config.py +17 -13
  40. mindspore/common/mutable.py +33 -13
  41. mindspore/common/parameter.py +23 -21
  42. mindspore/common/seed.py +8 -24
  43. mindspore/common/sparse_tensor.py +62 -41
  44. mindspore/common/tensor.py +852 -1154
  45. mindspore/communication/__init__.py +2 -2
  46. mindspore/communication/_comm_helper.py +11 -4
  47. mindspore/communication/management.py +22 -21
  48. mindspore/config/op_info.config +501 -1008
  49. mindspore/config/super_bar_config.json +512 -0
  50. mindspore/context.py +201 -23
  51. mindspore/dataset/__init__.py +6 -6
  52. mindspore/dataset/audio/__init__.py +7 -7
  53. mindspore/dataset/audio/transforms.py +670 -30
  54. mindspore/dataset/audio/utils.py +47 -4
  55. mindspore/dataset/audio/validators.py +223 -1
  56. mindspore/dataset/callback/ds_callback.py +2 -2
  57. mindspore/dataset/core/config.py +210 -14
  58. mindspore/dataset/core/validator_helpers.py +2 -2
  59. mindspore/{parallel/nn/layers.py → dataset/debug/__init__.py} +7 -8
  60. mindspore/dataset/debug/debug_hook.py +65 -0
  61. mindspore/dataset/debug/pre_defined_hook.py +67 -0
  62. mindspore/dataset/engine/__init__.py +7 -3
  63. mindspore/dataset/engine/cache_client.py +1 -1
  64. mindspore/dataset/engine/datasets.py +322 -66
  65. mindspore/dataset/engine/datasets_audio.py +80 -76
  66. mindspore/dataset/engine/datasets_standard_format.py +51 -38
  67. mindspore/dataset/engine/datasets_text.py +232 -118
  68. mindspore/dataset/engine/datasets_user_defined.py +41 -17
  69. mindspore/dataset/engine/datasets_vision.py +746 -225
  70. mindspore/dataset/engine/graphdata.py +75 -10
  71. mindspore/dataset/engine/iterators.py +45 -5
  72. mindspore/dataset/engine/offload.py +48 -28
  73. mindspore/dataset/engine/validators.py +117 -8
  74. mindspore/dataset/text/__init__.py +6 -5
  75. mindspore/dataset/text/transforms.py +86 -3
  76. mindspore/dataset/text/utils.py +6 -4
  77. mindspore/dataset/text/validators.py +25 -0
  78. mindspore/dataset/transforms/__init__.py +3 -2
  79. mindspore/dataset/transforms/c_transforms.py +1 -1
  80. mindspore/dataset/transforms/transforms.py +2 -2
  81. mindspore/dataset/utils/__init__.py +2 -1
  82. mindspore/dataset/utils/line_reader.py +121 -0
  83. mindspore/dataset/vision/__init__.py +2 -3
  84. mindspore/dataset/vision/c_transforms.py +9 -9
  85. mindspore/dataset/vision/py_transforms.py +5 -5
  86. mindspore/dataset/vision/py_transforms_util.py +2 -0
  87. mindspore/dataset/vision/transforms.py +160 -161
  88. mindspore/dataset/vision/utils.py +3 -3
  89. mindspore/experimental/map_parameter.py +38 -26
  90. mindspore/include/OWNERS +0 -1
  91. mindspore/include/api/callback/callback.h +9 -13
  92. mindspore/include/api/callback/ckpt_saver.h +2 -2
  93. mindspore/include/api/callback/loss_monitor.h +2 -2
  94. mindspore/include/api/callback/lr_scheduler.h +5 -5
  95. mindspore/include/api/callback/time_monitor.h +2 -2
  96. mindspore/include/api/callback/train_accuracy.h +4 -6
  97. mindspore/include/api/cfg.h +19 -6
  98. mindspore/include/api/context.h +44 -9
  99. mindspore/include/api/delegate.h +1 -1
  100. mindspore/include/api/metrics/accuracy.h +2 -2
  101. mindspore/include/api/metrics/metrics.h +4 -3
  102. mindspore/include/api/model.h +9 -4
  103. mindspore/include/api/model_parallel_runner.h +2 -2
  104. mindspore/include/api/net.h +12 -11
  105. mindspore/include/api/serialization.h +19 -3
  106. mindspore/include/api/types.h +3 -3
  107. mindspore/include/dataset/constants.h +7 -0
  108. mindspore/include/dataset/text.h +59 -0
  109. mindspore/include/mindapi/base/type_id.h +1 -0
  110. mindspore/lib/libdnnl.so.2 +0 -0
  111. mindspore/lib/libicudata.so.69 +0 -0
  112. mindspore/lib/libicui18n.so.69 +0 -0
  113. mindspore/lib/libicuuc.so.69 +0 -0
  114. mindspore/lib/libmindspore.so +0 -0
  115. mindspore/lib/libmindspore_backend.so +0 -0
  116. mindspore/lib/libmindspore_common.so +0 -0
  117. mindspore/lib/libmindspore_core.so +0 -0
  118. mindspore/lib/libmindspore_glog.so.0 +0 -0
  119. mindspore/lib/libmindspore_gpr.so.15 +0 -0
  120. mindspore/lib/libmindspore_grpc++.so.1 +0 -0
  121. mindspore/lib/libmindspore_grpc.so.15 +0 -0
  122. mindspore/lib/libmindspore_shared_lib.so +0 -0
  123. mindspore/lib/libmpi_adapter.so +0 -0
  124. mindspore/lib/libmpi_collective.so +0 -0
  125. mindspore/lib/libnnacl.so +0 -0
  126. mindspore/lib/libopencv_core.so.4.5 +0 -0
  127. mindspore/lib/libopencv_imgcodecs.so.4.5 +0 -0
  128. mindspore/lib/libopencv_imgproc.so.4.5 +0 -0
  129. mindspore/lib/libps_cache.so +0 -0
  130. mindspore/lib/plugin/ascend/libakg.so +0 -0
  131. mindspore/lib/plugin/ascend/libascend_collective.so +0 -0
  132. mindspore/lib/plugin/ascend/libdvpp_utils.so +0 -0
  133. mindspore/lib/plugin/ascend/libhccl_plugin.so +0 -0
  134. mindspore/lib/plugin/ascend/libmindspore_aicpu_kernels.so +0 -0
  135. mindspore/lib/plugin/ascend/libmindspore_cpu_kernels.so +0 -0
  136. mindspore/lib/plugin/cpu/libakg.so +0 -0
  137. mindspore/lib/plugin/libmindspore_ascend.so.1 +0 -0
  138. mindspore/lib/plugin/{libmindspore_ascend.so → libmindspore_ascend.so.2} +0 -0
  139. mindspore/log.py +1 -1
  140. mindspore/mindrecord/filereader.py +18 -0
  141. mindspore/mindrecord/filewriter.py +197 -34
  142. mindspore/mindrecord/shardreader.py +9 -0
  143. mindspore/mindrecord/shardwriter.py +1 -1
  144. mindspore/mindrecord/tools/cifar100_to_mr.py +3 -3
  145. mindspore/mindrecord/tools/cifar10_to_mr.py +3 -3
  146. mindspore/mindrecord/tools/csv_to_mr.py +3 -3
  147. mindspore/mindrecord/tools/imagenet_to_mr.py +16 -11
  148. mindspore/mindrecord/tools/mnist_to_mr.py +2 -2
  149. mindspore/mindrecord/tools/tfrecord_to_mr.py +6 -6
  150. mindspore/nn/__init__.py +0 -4
  151. mindspore/nn/cell.py +204 -132
  152. mindspore/nn/dynamic_lr.py +1 -1
  153. mindspore/nn/grad/cell_grad.py +7 -6
  154. mindspore/nn/layer/__init__.py +5 -4
  155. mindspore/nn/layer/activation.py +40 -89
  156. mindspore/nn/layer/basic.py +255 -624
  157. mindspore/nn/layer/channel_shuffle.py +7 -6
  158. mindspore/nn/layer/combined.py +1 -1
  159. mindspore/nn/layer/container.py +41 -4
  160. mindspore/nn/layer/conv.py +64 -28
  161. mindspore/nn/layer/dense.py +9 -8
  162. mindspore/nn/layer/embedding.py +27 -25
  163. mindspore/nn/layer/image.py +53 -46
  164. mindspore/nn/layer/math.py +97 -105
  165. mindspore/nn/layer/normalization.py +117 -86
  166. mindspore/nn/layer/padding.py +185 -95
  167. mindspore/nn/layer/pooling.py +817 -414
  168. mindspore/nn/layer/rnn_cells.py +10 -15
  169. mindspore/nn/layer/rnns.py +37 -38
  170. mindspore/nn/layer/thor_layer.py +11 -12
  171. mindspore/nn/layer/timedistributed.py +5 -5
  172. mindspore/nn/layer/transformer.py +701 -0
  173. mindspore/nn/learning_rate_schedule.py +8 -8
  174. mindspore/nn/loss/__init__.py +5 -4
  175. mindspore/nn/loss/loss.py +334 -199
  176. mindspore/nn/optim/ada_grad.py +6 -6
  177. mindspore/nn/optim/adadelta.py +2 -3
  178. mindspore/nn/optim/adafactor.py +4 -5
  179. mindspore/nn/optim/adam.py +126 -62
  180. mindspore/nn/optim/adamax.py +3 -4
  181. mindspore/nn/optim/adasum.py +6 -6
  182. mindspore/nn/optim/asgd.py +2 -2
  183. mindspore/nn/optim/ftrl.py +67 -38
  184. mindspore/nn/optim/lamb.py +4 -5
  185. mindspore/nn/optim/lars.py +2 -2
  186. mindspore/nn/optim/lazyadam.py +43 -4
  187. mindspore/nn/optim/momentum.py +6 -5
  188. mindspore/nn/optim/optimizer.py +3 -1
  189. mindspore/nn/optim/proximal_ada_grad.py +2 -2
  190. mindspore/nn/optim/rmsprop.py +1 -1
  191. mindspore/nn/optim/rprop.py +8 -9
  192. mindspore/nn/optim/sgd.py +19 -13
  193. mindspore/nn/optim/thor.py +10 -15
  194. mindspore/nn/probability/__init__.py +0 -2
  195. mindspore/nn/probability/bijector/bijector.py +4 -4
  196. mindspore/nn/probability/bijector/invert.py +1 -1
  197. mindspore/nn/probability/bijector/softplus.py +2 -2
  198. mindspore/nn/probability/bnn_layers/dense_variational.py +1 -1
  199. mindspore/nn/probability/bnn_layers/layer_distribution.py +2 -2
  200. mindspore/nn/probability/distribution/_utils/utils.py +9 -15
  201. mindspore/nn/probability/distribution/bernoulli.py +3 -3
  202. mindspore/nn/probability/distribution/beta.py +1 -1
  203. mindspore/nn/probability/distribution/categorical.py +5 -7
  204. mindspore/nn/probability/distribution/cauchy.py +3 -3
  205. mindspore/nn/probability/distribution/distribution.py +2 -2
  206. mindspore/nn/probability/distribution/exponential.py +2 -2
  207. mindspore/nn/probability/distribution/gamma.py +3 -3
  208. mindspore/nn/probability/distribution/geometric.py +1 -1
  209. mindspore/nn/probability/distribution/gumbel.py +3 -3
  210. mindspore/nn/probability/distribution/half_normal.py +15 -11
  211. mindspore/nn/probability/distribution/laplace.py +16 -13
  212. mindspore/nn/probability/distribution/logistic.py +2 -2
  213. mindspore/nn/probability/distribution/normal.py +1 -1
  214. mindspore/nn/probability/distribution/poisson.py +1 -1
  215. mindspore/nn/probability/distribution/student_t.py +20 -15
  216. mindspore/nn/probability/distribution/transformed_distribution.py +4 -4
  217. mindspore/nn/probability/distribution/uniform.py +2 -2
  218. mindspore/nn/reinforcement/_tensors_queue.py +3 -3
  219. mindspore/nn/reinforcement/tensor_array.py +2 -2
  220. mindspore/nn/sparse/sparse.py +2 -2
  221. mindspore/nn/wrap/cell_wrapper.py +27 -10
  222. mindspore/nn/wrap/grad_reducer.py +2 -2
