mindspore 2.0.0a0__cp37-cp37m-win_amd64.whl → 2.0.0rc1__cp37-cp37m-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of mindspore might be problematic. Click here for more details.

Files changed (655) hide show
  1. mindspore/.commit_id +1 -1
  2. mindspore/__init__.py +4 -2
  3. mindspore/_c_dataengine.cp37-win_amd64.pyd +0 -0
  4. mindspore/_c_expression.cp37-win_amd64.pyd +0 -0
  5. mindspore/_c_mindrecord.cp37-win_amd64.pyd +0 -0
  6. mindspore/_check_jit_forbidden_api.py +102 -0
  7. mindspore/_checkparam.py +1066 -1001
  8. mindspore/_extends/parallel_compile/akg_compiler/akg_process.py +4 -3
  9. mindspore/_extends/parallel_compile/akg_compiler/tbe_topi.py +50 -48
  10. mindspore/_extends/parallel_compile/akg_compiler/util.py +9 -4
  11. mindspore/_extends/parallel_compile/tbe_compiler/tbe_adapter.py +4 -4
  12. mindspore/_extends/parallel_compile/tbe_compiler/tbe_helper.py +9 -4
  13. mindspore/_extends/parse/__init__.py +5 -3
  14. mindspore/_extends/parse/namespace.py +16 -1
  15. mindspore/_extends/parse/parser.py +107 -22
  16. mindspore/_extends/parse/resources.py +0 -7
  17. mindspore/_extends/parse/standard_method.py +885 -413
  18. mindspore/amp.py +52 -57
  19. mindspore/boost/boost.py +2 -2
  20. mindspore/boost/boost_cell_wrapper.py +38 -20
  21. mindspore/boost/dim_reduce.py +3 -3
  22. mindspore/boost/group_loss_scale_manager.py +1 -1
  23. mindspore/common/__init__.py +4 -6
  24. mindspore/common/_decorator.py +2 -0
  25. mindspore/common/_register_for_adapter.py +55 -0
  26. mindspore/common/_stub_tensor.py +201 -0
  27. mindspore/common/_utils.py +41 -7
  28. mindspore/common/api.py +215 -141
  29. mindspore/common/dtype.py +8 -1
  30. mindspore/common/dump.py +2 -2
  31. mindspore/common/initializer.py +4 -2
  32. mindspore/common/jit_config.py +17 -13
  33. mindspore/common/mutable.py +33 -13
  34. mindspore/common/parameter.py +23 -21
  35. mindspore/common/seed.py +8 -24
  36. mindspore/common/sparse_tensor.py +62 -41
  37. mindspore/common/tensor.py +852 -1154
  38. mindspore/communication/__init__.py +2 -2
  39. mindspore/communication/_comm_helper.py +11 -4
  40. mindspore/communication/management.py +22 -21
  41. mindspore/config/op_info.config +501 -1008
  42. mindspore/context.py +201 -23
  43. mindspore/dataset/__init__.py +6 -6
  44. mindspore/dataset/audio/__init__.py +7 -7
  45. mindspore/dataset/audio/transforms.py +670 -30
  46. mindspore/dataset/audio/utils.py +47 -4
  47. mindspore/dataset/audio/validators.py +223 -1
  48. mindspore/dataset/callback/ds_callback.py +2 -2
  49. mindspore/dataset/core/config.py +210 -14
  50. mindspore/dataset/core/validator_helpers.py +2 -2
  51. mindspore/{parallel/nn/layers.py → dataset/debug/__init__.py} +7 -8
  52. mindspore/dataset/debug/debug_hook.py +65 -0
  53. mindspore/dataset/debug/pre_defined_hook.py +67 -0
  54. mindspore/dataset/engine/__init__.py +7 -3
  55. mindspore/dataset/engine/cache_client.py +1 -1
  56. mindspore/dataset/engine/datasets.py +322 -66
  57. mindspore/dataset/engine/datasets_audio.py +80 -76
  58. mindspore/dataset/engine/datasets_standard_format.py +51 -38
  59. mindspore/dataset/engine/datasets_text.py +232 -118
  60. mindspore/dataset/engine/datasets_user_defined.py +41 -17
  61. mindspore/dataset/engine/datasets_vision.py +746 -225
  62. mindspore/dataset/engine/graphdata.py +75 -10
  63. mindspore/dataset/engine/iterators.py +45 -5
  64. mindspore/dataset/engine/offload.py +48 -28
  65. mindspore/dataset/engine/validators.py +117 -8
  66. mindspore/dataset/text/__init__.py +6 -5
  67. mindspore/dataset/text/transforms.py +86 -3
  68. mindspore/dataset/text/utils.py +6 -4
  69. mindspore/dataset/text/validators.py +25 -0
  70. mindspore/dataset/transforms/__init__.py +3 -2
  71. mindspore/dataset/transforms/c_transforms.py +1 -1
  72. mindspore/dataset/transforms/transforms.py +2 -2
  73. mindspore/dataset/utils/__init__.py +2 -1
  74. mindspore/dataset/utils/line_reader.py +121 -0
  75. mindspore/dataset/vision/__init__.py +2 -3
  76. mindspore/dataset/vision/c_transforms.py +9 -9
  77. mindspore/dataset/vision/py_transforms.py +5 -5
  78. mindspore/dataset/vision/py_transforms_util.py +2 -0
  79. mindspore/dataset/vision/transforms.py +160 -161
  80. mindspore/dataset/vision/utils.py +3 -3
  81. mindspore/experimental/map_parameter.py +38 -26
  82. mindspore/include/OWNERS +0 -1
  83. mindspore/include/api/callback/callback.h +9 -13
  84. mindspore/include/api/callback/ckpt_saver.h +2 -2
  85. mindspore/include/api/callback/loss_monitor.h +2 -2
  86. mindspore/include/api/callback/lr_scheduler.h +5 -5
  87. mindspore/include/api/callback/time_monitor.h +2 -2
  88. mindspore/include/api/callback/train_accuracy.h +4 -6
  89. mindspore/include/api/cfg.h +19 -6
  90. mindspore/include/api/context.h +44 -9
  91. mindspore/include/api/delegate.h +1 -1
  92. mindspore/include/api/metrics/accuracy.h +2 -2
  93. mindspore/include/api/metrics/metrics.h +4 -3
  94. mindspore/include/api/model.h +9 -4
  95. mindspore/include/api/model_parallel_runner.h +2 -2
  96. mindspore/include/api/net.h +12 -11
  97. mindspore/include/api/serialization.h +19 -3
  98. mindspore/include/api/types.h +3 -3
  99. mindspore/include/dataset/constants.h +7 -0
  100. mindspore/include/dataset/text.h +59 -0
  101. mindspore/jpeg62.dll +0 -0
  102. mindspore/log.py +1 -1
  103. mindspore/mindrecord/filereader.py +18 -0
  104. mindspore/mindrecord/filewriter.py +197 -34
  105. mindspore/mindrecord/shardreader.py +9 -0
  106. mindspore/mindrecord/shardwriter.py +1 -1
  107. mindspore/mindrecord/tools/cifar100_to_mr.py +3 -3
  108. mindspore/mindrecord/tools/cifar10_to_mr.py +3 -3
  109. mindspore/mindrecord/tools/csv_to_mr.py +3 -3
  110. mindspore/mindrecord/tools/imagenet_to_mr.py +16 -11
  111. mindspore/mindrecord/tools/mnist_to_mr.py +2 -2
  112. mindspore/mindrecord/tools/tfrecord_to_mr.py +6 -6
  113. mindspore/mindspore_backend.dll +0 -0
  114. mindspore/mindspore_common.dll +0 -0
  115. mindspore/mindspore_core.dll +0 -0
  116. mindspore/mindspore_glog.dll +0 -0
  117. mindspore/mindspore_shared_lib.dll +0 -0
  118. mindspore/nn/__init__.py +0 -4
  119. mindspore/nn/cell.py +204 -132
  120. mindspore/nn/dynamic_lr.py +1 -1
  121. mindspore/nn/grad/cell_grad.py +7 -6
  122. mindspore/nn/layer/__init__.py +5 -4
  123. mindspore/nn/layer/activation.py +40 -89
  124. mindspore/nn/layer/basic.py +255 -624
  125. mindspore/nn/layer/channel_shuffle.py +7 -6
  126. mindspore/nn/layer/combined.py +1 -1
  127. mindspore/nn/layer/container.py +41 -4
  128. mindspore/nn/layer/conv.py +64 -28
  129. mindspore/nn/layer/dense.py +9 -8
  130. mindspore/nn/layer/embedding.py +27 -25
  131. mindspore/nn/layer/image.py +53 -46
  132. mindspore/nn/layer/math.py +97 -105
  133. mindspore/nn/layer/normalization.py +117 -86
  134. mindspore/nn/layer/padding.py +185 -95
  135. mindspore/nn/layer/pooling.py +817 -414
  136. mindspore/nn/layer/rnn_cells.py +10 -15
  137. mindspore/nn/layer/rnns.py +37 -38
  138. mindspore/nn/layer/thor_layer.py +11 -12
  139. mindspore/nn/layer/timedistributed.py +5 -5
  140. mindspore/nn/layer/transformer.py +701 -0
  141. mindspore/nn/learning_rate_schedule.py +8 -8
  142. mindspore/nn/loss/__init__.py +5 -4
  143. mindspore/nn/loss/loss.py +334 -199
  144. mindspore/nn/optim/ada_grad.py +6 -6
  145. mindspore/nn/optim/adadelta.py +2 -3
  146. mindspore/nn/optim/adafactor.py +4 -5
  147. mindspore/nn/optim/adam.py +126 -62
  148. mindspore/nn/optim/adamax.py +3 -4
  149. mindspore/nn/optim/adasum.py +6 -6
  150. mindspore/nn/optim/asgd.py +2 -2
  151. mindspore/nn/optim/ftrl.py +67 -38
  152. mindspore/nn/optim/lamb.py +4 -5
  153. mindspore/nn/optim/lars.py +2 -2
  154. mindspore/nn/optim/lazyadam.py +43 -4
  155. mindspore/nn/optim/momentum.py +6 -5
  156. mindspore/nn/optim/optimizer.py +3 -1
  157. mindspore/nn/optim/proximal_ada_grad.py +2 -2
  158. mindspore/nn/optim/rmsprop.py +1 -1
  159. mindspore/nn/optim/rprop.py +8 -9
  160. mindspore/nn/optim/sgd.py +19 -13
  161. mindspore/nn/optim/thor.py +10 -15
  162. mindspore/nn/probability/__init__.py +0 -2
  163. mindspore/nn/probability/bijector/bijector.py +4 -4
  164. mindspore/nn/probability/bijector/invert.py +1 -1
  165. mindspore/nn/probability/bijector/softplus.py +2 -2
  166. mindspore/nn/probability/bnn_layers/dense_variational.py +1 -1
  167. mindspore/nn/probability/bnn_layers/layer_distribution.py +2 -2
  168. mindspore/nn/probability/distribution/_utils/utils.py +9 -15
  169. mindspore/nn/probability/distribution/bernoulli.py +3 -3
  170. mindspore/nn/probability/distribution/beta.py +1 -1
  171. mindspore/nn/probability/distribution/categorical.py +5 -7
  172. mindspore/nn/probability/distribution/cauchy.py +3 -3
  173. mindspore/nn/probability/distribution/distribution.py +2 -2
  174. mindspore/nn/probability/distribution/exponential.py +2 -2
  175. mindspore/nn/probability/distribution/gamma.py +3 -3
  176. mindspore/nn/probability/distribution/geometric.py +1 -1
  177. mindspore/nn/probability/distribution/gumbel.py +3 -3
  178. mindspore/nn/probability/distribution/half_normal.py +15 -11
  179. mindspore/nn/probability/distribution/laplace.py +16 -13
  180. mindspore/nn/probability/distribution/logistic.py +2 -2
  181. mindspore/nn/probability/distribution/normal.py +1 -1
  182. mindspore/nn/probability/distribution/poisson.py +1 -1
  183. mindspore/nn/probability/distribution/student_t.py +20 -15
  184. mindspore/nn/probability/distribution/transformed_distribution.py +4 -4
  185. mindspore/nn/probability/distribution/uniform.py +2 -2
  186. mindspore/nn/reinforcement/_tensors_queue.py +3 -3
