mindspore 1.10.0__cp39-cp39-win_amd64.whl → 2.0.0rc1__cp39-cp39-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of mindspore might be problematic. Click here for more details.

Files changed (966) hide show
  1. mindspore/.commit_id +1 -1
  2. mindspore/ConcurrencyCheck.dll +0 -0
  3. mindspore/CppBuildInsights.dll +0 -0
  4. mindspore/CppCoreCheck.dll +0 -0
  5. mindspore/EnumIndex.dll +0 -0
  6. mindspore/EspXEngine.dll +0 -0
  7. mindspore/HResultCheck.dll +0 -0
  8. mindspore/KernelTraceControl.dll +0 -0
  9. mindspore/LocalESPC.dll +0 -0
  10. mindspore/Microsoft.Diagnostics.Tracing.EventSource.dll +0 -0
  11. mindspore/Microsoft.VisualStudio.RemoteControl.dll +0 -0
  12. mindspore/Microsoft.VisualStudio.Telemetry.dll +0 -0
  13. mindspore/Microsoft.VisualStudio.Utilities.Internal.dll +0 -0
  14. mindspore/Newtonsoft.Json.dll +0 -0
  15. mindspore/System.Runtime.CompilerServices.Unsafe.dll +0 -0
  16. mindspore/VariantClear.dll +0 -0
  17. mindspore/__init__.py +9 -4
  18. mindspore/_c_dataengine.cp39-win_amd64.pyd +0 -0
  19. mindspore/_c_expression.cp39-win_amd64.pyd +0 -0
  20. mindspore/_c_mindrecord.cp39-win_amd64.pyd +0 -0
  21. mindspore/_check_jit_forbidden_api.py +102 -0
  22. mindspore/_checkparam.py +1066 -1001
  23. mindspore/_extends/builtin_operations.py +32 -4
  24. mindspore/_extends/graph_kernel/model/graph_split.py +66 -222
  25. mindspore/_extends/parallel_compile/akg_compiler/akg_process.py +12 -9
  26. mindspore/_extends/parallel_compile/akg_compiler/build_tbe_kernel.py +119 -26
  27. mindspore/_extends/parallel_compile/akg_compiler/tbe_topi.py +50 -50
  28. mindspore/_extends/parallel_compile/akg_compiler/util.py +9 -6
  29. mindspore/_extends/parallel_compile/tbe_compiler/tbe_adapter.py +4 -25
  30. mindspore/_extends/parallel_compile/tbe_compiler/tbe_helper.py +9 -4
  31. mindspore/_extends/parallel_compile/tbe_compiler/tbe_job_manager.py +1 -27
  32. mindspore/_extends/parse/__init__.py +5 -3
  33. mindspore/_extends/parse/namespace.py +17 -2
  34. mindspore/_extends/parse/parser.py +193 -34
  35. mindspore/_extends/parse/resources.py +7 -8
  36. mindspore/_extends/parse/standard_method.py +1780 -435
  37. mindspore/_extends/parse/trope.py +3 -1
  38. mindspore/amp.py +53 -58
  39. mindspore/atlprov.dll +0 -0
  40. mindspore/boost/adasum.py +3 -2
  41. mindspore/boost/boost.py +2 -2
  42. mindspore/boost/boost_cell_wrapper.py +46 -26
  43. mindspore/boost/dim_reduce.py +6 -5
  44. mindspore/boost/grad_accumulation.py +2 -1
  45. mindspore/boost/group_loss_scale_manager.py +1 -1
  46. mindspore/c1.dll +0 -0
  47. mindspore/c1xx.dll +0 -0
  48. mindspore/c2.dll +0 -0
  49. mindspore/cfgpersist.dll +0 -0
  50. mindspore/clang_rt.asan_dbg_dynamic-x86_64.dll +0 -0
  51. mindspore/clang_rt.asan_dynamic-x86_64.dll +0 -0
  52. mindspore/common/__init__.py +11 -10
  53. mindspore/common/_decorator.py +2 -0
  54. mindspore/common/_register_for_adapter.py +55 -0
  55. mindspore/common/_stub_tensor.py +201 -0
  56. mindspore/common/_utils.py +57 -0
  57. mindspore/common/api.py +582 -297
  58. mindspore/common/dtype.py +66 -18
  59. mindspore/common/dump.py +2 -2
  60. mindspore/common/initializer.py +38 -1
  61. mindspore/common/jit_config.py +25 -13
  62. mindspore/common/mutable.py +53 -24
  63. mindspore/common/parameter.py +60 -37
  64. mindspore/common/seed.py +8 -24
  65. mindspore/common/sparse_tensor.py +927 -0
  66. mindspore/common/tensor.py +1627 -3900
  67. mindspore/communication/__init__.py +10 -5
  68. mindspore/communication/_comm_helper.py +78 -214
  69. mindspore/communication/_hccl_management.py +2 -1
  70. mindspore/communication/management.py +136 -47
  71. mindspore/config/op_info.config +501 -1008
  72. mindspore/context.py +291 -56
  73. mindspore/d3dcompiler_47.dll +0 -0
  74. mindspore/dataset/__init__.py +12 -8
  75. mindspore/dataset/audio/__init__.py +9 -9
  76. mindspore/dataset/audio/transforms.py +1090 -228
  77. mindspore/dataset/audio/utils.py +87 -39
  78. mindspore/dataset/audio/validators.py +223 -1
  79. mindspore/dataset/callback/ds_callback.py +17 -15
  80. mindspore/dataset/core/config.py +246 -17
  81. mindspore/dataset/core/py_util_helpers.py +4 -3
  82. mindspore/dataset/core/validator_helpers.py +10 -10
  83. mindspore/{parallel/nn/layers.py → dataset/debug/__init__.py} +7 -8
  84. mindspore/dataset/debug/debug_hook.py +65 -0
  85. mindspore/dataset/debug/pre_defined_hook.py +67 -0
  86. mindspore/dataset/engine/__init__.py +7 -3
  87. mindspore/dataset/engine/cache_client.py +9 -9
  88. mindspore/dataset/engine/datasets.py +648 -477
  89. mindspore/dataset/engine/datasets_audio.py +165 -167
  90. mindspore/dataset/engine/datasets_standard_format.py +93 -67
  91. mindspore/dataset/engine/datasets_text.py +492 -342
  92. mindspore/dataset/engine/datasets_user_defined.py +85 -50
  93. mindspore/dataset/engine/datasets_vision.py +1224 -699
  94. mindspore/dataset/engine/graphdata.py +134 -69
  95. mindspore/dataset/engine/iterators.py +50 -9
  96. mindspore/dataset/engine/offload.py +52 -31
  97. mindspore/dataset/engine/samplers.py +27 -24
  98. mindspore/dataset/engine/serializer_deserializer.py +14 -15
  99. mindspore/dataset/engine/validators.py +213 -52
  100. mindspore/dataset/text/__init__.py +10 -8
  101. mindspore/dataset/text/transforms.py +152 -57
  102. mindspore/dataset/text/utils.py +98 -49
  103. mindspore/dataset/text/validators.py +25 -0
  104. mindspore/dataset/transforms/__init__.py +4 -2
  105. mindspore/dataset/transforms/c_transforms.py +11 -13
  106. mindspore/dataset/transforms/py_transforms.py +2 -2
  107. mindspore/dataset/transforms/py_transforms_util.py +10 -0
  108. mindspore/dataset/transforms/transforms.py +13 -15
  109. mindspore/dataset/transforms/validators.py +7 -7
  110. mindspore/dataset/utils/__init__.py +2 -1
  111. mindspore/dataset/utils/browse_dataset.py +13 -13
  112. mindspore/dataset/utils/line_reader.py +121 -0
  113. mindspore/dataset/vision/__init__.py +8 -7
  114. mindspore/dataset/vision/c_transforms.py +125 -126
  115. mindspore/dataset/vision/py_transforms.py +37 -37
  116. mindspore/dataset/vision/py_transforms_util.py +23 -20
  117. mindspore/dataset/vision/transforms.py +316 -315
  118. mindspore/dataset/vision/utils.py +313 -17
  119. mindspore/dataset/vision/validators.py +6 -6
  120. mindspore/default_config.py +0 -1
  121. mindspore/dpcmi.dll +0 -0
  122. mindspore/{compression → experimental}/__init__.py +6 -5
  123. mindspore/experimental/map_parameter.py +275 -0
  124. mindspore/include/OWNERS +0 -1
  125. mindspore/include/api/callback/callback.h +9 -13
  126. mindspore/include/api/callback/ckpt_saver.h +2 -2
  127. mindspore/include/api/callback/loss_monitor.h +2 -2
  128. mindspore/include/api/callback/lr_scheduler.h +5 -5
  129. mindspore/include/api/callback/time_monitor.h +2 -2
  130. mindspore/include/api/callback/train_accuracy.h +4 -6
  131. mindspore/include/api/cfg.h +19 -6
  132. mindspore/include/api/context.h +70 -9
  133. mindspore/include/api/delegate.h +8 -1
  134. mindspore/include/api/dual_abi_helper.h +8 -24
  135. mindspore/include/api/metrics/accuracy.h +2 -2
  136. mindspore/include/api/metrics/metrics.h +4 -3
  137. mindspore/include/api/model.h +9 -4
  138. mindspore/include/api/model_group.h +68 -0
  139. mindspore/include/api/model_parallel_runner.h +17 -17
  140. mindspore/include/api/net.h +12 -11
  141. mindspore/include/api/serialization.h +20 -4
  142. mindspore/include/api/status.h +7 -1
  143. mindspore/include/api/types.h +25 -21
  144. mindspore/include/api/visible.h +4 -0
  145. mindspore/include/c_api/model_c.h +5 -0
  146. mindspore/include/c_api/status_c.h +1 -1
  147. mindspore/include/dataset/config.h +1 -1
  148. mindspore/include/dataset/constants.h +14 -0
  149. mindspore/include/dataset/text.h +59 -0
  150. mindspore/include/dataset/vision.h +56 -117
  151. mindspore/include/dataset/vision_lite.h +102 -0
  152. mindspore/jpeg62.dll +0 -0
  153. mindspore/log.py +28 -28
  154. mindspore/mindrecord/common/exceptions.py +2 -4
  155. mindspore/mindrecord/filereader.py +19 -1
  156. mindspore/mindrecord/filewriter.py +250 -88
  157. mindspore/mindrecord/mindpage.py +13 -13
  158. mindspore/mindrecord/shardheader.py +15 -15
  159. mindspore/mindrecord/shardreader.py +9 -0
  160. mindspore/mindrecord/shardwriter.py +29 -29
  161. mindspore/mindrecord/tools/cifar100_to_mr.py +9 -9
  162. mindspore/mindrecord/tools/cifar10_to_mr.py +9 -9
  163. mindspore/mindrecord/tools/csv_to_mr.py +4 -4
  164. mindspore/mindrecord/tools/imagenet_to_mr.py +70 -65
  165. mindspore/mindrecord/tools/mnist_to_mr.py +41 -41
  166. mindspore/mindrecord/tools/tfrecord_to_mr.py +6 -6
  167. mindspore/{libmindspore_backend.dll → mindspore_backend.dll} +0 -0
  168. mindspore/mindspore_common.dll +0 -0
  169. mindspore/mindspore_core.dll +0 -0
  170. mindspore/mindspore_glog.dll +0 -0
  171. mindspore/mindspore_shared_lib.dll +0 -0
  172. mindspore/msobj140.dll +0 -0
  173. mindspore/mspdb140.dll +0 -0
  174. mindspore/mspdbcore.dll +0 -0
  175. mindspore/mspdbst.dll +0 -0
  176. mindspore/mspft140.dll +0 -0
  177. mindspore/msvcdis140.dll +0 -0
  178. mindspore/msvcp140_1.dll +0 -0
  179. mindspore/msvcp140_2.dll +0 -0
  180. mindspore/msvcp140_atomic_wait.dll +0 -0
  181. mindspore/msvcp140_codecvt_ids.dll +0 -0
  182. mindspore/nn/__init__.py +1 -5
  183. mindspore/nn/cell.py +297 -234
  184. mindspore/nn/dynamic_lr.py +1 -1
  185. mindspore/nn/grad/cell_grad.py +17 -42
  186. mindspore/nn/layer/__init__.py +7 -4
  187. mindspore/nn/layer/activation.py +131 -88
  188. mindspore/nn/layer/basic.py +313 -613
  189. mindspore/nn/layer/channel_shuffle.py +103 -0
  190. mindspore/nn/layer/combined.py +1 -1
  191. mindspore/nn/layer/container.py +52 -6
  192. mindspore/nn/layer/conv.py +112 -43
  193. mindspore/nn/layer/dense.py +10 -9
  194. mindspore/nn/layer/embedding.py +36 -34
  195. mindspore/nn/layer/image.py +123 -27
  196. mindspore/nn/layer/math.py +108 -107
  197. mindspore/nn/layer/normalization.py +212 -366
  198. mindspore/nn/layer/padding.py +370 -42
  199. mindspore/nn/layer/pooling.py +1443 -219
  200. mindspore/nn/layer/rnn_cells.py +11 -16
  201. mindspore/nn/layer/rnns.py +38 -39
  202. mindspore/nn/layer/thor_layer.py +24 -25
  203. mindspore/nn/layer/timedistributed.py +5 -5
  204. mindspore/nn/layer/transformer.py +701 -0
  205. mindspore/nn/learning_rate_schedule.py +8 -8
  206. mindspore/nn/loss/__init__.py +9 -6
  207. mindspore/nn/loss/loss.py +678 -142
  208. mindspore/nn/metrics.py +53 -0
  209. mindspore/nn/optim/_dist_optimizer_registry.py +2 -2
  210. mindspore/nn/optim/ada_grad.py +8 -8
  211. mindspore/nn/optim/adadelta.py +2 -3
  212. mindspore/nn/optim/adafactor.py +18 -14
  213. mindspore/nn/optim/adam.py +429 -87
  214. mindspore/nn/optim/adamax.py +5 -6
  215. mindspore/nn/optim/adasum.py +10 -8
  216. mindspore/nn/optim/asgd.py +7 -7
  217. mindspore/nn/optim/ftrl.py +81 -11
  218. mindspore/nn/optim/lamb.py +7 -8
  219. mindspore/nn/optim/lars.py +4 -4
  220. mindspore/nn/optim/lazyadam.py +82 -7
  221. mindspore/nn/optim/momentum.py +8 -7
  222. mindspore/nn/optim/optimizer.py +19 -10