  223. mindspore/nn/wrap/loss_scale.py +40 -24
  224. mindspore/numpy/array_creations.py +33 -22
  225. mindspore/numpy/array_ops.py +35 -30
  226. mindspore/numpy/logic_ops.py +6 -27
  227. mindspore/numpy/math_ops.py +22 -19
  228. mindspore/numpy/utils.py +1 -1
  229. mindspore/numpy/utils_const.py +108 -58
  230. mindspore/ops/_constants.py +0 -6
  231. mindspore/ops/_grad/__init__.py +2 -1
  232. mindspore/ops/_grad/grad_array_ops.py +86 -117
  233. mindspore/ops/_grad/grad_base.py +23 -1
  234. mindspore/ops/_grad/grad_clip_ops.py +2 -3
  235. mindspore/ops/_grad/grad_comm_ops.py +34 -24
  236. mindspore/ops/_grad/grad_implementations.py +9 -45
  237. mindspore/ops/_grad/grad_inner_ops.py +47 -4
  238. mindspore/ops/_grad/grad_math_ops.py +142 -117
  239. mindspore/ops/_grad/grad_nn_ops.py +71 -165
  240. mindspore/ops/_grad/grad_sequence_ops.py +296 -0
  241. mindspore/ops/_grad/grad_sparse.py +7 -6
  242. mindspore/ops/_grad_experimental/__init__.py +1 -0
  243. mindspore/ops/_grad_experimental/grad_array_ops.py +150 -15
  244. mindspore/ops/_grad_experimental/grad_image_ops.py +16 -7
  245. mindspore/ops/_grad_experimental/grad_inner_ops.py +1 -22
  246. mindspore/ops/_grad_experimental/grad_linalg_ops.py +4 -11
  247. mindspore/ops/_grad_experimental/grad_math_ops.py +210 -89
  248. mindspore/ops/_grad_experimental/grad_nn_ops.py +26 -22
  249. mindspore/ops/_grad_experimental/grad_scalar_ops.py +112 -0
  250. mindspore/ops/_grad_experimental/grad_sparse_ops.py +49 -8
  251. mindspore/ops/_op_impl/_custom_op/batch_matmul_impl.py +1 -1
  252. mindspore/ops/_op_impl/_custom_op/batchnorm_fold.py +2 -2
  253. mindspore/ops/_op_impl/_custom_op/batchnorm_fold2.py +2 -2
  254. mindspore/ops/_op_impl/_custom_op/batchnorm_fold2_grad.py +2 -2
  255. mindspore/ops/_op_impl/_custom_op/batchnorm_fold2_grad_reduce.py +4 -4
  256. mindspore/ops/_op_impl/_custom_op/batchnorm_fold_grad.py +3 -3
  257. mindspore/ops/_op_impl/_custom_op/cholesky_trsm_impl.py +1 -1
  258. mindspore/ops/_op_impl/_custom_op/correction_mul.py +2 -2
  259. mindspore/ops/_op_impl/_custom_op/correction_mul_grad.py +2 -2
  260. mindspore/ops/_op_impl/_custom_op/dsd_back_impl.py +1 -5
  261. mindspore/ops/_op_impl/_custom_op/dsd_impl.py +1 -1
  262. mindspore/ops/_op_impl/_custom_op/fake_learned_scale_quant_perchannel.py +2 -2
  263. mindspore/ops/_op_impl/_custom_op/fake_learned_scale_quant_perchannel_grad.py +2 -2
  264. mindspore/ops/_op_impl/_custom_op/fake_learned_scale_quant_perchannel_grad_reduce.py +2 -2
  265. mindspore/ops/_op_impl/_custom_op/fake_learned_scale_quant_perlayer.py +2 -2
  266. mindspore/ops/_op_impl/_custom_op/fake_learned_scale_quant_perlayer_grad.py +2 -2
  267. mindspore/ops/_op_impl/_custom_op/fake_learned_scale_quant_perlayer_grad_reduce.py +2 -2
  268. mindspore/ops/_op_impl/_custom_op/fake_quant_perchannel.py +2 -2
  269. mindspore/ops/_op_impl/_custom_op/fake_quant_perchannel_grad.py +2 -2
  270. mindspore/ops/_op_impl/_custom_op/fake_quant_perlayer.py +2 -2
  271. mindspore/ops/_op_impl/_custom_op/fake_quant_perlayer_grad.py +2 -2
  272. mindspore/ops/_op_impl/_custom_op/fused_abs_max1_impl.py +1 -1
  273. mindspore/ops/_op_impl/_custom_op/img2col_impl.py +1 -1
  274. mindspore/ops/_op_impl/_custom_op/matmul_cube_dense_left_impl.py +2 -2
  275. mindspore/ops/_op_impl/_custom_op/matmul_cube_dense_right_impl.py +1 -1
  276. mindspore/ops/_op_impl/_custom_op/matmul_cube_fracz_left_cast_impl.py +1 -1
  277. mindspore/ops/_op_impl/_custom_op/matmul_cube_fracz_right_mul_impl.py +1 -1
  278. mindspore/ops/_op_impl/_custom_op/matmul_cube_impl.py +2 -2
  279. mindspore/ops/_op_impl/_custom_op/matmul_dds_impl.py +0 -4
  280. mindspore/ops/_op_impl/_custom_op/matrix_combine_impl.py +1 -1
  281. mindspore/ops/_op_impl/_custom_op/minmax_update_perchannel.py +2 -2
  282. mindspore/ops/_op_impl/_custom_op/minmax_update_perlayer.py +2 -2
  283. mindspore/ops/_op_impl/_custom_op/transpose02314_impl.py +1 -1
  284. mindspore/ops/_op_impl/aicpu/__init__.py +236 -4
  285. mindspore/ops/_op_impl/aicpu/abs.py +36 -0
  286. mindspore/ops/_op_impl/aicpu/{adaptive_avg_pool_2d_v1.py → adaptive_avg_pool_2d.py} +6 -5
  287. mindspore/ops/_op_impl/aicpu/adaptive_avg_pool_2d_grad.py +34 -0
  288. mindspore/ops/_op_impl/aicpu/add.py +43 -0
  289. mindspore/ops/_op_impl/aicpu/addcdiv.py +0 -32
  290. mindspore/ops/_op_impl/aicpu/addcmul.py +0 -84
  291. mindspore/ops/_op_impl/aicpu/affine_grid_grad.py +35 -0
  292. mindspore/ops/_op_impl/aicpu/batch_matmul.py +43 -43
  293. mindspore/ops/_op_impl/aicpu/bernoulli.py +48 -0
  294. mindspore/{compression/common/__init__.py → ops/_op_impl/aicpu/bessel_i0.py} +15 -8
  295. mindspore/ops/_op_impl/aicpu/channel_shuffle.py +40 -0
  296. mindspore/ops/_op_impl/aicpu/conj.py +11 -0
  297. mindspore/ops/_op_impl/aicpu/cumulative_logsumexp.py +0 -3
  298. mindspore/ops/_op_impl/aicpu/deformable_offsets.py +38 -0
  299. mindspore/ops/_op_impl/aicpu/deformable_offsets_grad.py +43 -0
  300. mindspore/ops/_op_impl/aicpu/{adaptive_avg_pool_2d_grad_v1.py → digamma.py} +7 -9
  301. mindspore/ops/_op_impl/aicpu/flatten.py +1 -0
  302. mindspore/ops/_op_impl/aicpu/fmax.py +36 -0
  303. mindspore/ops/_op_impl/aicpu/fmin.py +37 -0
  304. mindspore/ops/_op_impl/aicpu/fractional_max_pool3d_with_fixed_ksize.py +1 -1
  305. mindspore/ops/_op_impl/aicpu/fse_decode.py +43 -0
  306. mindspore/ops/_op_impl/aicpu/greater.py +41 -0
  307. mindspore/ops/_op_impl/aicpu/greater_equal.py +41 -0
  308. mindspore/ops/_op_impl/aicpu/index_put.py +50 -0
  309. mindspore/ops/_op_impl/aicpu/less.py +41 -0
  310. mindspore/{nn/probability/infer/variational/__init__.py → ops/_op_impl/aicpu/lgamma.py} +16 -10
  311. mindspore/ops/_op_impl/aicpu/mirror_pad.py +0 -4
  312. mindspore/ops/_op_impl/aicpu/mirror_pad_grad.py +0 -4
  313. mindspore/ops/_op_impl/aicpu/mul.py +3 -1
  314. mindspore/ops/_op_impl/aicpu/multinomial.py +14 -6
  315. mindspore/ops/_op_impl/aicpu/nllloss.py +38 -0
  316. mindspore/ops/_op_impl/aicpu/nllloss_grad.py +39 -0
  317. mindspore/ops/_op_impl/aicpu/ones_like.py +0 -2
  318. mindspore/ops/_op_impl/aicpu/polar.py +32 -0
  319. mindspore/ops/_op_impl/aicpu/polygamma.py +34 -0
  320. mindspore/ops/_op_impl/aicpu/quant_dtype_cast.py +40 -0
  321. mindspore/ops/_op_impl/aicpu/quantile.py +35 -0
  322. mindspore/ops/_op_impl/aicpu/ragged_tensor_to_sparse.py +73 -0
  323. mindspore/ops/_op_impl/aicpu/randperm_v2.py +41 -0
  324. mindspore/ops/_op_impl/aicpu/resize_bicubic.py +2 -8
  325. mindspore/ops/_op_impl/aicpu/resize_bicubic_grad.py +1 -1
  326. mindspore/ops/_op_impl/aicpu/resize_v2.py +68 -0
  327. mindspore/ops/_op_impl/aicpu/resize_v2_grad.py +68 -0
  328. mindspore/ops/_op_impl/aicpu/scatter_elements.py +4 -0
  329. mindspore/ops/_op_impl/aicpu/scatter_nd_update.py +2 -0
  330. mindspore/ops/_op_impl/aicpu/sequence_add.py +34 -0
  331. mindspore/ops/_op_impl/aicpu/sequence_add_offset.py +34 -0
  332. mindspore/ops/_op_impl/aicpu/sequence_addn.py +38 -0
  333. mindspore/ops/_op_impl/aicpu/smooth_l1_loss.py +35 -0
  334. mindspore/ops/_op_impl/aicpu/smooth_l1_loss_grad.py +37 -0
  335. mindspore/ops/_op_impl/aicpu/sparse_apply_adagrad_da.py +0 -24
  336. mindspore/ops/_op_impl/aicpu/sparse_cross.py +42 -0
  337. mindspore/ops/_op_impl/aicpu/sparse_slice.py +4 -0
  338. mindspore/ops/_op_impl/aicpu/sparse_slice_grad.py +6 -0
  339. mindspore/ops/_op_impl/aicpu/tensor_scatter_update.py +59 -0
  340. mindspore/ops/_op_impl/aicpu/trans_data.py +1 -0
  341. mindspore/ops/_op_impl/aicpu/tril_indices.py +34 -0
  342. mindspore/ops/_op_impl/aicpu/uniform.py +34 -0
  343. mindspore/ops/_op_impl/aicpu/uniform_candidate_sampler.py +1 -0
  344. mindspore/ops/_op_impl/aicpu/unique_consecutive.py +10 -2
  345. mindspore/ops/_op_impl/cpu/dynamic_shape.py +5 -1
  346. mindspore/ops/_op_impl/cpu/sparse_slice.py +4 -0
  347. mindspore/ops/_op_impl/cpu/sparse_slice_grad.py +6 -0
  348. mindspore/ops/_op_impl/cpu/tensor_shape.py +5 -1
  349. mindspore/ops/_op_impl/tbe/__init__.py +27 -611
  350. mindspore/ops/_op_impl/tbe/assign_add_ds.py +1 -0
  351. mindspore/ops/_op_impl/tbe/atomic_addr_clean.py +1 -1
  352. mindspore/ops/_op_impl/tbe/avg_pool_3d_grad.py +1 -1
  353. mindspore/ops/_op_impl/tbe/batch_matmul_ds.py +1 -0
  354. mindspore/ops/_op_impl/tbe/batch_to_space.py +1 -1
  355. mindspore/ops/_op_impl/tbe/batch_to_space_nd.py +1 -1
  356. mindspore/ops/_op_impl/tbe/bn_infer_grad.py +4 -2
  357. mindspore/ops/_op_impl/tbe/bn_training_update.py +0 -1
  358. mindspore/ops/_op_impl/tbe/bn_training_update_ds.py +0 -1
  359. mindspore/ops/_op_impl/tbe/broadcast_to_ds.py +6 -4
  360. mindspore/ops/_op_impl/tbe/cast.py +0 -2
  361. mindspore/ops/_op_impl/tbe/cast_ds.py +3 -3
  362. mindspore/ops/_op_impl/tbe/data_format_dim_map_ds.py +1 -0
  363. mindspore/ops/_op_impl/tbe/depthwise_conv2d.py +2 -2
  364. mindspore/ops/_op_impl/tbe/dynamic_atomic_addr_clean.py +1 -1
  365. mindspore/ops/_op_impl/tbe/gather_nd.py +1 -0
  366. mindspore/ops/_op_impl/tbe/{index_add.py → inplace_index_add.py} +3 -6
  367. mindspore/ops/_op_impl/tbe/matmul_ds.py +2 -0
  368. mindspore/ops/_op_impl/tbe/npu_clear_float_status_v2.py +35 -0
  369. mindspore/ops/_op_impl/tbe/npu_get_float_status_v2.py +35 -0
  370. mindspore/ops/_op_impl/tbe/scatter_mul.py +2 -0
  371. mindspore/ops/_op_impl/tbe/scatter_nd_add.py +0 -2
  372. mindspore/ops/_op_impl/tbe/space_to_batch.py +1 -1