  187. mindspore/nn/reinforcement/tensor_array.py +2 -2
  188. mindspore/nn/sparse/sparse.py +2 -2
  189. mindspore/nn/wrap/cell_wrapper.py +27 -10
  190. mindspore/nn/wrap/grad_reducer.py +2 -2
  191. mindspore/nn/wrap/loss_scale.py +40 -24
  192. mindspore/numpy/array_creations.py +33 -22
  193. mindspore/numpy/array_ops.py +35 -30
  194. mindspore/numpy/logic_ops.py +6 -27
  195. mindspore/numpy/math_ops.py +22 -19
  196. mindspore/numpy/utils.py +1 -1
  197. mindspore/numpy/utils_const.py +108 -58
  198. mindspore/opencv_core452.dll +0 -0
  199. mindspore/opencv_imgcodecs452.dll +0 -0
  200. mindspore/opencv_imgproc452.dll +0 -0
  201. mindspore/ops/_constants.py +0 -6
  202. mindspore/ops/_grad/__init__.py +2 -1
  203. mindspore/ops/_grad/grad_array_ops.py +86 -117
  204. mindspore/ops/_grad/grad_base.py +23 -1
  205. mindspore/ops/_grad/grad_clip_ops.py +2 -3
  206. mindspore/ops/_grad/grad_comm_ops.py +34 -24
  207. mindspore/ops/_grad/grad_implementations.py +9 -45
  208. mindspore/ops/_grad/grad_inner_ops.py +47 -4
  209. mindspore/ops/_grad/grad_math_ops.py +142 -117
  210. mindspore/ops/_grad/grad_nn_ops.py +71 -165
  211. mindspore/ops/_grad/grad_sequence_ops.py +296 -0
  212. mindspore/ops/_grad/grad_sparse.py +7 -6
  213. mindspore/ops/_grad_experimental/__init__.py +1 -0
  214. mindspore/ops/_grad_experimental/grad_array_ops.py +150 -15
  215. mindspore/ops/_grad_experimental/grad_image_ops.py +16 -7
  216. mindspore/ops/_grad_experimental/grad_inner_ops.py +1 -22
  217. mindspore/ops/_grad_experimental/grad_linalg_ops.py +4 -11
  218. mindspore/ops/_grad_experimental/grad_math_ops.py +210 -89
  219. mindspore/ops/_grad_experimental/grad_nn_ops.py +26 -22
  220. mindspore/ops/_grad_experimental/grad_scalar_ops.py +112 -0
  221. mindspore/ops/_grad_experimental/grad_sparse_ops.py +49 -8
  222. mindspore/ops/_op_impl/_custom_op/batch_matmul_impl.py +1 -1
  223. mindspore/ops/_op_impl/_custom_op/batchnorm_fold.py +2 -2
  224. mindspore/ops/_op_impl/_custom_op/batchnorm_fold2.py +2 -2
  225. mindspore/ops/_op_impl/_custom_op/batchnorm_fold2_grad.py +2 -2
  226. mindspore/ops/_op_impl/_custom_op/batchnorm_fold2_grad_reduce.py +4 -4
  227. mindspore/ops/_op_impl/_custom_op/batchnorm_fold_grad.py +3 -3
  228. mindspore/ops/_op_impl/_custom_op/cholesky_trsm_impl.py +1 -1
  229. mindspore/ops/_op_impl/_custom_op/correction_mul.py +2 -2
  230. mindspore/ops/_op_impl/_custom_op/correction_mul_grad.py +2 -2
  231. mindspore/ops/_op_impl/_custom_op/dsd_back_impl.py +1 -5
  232. mindspore/ops/_op_impl/_custom_op/dsd_impl.py +1 -1
  233. mindspore/ops/_op_impl/_custom_op/fake_learned_scale_quant_perchannel.py +2 -2
  234. mindspore/ops/_op_impl/_custom_op/fake_learned_scale_quant_perchannel_grad.py +2 -2
  235. mindspore/ops/_op_impl/_custom_op/fake_learned_scale_quant_perchannel_grad_reduce.py +2 -2
  236. mindspore/ops/_op_impl/_custom_op/fake_learned_scale_quant_perlayer.py +2 -2
  237. mindspore/ops/_op_impl/_custom_op/fake_learned_scale_quant_perlayer_grad.py +2 -2
  238. mindspore/ops/_op_impl/_custom_op/fake_learned_scale_quant_perlayer_grad_reduce.py +2 -2
  239. mindspore/ops/_op_impl/_custom_op/fake_quant_perchannel.py +2 -2
  240. mindspore/ops/_op_impl/_custom_op/fake_quant_perchannel_grad.py +2 -2
  241. mindspore/ops/_op_impl/_custom_op/fake_quant_perlayer.py +2 -2
  242. mindspore/ops/_op_impl/_custom_op/fake_quant_perlayer_grad.py +2 -2
  243. mindspore/ops/_op_impl/_custom_op/fused_abs_max1_impl.py +1 -1
  244. mindspore/ops/_op_impl/_custom_op/img2col_impl.py +1 -1
  245. mindspore/ops/_op_impl/_custom_op/matmul_cube_dense_left_impl.py +2 -2
  246. mindspore/ops/_op_impl/_custom_op/matmul_cube_dense_right_impl.py +1 -1
  247. mindspore/ops/_op_impl/_custom_op/matmul_cube_fracz_left_cast_impl.py +1 -1
  248. mindspore/ops/_op_impl/_custom_op/matmul_cube_fracz_right_mul_impl.py +1 -1
  249. mindspore/ops/_op_impl/_custom_op/matmul_cube_impl.py +2 -2
  250. mindspore/ops/_op_impl/_custom_op/matmul_dds_impl.py +0 -4
  251. mindspore/ops/_op_impl/_custom_op/matrix_combine_impl.py +1 -1
  252. mindspore/ops/_op_impl/_custom_op/minmax_update_perchannel.py +2 -2
  253. mindspore/ops/_op_impl/_custom_op/minmax_update_perlayer.py +2 -2
  254. mindspore/ops/_op_impl/_custom_op/transpose02314_impl.py +1 -1
  255. mindspore/ops/_op_impl/aicpu/__init__.py +236 -4
  256. mindspore/ops/_op_impl/aicpu/abs.py +36 -0
  257. mindspore/ops/_op_impl/aicpu/{adaptive_avg_pool_2d_v1.py → adaptive_avg_pool_2d.py} +6 -5
  258. mindspore/ops/_op_impl/aicpu/adaptive_avg_pool_2d_grad.py +34 -0
  259. mindspore/ops/_op_impl/aicpu/add.py +43 -0
  260. mindspore/ops/_op_impl/aicpu/addcdiv.py +0 -32
  261. mindspore/ops/_op_impl/aicpu/addcmul.py +0 -84
  262. mindspore/ops/_op_impl/aicpu/affine_grid_grad.py +35 -0
  263. mindspore/ops/_op_impl/aicpu/batch_matmul.py +43 -43
  264. mindspore/ops/_op_impl/aicpu/bernoulli.py +48 -0
  265. mindspore/{compression/common/__init__.py → ops/_op_impl/aicpu/bessel_i0.py} +15 -8
  266. mindspore/ops/_op_impl/aicpu/channel_shuffle.py +40 -0
  267. mindspore/ops/_op_impl/aicpu/conj.py +11 -0
  268. mindspore/ops/_op_impl/aicpu/cumulative_logsumexp.py +0 -3
  269. mindspore/ops/_op_impl/aicpu/deformable_offsets.py +38 -0
  270. mindspore/ops/_op_impl/aicpu/deformable_offsets_grad.py +43 -0
  271. mindspore/ops/_op_impl/aicpu/{adaptive_avg_pool_2d_grad_v1.py → digamma.py} +7 -9
  272. mindspore/ops/_op_impl/aicpu/flatten.py +1 -0
  273. mindspore/ops/_op_impl/aicpu/fmax.py +36 -0
  274. mindspore/ops/_op_impl/aicpu/fmin.py +37 -0
  275. mindspore/ops/_op_impl/aicpu/fractional_max_pool3d_with_fixed_ksize.py +1 -1
  276. mindspore/ops/_op_impl/aicpu/fse_decode.py +43 -0
  277. mindspore/ops/_op_impl/aicpu/greater.py +41 -0
  278. mindspore/ops/_op_impl/aicpu/greater_equal.py +41 -0
  279. mindspore/ops/_op_impl/aicpu/index_put.py +50 -0
  280. mindspore/ops/_op_impl/aicpu/less.py +41 -0
  281. mindspore/{nn/probability/infer/variational/__init__.py → ops/_op_impl/aicpu/lgamma.py} +16 -10
  282. mindspore/ops/_op_impl/aicpu/mirror_pad.py +0 -4
  283. mindspore/ops/_op_impl/aicpu/mirror_pad_grad.py +0 -4
  284. mindspore/ops/_op_impl/aicpu/mul.py +3 -1
  285. mindspore/ops/_op_impl/aicpu/multinomial.py +14 -6
  286. mindspore/ops/_op_impl/aicpu/nllloss.py +38 -0
  287. mindspore/ops/_op_impl/aicpu/nllloss_grad.py +39 -0
  288. mindspore/ops/_op_impl/aicpu/ones_like.py +0 -2
  289. mindspore/ops/_op_impl/aicpu/polar.py +32 -0
  290. mindspore/ops/_op_impl/aicpu/polygamma.py +34 -0
  291. mindspore/ops/_op_impl/aicpu/quant_dtype_cast.py +40 -0
  292. mindspore/ops/_op_impl/aicpu/quantile.py +35 -0
  293. mindspore/ops/_op_impl/aicpu/ragged_tensor_to_sparse.py +73 -0
  294. mindspore/ops/_op_impl/aicpu/randperm_v2.py +41 -0
  295. mindspore/ops/_op_impl/aicpu/resize_bicubic.py +2 -8
  296. mindspore/ops/_op_impl/aicpu/resize_bicubic_grad.py +1 -1
  297. mindspore/ops/_op_impl/aicpu/resize_v2.py +68 -0
  298. mindspore/ops/_op_impl/aicpu/resize_v2_grad.py +68 -0
  299. mindspore/ops/_op_impl/aicpu/scatter_elements.py +4 -0
  300. mindspore/ops/_op_impl/aicpu/scatter_nd_update.py +2 -0
  301. mindspore/ops/_op_impl/aicpu/sequence_add.py +34 -0
  302. mindspore/ops/_op_impl/aicpu/sequence_add_offset.py +34 -0
  303. mindspore/ops/_op_impl/aicpu/sequence_addn.py +38 -0
  304. mindspore/ops/_op_impl/aicpu/smooth_l1_loss.py +35 -0
  305. mindspore/ops/_op_impl/aicpu/smooth_l1_loss_grad.py +37 -0
  306. mindspore/ops/_op_impl/aicpu/sparse_apply_adagrad_da.py +0 -24
  307. mindspore/ops/_op_impl/aicpu/sparse_cross.py +42 -0
  308. mindspore/ops/_op_impl/aicpu/sparse_slice.py +4 -0
  309. mindspore/ops/_op_impl/aicpu/sparse_slice_grad.py +6 -0
  310. mindspore/ops/_op_impl/aicpu/tensor_scatter_update.py +59 -0
  311. mindspore/ops/_op_impl/aicpu/trans_data.py +1 -0
  312. mindspore/ops/_op_impl/aicpu/tril_indices.py +34 -0
  313. mindspore/ops/_op_impl/aicpu/uniform.py +34 -0
  314. mindspore/ops/_op_impl/aicpu/uniform_candidate_sampler.py +1 -0
  315. mindspore/ops/_op_impl/aicpu/unique_consecutive.py +10 -2
  316. mindspore/ops/_op_impl/cpu/dynamic_shape.py +5 -1
  317. mindspore/ops/_op_impl/cpu/sparse_slice.py +4 -0
  318. mindspore/ops/_op_impl/cpu/sparse_slice_grad.py +6 -0
  319. mindspore/ops/_op_impl/cpu/tensor_shape.py +5 -1
  320. mindspore/ops/_op_impl/tbe/__init__.py +27 -611
  321. mindspore/ops/_op_impl/tbe/assign_add_ds.py +1 -0
  322. mindspore/ops/_op_impl/tbe/atomic_addr_clean.py +1 -1
  323. mindspore/ops/_op_impl/tbe/avg_pool_3d_grad.py +1 -1
  324. mindspore/ops/_op_impl/tbe/batch_matmul_ds.py +1 -0
  325. mindspore/ops/_op_impl/tbe/batch_to_space.py +1 -1
  326. mindspore/ops/_op_impl/tbe/batch_to_space_nd.py +1 -1
  327. mindspore/ops/_op_impl/tbe/bn_infer_grad.py +4 -2
  328. mindspore/ops/_op_impl/tbe/bn_training_update.py +0 -1
  329. mindspore/ops/_op_impl/tbe/bn_training_update_ds.py +0 -1
  330. mindspore/ops/_op_impl/tbe/broadcast_to_ds.py +6 -4
  331. mindspore/ops/_op_impl/tbe/cast.py +0 -2
  332. mindspore/ops/_op_impl/tbe/cast_ds.py +3 -3
  333. mindspore/ops/_op_impl/tbe/data_format_dim_map_ds.py +1 -0
  334. mindspore/ops/_op_impl/tbe/depthwise_conv2d.py +2 -2
  335. mindspore/ops/_op_impl/tbe/dynamic_atomic_addr_clean.py +1 -1
  336. mindspore/ops/_op_impl/tbe/gather_nd.py +1 -0
  337. mindspore/ops/_op_impl/tbe/{index_add.py → inplace_index_add.py} +3 -6
  338. mindspore/ops/_op_impl/tbe/matmul_ds.py +2 -0
  339. mindspore/ops/_op_impl/tbe/npu_clear_float_status_v2.py +35 -0
  340. mindspore/ops/_op_impl/tbe/npu_get_float_status_v2.py +35 -0
  341. mindspore/ops/_op_impl/tbe/scatter_mul.py +2 -0
  342. mindspore/ops/_op_impl/tbe/scatter_nd_add.py +0 -2