  223. mindspore/nn/optim/proximal_ada_grad.py +6 -5
  224. mindspore/nn/optim/rmsprop.py +3 -3
  225. mindspore/nn/optim/rprop.py +20 -16
  226. mindspore/nn/optim/sgd.py +21 -15
  227. mindspore/nn/optim/thor.py +23 -21
  228. mindspore/nn/probability/__init__.py +0 -2
  229. mindspore/nn/probability/bijector/bijector.py +7 -6
  230. mindspore/nn/probability/bijector/invert.py +4 -2
  231. mindspore/nn/probability/bijector/softplus.py +2 -2
  232. mindspore/nn/probability/bnn_layers/dense_variational.py +1 -1
  233. mindspore/nn/probability/bnn_layers/layer_distribution.py +2 -2
  234. mindspore/nn/probability/distribution/__init__.py +6 -0
  235. mindspore/nn/probability/distribution/_utils/custom_ops.py +3 -2
  236. mindspore/nn/probability/distribution/_utils/utils.py +11 -17
  237. mindspore/nn/probability/distribution/bernoulli.py +6 -6
  238. mindspore/nn/probability/distribution/beta.py +1 -1
  239. mindspore/nn/probability/distribution/categorical.py +9 -9
  240. mindspore/nn/probability/distribution/cauchy.py +8 -8
  241. mindspore/nn/probability/distribution/distribution.py +12 -6
  242. mindspore/nn/probability/distribution/exponential.py +5 -5
  243. mindspore/nn/probability/distribution/gamma.py +3 -3
  244. mindspore/nn/probability/distribution/geometric.py +6 -5
  245. mindspore/nn/probability/distribution/gumbel.py +5 -5
  246. mindspore/nn/probability/distribution/half_normal.py +133 -0
  247. mindspore/nn/probability/distribution/laplace.py +128 -0
  248. mindspore/nn/probability/distribution/log_normal.py +0 -1
  249. mindspore/nn/probability/distribution/logistic.py +4 -5
  250. mindspore/nn/probability/distribution/normal.py +11 -15
  251. mindspore/nn/probability/distribution/poisson.py +6 -2
  252. mindspore/nn/probability/distribution/student_t.py +150 -0
  253. mindspore/nn/probability/distribution/transformed_distribution.py +4 -4
  254. mindspore/nn/probability/distribution/uniform.py +5 -5
  255. mindspore/nn/reinforcement/_tensors_queue.py +3 -3
  256. mindspore/nn/reinforcement/tensor_array.py +2 -2
  257. mindspore/nn/sparse/sparse.py +8 -1
  258. mindspore/nn/wrap/cell_wrapper.py +55 -27
  259. mindspore/nn/wrap/grad_reducer.py +20 -11
  260. mindspore/nn/wrap/loss_scale.py +47 -30
  261. mindspore/numpy/array_creations.py +33 -22
  262. mindspore/numpy/array_ops.py +46 -42
  263. mindspore/numpy/logic_ops.py +6 -27
  264. mindspore/numpy/math_ops.py +26 -19
  265. mindspore/numpy/utils.py +1 -8
  266. mindspore/numpy/utils_const.py +112 -62
  267. mindspore/opencv_core452.dll +0 -0
  268. mindspore/opencv_imgcodecs452.dll +0 -0
  269. mindspore/opencv_imgproc452.dll +0 -0
  270. mindspore/ops/__init__.py +6 -3
  271. mindspore/ops/_constants.py +0 -6
  272. mindspore/ops/_grad/__init__.py +2 -1
  273. mindspore/ops/_grad/grad_array_ops.py +209 -152
  274. mindspore/ops/_grad/grad_base.py +55 -17
  275. mindspore/ops/_grad/grad_clip_ops.py +11 -3
  276. mindspore/ops/_grad/grad_comm_ops.py +58 -47
  277. mindspore/ops/_grad/grad_implementations.py +21 -61
  278. mindspore/ops/_grad/grad_inner_ops.py +48 -6
  279. mindspore/ops/_grad/grad_math_ops.py +306 -161
  280. mindspore/ops/_grad/grad_nn_ops.py +192 -181
  281. mindspore/ops/_grad/grad_other_ops.py +1 -1
  282. mindspore/ops/_grad/grad_quant_ops.py +5 -5
  283. mindspore/ops/_grad/grad_sequence_ops.py +296 -0
  284. mindspore/ops/_grad/grad_sparse.py +15 -9
  285. mindspore/ops/_grad_experimental/__init__.py +1 -0
  286. mindspore/ops/_grad_experimental/grad_array_ops.py +441 -55
  287. mindspore/ops/_grad_experimental/grad_image_ops.py +25 -7
  288. mindspore/ops/_grad_experimental/grad_inner_ops.py +3 -44
  289. mindspore/ops/_grad_experimental/grad_linalg_ops.py +16 -21
  290. mindspore/ops/_grad_experimental/grad_math_ops.py +979 -49
  291. mindspore/ops/_grad_experimental/grad_nn_ops.py +78 -8
  292. mindspore/ops/_grad_experimental/grad_scalar_ops.py +112 -0
  293. mindspore/ops/_grad_experimental/grad_sparse_ops.py +197 -13
  294. mindspore/ops/_op_impl/__init__.py +3 -3
  295. mindspore/ops/_op_impl/_custom_op/__init__.py +0 -1
  296. mindspore/ops/_op_impl/_custom_op/_basic.py +0 -1
  297. mindspore/ops/_op_impl/_custom_op/batch_matmul_impl.py +1 -1
  298. mindspore/ops/_op_impl/_custom_op/batchnorm_fold.py +4 -2
  299. mindspore/ops/_op_impl/_custom_op/batchnorm_fold2.py +2 -2
  300. mindspore/ops/_op_impl/_custom_op/batchnorm_fold2_grad.py +2 -2
  301. mindspore/ops/_op_impl/_custom_op/batchnorm_fold2_grad_reduce.py +5 -5
  302. mindspore/ops/_op_impl/_custom_op/batchnorm_fold_grad.py +3 -3
  303. mindspore/ops/_op_impl/_custom_op/cholesky_trsm_impl.py +1 -1
  304. mindspore/ops/_op_impl/_custom_op/correction_mul.py +3 -3
  305. mindspore/ops/_op_impl/_custom_op/correction_mul_grad.py +2 -2
  306. mindspore/ops/_op_impl/_custom_op/dsd_back_impl.py +4 -8
  307. mindspore/ops/_op_impl/_custom_op/dsd_impl.py +1 -1
  308. mindspore/ops/_op_impl/_custom_op/fake_learned_scale_quant_perchannel.py +2 -2
  309. mindspore/ops/_op_impl/_custom_op/fake_learned_scale_quant_perchannel_grad.py +2 -2
  310. mindspore/ops/_op_impl/_custom_op/fake_learned_scale_quant_perchannel_grad_reduce.py +2 -2
  311. mindspore/ops/_op_impl/_custom_op/fake_learned_scale_quant_perlayer.py +2 -2
  312. mindspore/ops/_op_impl/_custom_op/fake_learned_scale_quant_perlayer_grad.py +2 -2
  313. mindspore/ops/_op_impl/_custom_op/fake_learned_scale_quant_perlayer_grad_reduce.py +2 -2
  314. mindspore/ops/_op_impl/_custom_op/fake_quant_perchannel.py +2 -2
  315. mindspore/ops/_op_impl/_custom_op/fake_quant_perchannel_grad.py +2 -2
  316. mindspore/ops/_op_impl/_custom_op/fake_quant_perlayer.py +2 -2
  317. mindspore/ops/_op_impl/_custom_op/fake_quant_perlayer_grad.py +2 -2
  318. mindspore/ops/_op_impl/_custom_op/fused_abs_max1_impl.py +1 -1
  319. mindspore/ops/_op_impl/_custom_op/img2col_impl.py +1 -1
  320. mindspore/ops/_op_impl/_custom_op/matmul_cube_dense_left_impl.py +2 -2
  321. mindspore/ops/_op_impl/_custom_op/matmul_cube_dense_right_impl.py +1 -1
  322. mindspore/ops/_op_impl/_custom_op/matmul_cube_fracz_left_cast_impl.py +1 -1
  323. mindspore/ops/_op_impl/_custom_op/matmul_cube_fracz_right_mul_impl.py +1 -1
  324. mindspore/ops/_op_impl/_custom_op/matmul_cube_impl.py +2 -2
  325. mindspore/ops/_op_impl/_custom_op/matmul_dds_grad_impl.py +0 -1
  326. mindspore/ops/_op_impl/_custom_op/matmul_dds_impl.py +0 -1
  327. mindspore/ops/_op_impl/_custom_op/matrix_combine_impl.py +1 -1
  328. mindspore/ops/_op_impl/_custom_op/minmax_update_perchannel.py +2 -2
  329. mindspore/ops/_op_impl/_custom_op/minmax_update_perlayer.py +2 -2
  330. mindspore/ops/_op_impl/_custom_op/transpose02314_impl.py +1 -1
  331. mindspore/ops/_op_impl/aicpu/__init__.py +238 -3
  332. mindspore/ops/_op_impl/aicpu/abs.py +36 -0
  333. mindspore/ops/_op_impl/aicpu/adaptive_avg_pool_2d.py +34 -0
  334. mindspore/ops/_op_impl/aicpu/adaptive_avg_pool_2d_grad.py +34 -0
  335. mindspore/ops/_op_impl/aicpu/adaptive_avg_pool_3d.py +39 -0
  336. mindspore/ops/_op_impl/aicpu/adaptive_avg_pool_3d_grad.py +39 -0
  337. mindspore/ops/_op_impl/aicpu/adaptive_max_pool_2d_grad.py +37 -0
  338. mindspore/ops/_op_impl/aicpu/adaptive_max_pool_3d.py +42 -0
  339. mindspore/ops/_op_impl/aicpu/adaptive_max_pool_3d_grad.py +152 -0
  340. mindspore/ops/_op_impl/aicpu/add.py +43 -0
  341. mindspore/ops/_op_impl/aicpu/addcdiv.py +0 -32
  342. mindspore/ops/_op_impl/aicpu/addcmul.py +0 -84
  343. mindspore/ops/_op_impl/aicpu/affine_grid_grad.py +35 -0
  344. mindspore/ops/_op_impl/aicpu/arg_max.py +75 -0
  345. mindspore/ops/_op_impl/aicpu/arg_min.py +75 -0
  346. mindspore/ops/_op_impl/aicpu/argmin_with_value.py +43 -0
  347. mindspore/ops/_op_impl/aicpu/batch_matmul.py +43 -0
  348. mindspore/ops/_op_impl/aicpu/batch_norm_grad_grad.py +49 -0
  349. mindspore/ops/_op_impl/aicpu/bernoulli.py +48 -0
  350. mindspore/ops/_op_impl/aicpu/bessel_i0.py +31 -0
  351. mindspore/ops/_op_impl/aicpu/bias_add.py +44 -0
  352. mindspore/ops/_op_impl/aicpu/bias_add_grad.py +43 -0
  353. mindspore/ops/_op_impl/aicpu/bincount.py +33 -0
  354. mindspore/{nn/probability/infer/variational/__init__.py → ops/_op_impl/aicpu/cauchy.py} +17 -10
  355. mindspore/ops/_op_impl/aicpu/channel_shuffle.py +40 -0
  356. mindspore/ops/_op_impl/aicpu/cholesky.py +1 -1
  357. mindspore/ops/_op_impl/{cpu/bias_add.py → aicpu/choleskygrad.py} +9 -7
  358. mindspore/ops/_op_impl/aicpu/combined_non_max_suppression.py +42 -0
  359. mindspore/ops/_op_impl/aicpu/concat_offset.py +42 -0
  360. mindspore/ops/_op_impl/aicpu/concat_offset_v1.py +31 -0
  361. mindspore/ops/_op_impl/aicpu/conj.py +11 -0
  362. mindspore/ops/_op_impl/aicpu/crop_and_resize_grad_image.py +38 -0
  363. mindspore/ops/_op_impl/aicpu/cumulative_logsumexp.py +36 -0
  364. mindspore/ops/_op_impl/aicpu/deformable_offsets.py +38 -0
  365. mindspore/ops/_op_impl/aicpu/deformable_offsets_grad.py +2 -2
  366. mindspore/ops/_op_impl/aicpu/dense_to_sparse_set_operation.py +48 -0
  367. mindspore/ops/_op_impl/aicpu/diag.py +36 -0
  368. mindspore/ops/_op_impl/aicpu/diag_part.py +36 -0
  369. mindspore/ops/_op_impl/aicpu/diagonal.py +35 -0
  370. mindspore/ops/_op_impl/{cpu/bias_add_grad.py → aicpu/digamma.py} +9 -7
  371. mindspore/ops/_op_impl/aicpu/eig.py +35 -0
  372. mindspore/ops/_op_impl/aicpu/fft_with_size.py +41 -0
  373. mindspore/ops/_op_impl/aicpu/flatten.py +1 -0
  374. mindspore/ops/_op_impl/aicpu/fmax.py +36 -0
  375. mindspore/ops/_op_impl/aicpu/fmin.py +37 -0
  376. mindspore/ops/_op_impl/aicpu/fractional_max_pool3d_with_fixed_ksize.py +1 -1
  377. mindspore/ops/_op_impl/aicpu/fse_decode.py +43 -0
  378. mindspore/ops/_op_impl/aicpu/glu.py +33 -0
  379. mindspore/ops/_op_impl/aicpu/glu_grad.py +34 -0
  380. mindspore/ops/_op_impl/aicpu/greater.py +41 -0
  381. mindspore/ops/_op_impl/aicpu/greater_equal.py +41 -0
  382. mindspore/ops/_op_impl/aicpu/index_put.py +50 -0
  383. mindspore/ops/_op_impl/{tbe/scatter_add_ds.py → aicpu/inplace_index_add.py} +17 -21
  384. mindspore/ops/_op_impl/aicpu/instance_norm_v2.py +41 -0
  385. mindspore/ops/_op_impl/aicpu/instance_norm_v2_grad.py +44 -0
  386. mindspore/ops/_op_impl/aicpu/layer_norm_grad_grad.py +47 -0
  387. mindspore/ops/_op_impl/aicpu/less.py +41 -0
  388. mindspore/ops/_op_impl/aicpu/less_equal.py +41 -0
  389. mindspore/ops/_op_impl/aicpu/lgamma.py +32 -0
  390. mindspore/ops/_op_impl/aicpu/log_normal_reverse.py +33 -0
  391. mindspore/ops/_op_impl/aicpu/logit.py +33 -0
  392. mindspore/ops/_op_impl/aicpu/logit_grad.py +34 -0
  393. mindspore/ops/_op_impl/aicpu/masked_fill.py +42 -0
  394. mindspore/ops/_op_impl/aicpu/masked_scatter.py +39 -0
  395. mindspore/ops/_op_impl/aicpu/matmul.py +39 -0
  396. mindspore/ops/_op_impl/aicpu/matrix_logarithm.py +31 -0
  397. mindspore/ops/_op_impl/aicpu/matrix_power.py +32 -0
  398. mindspore/ops/_op_impl/aicpu/matrix_solve_ls.py +36 -0
  399. mindspore/ops/_op_impl/aicpu/matrix_triangular_solve.py +36 -0
  400. mindspore/ops/_op_impl/aicpu/mirror_pad.py +2 -0
  401. mindspore/ops/_op_impl/aicpu/mirror_pad_grad.py +0 -4
  402. mindspore/ops/_op_impl/aicpu/mul.py +3 -1