  373. mindspore/ops/_op_impl/tbe/space_to_batch_nd.py +1 -1
  374. mindspore/ops/_op_impl/tbe/trans_data_ds.py +15 -5
  375. mindspore/ops/_register_for_op.py +1 -0
  376. mindspore/ops/_utils/__init__.py +1 -2
  377. mindspore/ops/_utils/utils.py +19 -40
  378. mindspore/ops/_vmap/vmap_array_ops.py +116 -38
  379. mindspore/ops/_vmap/vmap_base.py +16 -9
  380. mindspore/ops/_vmap/vmap_convolution_ops.py +7 -10
  381. mindspore/ops/_vmap/vmap_grad_math_ops.py +4 -4
  382. mindspore/ops/_vmap/vmap_grad_nn_ops.py +7 -5
  383. mindspore/ops/_vmap/vmap_image_ops.py +12 -5
  384. mindspore/ops/_vmap/vmap_math_ops.py +46 -5
  385. mindspore/ops/_vmap/vmap_nn_ops.py +15 -21
  386. mindspore/ops/_vmap/vmap_random_ops.py +1 -1
  387. mindspore/ops/bprop_mindir/AdaptiveAvgPool2D_bprop.mindir +0 -0
  388. mindspore/ops/bprop_mindir/AdaptiveMaxPool2D_bprop.mindir +0 -0
  389. mindspore/ops/bprop_mindir/AvgPool3D_bprop.mindir +150 -0
  390. mindspore/ops/bprop_mindir/AvgPool_bprop.mindir +66 -0
  391. mindspore/ops/bprop_mindir/BCEWithLogitsLoss_bprop.mindir +0 -0
  392. mindspore/ops/bprop_mindir/BatchNormGrad_bprop.mindir +0 -0
  393. mindspore/ops/bprop_mindir/BiasAddGrad_bprop.mindir +0 -0
  394. mindspore/ops/bprop_mindir/BinaryCrossEntropy_bprop.mindir +33 -0
  395. mindspore/ops/bprop_mindir/BroadcastTo_bprop.mindir +220 -106
  396. mindspore/ops/bprop_mindir/CTCLoss_bprop.mindir +0 -0
  397. mindspore/ops/bprop_mindir/Conv2DBackpropFilter_bprop.mindir +240 -0
  398. mindspore/ops/bprop_mindir/Conv2DBackpropInput_bprop.mindir +247 -0
  399. mindspore/ops/bprop_mindir/Conv2DTranspose_bprop.mindir +247 -0
  400. mindspore/ops/bprop_mindir/Conv3DTranspose_bprop.mindir +315 -0
  401. mindspore/ops/bprop_mindir/Conv3D_bprop.mindir +278 -0
  402. mindspore/ops/bprop_mindir/DeformableOffsets_bprop.mindir +58 -0
  403. mindspore/ops/bprop_mindir/DepthwiseConv2dNative_bprop.mindir +138 -0
  404. mindspore/ops/bprop_mindir/Dropout2D_bprop.mindir +0 -0
  405. mindspore/ops/bprop_mindir/Dropout3D_bprop.mindir +0 -0
  406. mindspore/ops/bprop_mindir/DropoutDoMask_bprop.mindir +22 -23
  407. mindspore/ops/bprop_mindir/DropoutGenMask_bprop.mindir +16 -17
  408. mindspore/ops/bprop_mindir/DropoutGrad_bprop.mindir +27 -0
  409. mindspore/ops/bprop_mindir/Dropout_bprop.mindir +0 -0
  410. mindspore/ops/bprop_mindir/DynamicGRUV2_bprop.mindir +0 -0
  411. mindspore/ops/bprop_mindir/DynamicRNN_bprop.mindir +0 -0
  412. mindspore/ops/bprop_mindir/Elu_bprop.mindir +16 -0
  413. mindspore/ops/bprop_mindir/EmbeddingLookup_bprop.mindir +0 -0
  414. mindspore/ops/bprop_mindir/ExpandDims_bprop.mindir +39 -41
  415. mindspore/ops/bprop_mindir/FastGeLU_bprop.mindir +16 -0
  416. mindspore/ops/bprop_mindir/Flatten_bprop.mindir +41 -43
  417. mindspore/ops/bprop_mindir/GatherNd_bprop.mindir +51 -57
  418. mindspore/ops/bprop_mindir/Gather_bprop.mindir +0 -0
  419. mindspore/ops/bprop_mindir/HSigmoid_bprop.mindir +16 -0
  420. mindspore/ops/bprop_mindir/HSwish_bprop.mindir +16 -0
  421. mindspore/ops/bprop_mindir/InstanceNorm_bprop.mindir +0 -0
  422. mindspore/ops/bprop_mindir/KLDivLoss_bprop.mindir +126 -0
  423. mindspore/ops/bprop_mindir/L2Loss_bprop.mindir +15 -0
  424. mindspore/ops/bprop_mindir/L2Normalize_bprop.mindir +30 -0
  425. mindspore/ops/bprop_mindir/LRN_bprop.mindir +43 -0
  426. mindspore/ops/bprop_mindir/LayerNormGrad_bprop.mindir +0 -0
  427. mindspore/ops/bprop_mindir/LogSoftmax_bprop.mindir +23 -0
  428. mindspore/ops/bprop_mindir/MaxPool3DGradGrad_bprop.mindir +74 -0
  429. mindspore/ops/bprop_mindir/MaxPool3DGrad_bprop.mindir +74 -0
  430. mindspore/ops/bprop_mindir/MaxPool3D_bprop.mindir +75 -0
  431. mindspore/ops/bprop_mindir/MaxPoolGradGrad_bprop.mindir +65 -0
  432. mindspore/ops/bprop_mindir/MaxPoolWithArgmax_bprop.mindir +0 -0
  433. mindspore/ops/bprop_mindir/MirrorPad_bprop.mindir +27 -0
  434. mindspore/ops/bprop_mindir/Mish_bprop.mindir +35 -0
  435. mindspore/ops/bprop_mindir/MulNoNan_bprop.mindir +0 -0
  436. mindspore/ops/bprop_mindir/NLLLoss_bprop.mindir +0 -0
  437. mindspore/ops/bprop_mindir/OneHot_bprop.mindir +24 -25
  438. mindspore/ops/bprop_mindir/PReLU_bprop.mindir +0 -0
  439. mindspore/ops/bprop_mindir/Pad_bprop.mindir +0 -0
  440. mindspore/ops/bprop_mindir/Padding_bprop.mindir +0 -0
  441. mindspore/ops/bprop_mindir/RNNTLoss_bprop.mindir +29 -0
  442. mindspore/ops/bprop_mindir/ROIAlign_bprop.mindir +82 -0
  443. mindspore/ops/bprop_mindir/ReLU6_bprop.mindir +16 -0
  444. mindspore/ops/bprop_mindir/ReLUV2_bprop.mindir +0 -0
  445. mindspore/ops/bprop_mindir/ReluGrad_bprop.mindir +18 -19
  446. mindspore/ops/bprop_mindir/Reshape_bprop.mindir +53 -53
  447. mindspore/ops/bprop_mindir/ResizeBilinear_bprop.mindir +29 -0
  448. mindspore/ops/bprop_mindir/ResizeNearestNeighbor_bprop.mindir +77 -85
  449. mindspore/ops/bprop_mindir/SeLU_bprop.mindir +21 -0
  450. mindspore/ops/bprop_mindir/SigmoidCrossEntropyWithLogits_bprop.mindir +21 -0
  451. mindspore/ops/bprop_mindir/SigmoidGrad_bprop.mindir +0 -0
  452. mindspore/ops/bprop_mindir/Sigmoid_bprop.mindir +16 -0
  453. mindspore/ops/bprop_mindir/SmoothL1Loss_bprop.mindir +36 -0
  454. mindspore/ops/bprop_mindir/SoftmaxCrossEntropyWithLogits_bprop.mindir +0 -0
  455. mindspore/ops/bprop_mindir/Softplus_bprop.mindir +16 -0
  456. mindspore/ops/bprop_mindir/Softsign_bprop.mindir +33 -0
  457. mindspore/ops/bprop_mindir/SparseSoftmaxCrossEntropyWithLogits_bprop.mindir +0 -0
  458. mindspore/ops/bprop_mindir/Squeeze_bprop.mindir +37 -39
  459. mindspore/ops/bprop_mindir/StridedSlice_bprop.mindir +70 -72
  460. mindspore/ops/bprop_mindir/TanhGrad_bprop.mindir +0 -0
  461. mindspore/ops/bprop_mindir/Tanh_bprop.mindir +66 -0
  462. mindspore/ops/bprop_mindir/Tile_bprop.mindir +0 -0
  463. mindspore/ops/bprop_mindir/TopK_bprop.mindir +0 -0
  464. mindspore/ops/bprop_mindir/TupleGetItem_bprop.mindir +17 -17
  465. mindspore/ops/bprop_mindir/UpsampleNearest3D_bprop.mindir +32 -0
  466. mindspore/ops/bprop_mindir/UpsampleTrilinear3D_bprop.mindir +38 -0
  467. mindspore/ops/bprop_mindir/generate_mindir.py +2 -0
  468. mindspore/ops/composite/__init__.py +7 -8
  469. mindspore/ops/composite/base.py +101 -47
  470. mindspore/ops/composite/math_ops.py +188 -158
  471. mindspore/ops/composite/multitype_ops/_compile_utils.py +415 -170
  472. mindspore/ops/composite/multitype_ops/_constexpr_utils.py +142 -87
  473. mindspore/ops/composite/multitype_ops/add_impl.py +6 -1
  474. mindspore/ops/composite/multitype_ops/div_impl.py +2 -3
  475. mindspore/ops/composite/multitype_ops/getitem_impl.py +31 -3
  476. mindspore/ops/composite/multitype_ops/greater_equal_impl.py +31 -0
  477. mindspore/ops/composite/multitype_ops/greater_impl.py +31 -0
  478. mindspore/ops/composite/multitype_ops/in_impl.py +9 -0
  479. mindspore/ops/composite/multitype_ops/less_equal_impl.py +31 -0
  480. mindspore/ops/composite/multitype_ops/less_impl.py +31 -0
  481. mindspore/ops/composite/multitype_ops/mul_impl.py +21 -5
  482. mindspore/ops/composite/multitype_ops/not_in_impl.py +9 -0
  483. mindspore/ops/composite/multitype_ops/ones_like_impl.py +2 -4
  484. mindspore/ops/composite/multitype_ops/setitem_impl.py +21 -3
  485. mindspore/ops/composite/multitype_ops/sub_impl.py +1 -1
  486. mindspore/ops/composite/multitype_ops/zeros_like_impl.py +35 -4
  487. mindspore/ops/function/__init__.py +152 -8
  488. mindspore/ops/function/array_func.py +2555 -674
  489. mindspore/ops/function/clip_func.py +209 -13
  490. mindspore/ops/function/debug_func.py +2 -2
  491. mindspore/ops/function/grad/__init__.py +2 -1
  492. mindspore/ops/function/grad/grad_func.py +147 -62
  493. mindspore/ops/function/image_func.py +54 -38
  494. mindspore/ops/function/linalg_func.py +167 -16
  495. mindspore/ops/function/math_func.py +4849 -1492
  496. mindspore/ops/function/nn_func.py +2573 -988
  497. mindspore/ops/function/other_func.py +115 -0
  498. mindspore/ops/function/parameter_func.py +3 -3
  499. mindspore/ops/function/random_func.py +790 -73
  500. mindspore/ops/function/sparse_func.py +98 -78
  501. mindspore/ops/function/sparse_unary_func.py +54 -53
  502. mindspore/ops/function/spectral_func.py +27 -24
  503. mindspore/ops/function/vmap_func.py +22 -2
  504. mindspore/ops/functional.py +97 -37
  505. mindspore/ops/op_info_register.py +70 -28
  506. mindspore/ops/operations/__init__.py +47 -14
  507. mindspore/ops/operations/_csr_ops.py +7 -7
  508. mindspore/ops/operations/_embedding_cache_ops.py +5 -5
  509. mindspore/ops/operations/_grad_ops.py +276 -187
  510. mindspore/ops/operations/_inner_ops.py +319 -113
  511. mindspore/ops/operations/_ms_kernel.py +10 -8
  512. mindspore/ops/operations/_ocr_ops.py +9 -9
  513. mindspore/ops/operations/_opaque_predicate_registry.py +4 -0
  514. mindspore/ops/operations/_quant_ops.py +137 -102
  515. mindspore/ops/operations/_rl_inner_ops.py +121 -60
  516. mindspore/ops/operations/_scalar_ops.py +466 -0
  517. mindspore/ops/operations/_sequence_ops.py +1004 -2
  518. mindspore/ops/operations/_tensor_array.py +10 -11
  519. mindspore/ops/operations/_thor_ops.py +1 -1
  520. mindspore/ops/operations/array_ops.py +801 -466
  521. mindspore/ops/operations/comm_ops.py +51 -49
  522. mindspore/ops/operations/control_ops.py +2 -2
  523. mindspore/ops/operations/custom_ops.py +123 -44
  524. mindspore/ops/operations/debug_ops.py +24 -24
  525. mindspore/ops/operations/image_ops.py +240 -153