  343. mindspore/ops/_op_impl/tbe/space_to_batch.py +1 -1
  344. mindspore/ops/_op_impl/tbe/space_to_batch_nd.py +1 -1
  345. mindspore/ops/_op_impl/tbe/trans_data_ds.py +15 -5
  346. mindspore/ops/_register_for_op.py +1 -0
  347. mindspore/ops/_utils/__init__.py +1 -2
  348. mindspore/ops/_utils/utils.py +19 -40
  349. mindspore/ops/_vmap/vmap_array_ops.py +116 -38
  350. mindspore/ops/_vmap/vmap_base.py +16 -9
  351. mindspore/ops/_vmap/vmap_convolution_ops.py +7 -10
  352. mindspore/ops/_vmap/vmap_grad_math_ops.py +4 -4
  353. mindspore/ops/_vmap/vmap_grad_nn_ops.py +7 -5
  354. mindspore/ops/_vmap/vmap_image_ops.py +12 -5
  355. mindspore/ops/_vmap/vmap_math_ops.py +46 -5
  356. mindspore/ops/_vmap/vmap_nn_ops.py +15 -21
  357. mindspore/ops/_vmap/vmap_random_ops.py +1 -1
  358. mindspore/ops/bprop_mindir/AdaptiveAvgPool2D_bprop.mindir +0 -0
  359. mindspore/ops/bprop_mindir/AdaptiveMaxPool2D_bprop.mindir +0 -0
  360. mindspore/ops/bprop_mindir/AvgPool3D_bprop.mindir +150 -0
  361. mindspore/ops/bprop_mindir/AvgPool_bprop.mindir +66 -0
  362. mindspore/ops/bprop_mindir/BCEWithLogitsLoss_bprop.mindir +0 -0
  363. mindspore/ops/bprop_mindir/BatchNormGrad_bprop.mindir +0 -0
  364. mindspore/ops/bprop_mindir/BiasAddGrad_bprop.mindir +0 -0
  365. mindspore/ops/bprop_mindir/BinaryCrossEntropy_bprop.mindir +33 -0
  366. mindspore/ops/bprop_mindir/BroadcastTo_bprop.mindir +220 -106
  367. mindspore/ops/bprop_mindir/CTCLoss_bprop.mindir +0 -0
  368. mindspore/ops/bprop_mindir/Conv2DBackpropFilter_bprop.mindir +240 -0
  369. mindspore/ops/bprop_mindir/Conv2DBackpropInput_bprop.mindir +247 -0
  370. mindspore/ops/bprop_mindir/Conv2DTranspose_bprop.mindir +247 -0
  371. mindspore/ops/bprop_mindir/Conv3DTranspose_bprop.mindir +315 -0
  372. mindspore/ops/bprop_mindir/Conv3D_bprop.mindir +278 -0
  373. mindspore/ops/bprop_mindir/DeformableOffsets_bprop.mindir +58 -0
  374. mindspore/ops/bprop_mindir/DepthwiseConv2dNative_bprop.mindir +138 -0
  375. mindspore/ops/bprop_mindir/Dropout2D_bprop.mindir +0 -0
  376. mindspore/ops/bprop_mindir/Dropout3D_bprop.mindir +0 -0
  377. mindspore/ops/bprop_mindir/DropoutDoMask_bprop.mindir +22 -23
  378. mindspore/ops/bprop_mindir/DropoutGenMask_bprop.mindir +16 -17
  379. mindspore/ops/bprop_mindir/DropoutGrad_bprop.mindir +27 -0
  380. mindspore/ops/bprop_mindir/Dropout_bprop.mindir +0 -0
  381. mindspore/ops/bprop_mindir/DynamicGRUV2_bprop.mindir +0 -0
  382. mindspore/ops/bprop_mindir/DynamicRNN_bprop.mindir +0 -0
  383. mindspore/ops/bprop_mindir/Elu_bprop.mindir +16 -0
  384. mindspore/ops/bprop_mindir/EmbeddingLookup_bprop.mindir +0 -0
  385. mindspore/ops/bprop_mindir/ExpandDims_bprop.mindir +39 -41
  386. mindspore/ops/bprop_mindir/FastGeLU_bprop.mindir +16 -0
  387. mindspore/ops/bprop_mindir/Flatten_bprop.mindir +41 -43
  388. mindspore/ops/bprop_mindir/GatherNd_bprop.mindir +51 -57
  389. mindspore/ops/bprop_mindir/Gather_bprop.mindir +0 -0
  390. mindspore/ops/bprop_mindir/HSigmoid_bprop.mindir +16 -0
  391. mindspore/ops/bprop_mindir/HSwish_bprop.mindir +16 -0
  392. mindspore/ops/bprop_mindir/InstanceNorm_bprop.mindir +0 -0
  393. mindspore/ops/bprop_mindir/KLDivLoss_bprop.mindir +126 -0
  394. mindspore/ops/bprop_mindir/L2Loss_bprop.mindir +15 -0
  395. mindspore/ops/bprop_mindir/L2Normalize_bprop.mindir +30 -0
  396. mindspore/ops/bprop_mindir/LRN_bprop.mindir +43 -0
  397. mindspore/ops/bprop_mindir/LayerNormGrad_bprop.mindir +0 -0
  398. mindspore/ops/bprop_mindir/LogSoftmax_bprop.mindir +23 -0
  399. mindspore/ops/bprop_mindir/MaxPool3DGradGrad_bprop.mindir +74 -0
  400. mindspore/ops/bprop_mindir/MaxPool3DGrad_bprop.mindir +74 -0
  401. mindspore/ops/bprop_mindir/MaxPool3D_bprop.mindir +75 -0
  402. mindspore/ops/bprop_mindir/MaxPoolGradGrad_bprop.mindir +65 -0
  403. mindspore/ops/bprop_mindir/MaxPoolWithArgmax_bprop.mindir +0 -0
  404. mindspore/ops/bprop_mindir/MirrorPad_bprop.mindir +27 -0
  405. mindspore/ops/bprop_mindir/Mish_bprop.mindir +35 -0
  406. mindspore/ops/bprop_mindir/MulNoNan_bprop.mindir +0 -0
  407. mindspore/ops/bprop_mindir/NLLLoss_bprop.mindir +0 -0
  408. mindspore/ops/bprop_mindir/OneHot_bprop.mindir +24 -25
  409. mindspore/ops/bprop_mindir/PReLU_bprop.mindir +0 -0
  410. mindspore/ops/bprop_mindir/Pad_bprop.mindir +0 -0
  411. mindspore/ops/bprop_mindir/Padding_bprop.mindir +0 -0
  412. mindspore/ops/bprop_mindir/RNNTLoss_bprop.mindir +29 -0
  413. mindspore/ops/bprop_mindir/ROIAlign_bprop.mindir +82 -0
  414. mindspore/ops/bprop_mindir/ReLU6_bprop.mindir +16 -0
  415. mindspore/ops/bprop_mindir/ReLUV2_bprop.mindir +0 -0
  416. mindspore/ops/bprop_mindir/ReluGrad_bprop.mindir +18 -19
  417. mindspore/ops/bprop_mindir/Reshape_bprop.mindir +53 -53
  418. mindspore/ops/bprop_mindir/ResizeBilinear_bprop.mindir +29 -0
  419. mindspore/ops/bprop_mindir/ResizeNearestNeighbor_bprop.mindir +77 -85
  420. mindspore/ops/bprop_mindir/SeLU_bprop.mindir +21 -0
  421. mindspore/ops/bprop_mindir/SigmoidCrossEntropyWithLogits_bprop.mindir +21 -0
  422. mindspore/ops/bprop_mindir/SigmoidGrad_bprop.mindir +0 -0
  423. mindspore/ops/bprop_mindir/Sigmoid_bprop.mindir +16 -0
  424. mindspore/ops/bprop_mindir/SmoothL1Loss_bprop.mindir +36 -0
  425. mindspore/ops/bprop_mindir/SoftmaxCrossEntropyWithLogits_bprop.mindir +0 -0
  426. mindspore/ops/bprop_mindir/Softplus_bprop.mindir +16 -0
  427. mindspore/ops/bprop_mindir/Softsign_bprop.mindir +33 -0
  428. mindspore/ops/bprop_mindir/SparseSoftmaxCrossEntropyWithLogits_bprop.mindir +0 -0
  429. mindspore/ops/bprop_mindir/Squeeze_bprop.mindir +37 -39
  430. mindspore/ops/bprop_mindir/StridedSlice_bprop.mindir +70 -72
  431. mindspore/ops/bprop_mindir/TanhGrad_bprop.mindir +0 -0
  432. mindspore/ops/bprop_mindir/Tanh_bprop.mindir +66 -0
  433. mindspore/ops/bprop_mindir/Tile_bprop.mindir +0 -0
  434. mindspore/ops/bprop_mindir/TopK_bprop.mindir +0 -0
  435. mindspore/ops/bprop_mindir/TupleGetItem_bprop.mindir +17 -17
  436. mindspore/ops/bprop_mindir/UpsampleNearest3D_bprop.mindir +32 -0
  437. mindspore/ops/bprop_mindir/UpsampleTrilinear3D_bprop.mindir +38 -0
  438. mindspore/ops/bprop_mindir/generate_mindir.py +2 -0
  439. mindspore/ops/composite/__init__.py +7 -8
  440. mindspore/ops/composite/base.py +101 -47
  441. mindspore/ops/composite/math_ops.py +188 -158
  442. mindspore/ops/composite/multitype_ops/_compile_utils.py +415 -170
  443. mindspore/ops/composite/multitype_ops/_constexpr_utils.py +142 -87
  444. mindspore/ops/composite/multitype_ops/add_impl.py +6 -1
  445. mindspore/ops/composite/multitype_ops/div_impl.py +2 -3
  446. mindspore/ops/composite/multitype_ops/getitem_impl.py +31 -3
  447. mindspore/ops/composite/multitype_ops/greater_equal_impl.py +31 -0
  448. mindspore/ops/composite/multitype_ops/greater_impl.py +31 -0
  449. mindspore/ops/composite/multitype_ops/in_impl.py +9 -0
  450. mindspore/ops/composite/multitype_ops/less_equal_impl.py +31 -0
  451. mindspore/ops/composite/multitype_ops/less_impl.py +31 -0
  452. mindspore/ops/composite/multitype_ops/mul_impl.py +21 -5
  453. mindspore/ops/composite/multitype_ops/not_in_impl.py +9 -0
  454. mindspore/ops/composite/multitype_ops/ones_like_impl.py +2 -4
  455. mindspore/ops/composite/multitype_ops/setitem_impl.py +21 -3
  456. mindspore/ops/composite/multitype_ops/sub_impl.py +1 -1
  457. mindspore/ops/composite/multitype_ops/zeros_like_impl.py +35 -4
  458. mindspore/ops/function/__init__.py +152 -8
  459. mindspore/ops/function/array_func.py +2555 -674
  460. mindspore/ops/function/clip_func.py +209 -13
  461. mindspore/ops/function/debug_func.py +2 -2
  462. mindspore/ops/function/grad/__init__.py +2 -1
  463. mindspore/ops/function/grad/grad_func.py +147 -62
  464. mindspore/ops/function/image_func.py +54 -38
  465. mindspore/ops/function/linalg_func.py +167 -16
  466. mindspore/ops/function/math_func.py +4849 -1492
  467. mindspore/ops/function/nn_func.py +2573 -988
  468. mindspore/ops/function/other_func.py +115 -0
  469. mindspore/ops/function/parameter_func.py +3 -3
  470. mindspore/ops/function/random_func.py +790 -73
  471. mindspore/ops/function/sparse_func.py +98 -78
  472. mindspore/ops/function/sparse_unary_func.py +54 -53
  473. mindspore/ops/function/spectral_func.py +27 -24
  474. mindspore/ops/function/vmap_func.py +22 -2
  475. mindspore/ops/functional.py +97 -37
  476. mindspore/ops/op_info_register.py +70 -28
  477. mindspore/ops/operations/__init__.py +47 -14
  478. mindspore/ops/operations/_csr_ops.py +7 -7
  479. mindspore/ops/operations/_embedding_cache_ops.py +5 -5
  480. mindspore/ops/operations/_grad_ops.py +276 -187
  481. mindspore/ops/operations/_inner_ops.py +319 -113
  482. mindspore/ops/operations/_ms_kernel.py +10 -8
  483. mindspore/ops/operations/_ocr_ops.py +9 -9
  484. mindspore/ops/operations/_opaque_predicate_registry.py +4 -0
  485. mindspore/ops/operations/_quant_ops.py +137 -102
  486. mindspore/ops/operations/_rl_inner_ops.py +121 -60
  487. mindspore/ops/operations/_scalar_ops.py +466 -0
  488. mindspore/ops/operations/_sequence_ops.py +1004 -2
  489. mindspore/ops/operations/_tensor_array.py +10 -11
  490. mindspore/ops/operations/_thor_ops.py +1 -1
  491. mindspore/ops/operations/array_ops.py +801 -466
  492. mindspore/ops/operations/comm_ops.py +51 -49
  493. mindspore/ops/operations/control_ops.py +2 -2
  494. mindspore/ops/operations/custom_ops.py +123 -44
  495. mindspore/ops/operations/debug_ops.py +24 -24
  496. mindspore/ops/operations/image_ops.py +240 -153
  497. mindspore/ops/operations/inner_ops.py +34 -50
  498. mindspore/ops/operations/linalg_ops.py +31 -9
  499. mindspore/ops/operations/math_ops.py +988 -757