  403. mindspore/ops/_op_impl/aicpu/multinomial.py +14 -6
  404. mindspore/ops/_op_impl/aicpu/multinomial_with_replacement.py +35 -0
  405. mindspore/ops/_op_impl/aicpu/nan_to_num.py +34 -0
  406. mindspore/ops/_op_impl/aicpu/nllloss.py +38 -0
  407. mindspore/ops/_op_impl/aicpu/nllloss_grad.py +39 -0
  408. mindspore/ops/_op_impl/aicpu/ones_like.py +0 -2
  409. mindspore/ops/_op_impl/aicpu/polar.py +32 -0
  410. mindspore/ops/_op_impl/aicpu/polygamma.py +34 -0
  411. mindspore/ops/_op_impl/aicpu/qr.py +36 -0
  412. mindspore/ops/_op_impl/aicpu/quant_dtype_cast.py +40 -0
  413. mindspore/ops/_op_impl/aicpu/quantile.py +35 -0
  414. mindspore/ops/_op_impl/aicpu/ragged_tensor_to_sparse.py +73 -0
  415. mindspore/ops/_op_impl/aicpu/ragged_tensor_to_tensor.py +74 -0
  416. mindspore/ops/_op_impl/aicpu/random_shuffle.py +3 -0
  417. mindspore/ops/_op_impl/aicpu/randperm_v2.py +41 -0
  418. mindspore/ops/_op_impl/aicpu/range.py +36 -0
  419. mindspore/ops/_op_impl/aicpu/reciprocal.py +34 -0
  420. mindspore/ops/_op_impl/aicpu/reciprocal_grad.py +35 -0
  421. mindspore/ops/_op_impl/aicpu/reduce_sum.py +57 -0
  422. mindspore/ops/_op_impl/aicpu/resize_bicubic.py +2 -8
  423. mindspore/ops/_op_impl/aicpu/resize_bicubic_grad.py +1 -1
  424. mindspore/ops/_op_impl/aicpu/resize_v2.py +68 -0
  425. mindspore/ops/_op_impl/aicpu/resize_v2_grad.py +68 -0
  426. mindspore/ops/_op_impl/aicpu/scatter_elements.py +4 -0
  427. mindspore/ops/_op_impl/aicpu/scatter_nd_update.py +2 -0
  428. mindspore/ops/_op_impl/aicpu/search_sorted.py +12 -6
  429. mindspore/ops/_op_impl/aicpu/self_adjoint_eig.py +34 -0
  430. mindspore/ops/_op_impl/aicpu/sequence_add.py +34 -0
  431. mindspore/ops/_op_impl/aicpu/sequence_add_offset.py +34 -0
  432. mindspore/ops/_op_impl/aicpu/sequence_addn.py +38 -0
  433. mindspore/ops/_op_impl/aicpu/slice_grad.py +76 -0
  434. mindspore/ops/_op_impl/aicpu/smooth_l1_loss.py +35 -0
  435. mindspore/ops/_op_impl/aicpu/smooth_l1_loss_grad.py +37 -0
  436. mindspore/ops/_op_impl/aicpu/sort.py +39 -0
  437. mindspore/ops/_op_impl/aicpu/sparse_apply_adagrad_da.py +0 -24
  438. mindspore/ops/_op_impl/aicpu/sparse_cross.py +42 -0
  439. mindspore/ops/_op_impl/aicpu/sparse_fill_empty_rows.py +63 -0
  440. mindspore/ops/_op_impl/aicpu/sparse_fill_empty_rows_grad.py +45 -0
  441. mindspore/ops/_op_impl/aicpu/sparse_matrix_mat_mul.py +56 -0
  442. mindspore/ops/_op_impl/{tbe/slice_ds.py → aicpu/sparse_segment_sum.py} +16 -24
  443. mindspore/ops/_op_impl/aicpu/sparse_segment_sum_with_num_segments.py +68 -0
  444. mindspore/ops/_op_impl/aicpu/sparse_slice.py +63 -0
  445. mindspore/ops/_op_impl/aicpu/sparse_slice_grad.py +61 -0
  446. mindspore/ops/_op_impl/aicpu/squared_difference.py +2 -0
  447. mindspore/ops/_op_impl/aicpu/strided_slice_v2.py +93 -0
  448. mindspore/ops/_op_impl/aicpu/strided_slice_v2_grad.py +66 -0
  449. mindspore/ops/_op_impl/aicpu/tensor_scatter_update.py +59 -0
  450. mindspore/ops/_op_impl/{tbe/gather_v2.py → aicpu/tile.py} +24 -24
  451. mindspore/ops/_op_impl/aicpu/tridiagonal_solve.py +35 -0
  452. mindspore/ops/_op_impl/aicpu/tril_indices.py +34 -0
  453. mindspore/ops/_op_impl/aicpu/triu_indices.py +34 -0
  454. mindspore/ops/_op_impl/aicpu/uniform.py +34 -0
  455. mindspore/ops/_op_impl/aicpu/uniform_candidate_sampler.py +1 -0
  456. mindspore/ops/_op_impl/aicpu/unique_consecutive.py +10 -2
  457. mindspore/ops/_op_impl/cpu/__init__.py +1 -2
  458. mindspore/ops/_op_impl/cpu/dynamic_shape.py +5 -1
  459. mindspore/ops/_op_impl/cpu/maximum_grad.py +2 -0
  460. mindspore/{compression/common/__init__.py → ops/_op_impl/cpu/pyexecute.py} +13 -8
  461. mindspore/ops/_op_impl/cpu/reduce_sum.py +8 -0
  462. mindspore/ops/_op_impl/cpu/sparse_slice.py +62 -0
  463. mindspore/ops/_op_impl/cpu/sparse_slice_grad.py +60 -0
  464. mindspore/ops/_op_impl/cpu/tensor_shape.py +5 -1
  465. mindspore/ops/_op_impl/tbe/__init__.py +27 -608
  466. mindspore/ops/_op_impl/tbe/addcdiv_ds.py +42 -0
  467. mindspore/ops/_op_impl/tbe/addcmul_ds.py +44 -0
  468. mindspore/ops/_op_impl/tbe/assign_add_ds.py +1 -0
  469. mindspore/ops/_op_impl/tbe/atomic_addr_clean.py +1 -1
  470. mindspore/ops/_op_impl/tbe/avg_pool_3d_grad.py +1 -1
  471. mindspore/ops/_op_impl/tbe/basic_lstm_cell_c_state_grad_v2.py +0 -1
  472. mindspore/ops/_op_impl/tbe/batch_to_space.py +1 -1
  473. mindspore/ops/_op_impl/tbe/batch_to_space_nd.py +1 -1
  474. mindspore/ops/_op_impl/tbe/batch_to_space_nd_v2.py +41 -0
  475. mindspore/ops/_op_impl/tbe/bce_with_logits_loss.py +1 -0
  476. mindspore/ops/_op_impl/tbe/bias_add_grad.py +2 -0
  477. mindspore/ops/_op_impl/tbe/bn_infer_grad.py +4 -2
  478. mindspore/ops/_op_impl/tbe/bn_infer_grad_ds.py +40 -0
  479. mindspore/ops/_op_impl/tbe/bn_training_update.py +0 -1
  480. mindspore/ops/_op_impl/tbe/bn_training_update_ds.py +0 -1
  481. mindspore/ops/_op_impl/tbe/broadcast_to_ds.py +6 -4
  482. mindspore/ops/_op_impl/tbe/cast.py +0 -2
  483. mindspore/ops/_op_impl/tbe/cast_ds.py +3 -3
  484. mindspore/ops/_op_impl/tbe/ctc_loss_v2.py +0 -2
  485. mindspore/ops/_op_impl/tbe/ctc_loss_v2_grad.py +0 -2
  486. mindspore/ops/_op_impl/tbe/data_format_dim_map_ds.py +1 -0
  487. mindspore/ops/_op_impl/tbe/deformable_offsets.py +1 -0
  488. mindspore/ops/_op_impl/tbe/depthwise_conv2d.py +1 -1
  489. mindspore/ops/_op_impl/tbe/dynamic_atomic_addr_clean.py +1 -1
  490. mindspore/ops/_op_impl/tbe/gather_nd.py +1 -0
  491. mindspore/ops/_op_impl/tbe/greater.py +2 -0
  492. mindspore/ops/_op_impl/tbe/{index_add.py → inplace_index_add.py} +3 -6
  493. mindspore/ops/_op_impl/tbe/layer_norm_beta_gamma_backprop_v2.py +0 -1
  494. mindspore/ops/_op_impl/tbe/npu_clear_float_status_v2.py +35 -0
  495. mindspore/ops/_op_impl/tbe/npu_get_float_status_v2.py +35 -0
  496. mindspore/ops/_op_impl/tbe/one_hot_ds.py +0 -6
  497. mindspore/ops/_op_impl/tbe/{greater_ds.py → reduce_all_ds.py} +13 -16
  498. mindspore/ops/_op_impl/tbe/reduce_any_ds.py +39 -0
  499. mindspore/ops/_op_impl/tbe/roi_align_ds.py +44 -0
  500. mindspore/ops/_op_impl/tbe/roi_align_grad_ds.py +44 -0
  501. mindspore/ops/_op_impl/tbe/scatter_add.py +2 -0
  502. mindspore/ops/_op_impl/tbe/scatter_nd_add.py +2 -2
  503. mindspore/ops/_op_impl/tbe/slice.py +26 -15
  504. mindspore/ops/_op_impl/tbe/space_to_batch.py +1 -1
  505. mindspore/ops/_op_impl/tbe/space_to_batch_nd.py +1 -1
  506. mindspore/ops/_op_impl/tbe/strided_slice_grad_d.py +1 -0
  507. mindspore/ops/_op_impl/tbe/trans_data_ds.py +15 -5
  508. mindspore/ops/_op_impl/tbe/unsorted_segment_sum.py +1 -1
  509. mindspore/ops/_op_impl/tbe/unsorted_segment_sum_ds.py +2 -0
  510. mindspore/ops/_primitive_cache.py +3 -2
  511. mindspore/ops/_register_for_op.py +11 -0
  512. mindspore/ops/_utils/__init__.py +1 -1
  513. mindspore/ops/_utils/utils.py +20 -41
  514. mindspore/ops/_vmap/__init__.py +2 -2
  515. mindspore/ops/_vmap/vmap_array_ops.py +170 -78
  516. mindspore/ops/_vmap/vmap_base.py +24 -10
  517. mindspore/ops/_vmap/vmap_convolution_ops.py +7 -10
  518. mindspore/ops/_vmap/vmap_grad_math_ops.py +4 -4
  519. mindspore/ops/_vmap/vmap_grad_nn_ops.py +41 -9
  520. mindspore/ops/_vmap/vmap_image_ops.py +52 -0
  521. mindspore/ops/_vmap/vmap_math_ops.py +77 -6
  522. mindspore/ops/_vmap/vmap_nn_ops.py +78 -29
  523. mindspore/ops/_vmap/vmap_other_ops.py +3 -1
  524. mindspore/ops/_vmap/vmap_random_ops.py +55 -3
  525. mindspore/ops/_vmap/vmap_sparse_ops.py +1 -0
  526. mindspore/ops/bprop_mindir/AdaptiveAvgPool2D_bprop.mindir +0 -0
  527. mindspore/ops/bprop_mindir/AdaptiveMaxPool2D_bprop.mindir +0 -0
  528. mindspore/ops/bprop_mindir/ApproximateEqual_bprop.mindir +18 -19
  529. mindspore/ops/bprop_mindir/Argmax_bprop.mindir +13 -12
  530. mindspore/ops/bprop_mindir/Argmin_bprop.mindir +14 -13
  531. mindspore/ops/bprop_mindir/AssignSub_bprop.mindir +17 -18
  532. mindspore/ops/bprop_mindir/Assign_bprop.mindir +16 -16
  533. mindspore/ops/bprop_mindir/AvgPool3D_bprop.mindir +150 -0
  534. mindspore/ops/bprop_mindir/AvgPool_bprop.mindir +66 -0
  535. mindspore/ops/bprop_mindir/BCEWithLogitsLoss_bprop.mindir +0 -0
  536. mindspore/ops/bprop_mindir/BNTrainingReduce_bprop.mindir +13 -12
  537. mindspore/ops/bprop_mindir/BatchNormGrad_bprop.mindir +0 -0
  538. mindspore/ops/bprop_mindir/BatchToSpaceND_bprop.mindir +28 -0
  539. mindspore/ops/bprop_mindir/BiasAddGrad_bprop.mindir +0 -0
  540. mindspore/ops/bprop_mindir/BinaryCrossEntropy_bprop.mindir +33 -0
  541. mindspore/ops/bprop_mindir/BroadcastTo_bprop.mindir +306 -0
  542. mindspore/ops/bprop_mindir/Broadcast_bprop.mindir +12 -8
  543. mindspore/ops/bprop_mindir/CTCLoss_bprop.mindir +0 -0
  544. mindspore/ops/bprop_mindir/Concat_bprop.mindir +0 -0
  545. mindspore/ops/bprop_mindir/Conv2DBackpropFilter_bprop.mindir +240 -0
  546. mindspore/ops/bprop_mindir/Conv2DBackpropInput_bprop.mindir +247 -0
  547. mindspore/ops/bprop_mindir/Conv2DTranspose_bprop.mindir +247 -0
  548. mindspore/ops/bprop_mindir/Conv3DTranspose_bprop.mindir +315 -0
  549. mindspore/ops/bprop_mindir/Conv3D_bprop.mindir +278 -0
  550. mindspore/ops/bprop_mindir/DType_bprop.mindir +12 -12
  551. mindspore/ops/bprop_mindir/DeformableOffsets_bprop.mindir +58 -0
  552. mindspore/ops/bprop_mindir/Depend_bprop.mindir +12 -13
  553. mindspore/ops/bprop_mindir/DepthToSpace_bprop.mindir +23 -0
  554. mindspore/ops/bprop_mindir/DepthwiseConv2dNative_bprop.mindir +138 -0
  555. mindspore/ops/bprop_mindir/DiagPart_bprop.mindir +15 -0
  556. mindspore/ops/bprop_mindir/Dropout2D_bprop.mindir +0 -0
  557. mindspore/ops/bprop_mindir/Dropout3D_bprop.mindir +0 -0
  558. mindspore/ops/bprop_mindir/DropoutDoMask_bprop.mindir +22 -24
  559. mindspore/ops/bprop_mindir/DropoutGenMask_bprop.mindir +16 -14
  560. mindspore/ops/bprop_mindir/DropoutGrad_bprop.mindir +27 -0
  561. mindspore/ops/bprop_mindir/Dropout_bprop.mindir +0 -0
  562. mindspore/ops/bprop_mindir/DynamicGRUV2_bprop.mindir +0 -0
  563. mindspore/ops/bprop_mindir/DynamicRNN_bprop.mindir +0 -0
  564. mindspore/ops/bprop_mindir/DynamicShape_bprop.mindir +12 -12
  565. mindspore/ops/bprop_mindir/Elu_bprop.mindir +16 -0
  566. mindspore/ops/bprop_mindir/EmbeddingLookup_bprop.mindir +0 -0
  567. mindspore/ops/bprop_mindir/Equal_bprop.mindir +18 -19
  568. mindspore/ops/bprop_mindir/ExpandDims_bprop.mindir +58 -0
  569. mindspore/ops/bprop_mindir/FastGeLU_bprop.mindir +16 -0
  570. mindspore/ops/bprop_mindir/Flatten_bprop.mindir +54 -0
  571. mindspore/ops/bprop_mindir/FloorDiv_bprop.mindir +18 -15
  572. mindspore/ops/bprop_mindir/GatherD_bprop.mindir +26 -0
  573. mindspore/ops/bprop_mindir/GatherNd_bprop.mindir +57 -0
  574. mindspore/ops/bprop_mindir/Gather_bprop.mindir +0 -0
  575. mindspore/ops/bprop_mindir/GreaterEqual_bprop.mindir +17 -18
  576. mindspore/ops/bprop_mindir/Greater_bprop.mindir +18 -19
  577. mindspore/ops/bprop_mindir/HSigmoid_bprop.mindir +16 -0
  578. mindspore/ops/bprop_mindir/HSwish_bprop.mindir +16 -0
  579. mindspore/ops/bprop_mindir/IOU_bprop.mindir +18 -19
  580. mindspore/ops/bprop_mindir/InstanceNorm_bprop.mindir +0 -0
  581. mindspore/ops/bprop_mindir/IsFinite_bprop.mindir +13 -12
  582. mindspore/ops/bprop_mindir/IsInf_bprop.mindir +13 -10
  583. mindspore/ops/bprop_mindir/IsNan_bprop.mindir +14 -11