  526. mindspore/ops/operations/inner_ops.py +34 -50
  527. mindspore/ops/operations/linalg_ops.py +31 -9
  528. mindspore/ops/operations/math_ops.py +988 -757
  529. mindspore/ops/operations/nn_ops.py +965 -819
  530. mindspore/ops/operations/other_ops.py +51 -40
  531. mindspore/ops/operations/random_ops.py +204 -122
  532. mindspore/ops/operations/rl_ops.py +8 -9
  533. mindspore/ops/operations/sparse_ops.py +254 -93
  534. mindspore/ops/operations/spectral_ops.py +35 -3
  535. mindspore/ops/primitive.py +111 -9
  536. mindspore/parallel/_auto_parallel_context.py +189 -83
  537. mindspore/parallel/_offload_context.py +185 -0
  538. mindspore/parallel/_parallel_serialization.py +99 -7
  539. mindspore/parallel/_ps_context.py +9 -5
  540. mindspore/parallel/_recovery_context.py +1 -1
  541. mindspore/parallel/_tensor.py +7 -1
  542. mindspore/{nn/transformer → parallel/_transformer}/__init__.py +6 -6
  543. mindspore/{nn/transformer → parallel/_transformer}/layers.py +6 -37
  544. mindspore/{nn/transformer → parallel/_transformer}/loss.py +4 -7
  545. mindspore/{nn/transformer → parallel/_transformer}/moe.py +20 -16
  546. mindspore/{nn/transformer → parallel/_transformer}/op_parallel_config.py +3 -3
  547. mindspore/{nn/transformer → parallel/_transformer}/transformer.py +48 -111
  548. mindspore/parallel/_utils.py +1 -2
  549. mindspore/parallel/algo_parameter_config.py +1 -1
  550. mindspore/parallel/checkpoint_transform.py +37 -34
  551. mindspore/parallel/shard.py +17 -18
  552. mindspore/profiler/common/validator/validate_path.py +2 -2
  553. mindspore/profiler/envprofiling.py +69 -47
  554. mindspore/profiler/parser/ascend_timeline_generator.py +49 -42
  555. mindspore/profiler/parser/base_timeline_generator.py +49 -56
  556. mindspore/profiler/parser/cpu_gpu_timeline_generator.py +98 -78
  557. mindspore/profiler/parser/hwts_log_parser.py +1 -1
  558. mindspore/profiler/parser/integrator.py +15 -14
  559. mindspore/profiler/parser/minddata_analyzer.py +2 -2
  560. mindspore/profiler/parser/msadvisor_analyzer.py +12 -25
  561. mindspore/profiler/parser/msadvisor_parser.py +2 -4
  562. mindspore/profiler/parser/optime_parser.py +17 -18
  563. mindspore/profiler/parser/profiler_info.py +2 -1
  564. mindspore/profiler/profiling.py +218 -186
  565. mindspore/rewrite/__init__.py +3 -1
  566. mindspore/rewrite/api/node.py +1 -114
  567. mindspore/rewrite/api/node_type.py +3 -0
  568. mindspore/rewrite/api/pattern_engine.py +31 -1
  569. mindspore/rewrite/api/scoped_value.py +4 -4
  570. mindspore/rewrite/api/symbol_tree.py +3 -78
  571. mindspore/rewrite/api/tree_node_helper.py +1 -1
  572. mindspore/rewrite/ast_creator_register.py +1 -0
  573. mindspore/rewrite/ast_helpers/__init__.py +2 -2
  574. mindspore/rewrite/ast_helpers/ast_creator.py +1 -2
  575. mindspore/rewrite/ast_helpers/ast_finder.py +65 -0
  576. mindspore/rewrite/ast_helpers/ast_modifier.py +11 -3
  577. mindspore/rewrite/ast_transformers/flatten_recursive_stmt.py +18 -2
  578. mindspore/rewrite/namespace.py +0 -2
  579. mindspore/rewrite/node.py +157 -11
  580. mindspore/rewrite/parsers/assign_parser.py +231 -53
  581. mindspore/rewrite/parsers/class_def_parser.py +187 -109
  582. mindspore/rewrite/parsers/for_parser.py +24 -14
  583. mindspore/rewrite/parsers/function_def_parser.py +21 -4
  584. mindspore/rewrite/parsers/if_parser.py +6 -2
  585. mindspore/rewrite/sparsify/__init__.py +0 -0
  586. mindspore/rewrite/sparsify/sparse_transformer.py +448 -0
  587. mindspore/rewrite/sparsify/sparsify.py +109 -0
  588. mindspore/rewrite/sparsify/utils.py +173 -0
  589. mindspore/rewrite/symbol_tree.py +256 -133
  590. mindspore/rewrite/symbol_tree_builder.py +38 -1
  591. mindspore/run_check/_check_version.py +69 -63
  592. mindspore/run_check/run_check.py +2 -1
  593. mindspore/scipy/linalg.py +10 -114
  594. mindspore/scipy/ops.py +2 -2
  595. mindspore/scipy/ops_wrapper.py +1 -1
  596. mindspore/scipy/optimize/_bfgs.py +1 -1
  597. mindspore/scipy/optimize/_lagrange.py +200 -0
  598. mindspore/scipy/optimize/line_search.py +3 -2
  599. mindspore/scipy/optimize/minimize.py +41 -2
  600. mindspore/scipy/sparse/__init__.py +2 -2
  601. mindspore/scipy/sparse/linalg.py +4 -464
  602. mindspore/scipy/utils.py +1 -1
  603. mindspore/scipy/utils_const.py +7 -1
  604. mindspore/train/__init__.py +1 -1
  605. mindspore/train/_utils.py +28 -5
  606. mindspore/train/amp.py +273 -102
  607. mindspore/train/callback/_backup_and_restore.py +5 -5
  608. mindspore/train/callback/_callback.py +2 -2
  609. mindspore/train/callback/_checkpoint.py +3 -3
  610. mindspore/train/callback/_early_stop.py +3 -3
  611. mindspore/train/callback/_lambda_callback.py +2 -2
  612. mindspore/train/callback/_landscape.py +29 -31
  613. mindspore/train/callback/_loss_monitor.py +3 -3
  614. mindspore/train/callback/_on_request_exit.py +3 -3
  615. mindspore/train/callback/_reduce_lr_on_plateau.py +4 -4
  616. mindspore/train/callback/_summary_collector.py +23 -16
  617. mindspore/train/callback/_time_monitor.py +3 -3
  618. mindspore/train/checkpoint_pb2.py +68 -8
  619. mindspore/train/data_sink.py +15 -3
  620. mindspore/train/dataset_helper.py +10 -15
  621. mindspore/train/loss_scale_manager.py +8 -11
  622. mindspore/train/metrics/__init__.py +1 -1
  623. mindspore/train/metrics/bleu_score.py +1 -1
  624. mindspore/train/metrics/confusion_matrix.py +1 -1
  625. mindspore/train/metrics/cosine_similarity.py +1 -1
  626. mindspore/train/metrics/dice.py +2 -2
  627. mindspore/train/metrics/fbeta.py +1 -1
  628. mindspore/train/metrics/hausdorff_distance.py +4 -3
  629. mindspore/train/metrics/mean_surface_distance.py +2 -2
  630. mindspore/train/metrics/occlusion_sensitivity.py +1 -1
  631. mindspore/train/metrics/perplexity.py +1 -1
  632. mindspore/train/metrics/precision.py +1 -1
  633. mindspore/train/metrics/recall.py +1 -1
  634. mindspore/train/metrics/roc.py +2 -2
  635. mindspore/train/metrics/root_mean_square_surface_distance.py +2 -2
  636. mindspore/train/mind_ir_pb2.py +116 -37
  637. mindspore/train/model.py +45 -28
  638. mindspore/train/serialization.py +295 -188
  639. mindspore/train/summary/_summary_adapter.py +1 -1
  640. mindspore/train/summary/summary_record.py +43 -13
  641. mindspore/train/train_thor/convert_utils.py +2 -2
  642. mindspore/train/train_thor/dataset_helper.py +3 -3
  643. mindspore/version.py +1 -1
  644. {mindspore-2.0.0a0.dist-info → mindspore-2.0.0rc1.dist-info}/METADATA +3 -2
  645. {mindspore-2.0.0a0.dist-info → mindspore-2.0.0rc1.dist-info}/RECORD +648 -574
  646. mindspore/compression/__init__.py +0 -19
  647. mindspore/compression/common/constant.py +0 -124
  648. mindspore/compression/export/__init__.py +0 -19
  649. mindspore/compression/export/quant_export.py +0 -515
  650. mindspore/compression/quant/__init__.py +0 -28
  651. mindspore/compression/quant/qat.py +0 -634
  652. mindspore/compression/quant/quant_utils.py +0 -462
  653. mindspore/compression/quant/quantizer.py +0 -68
  654. mindspore/nn/layer/quant.py +0 -1868
  655. mindspore/nn/layer/rnn_utils.py +0 -90
  656. mindspore/nn/probability/dpn/__init__.py +0 -22
  657. mindspore/nn/probability/dpn/vae/__init__.py +0 -25
  658. mindspore/nn/probability/dpn/vae/cvae.py +0 -140
  659. mindspore/nn/probability/dpn/vae/vae.py +0 -124
  660. mindspore/nn/probability/infer/__init__.py +0 -22
  661. mindspore/nn/probability/infer/variational/elbo.py +0 -70
  662. mindspore/nn/probability/infer/variational/svi.py +0 -84
  663. mindspore/nn/probability/toolbox/__init__.py +0 -22
  664. mindspore/nn/probability/toolbox/anomaly_detection.py +0 -99
  665. mindspore/nn/probability/toolbox/uncertainty_evaluation.py +0 -364
  666. mindspore/nn/probability/transforms/__init__.py +0 -22
  667. mindspore/nn/probability/transforms/transform_bnn.py +0 -262
  668. mindspore/nn/probability/zhusuan/__init__.py +0 -18
  669. mindspore/nn/probability/zhusuan/framework/__init__.py +0 -18
  670. mindspore/nn/probability/zhusuan/framework/bn.py +0 -95
  671. mindspore/nn/probability/zhusuan/variational/__init__.py +0 -18
  672. mindspore/nn/probability/zhusuan/variational/elbo.py +0 -46
  673. mindspore/ops/_op_impl/aicpu/parallel_concat.py +0 -42
  674. mindspore/ops/_op_impl/tbe/gather_v2.py +0 -56
  675. mindspore/ops/bprop_mindir/AssignAdd_bprop.mindir +0 -19
  676. mindspore/ops/bprop_mindir/Cast_bprop.mindir +0 -19
  677. mindspore/ops/bprop_mindir/LogicalOr_bprop.mindir +0 -19
  678. mindspore/ops/bprop_mindir/MatMul_bprop.mindir +0 -0
  679. mindspore/ops/bprop_mindir/ReLU_bprop.mindir +0 -17
  680. mindspore/ops/bprop_mindir/Transpose_bprop.mindir +0 -0
  681. mindspore/ops/bprop_mindir/UpdateState_bprop.mindir +0 -15
  682. mindspore/ops/composite/array_ops.py +0 -241
  683. mindspore/ops/composite/clip_ops.py +0 -134
  684. mindspore/ops/composite/random_ops.py +0 -426
  685. mindspore/ops/composite/vmap_ops.py +0 -38
  686. mindspore/parallel/nn/__init__.py +0 -42
  687. mindspore/parallel/nn/loss.py +0 -22
  688. mindspore/parallel/nn/moe.py +0 -21
  689. mindspore/parallel/nn/op_parallel_config.py +0 -22
  690. mindspore/parallel/nn/transformer.py +0 -31
  691. {mindspore-2.0.0a0.dist-info → mindspore-2.0.0rc1.dist-info}/WHEEL +0 -0
  692. {mindspore-2.0.0a0.dist-info → mindspore-2.0.0rc1.dist-info}/entry_points.txt +0 -0
  693. {mindspore-2.0.0a0.dist-info → mindspore-2.0.0rc1.dist-info}/top_level.txt +0 -0
@@ -18,7 +18,7 @@
18
18
 