  500. mindspore/ops/operations/nn_ops.py +965 -819
  501. mindspore/ops/operations/other_ops.py +51 -40
  502. mindspore/ops/operations/random_ops.py +204 -122
  503. mindspore/ops/operations/rl_ops.py +8 -9
  504. mindspore/ops/operations/sparse_ops.py +254 -93
  505. mindspore/ops/operations/spectral_ops.py +35 -3
  506. mindspore/ops/primitive.py +111 -9
  507. mindspore/parallel/_auto_parallel_context.py +189 -83
  508. mindspore/parallel/_offload_context.py +185 -0
  509. mindspore/parallel/_parallel_serialization.py +99 -7
  510. mindspore/parallel/_ps_context.py +9 -5
  511. mindspore/parallel/_recovery_context.py +1 -1
  512. mindspore/parallel/_tensor.py +7 -1
  513. mindspore/{nn/transformer → parallel/_transformer}/__init__.py +6 -6
  514. mindspore/{nn/transformer → parallel/_transformer}/layers.py +6 -37
  515. mindspore/{nn/transformer → parallel/_transformer}/loss.py +4 -7
  516. mindspore/{nn/transformer → parallel/_transformer}/moe.py +20 -16
  517. mindspore/{nn/transformer → parallel/_transformer}/op_parallel_config.py +3 -3
  518. mindspore/{nn/transformer → parallel/_transformer}/transformer.py +48 -111
  519. mindspore/parallel/_utils.py +1 -2
  520. mindspore/parallel/algo_parameter_config.py +1 -1
  521. mindspore/parallel/checkpoint_transform.py +37 -34
  522. mindspore/parallel/shard.py +17 -18
  523. mindspore/profiler/common/validator/validate_path.py +2 -2
  524. mindspore/profiler/envprofiling.py +69 -47
  525. mindspore/profiler/parser/ascend_timeline_generator.py +49 -42
  526. mindspore/profiler/parser/base_timeline_generator.py +49 -56
  527. mindspore/profiler/parser/cpu_gpu_timeline_generator.py +98 -78
  528. mindspore/profiler/parser/hwts_log_parser.py +1 -1
  529. mindspore/profiler/parser/integrator.py +15 -14
  530. mindspore/profiler/parser/minddata_analyzer.py +2 -2
  531. mindspore/profiler/parser/msadvisor_analyzer.py +12 -25
  532. mindspore/profiler/parser/msadvisor_parser.py +2 -4
  533. mindspore/profiler/parser/optime_parser.py +17 -18
  534. mindspore/profiler/parser/profiler_info.py +2 -1
  535. mindspore/profiler/profiling.py +218 -186
  536. mindspore/rewrite/__init__.py +3 -1
  537. mindspore/rewrite/api/node.py +1 -114
  538. mindspore/rewrite/api/node_type.py +3 -0
  539. mindspore/rewrite/api/pattern_engine.py +31 -1
  540. mindspore/rewrite/api/scoped_value.py +4 -4
  541. mindspore/rewrite/api/symbol_tree.py +3 -78
  542. mindspore/rewrite/api/tree_node_helper.py +1 -1
  543. mindspore/rewrite/ast_creator_register.py +1 -0
  544. mindspore/rewrite/ast_helpers/__init__.py +2 -2
  545. mindspore/rewrite/ast_helpers/ast_creator.py +1 -2
  546. mindspore/rewrite/ast_helpers/ast_finder.py +65 -0
  547. mindspore/rewrite/ast_helpers/ast_modifier.py +11 -3
  548. mindspore/rewrite/ast_transformers/flatten_recursive_stmt.py +18 -2
  549. mindspore/rewrite/namespace.py +0 -2
  550. mindspore/rewrite/node.py +157 -11
  551. mindspore/rewrite/parsers/assign_parser.py +231 -53
  552. mindspore/rewrite/parsers/class_def_parser.py +187 -109
  553. mindspore/rewrite/parsers/for_parser.py +24 -14
  554. mindspore/rewrite/parsers/function_def_parser.py +21 -4
  555. mindspore/rewrite/parsers/if_parser.py +6 -2
  556. mindspore/rewrite/sparsify/__init__.py +0 -0
  557. mindspore/rewrite/sparsify/sparse_transformer.py +448 -0
  558. mindspore/rewrite/sparsify/sparsify.py +109 -0
  559. mindspore/rewrite/sparsify/utils.py +173 -0
  560. mindspore/rewrite/symbol_tree.py +256 -133
  561. mindspore/rewrite/symbol_tree_builder.py +38 -1
  562. mindspore/run_check/_check_version.py +69 -63
  563. mindspore/run_check/run_check.py +2 -1
  564. mindspore/tinyxml2.dll +0 -0
  565. mindspore/train/__init__.py +1 -1
  566. mindspore/train/_utils.py +28 -5
  567. mindspore/train/amp.py +273 -102
  568. mindspore/train/callback/_backup_and_restore.py +5 -5
  569. mindspore/train/callback/_callback.py +2 -2
  570. mindspore/train/callback/_checkpoint.py +3 -3
  571. mindspore/train/callback/_early_stop.py +3 -3
  572. mindspore/train/callback/_lambda_callback.py +2 -2
  573. mindspore/train/callback/_landscape.py +29 -31
  574. mindspore/train/callback/_loss_monitor.py +3 -3
  575. mindspore/train/callback/_on_request_exit.py +3 -3
  576. mindspore/train/callback/_reduce_lr_on_plateau.py +4 -4
  577. mindspore/train/callback/_summary_collector.py +23 -16
  578. mindspore/train/callback/_time_monitor.py +3 -3
  579. mindspore/train/checkpoint_pb2.py +68 -8
  580. mindspore/train/data_sink.py +15 -3
  581. mindspore/train/dataset_helper.py +10 -15
  582. mindspore/train/loss_scale_manager.py +8 -11
  583. mindspore/train/metrics/__init__.py +1 -1
  584. mindspore/train/metrics/bleu_score.py +1 -1
  585. mindspore/train/metrics/confusion_matrix.py +1 -1
  586. mindspore/train/metrics/cosine_similarity.py +1 -1
  587. mindspore/train/metrics/dice.py +2 -2
  588. mindspore/train/metrics/fbeta.py +1 -1
  589. mindspore/train/metrics/hausdorff_distance.py +4 -3
  590. mindspore/train/metrics/mean_surface_distance.py +2 -2
  591. mindspore/train/metrics/occlusion_sensitivity.py +1 -1
  592. mindspore/train/metrics/perplexity.py +1 -1
  593. mindspore/train/metrics/precision.py +1 -1
  594. mindspore/train/metrics/recall.py +1 -1
  595. mindspore/train/metrics/roc.py +2 -2
  596. mindspore/train/metrics/root_mean_square_surface_distance.py +2 -2
  597. mindspore/train/mind_ir_pb2.py +116 -37
  598. mindspore/train/model.py +45 -28
  599. mindspore/train/serialization.py +295 -188
  600. mindspore/train/summary/_summary_adapter.py +1 -1
  601. mindspore/train/summary/summary_record.py +43 -13
  602. mindspore/train/train_thor/convert_utils.py +2 -2
  603. mindspore/train/train_thor/dataset_helper.py +3 -3
  604. mindspore/turbojpeg.dll +0 -0
  605. mindspore/version.py +1 -1
  606. {mindspore-2.0.0a0.dist-info → mindspore-2.0.0rc1.dist-info}/METADATA +3 -2
  607. {mindspore-2.0.0a0.dist-info → mindspore-2.0.0rc1.dist-info}/RECORD +610 -541
  608. mindspore/compression/__init__.py +0 -19
  609. mindspore/compression/common/constant.py +0 -124
  610. mindspore/compression/export/__init__.py +0 -19
  611. mindspore/compression/export/quant_export.py +0 -515
  612. mindspore/compression/quant/__init__.py +0 -28
  613. mindspore/compression/quant/qat.py +0 -634
  614. mindspore/compression/quant/quant_utils.py +0 -462
  615. mindspore/compression/quant/quantizer.py +0 -68
  616. mindspore/nn/layer/quant.py +0 -1868
  617. mindspore/nn/layer/rnn_utils.py +0 -90
  618. mindspore/nn/probability/dpn/__init__.py +0 -22
  619. mindspore/nn/probability/dpn/vae/__init__.py +0 -25
  620. mindspore/nn/probability/dpn/vae/cvae.py +0 -140
  621. mindspore/nn/probability/dpn/vae/vae.py +0 -124
  622. mindspore/nn/probability/infer/__init__.py +0 -22
  623. mindspore/nn/probability/infer/variational/elbo.py +0 -70
  624. mindspore/nn/probability/infer/variational/svi.py +0 -84
  625. mindspore/nn/probability/toolbox/__init__.py +0 -22
  626. mindspore/nn/probability/toolbox/anomaly_detection.py +0 -99
  627. mindspore/nn/probability/toolbox/uncertainty_evaluation.py +0 -364
  628. mindspore/nn/probability/transforms/__init__.py +0 -22
  629. mindspore/nn/probability/transforms/transform_bnn.py +0 -262
  630. mindspore/nn/probability/zhusuan/__init__.py +0 -18
  631. mindspore/nn/probability/zhusuan/framework/__init__.py +0 -18
  632. mindspore/nn/probability/zhusuan/framework/bn.py +0 -95
  633. mindspore/nn/probability/zhusuan/variational/__init__.py +0 -18
  634. mindspore/nn/probability/zhusuan/variational/elbo.py +0 -46
  635. mindspore/ops/_op_impl/aicpu/parallel_concat.py +0 -42
  636. mindspore/ops/_op_impl/tbe/gather_v2.py +0 -56
  637. mindspore/ops/bprop_mindir/AssignAdd_bprop.mindir +0 -19
  638. mindspore/ops/bprop_mindir/Cast_bprop.mindir +0 -19
  639. mindspore/ops/bprop_mindir/LogicalOr_bprop.mindir +0 -19
  640. mindspore/ops/bprop_mindir/MatMul_bprop.mindir +0 -0
  641. mindspore/ops/bprop_mindir/ReLU_bprop.mindir +0 -17
  642. mindspore/ops/bprop_mindir/Transpose_bprop.mindir +0 -0
  643. mindspore/ops/bprop_mindir/UpdateState_bprop.mindir +0 -15
  644. mindspore/ops/composite/array_ops.py +0 -241
  645. mindspore/ops/composite/clip_ops.py +0 -134
  646. mindspore/ops/composite/random_ops.py +0 -426
  647. mindspore/ops/composite/vmap_ops.py +0 -38
  648. mindspore/parallel/nn/__init__.py +0 -42
  649. mindspore/parallel/nn/loss.py +0 -22
  650. mindspore/parallel/nn/moe.py +0 -21
  651. mindspore/parallel/nn/op_parallel_config.py +0 -22
  652. mindspore/parallel/nn/transformer.py +0 -31
  653. {mindspore-2.0.0a0.dist-info → mindspore-2.0.0rc1.dist-info}/WHEEL +0 -0
  654. {mindspore-2.0.0a0.dist-info → mindspore-2.0.0rc1.dist-info}/entry_points.txt +0 -0
  655. {mindspore-2.0.0a0.dist-info → mindspore-2.0.0rc1.dist-info}/top_level.txt +0 -0
@@ -16,7 +16,7 @@
16
16
  import numpy as np
17
17
  from mindspore.ops import operations as P
18
18
  from mindspore.ops import composite as C
19
- from mindspore._checkparam import Validator
19
+ from mindspore import _checkparam as Validator
20
20
  from mindspore.common import dtype as mstype
21
21
  from .distribution import Distribution
22
22
  from ._utils.utils import check_greater_zero, check_distribution_name
@@ -26,7 +26,7 @@ from ._utils.custom_ops import exp_generic, log_generic
26
26
  class Exponential(Distribution):
27
27
  r"""
28
28
  Exponential Distribution.
29
- An Exponential distributio is a continuous distribution with the range :math:`[0, 1]`
29
+ An Exponential distributio is a continuous distribution with the range :math:`[0, \inf)`
30
30
  and the probability density function:
31
31
 