  584. mindspore/ops/bprop_mindir/KLDivLoss_bprop.mindir +126 -0
  585. mindspore/ops/bprop_mindir/L2Loss_bprop.mindir +15 -0
  586. mindspore/ops/bprop_mindir/L2Normalize_bprop.mindir +30 -0
  587. mindspore/ops/bprop_mindir/LRN_bprop.mindir +43 -0
  588. mindspore/ops/bprop_mindir/LayerNormGrad_bprop.mindir +0 -0
  589. mindspore/ops/bprop_mindir/LessEqual_bprop.mindir +18 -19
  590. mindspore/ops/bprop_mindir/Less_bprop.mindir +17 -18
  591. mindspore/ops/bprop_mindir/LinSpace_bprop.mindir +22 -19
  592. mindspore/ops/bprop_mindir/Load_bprop.mindir +12 -13
  593. mindspore/ops/bprop_mindir/LogSoftmax_bprop.mindir +23 -0
  594. mindspore/ops/bprop_mindir/LogicalAnd_bprop.mindir +17 -18
  595. mindspore/ops/bprop_mindir/LogicalNot_bprop.mindir +14 -13
  596. mindspore/ops/bprop_mindir/MaskedSelect_bprop.mindir +21 -0
  597. mindspore/ops/bprop_mindir/MaxPool3DGradGrad_bprop.mindir +74 -0
  598. mindspore/ops/bprop_mindir/MaxPool3DGrad_bprop.mindir +74 -0
  599. mindspore/ops/bprop_mindir/MaxPool3D_bprop.mindir +75 -0
  600. mindspore/ops/bprop_mindir/MaxPoolGradGrad_bprop.mindir +65 -0
  601. mindspore/ops/bprop_mindir/MaxPoolWithArgmax_bprop.mindir +0 -0
  602. mindspore/ops/bprop_mindir/Maximum_bprop.mindir +0 -0
  603. mindspore/ops/bprop_mindir/Minimum_bprop.mindir +0 -0
  604. mindspore/ops/bprop_mindir/MirrorPad_bprop.mindir +27 -0
  605. mindspore/ops/bprop_mindir/Mish_bprop.mindir +35 -0
  606. mindspore/ops/bprop_mindir/MulNoNan_bprop.mindir +0 -0
  607. mindspore/ops/bprop_mindir/NLLLoss_bprop.mindir +0 -0
  608. mindspore/ops/bprop_mindir/NonZero_bprop.mindir +14 -0
  609. mindspore/ops/bprop_mindir/NotEqual_bprop.mindir +18 -19
  610. mindspore/ops/bprop_mindir/OneHot_bprop.mindir +25 -23
  611. mindspore/ops/bprop_mindir/OnesLike_bprop.mindir +13 -13
  612. mindspore/ops/bprop_mindir/PReLU_bprop.mindir +0 -0
  613. mindspore/ops/bprop_mindir/Pad_bprop.mindir +0 -0
  614. mindspore/ops/bprop_mindir/Padding_bprop.mindir +0 -0
  615. mindspore/ops/bprop_mindir/RNNTLoss_bprop.mindir +29 -0
  616. mindspore/ops/bprop_mindir/ROIAlign_bprop.mindir +82 -0
  617. mindspore/ops/bprop_mindir/Range_bprop.mindir +21 -19
  618. mindspore/ops/bprop_mindir/Rank_bprop.mindir +11 -11
  619. mindspore/ops/bprop_mindir/ReLU6_bprop.mindir +16 -0
  620. mindspore/ops/bprop_mindir/ReLUV2_bprop.mindir +0 -0
  621. mindspore/ops/bprop_mindir/ReduceAll_bprop.mindir +18 -17
  622. mindspore/ops/bprop_mindir/ReduceAny_bprop.mindir +18 -17
  623. mindspore/ops/bprop_mindir/ReluGrad_bprop.mindir +19 -23
  624. mindspore/ops/bprop_mindir/Reshape_bprop.mindir +60 -0
  625. mindspore/ops/bprop_mindir/ResizeBilinear_bprop.mindir +29 -0
  626. mindspore/ops/bprop_mindir/ResizeNearestNeighbor_bprop.mindir +89 -0
  627. mindspore/ops/bprop_mindir/ReverseSequence_bprop.mindir +52 -0
  628. mindspore/ops/bprop_mindir/ReverseV2_bprop.mindir +22 -0
  629. mindspore/ops/bprop_mindir/Round_bprop.mindir +14 -13
  630. mindspore/ops/bprop_mindir/ScatterMax_bprop.mindir +0 -0
  631. mindspore/ops/bprop_mindir/ScatterMin_bprop.mindir +0 -0
  632. mindspore/ops/bprop_mindir/ScatterNdUpdate_bprop.mindir +22 -0
  633. mindspore/ops/bprop_mindir/ScatterNd_bprop.mindir +24 -0
  634. mindspore/ops/bprop_mindir/ScatterNonAliasingAdd_bprop.mindir +22 -0
  635. mindspore/ops/bprop_mindir/ScatterUpdate_bprop.mindir +0 -0
  636. mindspore/ops/bprop_mindir/SeLU_bprop.mindir +21 -0
  637. mindspore/ops/bprop_mindir/Select_bprop.mindir +30 -34
  638. mindspore/ops/bprop_mindir/Shape_bprop.mindir +12 -12
  639. mindspore/ops/bprop_mindir/SigmoidCrossEntropyWithLogits_bprop.mindir +21 -0
  640. mindspore/ops/bprop_mindir/SigmoidGrad_bprop.mindir +0 -0
  641. mindspore/ops/bprop_mindir/Sigmoid_bprop.mindir +16 -0
  642. mindspore/ops/bprop_mindir/Sign_bprop.mindir +13 -12
  643. mindspore/ops/bprop_mindir/Slice_bprop.mindir +26 -0
  644. mindspore/ops/bprop_mindir/SmoothL1Loss_bprop.mindir +36 -0
  645. mindspore/ops/bprop_mindir/SoftmaxCrossEntropyWithLogits_bprop.mindir +0 -0
  646. mindspore/ops/bprop_mindir/Softplus_bprop.mindir +16 -0
  647. mindspore/ops/bprop_mindir/Softsign_bprop.mindir +33 -0
  648. mindspore/ops/bprop_mindir/Sort_bprop.mindir +0 -0
  649. mindspore/ops/bprop_mindir/SpaceToBatchND_bprop.mindir +28 -0
  650. mindspore/ops/bprop_mindir/SpaceToDepth_bprop.mindir +23 -0
  651. mindspore/ops/bprop_mindir/SparseGatherV2_bprop.mindir +0 -0
  652. mindspore/ops/bprop_mindir/SparseSoftmaxCrossEntropyWithLogits_bprop.mindir +0 -0
  653. mindspore/ops/bprop_mindir/Split_bprop.mindir +22 -0
  654. mindspore/ops/bprop_mindir/Squeeze_bprop.mindir +54 -0
  655. mindspore/ops/bprop_mindir/StridedSliceGrad_bprop.mindir +95 -0
  656. mindspore/ops/bprop_mindir/StridedSlice_bprop.mindir +98 -0
  657. mindspore/ops/bprop_mindir/Switch_bprop.mindir +28 -32
  658. mindspore/ops/bprop_mindir/TanhGrad_bprop.mindir +0 -0
  659. mindspore/ops/bprop_mindir/Tanh_bprop.mindir +66 -0
  660. mindspore/ops/bprop_mindir/TensorScatterAdd_bprop.mindir +22 -0
  661. mindspore/ops/bprop_mindir/TensorScatterUpdate_bprop.mindir +29 -0
  662. mindspore/ops/bprop_mindir/TensorShape_bprop.mindir +14 -0
  663. mindspore/ops/bprop_mindir/Tile_bprop.mindir +0 -0
  664. mindspore/ops/bprop_mindir/TopK_bprop.mindir +0 -0
  665. mindspore/ops/bprop_mindir/TransShape_bprop.mindir +23 -0
  666. mindspore/ops/bprop_mindir/TruncateDiv_bprop.mindir +18 -15
  667. mindspore/ops/bprop_mindir/TupleGetItem_bprop.mindir +11 -13
  668. mindspore/ops/bprop_mindir/Unique_bprop.mindir +16 -0
  669. mindspore/ops/bprop_mindir/Unstack_bprop.mindir +22 -0
  670. mindspore/ops/bprop_mindir/UpsampleNearest3D_bprop.mindir +32 -0
  671. mindspore/ops/bprop_mindir/UpsampleTrilinear3D_bprop.mindir +38 -0
  672. mindspore/ops/bprop_mindir/ZerosLike_bprop.mindir +13 -12
  673. mindspore/ops/bprop_mindir/__init__.py +1 -4
  674. mindspore/ops/bprop_mindir/generate_mindir.py +32 -20
  675. mindspore/ops/composite/__init__.py +12 -13
  676. mindspore/ops/composite/base.py +261 -254
  677. mindspore/ops/composite/env_ops.py +41 -0
  678. mindspore/ops/composite/math_ops.py +197 -156
  679. mindspore/ops/composite/multitype_ops/_compile_utils.py +428 -176
  680. mindspore/ops/composite/multitype_ops/_constexpr_utils.py +188 -87
  681. mindspore/ops/composite/multitype_ops/add_impl.py +23 -1
  682. mindspore/ops/composite/multitype_ops/div_impl.py +3 -3
  683. mindspore/ops/composite/multitype_ops/equal_impl.py +1 -0
  684. mindspore/ops/composite/multitype_ops/floordiv_impl.py +1 -1
  685. mindspore/ops/composite/multitype_ops/getitem_impl.py +52 -5
  686. mindspore/ops/composite/multitype_ops/greater_equal_impl.py +31 -0
  687. mindspore/ops/composite/multitype_ops/greater_impl.py +31 -0
  688. mindspore/ops/composite/multitype_ops/in_impl.py +15 -3
  689. mindspore/ops/composite/multitype_ops/less_equal_impl.py +33 -2
  690. mindspore/ops/composite/multitype_ops/less_impl.py +33 -0
  691. mindspore/ops/composite/multitype_ops/logical_and_impl.py +2 -2
  692. mindspore/ops/composite/multitype_ops/logical_or_impl.py +2 -1
  693. mindspore/ops/composite/multitype_ops/mod_impl.py +1 -1
  694. mindspore/ops/composite/multitype_ops/mul_impl.py +21 -7
  695. mindspore/ops/composite/multitype_ops/not_in_impl.py +15 -3
  696. mindspore/ops/composite/multitype_ops/ones_like_impl.py +2 -4
  697. mindspore/ops/composite/multitype_ops/pow_impl.py +1 -0
  698. mindspore/ops/composite/multitype_ops/setitem_impl.py +62 -70
  699. mindspore/ops/composite/multitype_ops/sub_impl.py +3 -3
  700. mindspore/ops/composite/multitype_ops/zeros_like_impl.py +41 -4
  701. mindspore/ops/function/__init__.py +323 -8
  702. mindspore/ops/function/array_func.py +3511 -780
  703. mindspore/ops/function/clip_func.py +329 -0
  704. mindspore/ops/function/debug_func.py +6 -6
  705. mindspore/ops/function/grad/__init__.py +5 -1
  706. mindspore/ops/function/grad/grad_func.py +736 -65
  707. mindspore/ops/function/image_func.py +270 -0
  708. mindspore/ops/function/linalg_func.py +268 -8
  709. mindspore/ops/function/math_func.py +8032 -3164
  710. mindspore/ops/function/nn_func.py +5619 -1855
  711. mindspore/ops/function/other_func.py +115 -0
  712. mindspore/ops/function/parameter_func.py +11 -10
  713. mindspore/ops/function/random_func.py +939 -77
  714. mindspore/ops/function/sparse_func.py +249 -84
  715. mindspore/ops/function/sparse_unary_func.py +2303 -0
  716. mindspore/ops/function/spectral_func.py +146 -0
  717. mindspore/ops/function/vmap_func.py +114 -0
  718. mindspore/ops/functional.py +182 -254
  719. mindspore/ops/op_info_register.py +79 -34
  720. mindspore/ops/operations/__init__.py +210 -118
  721. mindspore/ops/operations/_csr_ops.py +7 -7
  722. mindspore/ops/operations/_embedding_cache_ops.py +25 -15
  723. mindspore/ops/operations/_grad_ops.py +447 -322
  724. mindspore/ops/operations/_inner_ops.py +547 -176
  725. mindspore/ops/operations/_map_tensor_ops.py +112 -0
  726. mindspore/ops/operations/_ms_kernel.py +29 -27
  727. mindspore/ops/operations/_ocr_ops.py +11 -11
  728. mindspore/ops/operations/_opaque_predicate_registry.py +41 -0
  729. mindspore/ops/operations/_quant_ops.py +186 -101
  730. mindspore/ops/operations/_rl_inner_ops.py +122 -61
  731. mindspore/ops/operations/_scalar_ops.py +466 -0
  732. mindspore/ops/operations/_sequence_ops.py +1047 -0
  733. mindspore/ops/operations/_tensor_array.py +10 -11
  734. mindspore/ops/operations/_thor_ops.py +4 -4
  735. mindspore/ops/operations/array_ops.py +1428 -1226
  736. mindspore/ops/operations/comm_ops.py +180 -117
  737. mindspore/ops/operations/control_ops.py +4 -2
  738. mindspore/ops/operations/custom_ops.py +185 -98
  739. mindspore/ops/operations/debug_ops.py +92 -54
  740. mindspore/ops/operations/image_ops.py +406 -211
  741. mindspore/ops/operations/inner_ops.py +42 -53
  742. mindspore/ops/operations/linalg_ops.py +32 -29
  743. mindspore/ops/operations/math_ops.py +2076 -897
  744. mindspore/ops/operations/nn_ops.py +1282 -1252
  745. mindspore/ops/operations/other_ops.py +124 -278
  746. mindspore/ops/operations/random_ops.py +345 -178
  747. mindspore/ops/operations/rl_ops.py +8 -9
  748. mindspore/ops/operations/sparse_ops.py +502 -157
  749. mindspore/ops/operations/spectral_ops.py +107 -0
  750. mindspore/ops/primitive.py +192 -15
  751. mindspore/ops/vm_impl_registry.py +23 -2
  752. mindspore/parallel/__init__.py +6 -1
  753. mindspore/parallel/_auto_parallel_context.py +199 -92
  754. mindspore/parallel/_cell_wrapper.py +4 -2
  755. mindspore/parallel/_cost_model_context.py +3 -0
  756. mindspore/parallel/_dp_allreduce_fusion.py +2 -1
  757. mindspore/parallel/_offload_context.py +185 -0
  758. mindspore/parallel/_parallel_serialization.py +167 -28
  759. mindspore/parallel/_ps_context.py +9 -5
  760. mindspore/parallel/_recovery_context.py +1 -1
  761. mindspore/parallel/_tensor.py +9 -1
  762. mindspore/{nn/transformer → parallel/_transformer}/__init__.py +6 -6
  763. mindspore/{nn/transformer → parallel/_transformer}/layers.py +59 -37
  764. mindspore/{nn/transformer → parallel/_transformer}/loss.py +4 -7
  765. mindspore/{nn/transformer → parallel/_transformer}/moe.py +160 -35