19
19
  """Operators for sparse operators."""
20
20
 
21
- from mindspore._checkparam import Validator as validator
21
+ from mindspore import _checkparam as validator
22
22
  from mindspore.common import dtype as mstype
23
23
  from mindspore.ops import signature as sig
24
24
  from mindspore.ops.primitive import prim_attr_register, Primitive
@@ -57,9 +57,12 @@ class SparseDenseCwiseAdd(Primitive):
57
57
 
58
58
 
59
59
  Supported Platforms:
60
- ``Ascend`` ``CPU``
60
+ ``Ascend`` ``GPU`` ``CPU``
61
61
 
62
62
  Examples:
63
+ >>> from mindspore.common.tensor import Tensor
64
+ >>> from mindspore.common import dtype as ms
65
+ >>> from mindspore.ops.operations import sparse_ops as ops
63
66
  >>> x1_indices = Tensor([[0, 0], [2, 2]], dtype=ms.int64)
64
67
  >>> x1_values = Tensor([1, 2], dtype=ms.int32)
65
68
  >>> x1_shape = Tensor([3, 3], dtype=ms.int64)
@@ -109,9 +112,12 @@ class SparseDenseCwiseMul(Primitive):
109
112
  ValueError: If `x1_indices` proceed to cross the border the interview.
110
113
 
111
114
  Supported Platforms:
112
- ``Ascend`` ``CPU``
115
+ ``Ascend`` ``GPU`` ``CPU``
113
116
 
114
117
  Examples:
118
+ >>> from mindspore.common.tensor import Tensor
119
+ >>> from mindspore.common import dtype as ms
120
+ >>> from mindspore.ops.operations import sparse_ops as ops
115
121
  >>> x1_indices = Tensor([[0, 0], [2, 2]], dtype=ms.int64)
116
122
  >>> x1_values = Tensor([1, 2], dtype=ms.int32)
117
123
  >>> x1_shape = Tensor([3, 3], dtype=ms.int64)
@@ -161,9 +167,12 @@ class SparseDenseCwiseDiv(Primitive):
161
167
  ValueError: If `x1_indices` proceed to cross the border the interview.
162
168
 
163
169
  Supported Platforms:
164
- ``Ascend`` ``CPU``
170
+ ``Ascend`` ``GPU``
165
171
 
166
172
  Examples:
173
+ >>> from mindspore.common.tensor import Tensor
174
+ >>> from mindspore.common import dtype as ms
175
+ >>> from mindspore.ops.operations import sparse_ops as ops
167
176
  >>> x1_indices = Tensor([[0, 0], [2, 2]], dtype=ms.int64)
168
177
  >>> x1_values = Tensor([4, 2], dtype=ms.int32)
169
178
  >>> x1_shape = Tensor([3, 3], dtype=ms.int64)
@@ -183,10 +192,10 @@ class SparseDenseCwiseDiv(Primitive):
183
192
 
184
193
  class SparseSlice(Primitive):
185
194
  r"""
186
- Slices a SparseTensor based on the "start" and "size".
195
+ Slices a SparseTensor based on the `start` and `size`.
187
196
 
188
197
  Inputs:
189
- - **indices** (Tensor) - A 2D Tensor (N x R matrix) of type int64. The indices of the SparseTensor.
198
+ - **indices** (Tensor) - A 2D Tensor of shape :math:`(N, R)`, the indices of the SparseTensor.
190
199
  Support int64, each element value should be a non-negative int number.
191
200
  The shape is :math:`(N, R)`.
192
201
  - **values** (Tensor) - A 1D Tensor, represents the value corresponding to the position in the `indices`.
@@ -200,9 +209,10 @@ class SparseSlice(Primitive):
200
209
 
201
210
  Outputs:
202
211
  A `SparseTensor` objects resulting from splicing.
203
- - *y_indices: A Tensor of type int64.
204
- - *y_values: A Tensor. Has the same type as "values".
205
- - *y_shape: A Tensor of type int64. Has the same size as `size`.
212
+
213
+ - \*y_indices: A Tensor of type int64.
214
+ - \*y_values: A Tensor. Has the same type as `values`.
215
+ - \*y_shape: A Tensor of type int64. Has the same size as `size`.
206
216
 
207
217
  Raises:
208
218
  TypeError: If the dtype of `indices`, `shape`, `start`, `size` are not int64.
@@ -214,7 +224,7 @@ class SparseSlice(Primitive):
214
224
  ValueError: If the shape of `shape` is not corresponding to `size`.
215
225
 
216
226
  Supported Platforms:
217
- ``Ascend`` ``CPU``
227
+
218
228
 
219
229
  Examples:
220
230
  >>> indices = Tensor(np.array([[0, 1], [1, 2], [1, 3], [2, 2]]).astype(np.int64))
@@ -277,7 +287,7 @@ class SparseSparseMaximum(Primitive):
277
287
  ValueError: If the `x1_shape` and `x2_shape` mismatch with each other.
278
288
 
279
289
  Supported Platforms:
280
- ``GPU`` ``CPU``
290
+ ``Ascend`` ``GPU`` ``CPU``
281
291
 
282
292
  Examples:
283
293
  >>> x1_indices = Tensor([[0, 1], [1, 2]])
@@ -295,6 +305,7 @@ class SparseSparseMaximum(Primitive):
295
305
  >>> print(y_values)
296
306
  [3. 4. 2.]
297
307
  """
308
+
298
309
  @prim_attr_register
299
310
  def __init__(self):
300
311
  """Initialize SparseSparseMaximum."""
@@ -331,13 +342,13 @@ class SetSize(Primitive):
331
342
  parameter description.
332
343
 