32
32
  .. math::
@@ -17,7 +17,7 @@ import numpy as np
17
17
  from mindspore.ops import operations as P
18
18
  from mindspore.ops import composite as C
19
19
  import mindspore.nn as nn
20
- from mindspore._checkparam import Validator
20
+ from mindspore import _checkparam as Validator
21
21
  from mindspore.common import dtype as mstype
22
22
  from .distribution import Distribution
23
23
  from ._utils.utils import check_greater_zero, check_distribution_name
@@ -27,14 +27,14 @@ from ._utils.custom_ops import log_generic
27
27
  class Gamma(Distribution):
28
28
  r"""
29
29
  Gamma distribution.
30
- A Gamma distributio is a continuous distribution with the range :math:`[0, 1]`
30
+ A Gamma distributio is a continuous distribution with the range :math:`(0, \inf)`
31
31
  and the probability density function:
32
32
 
33
33
  .. math::
34
34
  f(x, \alpha, \beta) = \beta^\alpha / \Gamma(\alpha) x^{\alpha - 1} \exp(-\beta x).
35
35
 
36
36
  where :math:`G` is the Gamma function,
37
- and :math:`\alpha, \beta` are the concentration and the rate of the distribution respectively.
37
+ and :math:`\alpha` and :math:`\beta` are the concentration and the rate of the distribution respectively.
38
38
 