  766. mindspore/{nn/transformer → parallel/_transformer}/op_parallel_config.py +3 -3
  767. mindspore/{nn/transformer → parallel/_transformer}/transformer.py +235 -196
  768. mindspore/parallel/_utils.py +47 -7
  769. mindspore/parallel/algo_parameter_config.py +5 -1
  770. mindspore/parallel/checkpoint_transform.py +329 -0
  771. mindspore/parallel/shard.py +229 -0
  772. mindspore/perf_msvcbuildinsights.dll +0 -0
  773. mindspore/pgodb140.dll +0 -0
  774. mindspore/pgort140.dll +0 -0
  775. mindspore/profiler/__init__.py +2 -1
  776. mindspore/profiler/common/util.py +4 -3
  777. mindspore/profiler/common/validator/validate_path.py +2 -2
  778. mindspore/profiler/envprofiling.py +249 -0
  779. mindspore/profiler/parser/aicpu_data_parser.py +38 -39
  780. mindspore/profiler/parser/ascend_timeline_generator.py +497 -0
  781. mindspore/profiler/parser/base_timeline_generator.py +471 -0
  782. mindspore/profiler/parser/cpu_gpu_timeline_generator.py +684 -0
  783. mindspore/profiler/parser/framework_parser.py +42 -16
  784. mindspore/profiler/parser/hccl_parser.py +158 -158
  785. mindspore/profiler/parser/hwts_log_parser.py +7 -6
  786. mindspore/profiler/parser/integrator.py +18 -1579
  787. mindspore/profiler/parser/minddata_analyzer.py +8 -8
  788. mindspore/profiler/parser/msadvisor_analyzer.py +14 -27
  789. mindspore/profiler/parser/msadvisor_parser.py +2 -4
  790. mindspore/profiler/parser/optime_parser.py +17 -18
  791. mindspore/profiler/parser/profiler_info.py +108 -0
  792. mindspore/profiler/parser/step_trace_parser.py +1 -1
  793. mindspore/profiler/profiling.py +396 -194
  794. mindspore/rewrite/__init__.py +6 -2
  795. mindspore/rewrite/api/node.py +51 -110
  796. mindspore/rewrite/api/node_type.py +10 -6
  797. mindspore/rewrite/api/pattern_engine.py +51 -7
  798. mindspore/rewrite/api/scoped_value.py +64 -53
  799. mindspore/rewrite/api/symbol_tree.py +108 -61
  800. mindspore/rewrite/api/tree_node_helper.py +2 -3
  801. mindspore/{compression/quant/__init__.py → rewrite/ast_creator_register.py} +20 -11
  802. mindspore/rewrite/ast_helpers/__init__.py +6 -3
  803. mindspore/rewrite/ast_helpers/ast_creator.py +115 -0
  804. mindspore/rewrite/ast_helpers/ast_finder.py +99 -1
  805. mindspore/rewrite/ast_helpers/ast_modifier.py +17 -4
  806. mindspore/rewrite/ast_helpers/ast_replacer.py +1 -1
  807. mindspore/rewrite/ast_transformers/__init__.py +0 -1
  808. mindspore/rewrite/ast_transformers/flatten_recursive_stmt.py +46 -5
  809. mindspore/rewrite/ast_transformers/remove_return_out_of_if.py +6 -3
  810. mindspore/rewrite/common/__init__.py +2 -0
  811. mindspore/rewrite/common/event.py +1 -1
  812. mindspore/rewrite/common/observable.py +1 -1
  813. mindspore/rewrite/common/observer.py +1 -1
  814. mindspore/rewrite/common/rewrite_elog.py +35 -0
  815. mindspore/rewrite/namer.py +2 -2
  816. mindspore/rewrite/namespace.py +14 -4
  817. mindspore/rewrite/node.py +161 -13
  818. mindspore/rewrite/parser.py +0 -1
  819. mindspore/rewrite/parser_register.py +0 -1
  820. mindspore/rewrite/parsers/arguments_parser.py +3 -2
  821. mindspore/rewrite/parsers/assign_parser.py +267 -67
  822. mindspore/rewrite/parsers/attribute_parser.py +56 -0
  823. mindspore/rewrite/parsers/class_def_parser.py +191 -108
  824. mindspore/rewrite/parsers/constant_parser.py +101 -0
  825. mindspore/rewrite/parsers/container_parser.py +88 -0
  826. mindspore/rewrite/parsers/for_parser.py +28 -15
  827. mindspore/rewrite/parsers/function_def_parser.py +21 -5
  828. mindspore/rewrite/parsers/if_parser.py +11 -28
  829. mindspore/rewrite/parsers/module_parser.py +9 -6
  830. mindspore/rewrite/parsers/return_parser.py +3 -2
  831. mindspore/rewrite/sparsify/__init__.py +0 -0
  832. mindspore/rewrite/sparsify/sparse_transformer.py +448 -0
  833. mindspore/rewrite/sparsify/sparsify.py +109 -0
  834. mindspore/rewrite/sparsify/utils.py +173 -0
  835. mindspore/rewrite/symbol_tree.py +322 -109
  836. mindspore/rewrite/symbol_tree_builder.py +45 -8
  837. mindspore/rewrite/symbol_tree_dumper.py +0 -1
  838. mindspore/rewrite/topological_manager.py +1 -2
  839. mindspore/run_check/_check_version.py +209 -112
  840. mindspore/run_check/run_check.py +2 -1
  841. mindspore/tbbmalloc.dll +0 -0
  842. mindspore/tinyxml2.dll +0 -0
  843. mindspore/train/__init__.py +6 -4
  844. mindspore/train/_utils.py +28 -5
  845. mindspore/train/amp.py +321 -50
  846. mindspore/train/callback/__init__.py +3 -1
  847. mindspore/train/callback/_backup_and_restore.py +120 -0
  848. mindspore/train/callback/_callback.py +8 -8
  849. mindspore/train/callback/_checkpoint.py +12 -9
  850. mindspore/train/callback/_early_stop.py +13 -7
  851. mindspore/train/callback/_history.py +8 -8
  852. mindspore/train/callback/_lambda_callback.py +6 -6
  853. mindspore/train/callback/_landscape.py +36 -38
  854. mindspore/train/callback/_loss_monitor.py +12 -6
  855. mindspore/train/callback/_lr_scheduler_callback.py +2 -4
  856. mindspore/train/callback/_on_request_exit.py +212 -0
  857. mindspore/train/callback/_reduce_lr_on_plateau.py +13 -7
  858. mindspore/train/callback/_summary_collector.py +27 -19
  859. mindspore/train/callback/_time_monitor.py +13 -7
  860. mindspore/train/checkpoint_pb2.py +68 -8
  861. mindspore/train/data_sink.py +122 -33
  862. mindspore/train/dataset_helper.py +28 -87
  863. mindspore/train/loss_scale_manager.py +4 -7
  864. mindspore/{nn → train}/metrics/__init__.py +20 -20
  865. mindspore/{nn → train}/metrics/accuracy.py +12 -10
  866. mindspore/{nn → train}/metrics/auc.py +4 -4
  867. mindspore/{nn → train}/metrics/bleu_score.py +4 -4
  868. mindspore/{nn → train}/metrics/confusion_matrix.py +10 -8
  869. mindspore/{nn → train}/metrics/cosine_similarity.py +4 -4
  870. mindspore/{nn → train}/metrics/dice.py +6 -5
  871. mindspore/{nn → train}/metrics/error.py +7 -5
  872. mindspore/{nn → train}/metrics/fbeta.py +9 -7
  873. mindspore/{nn → train}/metrics/hausdorff_distance.py +8 -6
  874. mindspore/{nn → train}/metrics/loss.py +4 -3
  875. mindspore/{nn → train}/metrics/mean_surface_distance.py +6 -5
  876. mindspore/{nn → train}/metrics/metric.py +6 -5
  877. mindspore/{nn → train}/metrics/occlusion_sensitivity.py +4 -3
  878. mindspore/{nn → train}/metrics/perplexity.py +5 -4
  879. mindspore/{nn → train}/metrics/precision.py +5 -4
  880. mindspore/{nn → train}/metrics/recall.py +5 -4
  881. mindspore/{nn → train}/metrics/roc.py +7 -6
  882. mindspore/{nn → train}/metrics/root_mean_square_surface_distance.py +6 -5
  883. mindspore/{nn → train}/metrics/topk.py +7 -5
  884. mindspore/train/mind_ir_pb2.py +339 -32
  885. mindspore/train/model.py +113 -84
  886. mindspore/train/serialization.py +547 -167
  887. mindspore/train/summary/_summary_adapter.py +1 -1
  888. mindspore/train/summary/summary_record.py +43 -12
  889. mindspore/train/train_thor/convert_utils.py +7 -1
  890. mindspore/train/train_thor/dataset_helper.py +3 -3
  891. mindspore/train/train_thor/model_thor.py +0 -4
  892. mindspore/turbojpeg.dll +0 -0
  893. mindspore/vcmeta.dll +0 -0
  894. mindspore/vcruntime140.dll +0 -0
  895. mindspore/vcruntime140_1.dll +0 -0
  896. mindspore/version.py +1 -1
  897. {mindspore-1.10.0.dist-info → mindspore-2.0.0rc1.dist-info}/METADATA +4 -3
  898. {mindspore-1.10.0.dist-info → mindspore-2.0.0rc1.dist-info}/RECORD +901 -660
  899. mindspore/compression/common/constant.py +0 -124
  900. mindspore/compression/export/__init__.py +0 -19
  901. mindspore/compression/export/quant_export.py +0 -514
  902. mindspore/compression/quant/qat.py +0 -636
  903. mindspore/compression/quant/quant_utils.py +0 -462
  904. mindspore/compression/quant/quantizer.py +0 -68
  905. mindspore/libatomic-1.dll +0 -0
  906. mindspore/libgcc_s_seh-1.dll +0 -0
  907. mindspore/libgfortran-4.dll +0 -0
  908. mindspore/libgomp-1.dll +0 -0
  909. mindspore/libjpeg-62.dll +0 -0
  910. mindspore/libmindspore.dll +0 -0
  911. mindspore/libmindspore_common.dll +0 -0
  912. mindspore/libmindspore_core.dll +0 -0
  913. mindspore/libmindspore_glog.dll +0 -0
  914. mindspore/libnnacl.dll +0 -0
  915. mindspore/libopencv_core452.dll +0 -0
  916. mindspore/libopencv_imgcodecs452.dll +0 -0
  917. mindspore/libopencv_imgproc452.dll +0 -0
  918. mindspore/libquadmath-0.dll +0 -0
  919. mindspore/libsqlite3.dll +0 -0
  920. mindspore/libssp-0.dll +0 -0
  921. mindspore/libstdc++-6.dll +0 -0
  922. mindspore/libtinyxml2.dll +0 -0
  923. mindspore/libturbojpeg.dll +0 -0
  924. mindspore/libwinpthread-1.dll +0 -0
  925. mindspore/nn/layer/quant.py +0 -1868
  926. mindspore/nn/layer/rnn_utils.py +0 -90
  927. mindspore/nn/probability/dpn/__init__.py +0 -22
  928. mindspore/nn/probability/dpn/vae/__init__.py +0 -25
  929. mindspore/nn/probability/dpn/vae/cvae.py +0 -138
  930. mindspore/nn/probability/dpn/vae/vae.py +0 -122
  931. mindspore/nn/probability/infer/__init__.py +0 -22
  932. mindspore/nn/probability/infer/variational/elbo.py +0 -70
  933. mindspore/nn/probability/infer/variational/svi.py +0 -84
  934. mindspore/nn/probability/toolbox/__init__.py +0 -22
  935. mindspore/nn/probability/toolbox/anomaly_detection.py +0 -99
  936. mindspore/nn/probability/toolbox/uncertainty_evaluation.py +0 -363
  937. mindspore/nn/probability/transforms/__init__.py +0 -22
  938. mindspore/nn/probability/transforms/transform_bnn.py +0 -262
  939. mindspore/nn/probability/zhusuan/__init__.py +0 -18
  940. mindspore/nn/probability/zhusuan/framework/__init__.py +0 -18
  941. mindspore/nn/probability/zhusuan/framework/bn.py +0 -95
  942. mindspore/nn/probability/zhusuan/variational/__init__.py +0 -18
  943. mindspore/nn/probability/zhusuan/variational/elbo.py +0 -46
  944. mindspore/ops/_op_impl/tbe/bias_add_grad_ds.py +0 -52
  945. mindspore/ops/_op_impl/tbe/scatter_nd_add_ds.py +0 -43
  946. mindspore/ops/bprop_mindir/AssignAdd_bprop.mindir +0 -20
  947. mindspore/ops/bprop_mindir/Identity_bprop.mindir +0 -9
  948. mindspore/ops/bprop_mindir/LogicalOr_bprop.mindir +0 -20
  949. mindspore/ops/bprop_mindir/ReLU_bprop.mindir +0 -16
  950. mindspore/ops/bprop_mindir/UpdateState_bprop.mindir +0 -17
  951. mindspore/ops/bprop_mindir/stop_gradient_bprop.mindir +0 -12
  952. mindspore/ops/composite/array_ops.py +0 -210
  953. mindspore/ops/composite/clip_ops.py +0 -238
  954. mindspore/ops/composite/random_ops.py +0 -426
  955. mindspore/ops/composite/vmap_ops.py +0 -38
  956. mindspore/ops/operations/sponge_ops.py +0 -3531
  957. mindspore/ops/operations/sponge_update_ops.py +0 -2546
  958. mindspore/parallel/nn/__init__.py +0 -42
  959. mindspore/parallel/nn/loss.py +0 -22
  960. mindspore/parallel/nn/moe.py +0 -21
  961. mindspore/parallel/nn/op_parallel_config.py +0 -22
  962. mindspore/parallel/nn/transformer.py +0 -31
  963. mindspore/run_check/_check_deps_version.py +0 -84
  964. {mindspore-1.10.0.dist-info → mindspore-2.0.0rc1.dist-info}/WHEEL +0 -0
  965. {mindspore-1.10.0.dist-info → mindspore-2.0.0rc1.dist-info}/entry_points.txt +0 -0
  966. {mindspore-1.10.0.dist-info → mindspore-2.0.0rc1.dist-info}/top_level.txt +0 -0
@@ -98,18 +98,18 @@ class ImageTensorOperation(TensorOperation):
98
98
 