333
344
  Supported Platforms:
334
- ``CPU``
345
+ ``Ascend`` ``CPU``
335
346
 
336
347
  Examples:
337
348
  >>> set_indices = Tensor(np.array([[0, 1], [1, 2]]).astype(np.int64))
338
349
  >>> set_values = Tensor(np.array([1, 2]).astype(np.int64))
339
350
  >>> set_shape = Tensor(np.array([3, 4]).astype(np.int64))
340
- >>> setsize = op.SetSize()
351
+ >>> setsize = ops.SetSize()
341
352
  >>> out = setsize(set_indices, set_values, set_shape)
342
353
  >>> print(out)
343
354
  [1 1 0]
@@ -494,6 +505,7 @@ class SparseToDenseV2(Primitive):
494
505
  """Initialize SparseToDenseV2."""
495
506
  self.add_prim_attr("max_length", 1000000)
496
507
  self.validate_indices = validate_indices
508
+ validator.check_value_type('validate_indices', validate_indices, [bool], self.name)
497
509
  self.add_prim_attr("validate_indices", self.validate_indices)
498
510
  self.init_prim_io_names(
499
511
  inputs=['indices', 'output_shape', 'values', 'default_value'], outputs=['output'])
@@ -525,7 +537,7 @@ class SparseSoftmax(Primitive):
525
537
  ValueError: If the size of shape < 2.
526
538
 
527
539
  Supported Platforms:
528
- ``GPU`` ``CPU``
540
+ ``Ascend`` ``GPU`` ``CPU``
529
541
 
530
542
  Examples:
531
543
  >>> indices = Tensor([[0,0], [0,3], [1,2], [1,5], [2,0], [2,5]])
@@ -549,11 +561,11 @@ class SparseTensorDenseAdd(Primitive):
549
561
 
550
562
  Inputs:
551
563
  - **x1_indices** (Tensor) - A 2-D Tensor, represents the position of the element in the sparse tensor.
552
- Support int32, int64, each element value should be a non-negative int number. The shape is :math:`(n, 2)`.
564
+ Support int32, int64, each element value should be a non-negative int number. The shape is :math:`(n, ndim)`.
553
565
  - **x1_values** (Tensor) - A 1-D Tensor, represents the value corresponding to the position in the `indices`.
554
566
  The shape should be :math:`(n,)`.
555
567
  - **x1_shape** (tuple(int)) - A positive int tuple which specifies the shape of sparse tensor,
556
- should have 2 elements, represent sparse tensor shape is :math:`(N, C)`.
568
+ should have ndim elements, represent sparse tensor shape is :math:`(ndim,)`.
557
569
  - **x2** (Tensor) - A dense Tensor, the dtype is same as `values`.
558
570
 
559
571
  Outputs:
@@ -626,9 +638,13 @@ class SparseTensorDenseMatmul(Primitive):
626
638
  and shape of `dense` don't meet the parameter description.
627
639
 
628
640
  Supported Platforms:
629
- ``CPU``
641
+ ``GPU`` ``CPU``
630
642
 
631
643
  Examples:
644
+ >>> import mindspore
645
+ >>> from mindspore import Tensor
646
+ >>> from mindspore.ops import operations as ops
647
+ >>> from mindspore.common import dtype as mstype
632
648
  >>> indices = Tensor([[0, 1], [1, 2]], dtype=mindspore.int32)
633
649
  >>> values = Tensor([1, 2], dtype=mindspore.float32)
634
650
  >>> sparse_shape = (3, 4)
@@ -654,45 +670,6 @@ class SparseTensorDenseMatmul(Primitive):
654
670
  validator.check_value_type("adjoint_dt", adjoint_dt, [bool], self.name)
655
671
  self.set_const_input_indexes([2])
656
672
 
657
- def __infer__(self, indices, values, sparse_shape, dense):
658
- validator.check_tensor_dtype_valid('indices', indices['dtype'], [
659
- mstype.int32, mstype.int64], self.name)
660
- valid_types = (mstype.float16, mstype.float32,
661
- mstype.float64, mstype.int32, mstype.int64)
662
- args = {'values': values['dtype'], 'dense': dense['dtype']}
663
- validator.check_tensors_dtypes_same_and_valid(
664
- args, valid_types, self.name)
665
- indices_shape = indices['shape']
666
- if len(indices_shape) != 2 or indices_shape[1] != 2:
667
- raise ValueError(f"For '{self.name}', the 'indices' must be a 2-D tensor and "
668
- f"the second dimension length must be 2, but got 'indices' shape: {indices_shape}.")
669
- values_shape = values['shape']
670
- if len(values_shape) != 1 or values_shape[0] != indices_shape[0]:
671
- raise ValueError(f"For '{self.name}', the 'values' must be a 1-D tensor and "
672
- f"the first dimension length must be equal to the first dimension length of 'indices', "
673
- f"but got 'indices' shape: {indices_shape}, 'values' shape: {values_shape}.")
674
- a_shape = sparse_shape['value'][::-1] if self.adjoint_st else sparse_shape['value']
675
- b_shape = dense['shape'][::-1] if self.adjoint_dt else dense['shape']
676
- for i in a_shape:
677
- if isinstance(i, bool) or not isinstance(i, int) or i <= 0:
678
- raise ValueError(f"For '{self.name}', all elements in 'sparse_shape' must be "
679
- f"positive int number, but got 'sparse_shape': {sparse_shape['value']}.")
680
- if len(a_shape) != 2 or len(b_shape) != 2:
681
- raise ValueError(f"For '{self.name}', both the length of 'sparse_shape' and the tensor "
682
- f"rank of 'dense' must be equal to 2, but got the length of "
683
- f"'sparse_shape': {len(a_shape)}, "
684
- f"the tensor rank of 'dense': {len(b_shape)}.")
685
- if a_shape[1] != b_shape[0]:
686
- raise ValueError(f"For '{self.name}', the second dimension length of 'sparse_shape' must be equal to the "
687
- f"first dimension length of 'dense', but got "
688
- f"the tensor shape of 'sparse': {a_shape} and the tensor shape of 'dense': {b_shape}. "
689
- f"Don't meet the condition for matmul")
690
- out_shape = [a_shape[0], b_shape[1]]
691
- out = {'shape': tuple(out_shape),
692
- 'dtype': values['dtype'],
693
- 'value': None}
694
- return out
695
-
696
673
 
697
674
  class CSRSparseMatrixToSparseTensor(Primitive):
698
675
  """
@@ -769,7 +746,7 @@ class DenseToCSRSparseMatrix(Primitive):
769
746
  Converts a dense matrix(maybe batched) to its CSR sparse form.
770
747
 
771
748
  .. warning::
772
- This is an experimental prototype that is subject to change and/or deletion.
749
+ This is an experimental API that is subject to change or deletion.
773
750
 
774
751
  Inputs:
775
752
  - **dense_input** (Tensor) - A 2-D or 3-D Tensor. It represents the input dense matrix.
@@ -799,7 +776,7 @@ class DenseToCSRSparseMatrix(Primitive):
799
776
  ValueError: If shape[1] of `indices` and rank of `dense_input` is not the same.
800
777
 
801
778
  Supported Platforms:
802
- ``GPU`` ``CPU``
779
+
803
780
 
804
781
  Examples:
805
782
  >>> x = Tensor([[[1., 0.], [0., 2.]]], dtype=mindspore.float32)
@@ -864,7 +841,7 @@ class DenseToDenseSetOperation(Primitive):
864
841
  ValueError: If the value of attr set_operation is not a valid value.
865
842
 
866
843
  Supported Platforms:
867
- ``CPU``
844
+ ``Ascend`` ``CPU``
868
845
 
869
846
  Examples:
870
847
  >>> x1 = Tensor([[2, 2, 0], [2, 2, 1], [0, 2, 2]], dtype=mstype.int32)
@@ -898,7 +875,7 @@ class Sspaddmm(Primitive):
898
875
  If `x1_shape` is :math:`(s0, s1)`, `x2_shpae` should be :math:`(s0, s2)`, the `x3_shape` should be :math:`(s2, s1)`.
899
876
 
900
877
  .. warning::
901
- This is an experimental prototype that is subject to change and/or deletion.
878
+ This is an experimental API that is subject to change or deletion.
902
879
 
903
880
  .. math::
904
881
  out =\beta * x1 + \alpha * (x2 @ x3),
@@ -961,7 +938,7 @@ class Sspaddmm(Primitive):
961
938
  ValueError: If the shape of `alpha`, `beta` is not () or (1,).
962
939
 
963
940
  Supported Platforms:
964
- ``GPU`` ``CPU``
941
+ ``Ascend`` ``GPU`` ``CPU``
965
942
 
966
943
  Examples:
967
944
  >>> x1_indices = Tensor(np.array([[0, 1], [0, 1]]), mstype.int64)
@@ -1033,7 +1010,7 @@ class SparseAddmm(Primitive):
1033
1010
  RuntimeError: If `x1_shape`, shape of `x2`, shape of `x3` don't meet the parameter description.
1034
1011
 
1035
1012
  Supported Platforms:
1036
- ``CPU``
1013
+ ``GPU`` ``CPU``
1037
1014
 
1038
1015
  Examples:
1039
1016
  >>> indices = Tensor([[0, 1], [1, 2]], dtype=ms.int32)
@@ -1088,7 +1065,7 @@ class SparseConcat(Primitive):
1088
1065
  Error: If input axis value is not in range [-rank, rank).
1089
1066
 
1090
1067
  Supported Platforms:
1091
- ``CPU``
1068
+ ``Ascend`` ``CPU``
1092
1069
 
1093
1070
  Examples:
1094
1071
  >>> indices0 = Tensor([[0, 1], [1, 2]], dtype=mstype.int64)
@@ -1106,6 +1083,7 @@ class SparseConcat(Primitive):
1106
1083
  [3, 0],
1107
1084
  [4, 1]]), Tensor(shape=[4], dtype=Int32, value= [1, 2, 3, 4]), Tensor(shape=[2], dtype=Int64, value= [6, 4]))
1108
1085
  """
1086
+
1109
1087
  @prim_attr_register
1110
1088
  def __init__(self, concat_dim=0):
1111
1089
  """Initialize SparseConcat."""
@@ -1251,7 +1229,7 @@ class SparseSegmentSqrtN(Primitive):
1251
1229
  ValueError: If `indices` is out of range of x's first dimension.
1252
1230
 
1253
1231
  Supported Platforms:
1254
- ``GPU`` ``CPU``
1232
+ ``Ascend`` ``GPU`` ``CPU``
1255
1233
 
1256
1234
  Examples:
1257
1235
  >>> x = Tensor(np.array([[1,2,3,4],[5,6,7,8],[9,10,11,12]]).astype(np.float32))
@@ -1313,7 +1291,7 @@ class SparseSegmentSqrtNWithNumSegments(Primitive):
1313
1291
  ValueError: If `indices` is out of range of x's first dimension.
1314
1292
 
1315
1293
  Supported Platforms:
1316
- ``GPU`` ``CPU``
1294
+ ``Ascend`` ``GPU`` ``CPU``
1317
1295
 
1318
1296
  Examples:
1319
1297
  >>> x = Tensor([[0, 1, 0, 0], [0, 1, 1, 0], [1, 0, 1, 0]], dtype=ms.float16)
@@ -1373,7 +1351,7 @@ class SparseMatrixNNZ(Primitive):
1373
1351
  ValueError: If shape[0] of `x_dense_shape` is not 2 or 3.
1374
1352
 
1375
1353
  Supported Platforms:
1376
- ``GPU`` ``CPU``
1354
+ ``Ascend`` ``GPU`` ``CPU``
1377
1355
 