39
39
  Args:
40
40
  concentration (int, float, list, numpy.ndarray, Tensor): The concentration,
@@ -17,7 +17,7 @@ import numpy as np
17
17
  from mindspore.ops import operations as P
18
18
  from mindspore.ops.operations import _inner_ops as inner
19
19
  from mindspore.ops import composite as C
20
- from mindspore._checkparam import Validator
20
+ from mindspore import _checkparam as Validator
21
21
  from mindspore.common import dtype as mstype
22
22
  from .distribution import Distribution
23
23
  from ._utils.utils import check_prob, check_distribution_name
@@ -15,7 +15,7 @@
15
15
  """Gumbel Distribution"""
16
16
  import numpy as np
17
17
  from mindspore.ops import operations as P
18
- from mindspore._checkparam import Validator
18
+ from mindspore import _checkparam as Validator
19
19
  from mindspore.common import dtype as mstype
20
20
  import mindspore.nn as nn
21
21
  import mindspore.nn.probability.bijector as msb
@@ -28,13 +28,13 @@ from ._utils.custom_ops import exp_generic, log_generic
28
28
  class Gumbel(TransformedDistribution):
29
29
  r"""
30
30
  Gumbel distribution.
31
- A Gumbel distributio is a continuous distribution with the range :math:`[0, 1]`
31
+ A Gumbel distributio is a continuous distribution with the range of all real numbers
32
32
  and the probability density function:
33
33
 
34
34
  .. math::
35
35
  f(x, a, b) = 1 / b \exp(\exp(-(x - a) / b) - x),
36
36
 
37
- where a and b are loc and scale parameter respectively.
37
+ where :math:`a, b` are loc and scale parameter respectively.
38
38
 
39
39
  Args:
40
40
  loc (int, float, list, numpy.ndarray, Tensor): The location of Gumbel distribution.
@@ -16,8 +16,9 @@
16
16
  from __future__ import absolute_import
17
17
  from __future__ import division
18
18
  import numpy as np
19
+ from mindspore import ops
19
20
  from mindspore.ops import operations as P
20
- from mindspore._checkparam import Validator
21
+ from mindspore import _checkparam as Validator
21
22
  from mindspore.common import dtype as mstype
22
23
  from mindspore.nn.probability.distribution import Distribution
23
24
  from mindspore.nn.probability.distribution._utils.utils import check_greater_zero
@@ -35,16 +36,19 @@ class HalfNormal(Distribution):
35
36
  where :math:`\mu, \sigma` are the mean and the standard deviation of the half normal distribution respectively.
36
37
 
37
38
  Args:
38
- mean (int, float, list, numpy.ndarray, Tensor): The mean of the distribution. Default: None.
39
- sd (int, float, list, numpy.ndarray, Tensor): The standard deviation of the distribution. Default: None.
40
- seed (int): The seed used in sampling. The global seed is used if it is None. Default: None.
41
- dtype (mindspore.dtype): The type of the event samples. Default: mstype.float32.
42
- name (str): The name of the distribution. Default: 'HalfNormal'.
39
+ mean (Union[int, float, list, numpy.ndarray, Tensor], optional): The mean of the distribution.
40
+ If this arg is None, then the mean of the distribution will be passed in runtime. Default: None.
41
+ sd (Union[int, float, list, numpy.ndarray, Tensor], optional): The standard deviation of the distribution.
42
+ If this arg is None, then the sd of the distribution will be passed in runtime. Default: None.
43
+ seed (int, optional): The seed used in sampling. The global seed is used if it is None. Default: None.
44
+ dtype (mindspore.dtype, optional): The type of the event samples. Default: mstype.float32.
45
+ name (str, optional): The name of the distribution. Default: 'HalfNormal'.
43
46
 
44
47
  Note:
45
48
  - `sd` must be greater than zero.
46
- - `dist_spec_args` are `mean` and `sd`.
47
49
  - `dtype` must be a float type because HalfNormal distributions are continuous.
50
+ - If the arg `mean` or `sd` is passed in runtime, then it will be used as the parameter value.
51
+ Otherwise, the value passed in the constructor will be used.
48
52
 
49
53
  Raises:
50
54
  ValueError: When sd <= 0.
@@ -104,18 +108,18 @@ class HalfNormal(Distribution):
104
108
 
105
109
  self.exp = P.Exp()
106
110
  self.cast = P.Cast()
107
- self.const = np.sqrt(2. / np.pi)
111
+ self.const = ops.scalar_to_tensor(np.sqrt(2. / np.pi))
108
112
  self.sq = P.Square()
109
113
  self.type = dtype
110
114
 
111
115
  def _prob(self, value, mean=None, sd=None):
112
116
  r"""
113
- Evaluate probability.
117
+ Evaluate probability of the value of the HalfNormal distribution.
114
118
 
115
119
  Args:
116
120
  value (Tensor): The value to be evaluated.
117
- mean (Tensor): The mean of the distribution. Default: self._mean_value.
118
- sd (Tensor): The standard deviation the distribution. Default: self._sd_value.
121
+ mean (Tensor, optional): The mean of the distribution. Default: self._mean_value.
122
+ sd (Tensor, optional): The standard deviation the distribution. Default: self._sd_value.
119
123
 
120
124
  .. math::
121
125
  P(x) = 1 / \sigma \sqrt{2\pi} \exp(-(x - \mu)^2 / 2\sigma^2)
@@ -16,7 +16,7 @@
16
16
  from __future__ import absolute_import
17
17
  from __future__ import division
18
18
  from mindspore.ops import operations as P
19
- from mindspore._checkparam import Validator
19
+ from mindspore import _checkparam as Validator
20
20
  from mindspore.common import dtype as mstype
21
21
  from mindspore.nn.probability.distribution import Distribution
22
22
  from mindspore.nn.probability.distribution._utils.utils import check_greater_zero
@@ -25,25 +25,28 @@ from mindspore.nn.probability.distribution._utils.utils import check_greater_zer
25
25
  class Laplace(Distribution):
26
26
  r"""
27
27
  Laplace distribution.
28
- A Laplace distribution is a continuous distribution with the range :math:`[-\inf, \inf)`
28
+ A Laplace distribution is a continuous distribution with the range :math:`(-\inf, \inf)`
29
29
  and the probability density function:
30
30
 
31
31
  .. math::
32
- f(x, \mu, b) = 1 / (2. * b) * \exp(-abs(x - \mu) / b).
32
+ f(x, \mu, b) = 1 / (2 * b) * \exp(-abs(x - \mu) / b).
33
33
 
34
34
  where :math:`\mu, b` are the mean and the scale of the laplace distribution respectively.
35
35
 
36
36
  Args:
37
- mean (int, float, list, numpy.ndarray, Tensor): The mean of the distribution. Default: None.
38
- sd (int, float, list, numpy.ndarray, Tensor): The standard deviation of the distribution. Default: None.
39
- seed (int): The seed used in sampling. The global seed is used if it is None. Default: None.
40
- dtype (mindspore.dtype): The type of the event samples. Default: mstype.float32.
41
- name (str): The name of the distribution. Default: 'Laplace'.
37
+ mean (Union[int, float, list, numpy.ndarray, Tensor], optional): The mean of the distribution.
38
+ If this arg is None, then the mean of the distribution will be passed in runtime. Default: None.
39
+ sd (Union[int, float, list, numpy.ndarray, Tensor], optional): The scale of the distribution.
40
+ If this arg is None, then the scale of the distribution will be passed in runtime. Default: None.
41
+ seed (int, optional): The seed used in sampling. The global seed is used if it is None. Default: None.
42
+ dtype (mindspore.dtype, optional): The type of the event samples. Default: mstype.float32.
43
+ name (str, optional): The name of the distribution. Default: 'Laplace'.
42
44
 
43
45
  Note:
44
46
  - `sd` must be greater than zero.
45
- - `dist_spec_args` are `mean` and `sd`.
46
47
  - `dtype` must be a float type because Laplace distributions are continuous.
48
+ - If the arg `mean` or `sd` is passed in runtime, then it will be used as the parameter value.
49
+ Otherwise, the value passed in the constructor will be used.
47
50
 
48
51
  Raises:
49
52
  ValueError: When sd <= 0.
@@ -57,7 +60,7 @@ class Laplace(Distribution):
57
60
  >>> import mindspore.nn as nn
58
61
  >>> from mindspore.nn.probability.distribution import Laplace
59
62
  >>> from mindspore import Tensor
60
- >>> # To initialize a Laplace distribution of the mean 3.0 and the standard deviation 4.0.
63
+ >>> # To initialize a Laplace distribution of the mean 3.0 and the scale 4.0.
61
64
  >>> n1 = Laplace(3.0, 4.0, dtype=mindspore.float32)
62
65
  >>> # A Laplace distribution can be initialized without arguments.
63
66
  >>> # In this case, `mean` and `sd` must be passed in through arguments.
@@ -107,12 +110,12 @@ class Laplace(Distribution):
107
110
 
108
111
  def _log_prob(self, value, mean=None, sd=None):
109
112
  r"""
110
- Evaluate log probability.
113
+ Evaluate log probability of the laplace distribution.
111
114
 
112
115
  Args:
113
116
  value (Tensor): The value to be evaluated.
114
- mean (Tensor): The mean of the distribution. Default: self._mean_value.
115
- sd (Tensor): The standard deviation the distribution. Default: self._sd_value.
117
+ mean (Tensor, optional): The mean of the distribution. Default: self._mean_value.
118
+ sd (Tensor, optional): The scale the distribution. Default: self._sd_value.
116
119
 
117
120
  .. math::
118
121
  L(x) = -1* \abs{\frac{x - \mu}{\sigma}} - \log(2. * \sigma))
@@ -16,7 +16,7 @@
16
16
  import numpy as np
17
17
  from mindspore.ops import operations as P
18
18
  from mindspore.ops import composite as C
19
- from mindspore._checkparam import Validator
19
+ from mindspore import _checkparam as Validator
20
20
  from mindspore.common import dtype as mstype
21
21
  from .distribution import Distribution
22
22
  from ._utils.utils import check_greater_zero
@@ -32,7 +32,7 @@ class Logistic(Distribution):
32
32
  .. math::
33
33
  f(x, a, b) = 1 / b \exp(\exp(-(x - a) / b) - x).
34
34
 