99
99
 
100
100
  class AdjustBrightness(ImageTensorOperation, PyTensorOperation):
101
- r"""
102
- Apdjust brightness of input image. Input image is expected to be in [H, W, C] format.
101
+ """
102
+ Adjust the brightness of the input image.
103
103
 
104
104
  Args:
105
- brightness_factor (float): How much to adjust the brightness. Can be any non negative number.
105
+ brightness_factor (float): How much to adjust the brightness, must be non negative.
106
106
  0 gives a black image, 1 gives the original image,
107
107
  while 2 increases the brightness by a factor of 2.
108
108
 
109
109
  Raises:
110
110
  TypeError: If `brightness_factor` is not of type float.
111
111
  ValueError: If `brightness_factor` is less than 0.
112
- RuntimeError: If given tensor shape is not <H, W, C>.
112
+ RuntimeError: If shape of the input image is not <H, W, C>.
113
113
 
114
114
  Supported Platforms:
115
115
  ``CPU``
@@ -142,18 +142,18 @@ class AdjustBrightness(ImageTensorOperation, PyTensorOperation):
142
142
 
143
143
 
144
144
  class AdjustContrast(ImageTensorOperation, PyTensorOperation):
145
- r"""
146
- Adjust contrast of input image. Input image is expected to be in [H, W, C] format.
145
+ """
146
+ Adjust the contrast of the input image.
147
147
 
148
148
  Args:
149
- contrast_factor (float): How much to adjust the contrast. Can be any non negative number.
149
+ contrast_factor (float): How much to adjust the contrast, must be non negative.
150
150
  0 gives a solid gray image, 1 gives the original image,
151
151
  while 2 increases the contrast by a factor of 2.
152
152
 
153
153
  Raises:
154
154
  TypeError: If `contrast_factor` is not of type float.
155
155
  ValueError: If `contrast_factor` is less than 0.
156
- RuntimeError: If given tensor shape is not <H, W, C>.
156
+ RuntimeError: If shape of the input image is not <H, W, C>.
157
157
 
158
158
  Supported Platforms:
159
159
  ``CPU``
@@ -187,7 +187,7 @@ class AdjustContrast(ImageTensorOperation, PyTensorOperation):
187
187
 
188
188
  class AdjustGamma(ImageTensorOperation, PyTensorOperation):
189
189
  r"""
190
- Apply gamma correction on input image. Input image is expected to be in [..., H, W, C] or [H, W] format.
190
+ Apply gamma correction on input image. Input image is expected to be in <..., H, W, C> or <H, W> format.
191
191
 
192
192
  .. math::
193
193
  I_{\text{out}} = 255 \times \text{gain} \times \left(\frac{I_{\text{in}}}{255}\right)^{\gamma}
@@ -201,7 +201,7 @@ class AdjustGamma(ImageTensorOperation, PyTensorOperation):
201
201
  The output image pixel value is exponentially related to the input image pixel value.
202
202
  gamma larger than 1 make the shadows darker,
203
203
  while gamma smaller than 1 make dark regions lighter.
204
- gain (float, optional): The constant multiplier (default=1).
204
+ gain (float, optional): The constant multiplier. Default: 1.0.
205
205
 
206
206
  Raises:
207
207
  TypeError: If `gain` is not of type float.
@@ -242,17 +242,17 @@ class AdjustGamma(ImageTensorOperation, PyTensorOperation):
242
242
 
243
243
 
244
244
  class AdjustHue(ImageTensorOperation, PyTensorOperation):
245
- r"""
246
- Adjust hue of input image. Input image is expected to be in [H, W, C] format.
245
+ """
246
+ Adjust the hue of the input image.
247
247
 
248
248
  Args:
249
249
  hue_factor (float): How much to add to the hue channel,
250
- must be in the interval [-0.5, 0.5].
250
+ must be in range of [-0.5, 0.5].
251
251
 
252
252
  Raises:
253
253
  TypeError: If `hue_factor` is not of type float.
254
254
  ValueError: If `hue_factor` is not in the interval [-0.5, 0.5].
255
- RuntimeError: If given tensor shape is not <H, W, C>.
255
+ RuntimeError: If shape of the input image is not <H, W, C>.
256
256
 
257
257
  Supported Platforms:
258
258
  ``CPU``
@@ -285,17 +285,18 @@ class AdjustHue(ImageTensorOperation, PyTensorOperation):
285
285
 
286
286
 
287
287
  class AdjustSaturation(ImageTensorOperation, PyTensorOperation):
288
- r"""
289
- Adjust saturation of input image. Input image is expected to be in [H, W, C] format.
288
+ """
289
+ Adjust the saturation of the input image.
290
290
 
291
291
  Args:
292
- saturation_factor (float): How much to adjust the saturation. Can be any non negative number.
292
+ saturation_factor (float): How much to adjust the saturation, must be non negative.
293
293
  0 gives a black image, 1 gives the original image while 2 increases the saturation by a factor of 2.
294
294
 
295
295
  Raises:
296
296
  TypeError: If `saturation_factor` is not of type float.
297
297
  ValueError: If `saturation_factor` is less than 0.
298
- RuntimeError: If given tensor shape is not <H, W, C> or channel is not 3.
298
+ RuntimeError: If shape of the input image is not <H, W, C>.
299
+ RuntimeError: If channel of the input image is not 3.
299
300
 
300
301
  Supported Platforms:
301
302
  ``CPU``
@@ -328,18 +329,18 @@ class AdjustSaturation(ImageTensorOperation, PyTensorOperation):
328
329
 
329
330
 
330
331
  class AdjustSharpness(ImageTensorOperation):
331
- r"""
332
- Adjust sharpness of input image. Input image is expected to be in [H, W, C] or [H, W] format.
332
+ """
333
+ Adjust the sharpness of the input image.
333
334
 
334
335
  Args:
335
- sharpness_factor (float): How much to adjust the sharpness, should be a
336
- non negative number. 0 gives a blurred image, 1 gives the
337
- original image while 2 increases the Sharpness by a factor of 2.
336
+ sharpness_factor (float): How much to adjust the sharpness, must be
337
+ non negative. 0 gives a blurred image, 1 gives the
338
+ original image while 2 increases the sharpness by a factor of 2.
338
339
 
339
340
  Raises:
340
341
  TypeError: If `sharpness_factor` is not of type float.
341
342
  ValueError: If `sharpness_factor` is less than 0.
342
- RuntimeError: If given tensor shape is not <H, W, C> or <H, W>.
343
+ RuntimeError: If shape of the input image is not <H, W> or <H, W, C>.
343
344
 
344
345
  Supported Platforms:
345
346
  ``CPU``
@@ -366,13 +367,11 @@ class Affine(ImageTensorOperation):
366
367
 
367
368
  Args:
368
369
  degrees (float): Rotation angle in degrees between -180 and 180, clockwise direction.
369
- translate (Sequence): The horizontal and vertical translations, must be a sequence of size 2.
370
+ translate (Sequence[float, float]): The horizontal and vertical translations, must be a sequence of size 2.
370
371
  scale (float): Scaling factor, which must be positive.
371
- shear (Union[float, Sequence]): Shear angle value in degrees between -180 to 180.
372
- If a number is provided, a shearing parallel to X axis with a factor selected from
373
- (- `shear` , `shear` ) will be applied.
374
- If a sequence is provided, a shearing parallel to X axis with a factor selected
375
- from ( `shear` [0], `shear` [1]) will be applied.
372
+ shear (Union[float, Sequence[float, float]]): Shear angle value in degrees between -180 to 180.
373
+ If float is provided, shear along the x axis with this value, without shearing along the y axis;
374
+ If Sequence[float, float] is provided, shear along the x axis and y axis with these two values separately.
376
375
  resample (Inter, optional): An optional resampling filter. Default: Inter.NEAREST.
377
376
  It can be any of [Inter.BILINEAR, Inter.NEAREST, Inter.BICUBIC, Inter.AREA].
378
377
 
@@ -392,11 +391,11 @@ class Affine(ImageTensorOperation):
392
391
  TypeError: If `degrees` is not of type float.
393
392
  TypeError: If `translate` is not of type Sequence[float, float].
394
393
  TypeError: If `scale` is not of type float.
394
+ ValueError: If `scale` is non positive.
395
395
  TypeError: If `shear` is not of float or Sequence[float, float].
396
396
  TypeError: If `resample` is not of type :class:`mindspore.dataset.vision.Inter` .
397
397
  TypeError: If `fill_value` is not of type int or tuple[int, int, int].
398
- ValueError: If `scale` is non positive.
399
- RuntimeError: If given tensor shape is not <H, W> or <H, W, C>.
398
+ RuntimeError: If shape of the input image is not <H, W> or <H, W, C>.
400
399
 
401
400
  Supported Platforms:
402
401
  ``CPU``
@@ -437,12 +436,12 @@ class Affine(ImageTensorOperation):
437
436
  class AutoAugment(ImageTensorOperation):
438
437
  """
439
438
  Apply AutoAugment data augmentation method based on
440
- `AutoAugment: Learning Augmentation Strategies from Data <https://arxiv.org/pdf/1805.09501.pdf>`_.
439
+ `AutoAugment: Learning Augmentation Strategies from Data <https://arxiv.org/pdf/1805.09501.pdf>`_ .
441
440
  This operation works only with 3-channel RGB images.
442
441
 
443
442
  Args:
444
- policy (AutoAugmentPolicy, optional): AutoAugment policies learned on different datasets
445
- (default=AutoAugmentPolicy.IMAGENET).
443
+ policy (AutoAugmentPolicy, optional): AutoAugment policies learned on different datasets.
444
+ Default: AutoAugmentPolicy.IMAGENET.
446
445
  It can be any of [AutoAugmentPolicy.IMAGENET, AutoAugmentPolicy.CIFAR10, AutoAugmentPolicy.SVHN].
447
446
  Randomly apply 2 operations from a candidate set. See auto augmentation details in AutoAugmentPolicy.
448
447
 
@@ -452,7 +451,7 @@ class AutoAugment(ImageTensorOperation):
452
451
 
453
452
  - AutoAugmentPolicy.SVHN, means to apply AutoAugment learned on SVHN dataset.
454
453
 
455
- interpolation (Inter, optional): Image interpolation mode for Resize operator (default=Inter.NEAREST).
454
+ interpolation (Inter, optional): Image interpolation mode for Resize operation. Default: Inter.NEAREST.
456
455
  It can be any of [Inter.NEAREST, Inter.BILINEAR, Inter.BICUBIC, Inter.AREA].
457
456
 
458
457
  - Inter.NEAREST: means interpolation method is nearest-neighbor interpolation.
@@ -461,16 +460,16 @@ class AutoAugment(ImageTensorOperation):
461
460
 
462
461
  - Inter.BICUBIC: means the interpolation method is bicubic interpolation.
463
462
 
464
- - Inter.AREA: means the interpolation method is area interpolation.
463
+ - Inter.AREA: means the interpolation method is pixel area interpolation.
465
464
 
466
- fill_value (Union[int, tuple], optional): Pixel fill value for the area outside the transformed image.
465
+ fill_value (Union[int, tuple[int]], optional): Pixel fill value for the area outside the transformed image.
467
466
  It can be an int or a 3-tuple. If it is a 3-tuple, it is used to fill R, G, B channels respectively.
468
- If it is an integer, it is used for all RGB channels. The fill_value values must be in range [0, 255]
469
- (default=0).
467
+ If it is an integer, it is used for all RGB channels. The fill_value values must be in range [0, 255].
468
+ Default: 0.
470
469
 
471
470
  Raises:
472
- TypeError: If `policy` is not of type AutoAugmentPolicy.
473
- TypeError: If `interpolation` is not of type Inter.
471
+ TypeError: If `policy` is not of type :class:`mindspore.dataset.vision.AutoAugmentPolicy` .
472
+ TypeError: If `interpolation` is not of type :class:`mindspore.dataset.vision.Inter` .
474
473
  TypeError: If `fill_value` is not an integer or a tuple of length 3.
475
474
  RuntimeError: If given tensor shape is not <H, W, C>.
476
475
 
@@ -504,14 +503,14 @@ class AutoAugment(ImageTensorOperation):
504
503
 
505
504
  class AutoContrast(ImageTensorOperation, PyTensorOperation):
506
505
  """
507
- Apply automatic contrast on input image. This operator calculates histogram of image, reassign cutoff percent
506
+ Apply automatic contrast on input image. This operation calculates histogram of image, reassign cutoff percent
508
507
  of the lightest pixels from histogram to 255, and reassign cutoff percent of the darkest pixels from histogram to 0.
509
508
 