1378
1356
  Examples:
1379
1357
  >>> dense_shape = Tensor([2,3], dtype=mstype.int32)
@@ -1426,7 +1404,7 @@ class SparseFillEmptyRows(Primitive):
1426
1404
  ValueError: If `sparse_shape`, shape of `indices` and shape of `values` don't meet the parameter description.
1427
1405
 
1428
1406
  Supported Platforms:
1429
- ``Ascend`` ``CPU``
1407
+ ``Ascend`` ``GPU`` ``CPU``
1430
1408
 
1431
1409
  Examples:
1432
1410
  >>> indices = Tensor([[1, 0]], dtype=mstype.int64)
@@ -1487,9 +1465,12 @@ class SparseSegmentMeanWithNumSegments(Primitive):
1487
1465
  ValueError: If `indices` is out of range of x's first dimension.
1488
1466
 
1489
1467
  Supported Platforms:
1490
- ``CPU``
1468
+ ``GPU`` ``CPU``
1491
1469
 
1492
1470
  Examples:
1471
+ >>> from mindspore import Tensor
1472
+ >>> import mindspore as ms
1473
+ >>> import mindspore.ops.operations.sparse_ops as ops
1493
1474
  >>> x = Tensor([[0, 2, 0, 0], [0, 1, 1, 0], [2, 0, 2, 0]], dtype=ms.float16)
1494
1475
  >>> indices = Tensor([0, 2, 1], dtype=ms.int32)
1495
1476
  >>> segment_ids = Tensor([0, 0, 2], dtype=ms.int32)
@@ -1548,7 +1529,7 @@ class SparseAdd(Primitive):
1548
1529
  TypeError: If (x1_values/x2_values)'s type is not matched with thresh's type.
1549
1530
 
1550
1531
  Supported Platforms:
1551
- ``CPU`` ``GPU``
1532
+ ``GPU`` ``CPU``
1552
1533
 
1553
1534
  Examples:
1554
1535
  >>> from mindspore import Tensor
@@ -1568,6 +1549,7 @@ class SparseAdd(Primitive):
1568
1549
  Tensor(shape=[4], dtype=Int32, value=[3, 1, 4, 2]),
1569
1550
  Tensor(shape=[2], dtype=Int64, value=[3, 4]))
1570
1551
  """
1552
+
1571
1553
  @prim_attr_register
1572
1554
  def __init__(self):
1573
1555
  self.init_prim_io_names(
@@ -1581,7 +1563,7 @@ class SparseMatrixSoftmax(Primitive):
1581
1563
  Calculates the softmax of a CSRTensorMatrix.
1582
1564
 
1583
1565
  .. warning::
1584
- This is an experimental prototype that is subject to change and/or deletion.
1566
+ This is an experimental API that is subject to change or deletion.
1585
1567
 
1586
1568
  Args:
1587
1569
  dtype (dtype.Number) - The valid data type. Only constant value is allowed.
@@ -1675,7 +1657,7 @@ class CSRSparseMatrixToDense(Primitive):
1675
1657
  ValueError: If shape[0] of `x_dense_shape` is not 2 or 3.
1676
1658
 
1677
1659
  Supported Platforms:
1678
- ``CPU``
1660
+ ``Ascend`` ``CPU``
1679
1661
 
1680
1662
  Examples:
1681
1663
  >>> dense_shape = Tensor([2, 2], dtype=mindspore.int32)
@@ -1754,7 +1736,7 @@ class SparseMatrixTranspose(Primitive):
1754
1736
  TypeError: The input data should have the correct CSR form.
1755
1737
 
1756
1738
  Supported Platforms:
1757
- ``GPU`` ``CPU``
1739
+ ``Ascend`` ``CPU``
1758
1740
 
1759
1741
  Examples:
1760
1742
  >>> from mindspore.ops import operations as ops
@@ -1776,6 +1758,7 @@ class SparseMatrixTranspose(Primitive):
1776
1758
  >>> print(output[4])
1777
1759
  [99.]
1778
1760
  """
1761
+
1779
1762
  @prim_attr_register
1780
1763
  def __init__(self, conjugate=False):
1781
1764
  """Initialize SparseMatrixTranspose"""
@@ -2093,7 +2076,7 @@ class SparseMatrixMatMul(Primitive):
2093
2076
  ValueError: If shape[0]-1 of `x1_batch_pointers` and shape[0] of `x2_dense` are not the same.
2094
2077
 
2095
2078
  Supported Platforms:
2096
- ``Ascend`` ``CPU``
2079
+ ``CPU``
2097
2080
 
2098
2081
  Examples:
2099
2082
  >>> x1_dense_shape = Tensor([4, 5], dtype=ms.int32)
@@ -2199,6 +2182,7 @@ class SparseMatrixAdd(Primitive):
2199
2182
  Tensor(shape=[2], dtype=Int32, values = [0, 1]),
2200
2183
  Tensor(shape=[2], dtype=Float32, values = [2.0, 4.0]))
2201
2184
  """
2185
+
2202
2186
  @prim_attr_register
2203
2187
  def __init__(self):
2204
2188
  '''Initialize for SparseMatrixAdd'''
@@ -2244,6 +2228,7 @@ class SparseSplit(Primitive):
2244
2228
  Supported Platforms:
2245
2229
 
2246
2230
  """
2231
+
2247
2232
  @prim_attr_register
2248
2233
  def __init__(self, num_split=1):
2249
2234
  """Initialize SparseSplit."""
@@ -2379,6 +2364,7 @@ class SparseReshape(Primitive):
2379
2364
  >>> print(y_shape)
2380
2365
  [9 4]
2381
2366
  """
2367
+
2382
2368
  @prim_attr_register
2383
2369
  def __init__(self):
2384
2370
  """Initialize SparseReshape."""
@@ -2421,8 +2407,8 @@ class SparseCountSparseOutput(Primitive):
2421
2407
  ValueError: If number of values does not match first dimension of indices
2422
2408
  ValueError: If number of dense_shape dimensions does not match second dimension of indices
2423
2409
  ValueError: If num dim of dense_shape is < 1
2424
- RunTimeError: If number of weights is not equal to number of values
2425
- RunTimeError: If indexes are not in bounds of the dense shape
2410
+ RuntimeError: If number of weights is not equal to number of values
2411
+ RuntimeError: If indexes are not in bounds of the dense shape
2426
2412
 
2427
2413
  Examples:
2428
2414
  >>> from mindspore.ops.operations.sparse_ops import SparseCountSparseOutput
@@ -2443,6 +2429,7 @@ class SparseCountSparseOutput(Primitive):
2443
2429
  ``CPU``
2444
2430
 
2445
2431
  """
2432
+
2446
2433
  @prim_attr_register
2447
2434
  def __init__(self, binary_output=False, minlength=-1, maxlength=-1):
2448
2435
  self.init_prim_io_names(
@@ -2495,16 +2482,16 @@ class DenseToSparseSetOperation(Primitive):
2495
2482
  ``Ascend`` ``CPU``
2496
2483
 
2497
2484
  Examples:
2498
- >>> x1 = Tensor([[1 2] [3 0] [1 5]], dtype=ms.int64)
2499
- >>> x2_indices = Tensor([[0 1] [0 2] [1 2]], dtype=ms.int64)
2500
- >>> x2_values = Tensor([5 1 7],dtype=ms.int64)
2501
- >>> x2_shape = Tensor([3 3], dtype=ms.int64)
2502
- >>> dense_to_sparse_set_operation = ops.DenseToSparseSetOperation(set_operation='intersection')
2503
- >>> y_indices, y_values, y_shape = dense_to_sparse_set_operation(indices, values, sparse_shape)
2485
+ >>> from mindspore.ops.operations.sparse_ops import DenseToSparseSetOperation
2486
+ >>> x1 = Tensor([[1, 2], [3, 0], [1, 5]], dtype=ms.int64)
2487
+ >>> x2_indices = Tensor([[0, 1], [0, 2], [1, 2]], dtype=ms.int64)
2488
+ >>> x2_values = Tensor([5, 1, 7],dtype=ms.int64)
2489
+ >>> x2_shape = Tensor([3, 3], dtype=ms.int64)
2490
+ >>> dense_to_sparse_set_operation = DenseToSparseSetOperation(set_operation='intersection')
2491
+ >>> out = dense_to_sparse_set_operation(x1, x2_indices, x2_values, x2_shape)
2504
2492
  >>> print(out)
2505
- (Tensor(shape=[2, 2], dtype=Int64, value=[[0, 0],[0, 1]]),
2506
- Tensor(shape=[2], dtype=Int64, value= [1, 2]),
2507
- Tensor(shape=[2], dtype=Int64, value= [3, 2]))
2493
+ (Tensor(shape=[1, 2], dtype=Int64, value=
2494
+ [[0, 0]]), Tensor(shape=[1], dtype=Int64, value= [1]), Tensor(shape=[2], dtype=Int64, value= [3, 1]))
2508
2495
  """
2509
2496
 
2510
2497
  @prim_attr_register
@@ -2535,11 +2522,12 @@ class RaggedTensorToTensor(Primitive):
2535
2522
  Inputs:
2536
2523
  - **shape** (Tensor) - A 1-D `Tensor`. Must be one of the following types: `int64`, `int32`.
2537
2524
  The desired shape of the output tensor.
2538
- - **values** (Tensor) - A 1-D `Tensor` representing the values of the ragged tensor.
2525
+ - **values** (Tensor) - A 1-D or higher `Tensor` representing the values of the ragged tensor.
2539
2526
  - **default_value** (Tensor) - A `Tensor` representing the default value of the ragged tensor.
2540
2527
  Must have the same type as `values` and less dimension than `values`.
2541
2528
  - **row_partition_tensors** (list(Tensor)) - A list of at least 1 `Tensor` objects with the same
2542
- type in: `int64`, `int32`.
2529
+ type in: `int64`, `int32`. The row partition tensor is 0-D, 1-D, 1-D, when the row partition type is
2530
+ "FIRST_DIM_SIZE", "VALUE_ROWIDS", "ROW_SPLITS" respectively.
2543
2531
 
2544
2532
  Outputs:
2545
2533
  A `Tensor`. Has the same type as `values` and the shape is `shape`.
@@ -2548,20 +2536,17 @@ class RaggedTensorToTensor(Primitive):
2548
2536
  TypeError: If the type of `shape`, `values` or `default_value` is not Tensor.
2549
2537
  ValueError: If the dimension of `shape` or `values` is not 1.
2550
2538
  ValueError: If the dimension of `default_value` is more than `values`.
2551
- RuntimeError: If the order of `row_partition_tensors` is not support
2539
+ ValueError: If the order or value of `row_partition_types` is not support.
2540
+ RuntimeError: If the value of `row_partition_tensors` is not in ascending order
2552
2541
  when the `row_partition_types` is "ROW_SPLITS".
2553
2542
  RuntimeError: If value rowid is not less than first dim size
2554
2543
  when the `row_partition_types` is "FIRST_DIM_SIZE", "VALUE_ROWIDS".
2555
- RuntimeError: If the order of `row_partition_types` is not support.
2556
- RuntimeError: If the value of `row_partition_types` is not support.
2557
- RuntimeError: If row partition size plus `values` rank is not equal to `shape` rank.
2544
+ ValueError: If row partition size plus `values` rank is not equal to `shape` rank.
2558
2545
 