35
- where a and b are loc and scale parameter respectively.
35
+ where :math:`a, b` are loc and scale parameter respectively.
36
36
 
37
37
  Args:
38
38
  loc (float, list, numpy.ndarray, Tensor): The location of the Logistic distribution. Default: None.
@@ -16,7 +16,7 @@
16
16
  import numpy as np
17
17
  from mindspore.ops import operations as P
18
18
  from mindspore.ops import composite as C
19
- from mindspore._checkparam import Validator
19
+ from mindspore import _checkparam as Validator
20
20
  from mindspore.common import dtype as mstype
21
21
  from mindspore.common import Tensor
22
22
  from .distribution import Distribution
@@ -17,7 +17,7 @@ import numpy as np
17
17
  from mindspore.ops import operations as P
18
18
  from mindspore.ops import composite as C
19
19
  import mindspore.nn as nn
20
- from mindspore._checkparam import Validator
20
+ from mindspore import _checkparam as Validator
21
21
  from mindspore.common import dtype as mstype
22
22
  from .distribution import Distribution
23
23
  from ._utils.utils import check_greater_zero
@@ -18,7 +18,7 @@ from __future__ import division
18
18
  import numpy as np
19
19
  import mindspore.nn as nn
20
20
  from mindspore.ops import operations as P
21
- from mindspore._checkparam import Validator
21
+ from mindspore import _checkparam as Validator
22
22
  from mindspore.common import dtype as mstype
23
23
  from mindspore.nn.probability.distribution import Distribution
24
24
  from mindspore.nn.probability.distribution._utils.utils import check_greater_zero
@@ -27,28 +27,33 @@ from mindspore.nn.probability.distribution._utils.utils import check_greater_zer
27
27
  class StudentT(Distribution):
28
28
  r"""
29
29
  StudentT distribution.
30
- A StudentT distribution is a continuous distribution with the range :math:`[-\inf, \inf)`
30
+ A StudentT distribution is a continuous distribution with the range :math:`(-\inf, \inf)`
31
31
  and the probability density function:
32
32
 
33
33
  .. math::
34
34
  f(x, \nu, \mu, \sigma) = (1 + y^2 / \nu)^{(-0.5*(\nu + 1))} / Z
35
35
 
36
- where :math:`y = (x-\mu)/\sigma`, :math:`Z = abs(\sigma)*\sqrt(\nu * \pi)*\Gamma(0.5 * \nu)/\Gamma(0.5*(\nu + 1))`,
37
- :math:`\nu, \mu, \sigma` are the degrees of freedom , mean and scale of the laplace distribution respectively.
36
+ where :math:`y = (x - \mu)/ \sigma`,
37
+ :math:`Z = abs(\sigma) * \sqrt{(\nu * \pi)} * \Gamma(0.5 * \nu) / \Gamma(0.5 * (\nu + 1))`,
38
+ :math:`\nu, \mu, \sigma` are the degrees of freedom , mean and sd of the laplace distribution respectively.
38
39
 
39
40
  Args:
40
- df (int, float, list, numpy.ndarray, Tensor): The degrees of freedom. Default: None.
41
- mean (int, float, list, numpy.ndarray, Tensor): The mean of the distribution. Default: None.
42
- sd (int, float, list, numpy.ndarray, Tensor): The standard deviation of the distribution. Default: None.
43
- seed (int): The seed used in sampling. The global seed is used if it is None. Default: None.
44
- dtype (mindspore.dtype): The type of the event samples. Default: mstype.float32.
45
- name (str): The name of the distribution. Default: 'StudentT'.
41
+ df (Union[int, float, list, numpy.ndarray, Tensor], optional): The degrees of freedom.
42
+ If this arg is None, then the df of the distribution will be passed in runtime. Default: None.
43
+ mean (Union[int, float, list, numpy.ndarray, Tensor], optional): The mean of the distribution.
44
+ If this arg is None, then the df of the distribution will be passed in runtime. Default: None.
45
+ sd (Union[int, float, list, numpy.ndarray, Tensor], optional): The standard deviation of the distribution.
46
+ If this arg is None, then the sd of the distribution will be passed in runtime. Default: None.
47
+ seed (int, optional): The seed used in sampling. The global seed is used if it is None. Default: None.
48
+ dtype (mindspore.dtype, optional): The type of the event samples. Default: mstype.float32.
49
+ name (str, optional): The name of the distribution. Default: 'StudentT'.
46
50
 
47
51
  Note:
48
52
  - `df` must be greater than zero.
49
53
  - `sd` must be greater than zero.
50
- - `dist_spec_args` are `mean` and `sd`.
51
54
  - `dtype` must be a float type because StudentT distributions are continuous.
55
+ - If the arg `df`, `mean` or `sd` is passed in runtime, then it will be used as the parameter value.
56
+ Otherwise, the value passed in the constructor will be used.
52
57
 
53
58
  Raises:
54
59
  ValueError: When df <= 0.
@@ -122,13 +127,13 @@ class StudentT(Distribution):
122
127
 
123
128
  def _log_prob(self, value, df=None, mean=None, sd=None):
124
129
  r"""
125
- Evaluate log probability.
130
+ Evaluate log probability of the value of the StudentT distribution.
126
131
 
127
132
  Args:
128
133
  value (Tensor): The value to be evaluated.
129
- df (Tensor): The degrees of freedom of the distribution. Default: self._df_value.
130
- mean (Tensor): The mean of the distribution. Default: self._mean_value.
131
- sd (Tensor): The standard deviation the distribution. Default: self._sd_value.
134
+ df (Tensor, optional): The degrees of freedom of the distribution. Default: self._df_value.
135
+ mean (Tensor, optional): The mean of the distribution. Default: self._mean_value.
136
+ sd (Tensor, optional): The standard deviation the distribution. Default: self._sd_value.
132
137
 
133
138
  .. math::
134
139
  L(x) = -0.5 * (\nu + 1.) * \log((x - \mu) / \sigma + 1.)) + \log(\sqrt(\pi * \mu * \sigma^2))
@@ -14,7 +14,7 @@
14
14
  # ============================================================================
15
15
  """Transformed Distribution"""
16
16
  import numpy as np
17
- from mindspore._checkparam import Validator as validator
17
+ from mindspore import _checkparam as validator
18
18
  from mindspore.ops import operations as P
19
19
  from mindspore.common import dtype as mstype
20
20
  import mindspore.nn as nn
@@ -28,9 +28,9 @@ class TransformedDistribution(Distribution):
28
28
  Transformed Distribution.
29
29
  This class contains a bijector and a distribution and transforms the original distribution
30
30
  to a new distribution through the operation defined by the bijector.
31
- If X is an random variable following the underying distribution,
32
- and g(x) is a function represented by the bijector,
33
- then Y = g(X) is a random variable following the transformed distribution.
31
+ If :math:`X` is an random variable following the underying distribution,
32
+ and :math:`g(x)` is a function represented by the bijector,
33
+ then :math:`Y = g(X)` is a random variable following the transformed distribution.
34
34
 
35
35
  Args:
36
36
  bijector (Bijector): The transformation to perform.
@@ -16,7 +16,7 @@
16
16
  import numpy as np
17
17
  from mindspore.ops import operations as P
18
18
  from mindspore.ops import composite as C
19
- from mindspore._checkparam import Validator
19
+ from mindspore import _checkparam as Validator
20
20
  from mindspore.common import dtype as mstype
21
21
  from .distribution import Distribution
22
22
  from ._utils.utils import check_greater, check_distribution_name
@@ -32,7 +32,7 @@ class Uniform(Distribution):
32
32
  .. math::
33
33
  f(x, a, b) = 1 / (b - a),
34
34
 
35
- where a and b are the lower and upper bound respectively.
35
+ where :math:`a, b` are the lower and upper bound respectively.
36
36
 
37
37
  Args:
38
38
  low (int, float, list, numpy.ndarray, Tensor): The lower bound of the distribution. Default: None.
@@ -19,7 +19,7 @@ from __future__ import absolute_import
19
19
 
20
20
  from mindspore.nn.cell import Cell
21
21
  from mindspore.ops.operations import _rl_inner_ops as rl_ops
22
- from mindspore._checkparam import Rel, Validator
22
+ from mindspore import _checkparam as Validator
23
23
  from mindspore.common import dtype as mstype
24
24
 
25
25
 
@@ -59,9 +59,9 @@ class TensorsQueue(Cell):
59
59
  """Initialize TensorsQueue"""
60
60
  super(TensorsQueue, self).__init__()
61
61
  Validator.check_subclass("dtype", dtype, mstype.number_type + (mstype.bool_,), self.cls_name)
62
- Validator.check_int(size, 0, Rel.GE, "size", self.cls_name)
62
+ Validator.check_int(size, 0, Validator.GE, "size", self.cls_name)
63
63
  elements_num = len(shapes)
64
- Validator.check_int(elements_num, 1, Rel.GE, "len(shapes)", self.cls_name)
64
+ Validator.check_int(elements_num, 1, Validator.GE, "len(shapes)", self.cls_name)
65
65
  self.handle_ = rl_ops.TensorsQueueCreate(dtype, shapes, size, name)()
66
66
  self.tensors_q_put = rl_ops.TensorsQueuePut(dtype, shapes)
67
67
  self.tensors_q_get = rl_ops.TensorsQueueGet(dtype, shapes)
@@ -19,7 +19,7 @@ from __future__ import absolute_import
19
19
 
20
20
  from mindspore.nn.cell import Cell
21
21
  from mindspore.ops.operations import _tensor_array as ta
22
- from mindspore._checkparam import Rel, Validator
22
+ from mindspore import _checkparam as Validator
23
23
  from mindspore.common import dtype as mstype
24
24
 
25
25
 
@@ -62,7 +62,7 @@ class TensorArray(Cell):
62
62
  """Initialize TensorArray"""
63
63
  super(TensorArray, self).__init__()
64
64
  Validator.check_subclass("dtype", dtype, mstype.number_type + (mstype.bool_,), self.cls_name)
65
- Validator.check_int(size, 0, Rel.GE, "size", self.cls_name)
65
+ Validator.check_int(size, 0, Validator.GE, "size", self.cls_name)
66
66
  self.handle_ = ta.TensorArray(dtype, element_shape, dynamic_size, size, name)()
67
67
  self.tensor_array_write = ta.TensorArrayWrite()
68
68
  self.tensor_array_read = ta.TensorArrayRead(dtype, element_shape)
@@ -45,7 +45,7 @@ class SparseToDense(Cell):
45
45
  TypeError: If `sparse_tensor.shape` is not a tuple.
46
46
 