510
509
  Args:
511
510
  cutoff (float, optional): Percent of lightest and darkest pixels to cut off from
512
- the histogram of input image. The value must be in the range [0.0, 50.0) (default=0.0).
511
+ the histogram of input image. The value must be in the range [0.0, 50.0]. Default: 0.0.
513
512
  ignore (Union[int, sequence], optional): The background pixel values to ignore,
514
- The ignore values must be in range [0, 255] (default=None).
513
+ The ignore values must be in range [0, 255]. Default: None.
515
514
 
516
515
  Raises:
517
516
  TypeError: If `cutoff` is not of type float.
@@ -564,12 +563,12 @@ class BoundingBoxAugment(ImageTensorOperation):
564
563
  transform (TensorOperation): Transformation operation to be applied on random selection
565
564
  of bounding box regions of a given image.
566
565
  ratio (float, optional): Ratio of bounding boxes to apply augmentation on.
567
- Range: [0, 1] (default=0.3).
566
+ Range: [0.0, 1.0]. Default: 0.3.
568
567
 
569
568
  Raises:
570
- TypeError: If `transform` is an image processing operation in :class:`mindspore.dataset.vision.transforms`.
569
+ TypeError: If `transform` is an image processing operation in `mindspore.dataset.vision` .
571
570
  TypeError: If `ratio` is not of type float.
572
- ValueError: If `ratio` is not in range [0, 1].
571
+ ValueError: If `ratio` is not in range [0.0, 1.0].
573
572
  RuntimeError: If given bounding box is invalid.
574
573
 
575
574
  Supported Platforms:
@@ -581,8 +580,7 @@ class BoundingBoxAugment(ImageTensorOperation):
581
580
  >>> # map to apply ops
582
581
  >>> image_folder_dataset = image_folder_dataset.map(operations=[bbox_aug_op],
583
582
  ... input_columns=["image", "bbox"],
584
- ... output_columns=["image", "bbox"],
585
- ... column_order=["image", "bbox"])
583
+ ... output_columns=["image", "bbox"])
586
584
  """
587
585
 
588
586
  @check_bounding_box_augment_cpp
@@ -614,7 +612,7 @@ class CenterCrop(ImageTensorOperation, PyTensorOperation):
614
612
  Raises:
615
613
  TypeError: If `size` is not of type integer or sequence.
616
614
  ValueError: If `size` is less than or equal to 0.
617
- RuntimeError: If given tensor shape is not <H, W> or <H, W, C>.
615
+ RuntimeError: If given tensor shape is not <H, W> or <..., H, W, C>.
618
616
 
619
617
  Supported Platforms:
620
618
  ``CPU``
@@ -702,7 +700,7 @@ class ConvertColor(ImageTensorOperation):
702
700
  - ConvertMode.COLOR_RGBA2GRAY, Convert RGBA image to GRAY image.
703
701
 
704
702
  Raises:
705
- TypeError: If `convert_mode` is not of type :class:`mindspore.dataset.vision.transforms.ConvertMode`.
703
+ TypeError: If `convert_mode` is not of type :class:`mindspore.dataset.vision.ConvertMode` .
706
704
  RuntimeError: If given tensor shape is not <H, W> or <H, W, C>.
707
705
 
708
706
  Supported Platforms:
@@ -776,20 +774,21 @@ class Crop(ImageTensorOperation):
776
774
  class CutMixBatch(ImageTensorOperation):
777
775
  """
778
776
  Apply CutMix transformation on input batch of images and labels.
779
- Note that you need to make labels into one-hot format and batched before calling this operator.
777
+ Note that you need to make labels into one-hot format and batched before calling this operation.
780
778
 
781
779
  Args:
782
780
  image_batch_format (ImageBatchFormat): The method of padding. Can be any of
783
781
  [ImageBatchFormat.NHWC, ImageBatchFormat.NCHW].
784
- alpha (float, optional): Hyperparameter of beta distribution, must be larger than 0 (default = 1.0).
785
- prob (float, optional): The probability by which CutMix is applied to each image, range: [0, 1] (default = 1.0).
782
+ alpha (float, optional): Hyperparameter of beta distribution, must be larger than 0. Default: 1.0.
783
+ prob (float, optional): The probability by which CutMix is applied to each image,
784
+ which must be in range: [0.0, 1.0]. Default: 1.0.
786
785
 
787
786
  Raises:
788
- TypeError: If `image_batch_format` is not of type :class:`mindspore.dataset.vision.ImageBatchFormat`.
787
+ TypeError: If `image_batch_format` is not of type :class:`mindspore.dataset.vision.ImageBatchFormat` .
789
788
  TypeError: If `alpha` is not of type float.
790
789
  TypeError: If `prob` is not of type float.
791
790
  ValueError: If `alpha` is less than or equal 0.
792
- ValueError: If `prob` is not in range [0, 1].
791
+ ValueError: If `prob` is not in range [0.0, 1.0].
793
792
  RuntimeError: If given tensor shape is not <H, W, C>.
794
793
 
795
794
  Supported Platforms:
@@ -824,7 +823,7 @@ class CutOut(ImageTensorOperation):
824
823
 
825
824
  Args:
826
825
  length (int): The side length of each square patch, must be larger than 0.
827
- num_patches (int, optional): Number of patches to be cut out of an image, must be larger than 0. (default=1).
826
+ num_patches (int, optional): Number of patches to be cut out of an image, must be larger than 0. Default: 1.
828
827
  is_hwc (bool, optional): Whether the input image is in HWC format.
829
828
  True - HWC format, False - CHW format. Default: True.
830
829
 
@@ -861,10 +860,11 @@ class CutOut(ImageTensorOperation):
861
860
  class Decode(ImageTensorOperation, PyTensorOperation):
862
861
  """
863
862
  Decode the input image in RGB mode.
864
- Supported image formats: JPEG, BMP, PNG, TIFF, GIF(need `to_pil=True`), WEBP(need `to_pil=True`).
863
+ Supported image formats: JPEG, BMP, PNG, TIFF, GIF(need `to_pil=True` ), WEBP(need `to_pil=True` ).
865
864
 
866
865
  Args:
867
- to_pil (bool, optional): decode to PIL Image (default=False).
866
+ to_pil (bool, optional): Whether to decode the image to the PIL data type. If True, the image will be decoded
867
+ to the PIL data type, otherwise it will be decoded to the NumPy data type. Default: False.
868
868
 
869
869
  Raises:
870
870
  RuntimeError: If given tensor is not a 1D sequence.
@@ -972,20 +972,24 @@ class Erase(ImageTensorOperation):
972
972
  left (int): Horizontal ordinate of the upper left corner of erased region.
973
973
  height (int): Height of erased region.
974
974
  width (int): Width of erased region.
975
- value (Union[int, Sequence[int]], optional): Pixel value used to pad the erased area.
976
- If a single integer is provided, it will be used for all RGB channels.
977
- If a sequence of length 3 is provided, it will be used for R, G, B channels respectively.
978
- Default: 0.
975
+ value (Union[int, Sequence[int, int, int]], optional): Pixel value used to pad the erased area. Default: 0.
976
+ If int is provided, it will be used for all RGB channels.
977
+ If Sequence[int, int, int] is provided, it will be used for R, G, B channels respectively.
979
978
  inplace (bool, optional): Whether to apply erasing inplace. Default: False.
980
979
 
981
980
  Raises:
982
981
  TypeError: If `top` is not of type int.
982
+ ValueError: If `top` is negative.
983
983
  TypeError: If `left` is not of type int.
984
+ ValueError: If `left` is negative.
984
985
  TypeError: If `height` is not of type int.
986
+ ValueError: If `height` is not positive.
985
987
  TypeError: If `width` is not of type int.
986
- TypeError: If `value` is not of type int or Sequence[int].
988
+ ValueError: If `width` is not positive.
989
+ TypeError: If `value` is not of type int or Sequence[int, int, int].
990
+ ValueError: If `value` is not in range of [0, 255].
987
991
  TypeError: If `inplace` is not of type bool.
988
- RuntimeError: If given tensor shape is not <H, W, C>.
992
+ RuntimeError: If shape of the input image is not <H, W, C>.
989
993
 
990
994
  Supported Platforms:
991
995
  ``CPU``
@@ -1069,8 +1073,8 @@ class GaussianBlur(ImageTensorOperation):
1069
1073
  kernel_size (Union[int, Sequence[int]]): Size of the Gaussian kernel to use. The value must be positive and odd.
1070
1074
  If only an integer is provided, the kernel size will be (kernel_size, kernel_size). If a sequence of integer
1071
1075
  is provided, it must be a sequence of 2 values which represents (width, height).
1072
- sigma (Union[float, Sequence[float]], optional): Standard deviation of the Gaussian kernel to use
1073
- (default=None). The value must be positive. If only a float is provided, the sigma will be (sigma, sigma).
1076
+ sigma (Union[float, Sequence[float]], optional): Standard deviation of the Gaussian kernel to use.
1077
+ Default: None. The value must be positive. If only a float is provided, the sigma will be (sigma, sigma).
1074
1078
  If a sequence of float is provided, it must be a sequence of 2 values which represents (width, height).
1075
1079
  If None is provided, the sigma will be calculated as ((kernel_size - 1) * 0.5 - 1) * 0.3 + 0.8.
1076
1080
 
@@ -1158,7 +1162,7 @@ class HorizontalFlip(ImageTensorOperation):
1158
1162
  Flip the input image horizontally.
1159
1163
 
1160
1164
  Raises:
1161
- RuntimeError: If given tensor shape is not <H, W> or <H, W, C>.
1165
+ RuntimeError: If given tensor shape is not <H, W> or <..., H, W, C>.
1162
1166
 
1163
1167
  Supported Platforms:
1164
1168
  ``CPU``
@@ -1182,8 +1186,8 @@ class HsvToRgb(PyTensorOperation):
1182
1186
  Convert the input numpy.ndarray images from HSV to RGB.
1183
1187
 
1184
1188
  Args:
1185
- is_hwc (bool): If True, means the input image is in shape of (H, W, C) or (N, H, W, C).
1186
- Otherwise, it is in shape of (C, H, W) or (N, C, H, W). Default: False.
1189
+ is_hwc (bool): If True, means the input image is in shape of <H, W, C> or <N, H, W, C>.
1190
+ Otherwise, it is in shape of <C, H, W> or <N, C, H, W>. Default: False.
1187
1191
 
1188
1192
  Raises:
1189
1193
  TypeError: If `is_hwc` is not of type bool.
@@ -1225,7 +1229,7 @@ class HsvToRgb(PyTensorOperation):
1225
1229
 
1226
1230
  class HWC2CHW(ImageTensorOperation):
1227
1231
  """
1228
- Transpose the input image from shape (H, W, C) to (C, H, W).
1232
+ Transpose the input image from shape <H, W, C> to <C, H, W>.
1229
1233
  If the input image is of shape <H, W>, it will remain unchanged.
1230
1234
 
1231
1235
  Note:
@@ -1257,7 +1261,7 @@ class HWC2CHW(ImageTensorOperation):
1257
1261
 
1258
1262
  class Invert(ImageTensorOperation, PyTensorOperation):
1259
1263
  """
1260
- Apply invert on input image in RGB mode. This operator will reassign every pixel to (255 - pixel).
1264
+ Apply invert on input image in RGB mode. This operation will reassign every pixel to (255 - pixel).
1261
1265
 
1262
1266
  Raises:
1263
1267
  RuntimeError: If given tensor shape is not <H, W, C>.
@@ -1301,12 +1305,12 @@ class LinearTransformation(PyTensorOperation):
1301
1305
 
1302
1306
  Args:
1303
1307
  transformation_matrix (numpy.ndarray): A square transformation matrix in shape of (D, D), where
1304
- :math:`D = C \times H \times W`.
1305
- mean_vector (numpy.ndarray): A mean vector in shape of (D,), where :math:`D = C \times H \times W`.
1308
+ :math:`D = C \times H \times W` .
1309
+ mean_vector (numpy.ndarray): A mean vector in shape of (D,), where :math:`D = C \times H \times W` .
1306
1310
 
1307
1311
  Raises:
1308
- TypeError: If `transformation_matrix` is not of type :class:`numpy.ndarray`.
1309
- TypeError: If `mean_vector` is not of type :class:`numpy.ndarray`.
1312
+ TypeError: If `transformation_matrix` is not of type :class:`numpy.ndarray` .
1313
+ TypeError: If `mean_vector` is not of type :class:`numpy.ndarray` .
1310
1314
 
1311
1315
  Supported Platforms:
1312
1316
  ``CPU``
@@ -1341,7 +1345,7 @@ class LinearTransformation(PyTensorOperation):
1341
1345
  Execute method.
1342
1346
 
1343
1347
  Args:
1344
- np_img (numpy.ndarray): Image in shape of (C, H, W) to be linearly transformed.
1348
+ np_img (numpy.ndarray): Image in shape of <C, H, W> to be linearly transformed.
1345
1349
 
1346
1350
  Returns:
1347
1351
  numpy.ndarray, linearly transformed image.
@@ -1353,9 +1357,9 @@ class MixUp(PyTensorOperation):
1353
1357
  """
1354
1358
  Randomly mix up a batch of numpy.ndarray images together with its labels.
1355
1359
 
1356
- Each image will be multiplied by a random weight lambda generated from the Beta distribution and then added
1357
- to another image multiplied by 1 - lambda. The same transformation will be applied to their labels with the
1358
- same value of lambda. Make sure that the labels are one-hot encoded in advance.
1360
+ Each image will be multiplied by a random weight :math:`lambda` generated from the Beta distribution and then added
1361
+ to another image multiplied by :math:`1 - lambda`. The same transformation will be applied to their labels with the
1362
+ same value of :math:`lambda`. Make sure that the labels are one-hot encoded in advance.
1359
1363
 
1360
1364
  Args:
1361
1365
  batch_size (int): The number of images in a batch.
@@ -1430,10 +1434,10 @@ class MixUpBatch(ImageTensorOperation):
1430
1434
  The lambda is generated based on the specified alpha value. Two coefficients x1, x2 are randomly generated
1431
1435
  in the range [alpha, 1], and lambda = (x1 / (x1 + x2)).
1432
1436
 
1433
- Note that you need to make labels into one-hot format and batched before calling this operator.
1437
+ Note that you need to make labels into one-hot format and batched before calling this operation.
1434
1438
 
1435
1439
  Args:
1436
- alpha (float, optional): Hyperparameter of beta distribution. The value must be positive (default = 1.0).
1440
+ alpha (float, optional): Hyperparameter of beta distribution. The value must be positive. Default: 1.0.
1437
1441
 
1438
1442
  Raises:
1439
1443
  TypeError: If `alpha` is not of type float.
@@ -1465,7 +1469,7 @@ class MixUpBatch(ImageTensorOperation):
1465
1469
 