2559
2546
  Supported Platforms:
2560
2547
  ``CPU``
2561
2548
 
2562
2549
  Examples:
2563
- >>> from mindspore.common import dtype as mstype
2564
- >>> from mindspore.common.tensor import Tensor
2565
2550
  >>> from mindspore.ops.operations.sparse_ops import RaggedTensorToTensor
2566
2551
  >>> shape = Tensor([4, 4], mstype.int32)
2567
2552
  >>> values = Tensor([1, 2, 3, 4, 5, 6, 7, 8, 9], mstype.int64)
@@ -2582,6 +2567,182 @@ class RaggedTensorToTensor(Primitive):
2582
2567
  @prim_attr_register
2583
2568
  def __init__(self, row_partition_types):
2584
2569
  """Initialize RaggedTensorToTensor"""
2585
- validator.check_value_type("row_partition_types", row_partition_types, [list], self.name)
2586
2570
  self.init_prim_io_names(inputs=['shape', 'values', 'default_value', 'row_partition_tensors'],
2587
2571
  outputs=['result'])
2572
+ validator.check_value_type("row_partition_types", row_partition_types, [list], self.name)
2573
+
2574
+ if not row_partition_types:
2575
+ raise ValueError(f"For {self.name}, row_partition_types cannot be empty.")
2576
+
2577
+ for i, item in enumerate(row_partition_types):
2578
+ validator.check_value_type(f"row_partition_types[{i}]", item, [str], self.name)
2579
+
2580
+ valid_values = ("ROW_SPLITS", "FIRST_DIM_SIZE", "VALUE_ROWIDS")
2581
+ if not set(row_partition_types).issubset(valid_values):
2582
+ diff = tuple(set(row_partition_types).difference(valid_values))
2583
+ raise ValueError(
2584
+ f"For {self.name}, row_partition_types only support {valid_values}, "
2585
+ f"but got {diff if len(diff) > 1 else repr(diff[0])}.")
2586
+
2587
+ first_element = valid_values[:2]
2588
+ if row_partition_types[0] not in first_element:
2589
+ raise ValueError(
2590
+ f"For {self.name}, the first element of row_partition_types must be in {first_element}, "
2591
+ f"but got '{row_partition_types[0]}'.")
2592
+
2593
+ if row_partition_types[0] == "FIRST_DIM_SIZE":
2594
+ if set(row_partition_types[1:]) != {"VALUE_ROWIDS"}:
2595
+ raise ValueError(
2596
+ f"For {self.name}, 'VALUE_ROWIDS' must be preceded by 'FIRST_DIM_SIZE' in row_partition_types.")
2597
+ else:
2598
+ if set(row_partition_types) != {"ROW_SPLITS"}:
2599
+ raise ValueError(
2600
+ f"For {self.name}, the each element of row_partition_types must be 'ROW_SPLITS' "
2601
+ f"when row_splits tensor.")
2602
+
2603
+
2604
+ class SparseCross(Primitive):
2605
+ """
2606
+ Generates sparse cross from a list of sparse and dense tensors.
2607
+
2608
+ Args:
2609
+ hashed_output (bool): If true, returns the hash of the cross instead of the string. This will allow us
2610
+ avoiding string manipulations.
2611
+ num_buckets (int): An int that is >= 0. It is used if "hashed_output" is true.output = hashed_value%num_buckets
2612
+ if num_buckets > 0 else "hashed_value".
2613
+ hash_key (int): Specify the hash_key that will be used by the "FingerprintCat64" function to combine the
2614
+ crosses fingerprints.
2615
+ out_type (mindspore.dtype): The output data type. Defaults to "int64".
2616
+ internal_type (mindspore.dtype): An type int64.
2617
+
2618
+ Inputs:
2619
+ - **indices** (list(Tensor)) - A list of Tensor objects with type int64. 2-D.
2620
+ Indices of each input SparseTensor.
2621
+ - **values** (list(Tensor)) - A list of Tensor objects with types from: int64.
2622
+ 1-D. values of each SparseTensor.
2623
+ - **shapes** (list(Tensor)) - A list with the same length as indices of Tensor objects with type int64.
2624
+ 1-D. Shapes of each SparseTensor.
2625
+ - **dense_inputs** (list(Tensor)) - A list of Tensor objects with types from: int64.
2626
+ 2-D. Columns represented by dense Tensor.
2627
+
2628
+ Outputs:
2629
+ - **output_indices** (Tensor) - A Tensor of type int64. 2-D. Indices of the concatenated SparseTensor.
2630
+ - **output_values** (Tensor) - A Tensor of type "out_type". 1-D.
2631
+ Non-empty values of the concatenated or hashed SparseTensor.
2632
+ - **output_shape** (Tensor) - A Tensor of type int64. 1-D. Shape of the concatenated SparseTensor.
2633
+
2634
+ Raises:
2635
+ TypeError: The indices shape rank is not equal to the shape rank.
2636
+ TypeError: The indices element number is not equal to the value element number.
2637
+ TypeError: The indices shape rank should be 2.
2638
+ TypeError: The denses shape rank should be 2.
2639
+ TypeError: The shapes rank should be 2.
2640
+
2641
+ Supported Platforms:
2642
+ ``CPU``
2643
+
2644
+ Examples:
2645
+ >>> from mindspore.ops.operations.sparse_ops import SparseCross
2646
+ >>> indice1 = Tensor([[0,0],[1,0],[1,1]], dtype=mstype.int64)
2647
+ >>> value1 = Tensor([1, 2, 3], dtype=mstype.int64)
2648
+ >>> shape1 = Tensor([2, 2], dtype=mstype.int64)
2649
+ >>> dense1 = Tensor([[1],[2]], dtype=mstype.int64)
2650
+ >>> indice2 = Tensor([[0,0],[1,0],[1,1]], dtype=mstype.int64)
2651
+ >>> value2 = Tensor([1, 2, 3], dtype=mstype.int64)
2652
+ >>> shape2 = Tensor([2, 2], dtype=mstype.int64)
2653
+ >>> dense2 = Tensor([[1],[2]], dtype=mstype.int64)
2654
+ >>> indices = [indice1, indice2]
2655
+ >>> values = [value1, value2]
2656
+ >>> shapes = [shape1, shape2]
2657
+ >>> dense_inputs = [dense1, dense2]
2658
+ >>> hashed_output=True
2659
+ >>> hash_key= 2
2660
+ >>> out_type= mstype.int64
2661
+ >>> internal_type = mstype.int64
2662
+ >>> num_buckets=0
2663
+ >>> sparse_cross = SparseCross(hashed_output, hash_key, out_type, internal_type, num_buckets)
2664
+ >>> out = sparse_cross(indices, values, shapes, dense_inputs)
2665
+ >>> print(out)
2666
+ (Tensor(shape=[5, 2], dtype=Int64, value=
2667
+ [[0, 0],
2668
+ [1, 0],
2669
+ [1, 1],
2670
+ [1, 2],
2671
+ [1, 3]]), Tensor(shape=[5], dtype=Int64, value= [1350190460805457680, 6319552725219729347,
2672
+ 4652439303631496997, 7670687697825594049, 174086171018132662]), Tensor(shape=[2], dtype=Int64, value= [2, 4]))
2673
+ """
2674
+
2675
+ @prim_attr_register
2676
+ def __init__(self, hashed_output, hash_key, out_type, internal_type, num_buckets=0):
2677
+ """Initialize SparseCross."""
2678
+ self.init_prim_io_names(inputs=["indices", "values", "shapes", "dense_inputs"],
2679
+ outputs=["output_indices", "output_values", "output_shape"])
2680
+ validator.check_value_type("hashed_output", hashed_output, [bool], self.name)
2681
+ validator.check_value_type("hash_key", hash_key, [int], self.name)
2682
+ validator.check_value_type("out_type", out_type, [mstype.Type], self.name)
2683
+ validator.check_value_type("internal_type", internal_type, [mstype.Type], self.name)
2684
+ validator.check_value_type("num_buckets", num_buckets, [int], self.name)
2685
+
2686
+
2687
+ class RaggedTensorToSparse(Primitive):
2688
+ r"""
2689
+ Converts a RaggedTensor into a SparseTensor with the same values.
2690
+
2691
+ Args:
2692
+ Tsplits(mindspore.dtype): A required attribute, the type of the `rt_nested_splits`. Default: `int64`.
2693
+
2694
+ Inputs:
2695
+ - **rt_nested_splits** (list(Tensor)) - A list of at least 1 `Tensor` objects with the same
2696
+ type in: `int64`, `int32`. The row_splits for the RaggedTensor.
2697
+ Ragged splits is in ascending order, first value of splits must be 0 and final value of splits
2698
+ must equal with the length of `rt_dense_values`.
2699
+ - **rt_dense_values** (Tensor) - A `Tensor`. The flat_values for the RaggedTensor. The rank of values
2700
+ must more than 0.
2701
+
2702
+ Outputs:
2703
+ - **sparse_indices** (Tensor) - A `Tensor` of type int64. Contains the indices of the output
2704
+ sparse tensor.
2705
+ - **sparse_values** (Tensor) - A `Tensor`. Has the same type as rt_dense_values.
2706
+ Contains the values of the output sparse tensor.
2707
+ - **sparse_dense_shape** (Tensor) - A `Tensor` of type int64. Contains the dense shape of the
2708
+ output sparse tensor.
2709
+
2710
+ Raises:
2711
+ TypeError: If the type of `Tsplits`, `rt_nested_splits` or `rt_dense_values` is not support.
2712
+ RuntimeError: If the order of `rt_nested_splits` is not support.
2713
+ RuntimeError: If the first value of `rt_nested_splits` is not 0.
2714
+ RuntimeError: If the final value of `rt_nested_splits` is not equal with the length of
2715
+ `rt_dense_values`.
2716
+ ValueError: If the rank of `rt_dense_values` is not more than 0.
2717
+
2718
+ Supported Platforms:
2719
+
2720
+
2721
+ Examples:
2722
+ >>> from mindspore.ops.operations.sparse_ops import RaggedTensorToSparse
2723
+ >>> rt_nested_splits = Tensor([0, 3, 3, 5, 6], mstype.int64)
2724
+ >>> rt_dense_values = Tensor([1, 2, 3, 4, 5, 6], mstype.int32)
2725
+ >>> rt_nested_splits_list = []
2726
+ >>> rt_nested_splits_list.append(rt_nested_splits)
2727
+ >>> Tsplits = mstype.int64
2728
+ >>> ragged_tensor_to_sparse = RaggedTensorToSparse(Tsplits)
2729
+ >>> out = ragged_tensor_to_sparse(rt_nested_splits_list, rt_dense_values)
2730
+ >>> print(out)
2731
+ (Tensor(shape=[6, 2], dtype=Int64, value=
2732
+ [[0, 0],
2733
+ [0, 1],
2734
+ [0, 2],
2735
+ [2, 0],
2736
+ [2, 1],
2737
+ [3, 0]]),
2738
+ Tensor(shape=[6], dtype=Int32, value= [1, 2, 3, 4, 5, 6]),
2739
+ Tensor(shape=[2], dtype=Int64, value= [4, 3]))
2740
+ """
2741
+ @prim_attr_register
2742
+ def __init__(self, Tsplits):
2743
+ """Initialize RaggedTensorToSparse."""
2744
+ self.init_prim_io_names(inputs=['rt_nested_splits', 'rt_dense_values'],
2745
+ outputs=['sparse_indices', 'sparse_values', 'sparse_dense_shape'])
2746
+ validator.check_value_type("Tsplits", Tsplits, [mstype.Type], self.name)
2747
+ valid_values = {mstype.int64, mstype.int32}
2748
+ validator.check_type_name("Tsplits", Tsplits, valid_values, self.name)