47
47
  Supported Platforms:
48
- ``CPU``
48
+ ``GPU`` ``CPU``
49
49
 
50
50
  Examples:
51
51
  >>> import mindspore as ms
@@ -118,7 +118,7 @@ class SparseTensorDenseMatmul(Cell):
118
118
  and shape of `dense` don't meet the parameter description.
119
119
 
120
120
  Supported Platforms:
121
- ``CPU``
121
+ ``GPU`` ``CPU``
122
122
 
123
123
  Examples:
124
124
  >>> import mindspore as ms
@@ -23,11 +23,11 @@ from mindspore import log as logger
23
23
  from mindspore.parallel._utils import _get_device_num, _get_gradients_mean,\
24
24
  _get_parallel_mode, _get_enable_parallel_optimizer, _is_pynative_parallel
25
25
  from mindspore.context import ParallelMode
26
- from mindspore._checkparam import Validator as validator
26
+ from mindspore import _checkparam as validator
27
27
  from mindspore import ops, nn
28
28
  from mindspore.common import dtype as mstype
29
29
  from mindspore.common.parameter import Parameter, ParameterTuple
30
- from mindspore.ops.primitive import constexpr
30
+ from mindspore.ops.primitive import _primexpr
31
31
  from mindspore.ops import composite as C
32
32
  from mindspore.ops import functional as F
33
33
  from mindspore.ops import operations as P
@@ -110,7 +110,7 @@ class WithLossCell(Cell):
110
110
  super(WithLossCell, self).__init__(auto_prefix=False)
111
111
  self._backbone = backbone
112
112
  self._loss_fn = loss_fn
113
- if backbone.jit_config_dict:
113
+ if isinstance(backbone, Cell) and backbone.jit_config_dict:
114
114
  self._jit_config_dict = backbone.jit_config_dict
115
115
 
116
116
  def construct(self, data, label):
@@ -147,7 +147,7 @@ class WithGradCell(Cell):
147
147
  output value. Default: None.
148
148
 
149
149
  Inputs:
150
- - **(\*inputs)** (Tuple(Tensor)) - Tuple of input tensors with shape :math:`(N, \ldots)`.
150
+ - **\*inputs** (Tuple(Tensor)) - Tuple of input tensors with shape :math:`(N, \ldots)`.
151
151
 
152
152
  Outputs:
153
153
  list, a list of Tensors with identical shapes as trainable weights.
@@ -182,6 +182,8 @@ class WithGradCell(Cell):
182
182
  else:
183
183
  self.network_with_loss = WithLossCell(self.network, self.loss_fn)
184
184
  self.network_with_loss.set_train()
185
+ if isinstance(network, Cell) and network.jit_config_dict:
186
+ self._jit_config_dict = network.jit_config_dict
185
187
 
186
188
  def construct(self, *inputs):
187
189
  weights = self.weights
@@ -216,8 +218,8 @@ class ForwardValueAndGrad(Cell):
216
218
  the input parameter.
217
219
 
218
220
  Inputs:
219
- - **(\*inputs)** (Tuple(Tensor...)) - Tuple of inputs with shape :math:`(N, \ldots)`.
220
- - **(sens)** - A sensitivity (gradient with respect to output) as the input of backpropagation.
221
+ - **\*inputs** (Tuple(Tensor...)) - Tuple of inputs with shape :math:`(N, \ldots)`.
222
+ - **sens** - A sensitivity (gradient with respect to output) as the input of backpropagation.
221
223
  If network has single output, the sens is a tensor.
222
224
  If network has multiple outputs, the sens is the tuple(tensor).
223
225
 
@@ -282,6 +284,8 @@ class ForwardValueAndGrad(Cell):
282
284
  self.get_by_list = get_by_list
283
285
  self.sens_param = sens_param
284
286
  self.grad = C.GradOperation(get_all=self.get_all, get_by_list=self.get_by_list, sens_param=self.sens_param)
287
+ if isinstance(network, Cell) and network.jit_config_dict:
288
+ self._jit_config_dict = network.jit_config_dict
285
289
 
286
290
  def construct(self, *inputs):
287
291
  grad_inputs = inputs
@@ -309,7 +313,7 @@ class TrainOneStepCell(Cell):
309
313
  sens (numbers.Number): The scaling number to be filled as the input of backpropagation. Default value is 1.0.
310
314
 
311
315
  Inputs:
312
- - **(\*inputs)** (Tuple(Tensor)) - Tuple of input tensors with shape :math:`(N, \ldots)`.
316
+ - **\*inputs** (Tuple(Tensor)) - Tuple of input tensors with shape :math:`(N, \ldots)`.
313
317
 
314
318
  Outputs:
315
319
  Tensor, a tensor means the loss value, the shape of which is usually :math:`()`.
@@ -375,6 +379,8 @@ class TrainOneStepCell(Cell):
375
379
  create_group(server_group_name, group_list[current_index])
376
380
  group = server_group_name
377
381
  self.grad_reducer = DistributedGradReducer(self.weights, self.mean, self.degree, group=group)
382
+ if isinstance(network, Cell) and network.jit_config_dict:
383
+ self._jit_config_dict = network.jit_config_dict
378
384
 
379
385
  def construct(self, *inputs):
380
386
  loss = self.network(*inputs)
@@ -453,18 +459,19 @@ class _VirtualDatasetCell(Cell):
453
459
  super(_VirtualDatasetCell, self).__init__(auto_prefix=False)
454
460
  self._backbone = backbone
455
461
  self._virtual_dataset = _VirtualDataset()
462
+ if isinstance(backbone, Cell) and backbone.jit_config_dict:
463
+ self._jit_config_dict = backbone.jit_config_dict
456
464
 
457
465
  def construct(self, *inputs):
458
466
  output = self._virtual_dataset(*inputs)
459
467
  return self._backbone(*output)
460
468
 
461
469
 
462
- @constexpr
470
+ @_primexpr
463
471
  def _check_shape_value_on_axis_divided_by_target_value(input_shape, micro_size):
464
472
  if input_shape[0] % micro_size != 0:
465
473
  raise ValueError(f"For micro batch initialization, the 0th dimension shape of input({input_shape[0]}) must be "
466
474
  f"divided by micro size({micro_size})")
467
- return True
468
475
 
469
476
 
470
477
  class _MicroBatch(Cell):
@@ -545,6 +552,8 @@ class MicroBatchInterleaved(Cell):
545
552
  interleave_data.strided_slice.add_prim_attr("strided_slice_flag", True)
546
553
  interleave_data.strided_slice.add_prim_attr("interleave_num", interleave_num)
547
554
  self.interleave_inputs.append(interleave_data)
555
+ if isinstance(network, Cell) and network.jit_config_dict:
556
+ self._jit_config_dict = network.jit_config_dict
548
557
 
549
558
  def construct(self, *inputs):
550
559
  output = 0.0
@@ -583,6 +592,8 @@ class PipelineCell(Cell):
583
592
  self.micro_inputs.append(micro_input)
584
593
  self.add = P.Add().add_prim_attr("pipeline_end", i)
585
594
  self.add_list.append(self.add)
595
+ if isinstance(network, Cell) and network.jit_config_dict:
596
+ self._jit_config_dict = network.jit_config_dict
586
597
 
587
598
  def construct(self, *inputs):
588
599
  ret = None
@@ -611,6 +622,8 @@ class _TrainPipelineAccuStepCell(TrainOneStepCell):
611
622
  self.accu_grads = self.weights.clone(prefix="accu_grads", init="zeros")
612
623
  self.hyper_map = ops.HyperMap()
613
624
  self.opt_shard = _get_enable_parallel_optimizer()
625
+ if isinstance(network, Cell) and network.jit_config_dict:
626
+ self._jit_config_dict = network.jit_config_dict
614
627
 
615
628
  def construct(self, *inputs):
616
629
  weights = self.weights
@@ -652,6 +665,8 @@ class VirtualDatasetCellTriple(Cell):
652
665
  super(VirtualDatasetCellTriple, self).__init__(auto_prefix=False)
653
666
  logger.warning("WARN_DEPRECATED: The usage of VirtualDatasetCellTriple is deprecated.")
654
667
  self._backbone = backbone
668
+ if isinstance(backbone, Cell) and backbone.jit_config_dict:
669
+ self._jit_config_dict = backbone.jit_config_dict
655
670
 
656
671
  def construct(self, a, b, c):
657
672
  return self._backbone(a, b, c)
@@ -694,6 +709,8 @@ class WithEvalCell(Cell):
694
709
  self._network = network
695
710
  self._loss_fn = loss_fn
696
711
  self.add_cast_fp32 = validator.check_value_type("add_cast_fp32", add_cast_fp32, [bool], self.cls_name)
712
+ if isinstance(network, Cell) and network.jit_config_dict:
713
+ self._jit_config_dict = network.jit_config_dict
697
714
 
698
715
  def construct(self, data, label):
699
716
  outputs = self._network(data)
@@ -717,7 +734,7 @@ class ParameterUpdate(Cell):
717
734
  - **x** (Tensor) - A tensor whose shape and type are the same with `param`.
718
735
 
719
736
  Outputs:
720
- Tensor, the input `x`.
737
+ Tensor, the updated value.
721
738
 
722
739
  Raises:
723
740
  KeyError: If parameter with the specified name does not exist.
@@ -315,11 +315,11 @@ class DistributedGradReducer(Cell):
315
315
 
316
316
  For the Ascend devices, users need to prepare the rank table, set rank_id and device_id.
317
317
  Please see the `Ascend tutorial
318
- <https://www.mindspore.cn/tutorials/experts/en/r2.0.0-alpha/parallel/train_ascend.html#preparations>`_
318
+ <https://www.mindspore.cn/tutorials/experts/en/r2.0/parallel/train_ascend.html#preparations>`_
319
319
  for more details.
320
320
 
321
321
  For the GPU devices, users need to prepare the host file and mpi, please see the `GPU tutorial
322
- <https://www.mindspore.cn/tutorials/experts/en/r2.0.0-alpha/parallel/train_gpu.html#preparation>`_ .
322
+ <https://www.mindspore.cn/tutorials/experts/en/r2.0/parallel/train_gpu.html#preparation>`_ .
323
323
 
324
324
  This example should be run with multiple devices.
325
325