1466
1470
  class Normalize(ImageTensorOperation):
1467
1471
  """
1468
- Normalize the input image with respect to mean and standard deviation. This operator will normalize
1472
+ Normalize the input image with respect to mean and standard deviation. This operation will normalize
1469
1473
  the input image with: output[channel] = (input[channel] - mean[channel]) / std[channel], where channel >= 1.
1470
1474
 
1471
1475
  Note:
@@ -1485,7 +1489,7 @@ class Normalize(ImageTensorOperation):
1485
1489
  TypeError: If `is_hwc` is not of type bool.
1486
1490
  ValueError: If `mean` is not in range [0.0, 255.0].
1487
1491
  ValueError: If `std` is not in range (0.0, 255.0].
1488
- RuntimeError: If given tensor format is not <H, W> or <...,H, W, C>.
1492
+ RuntimeError: If given tensor format is not <H, W> or <..., H, W, C>.
1489
1493
 
1490
1494
  Supported Platforms:
1491
1495
  ``CPU``
@@ -1520,7 +1524,7 @@ class NormalizePad(ImageTensorOperation):
1520
1524
  The mean values must be in range (0.0, 255.0].
1521
1525
  std (sequence): List or tuple of standard deviations for each channel, with respect to channel order.
1522
1526
  The standard deviation values must be in range (0.0, 255.0].
1523
- dtype (str, optional): Set the output data type of normalized image (default is "float32").
1527
+ dtype (str, optional): Set the output data type of normalized image. Default: "float32".
1524
1528
  is_hwc (bool, optional): Whether the input image is HWC.
1525
1529
  True - HWC format, False - CHW format. Default: True.
1526
1530
 
@@ -1568,15 +1572,15 @@ class Pad(ImageTensorOperation, PyTensorOperation):
1568
1572
  padding (Union[int, Sequence[int, int], Sequence[int, int, int, int]]): The number of pixels
1569
1573
  to pad each border of the image.
1570
1574
  If a single number is provided, it pads all borders with this value.
1571
- If a tuple or lists of 2 values are provided, it pads the (left and top)
1572
- with the first value and (right and bottom) with the second value.
1575
+ If a tuple or lists of 2 values are provided, it pads the (left and right)
1576
+ with the first value and (top and bottom) with the second value.
1573
1577
  If 4 values are provided as a list or tuple, it pads the left, top, right and bottom respectively.
1574
1578
  The pad values must be non-negative.
1575
1579
  fill_value (Union[int, tuple[int]], optional): The pixel intensity of the borders, only valid for
1576
1580
  padding_mode Border.CONSTANT. If it is a 3-tuple, it is used to fill R, G, B channels respectively.
1577
1581
  If it is an integer, it is used for all RGB channels.
1578
- The fill_value values must be in range [0, 255] (default=0).
1579
- padding_mode (Border, optional): The method of padding (default=Border.CONSTANT). Can be any of
1582
+ The fill_value values must be in range [0, 255]. Default: 0.
1583
+ padding_mode (Border, optional): The method of padding. Default: Border.CONSTANT. Can be any of
1580
1584
  [Border.CONSTANT, Border.EDGE, Border.REFLECT, Border.SYMMETRIC].
1581
1585
 
1582
1586
  - Border.CONSTANT, means it fills the border with constant values.
@@ -1589,16 +1593,10 @@ class Pad(ImageTensorOperation, PyTensorOperation):
1589
1593
  - Border.SYMMETRIC, means it reflects the values on the edge repeating the last
1590
1594
  value of edge.
1591
1595
 
1592
- Note:
1593
- The behavior when `padding` is a sequence of length 2 will change from padding left/top with
1594
- the first value and right/bottom with the second, to padding left/right with the first one
1595
- and top/bottom with the second in the future. Or you can pass in a 4-element sequence to specify
1596
- left, top, right and bottom respectively.
1597
-
1598
1596
  Raises:
1599
- TypeError: If `padding` is not of type int or Sequence[int, int], Sequence[int, int, int, int]].
1597
+ TypeError: If `padding` is not of type int or Sequence[int, int], Sequence[int, int, int, int].
1600
1598
  TypeError: If `fill_value` is not of type int or tuple[int].
1601
- TypeError: If `padding_mode` is not of type :class:`mindspore.dataset.vision.Border`.
1599
+ TypeError: If `padding_mode` is not of type :class:`mindspore.dataset.vision.Border` .
1602
1600
  ValueError: If `padding` is negative.
1603
1601
  ValueError: If `fill_value` is not in range [0, 255].
1604
1602
  RuntimeError: If given tensor shape is not <H, W> or <H, W, C>.
@@ -1656,7 +1654,7 @@ class PadToSize(ImageTensorOperation):
1656
1654
  If int is provided, it will be used for all RGB channels.
1657
1655
  If tuple[int, int, int] is provided, it will be used for R, G, B channels respectively. Default: 0.
1658
1656
  padding_mode (Border, optional): Method of padding. It can be Border.CONSTANT, Border.EDGE, Border.REFLECT
1659
- or Border.SYMMETRIC. Default: Border.CONSTANT. Default: Border.CONSTANT.
1657
+ or Border.SYMMETRIC. Default: Border.CONSTANT.
1660
1658
 
1661
1659
  - Border.CONSTANT, pads with a constant value.
1662
1660
  - Border.EDGE, pads with the last value at the edge of the image.
@@ -1667,7 +1665,7 @@ class PadToSize(ImageTensorOperation):
1667
1665
  TypeError: If `size` is not of type int or Sequence[int, int].
1668
1666
  TypeError: If `offset` is not of type int or Sequence[int, int].
1669
1667
  TypeError: If `fill_value` is not of type int or tuple[int, int, int].
1670
- TypeError: If `padding_mode` is not of type :class:`mindspore.dataset.vision.Border`.
1668
+ TypeError: If `padding_mode` is not of type :class:`mindspore.dataset.vision.Border` .
1671
1669
  ValueError: If `size` is not positive.
1672
1670
  ValueError: If `offset` is negative.
1673
1671
  ValueError: If `fill_value` is not in range of [0, 255].
@@ -1703,29 +1701,29 @@ class Perspective(ImageTensorOperation, PyTensorOperation):
1703
1701
  Apply perspective transformation on input image.
1704
1702
 
1705
1703
  Args:
1706
- start_points (Sequence[Sequence[int, int]]): List containing four lists of two integers corresponding to four
1707
- corners [top-left, top-right, bottom-right, bottom-left] of the original image.
1708
- end_points (Sequence[Sequence[int, int]]): List containing four lists of two integers corresponding to four
1709
- corners [top-left, top-right, bottom-right, bottom-left] of the transformed image.
1704
+ start_points (Sequence[Sequence[int, int]]): Sequence of the starting point coordinates, containing four
1705
+ two-element subsequences, corresponding to [top-left, top-right, bottom-right, bottom-left] of the
1706
+ quadrilateral in the original image.
1707
+ end_points (Sequence[Sequence[int, int]]): Sequence of the ending point coordinates, containing four
1708
+ two-element subsequences, corresponding to [top-left, top-right, bottom-right, bottom-left] of the
1709
+ quadrilateral in the target image.
1710
1710
  interpolation (Inter, optional): Method of interpolation. It can be Inter.BILINEAR, Inter.LINEAR,
1711
1711
  Inter.NEAREST, Inter.AREA, Inter.PILCUBIC, Inter.CUBIC or Inter.BICUBIC. Default: Inter.BILINEAR.
1712
1712
 
1713
1713
  - Inter.BILINEAR, bilinear interpolation.
1714
- - Inter.LINEAR, bilinear interpolation, here is the same as Inter.BILINEAR.
1714
+ - Inter.LINEAR, linear interpolation, the same as Inter.BILINEAR.
1715
1715
  - Inter.NEAREST, nearest-neighbor interpolation.
1716
1716
  - Inter.BICUBIC, bicubic interpolation.
1717
- - Inter.CUBIC: means the interpolation method is bicubic interpolation, here is the same as Inter.BICUBIC.
1718
- - Inter.PILCUBIC, means interpolation method is bicubic interpolation like implemented in pillow, input
1719
- should be in 3 channels format.(PIL input is not supported)
1720
- - Inter.AREA, area interpolation.(PIL input is not supported)
1717
+ - Inter.CUBIC, cubic interpolation, the same as Inter.BICUBIC.
1718
+ - Inter.PILCUBIC, cubic interpolation based on the implementation of Pillow,
1719
+ only numpy.ndarray input is supported.
1720
+ - Inter.AREA, pixel area interpolation, only numpy.ndarray input is supported.
1721
1721
 
1722
1722
  Raises:
1723
- TypeError: If `start_points` is not of type Sequence[Sequence[int, int]] of length 4.
1724
- TypeError: If element in `start_points` is not of type Sequence[int, int] of length 2.
1725
- TypeError: If `end_points` is not of type Sequence[Sequence[int, int]] of length 4.
1726
- TypeError: If element in `end_points` is not of type Sequence[int, int] of length 2.
1727
- TypeError: If `interpolation` is not of type :class:`mindspore.dataset.vision.Inter`.
1728
- RuntimeError: If given tensor shape is not <H, W> or <H, W, C>.
1723
+ TypeError: If `start_points` is not of type Sequence[Sequence[int, int]].
1724
+ TypeError: If `end_points` is not of type Sequence[Sequence[int, int]].
1725
+ TypeError: If `interpolation` is not of type :class:`mindspore.dataset.vision.Inter` .
1726
+ RuntimeError: If shape of the input image is not <H, W> or <H, W, C>.
1729
1727
 
1730
1728
  Supported Platforms:
1731
1729
  ``CPU``
@@ -1760,7 +1758,7 @@ class Perspective(ImageTensorOperation, PyTensorOperation):
1760
1758
  raise TypeError("Current Interpolation is not supported with NumPy input.")
1761
1759
  return cde.PerspectiveOperation(self.start_points, self.end_points, Inter.to_c_type(self.interpolation))
1762
1760
 
1763
- def execute_py(self, img):
1761
+ def _execute_py(self, img):
1764
1762
  """
1765
1763
  Execute method.
1766
1764
 
@@ -1777,7 +1775,8 @@ class Perspective(ImageTensorOperation, PyTensorOperation):
1777
1775
 
1778
1776
  class Posterize(ImageTensorOperation):
1779
1777
  """
1780
- Posterize an image by reducing the number of bits for each color channel.
1778
+ Reduce the bit depth of the color channels of image to create a high contrast and vivid color effect,
1779
+ similar to that seen in posters or printed materials.
1781
1780
 
1782
1781
  Args:
1783
1782
  bits (int): The number of bits to keep for each channel, should be in range of [0, 8].
@@ -1785,7 +1784,7 @@ class Posterize(ImageTensorOperation):
1785
1784
  Raises:
1786
1785
  TypeError: If `bits` is not of type int.
1787
1786
  ValueError: If `bits` is not in range [0, 8].
1788
- RuntimeError: If given tensor shape is not <H, W> or <H, W, C>.
1787
+ RuntimeError: If shape of the input image is not <H, W> or <H, W, C>.
1789
1788
  """
1790
1789
 
1791
1790
  @check_posterize
@@ -1800,39 +1799,42 @@ class Posterize(ImageTensorOperation):
1800
1799
 
1801
1800
  class RandAugment(ImageTensorOperation):
1802
1801
  """
1803
- Apply RandAugment data augmentation method based on
1804
- `RandAugment: Learning Augmentation Strategies from Data <https://arxiv.org/pdf/1909.13719.pdf>`.
1805
- This operation works only with 3-channel RGB images.
1806
-
1807
- Args:
1808
- num_ops (int, optional): Number of augmentation transformations to apply sequentially. Default: 2.
1809
- magnitude (int, optional): Magnitude for all the transformations and its value should be smaller than the value
1810
- of num_magnitude_bins. Default: 9.
1811
- num_magnitude_bins (int, optional): The number of different magnitude values. The number of different magnitude
1812
- values, must be greater than or equal to 2. Default: 31.
1813
- interpolation (Inter, optional): Image interpolation mode for Resize operator.
1814
- It can be any of [Inter.NEAREST, Inter.BILINEAR, Inter.BICUBIC, Inter.AREA]. Default: Inter.NEAREST.
1802
+ Apply RandAugment data augmentation method on the input image.
1815
1803
 
1816
- - Inter.NEAREST: means interpolation method is nearest-neighbor interpolation.
1804
+ Refer to `RandAugment: Learning Augmentation Strategies from Data <https://arxiv.org/pdf/1909.13719.pdf>`_ .
1817
1805
 
1818
- - Inter.BILINEAR: means interpolation method is bilinear interpolation.
1806
+ Only support 3-channel RGB image.
1819
1807
 
1820
- - Inter.BICUBIC: means the interpolation method is bicubic interpolation.
1808
+ Args:
1809
+ num_ops (int, optional): Number of augmentation transformations to apply sequentially. Default: 2.
1810
+ magnitude (int, optional): Magnitude for all the transformations, must be smaller than
1811
+ `num_magnitude_bins`. Default: 9.
1812
+ num_magnitude_bins (int, optional): The number of different magnitude values,
1813
+ must be no less than 2. Default: 31.
1814
+ interpolation (Inter, optional): Image interpolation method. Default: Inter.NEAREST.
1815
+ It can be Inter.NEAREST, Inter.BILINEAR, Inter.BICUBIC or Inter.AREA.
1821
1816
 
1822
- - Inter.AREA: means the interpolation method is area interpolation.
1817
+ - Inter.NEAREST, nearest-neighbor interpolation.
1818
+ - Inter.BILINEAR, bilinear interpolation.
1819
+ - Inter.BICUBIC, bicubic interpolation.
1820
+ - Inter.AREA, pixel area interpolation.
1823
1821
 
1824
- fill_value (Union[int, tuple[int, int, int]], optional): Pixel fill value for the area outside the transformed
1825
- image. It can be an int or a 3-tuple. If it is a 3-tuple, it is used to fill R, G, B channels respectively.
1826
- If it is an integer, it is used for all RGB channels. The fill_value values must be in range [0, 255].
1827
- Default: 0.
1822
+ fill_value (Union[int, tuple[int, int, int]], optional): Pixel fill value for the area outside the
1823
+ transformed image, must be in range of [0, 255]. Default: 0.
1824
+ If int is provided, pad all RGB channels with this value.
1825
+ If tuple[int, int, int] is provided, pad R, G, B channels respectively.
1828
1826
 
1829
1827
  Raises:
1830
1828
  TypeError: If `num_ops` is not of type int.
1829
+ ValueError: If `num_ops` is negative.
1831
1830
  TypeError: If `magnitude` is not of type int.
1831
+ ValueError: If `magnitude` is not positive.
1832
1832
  TypeError: If `num_magnitude_bins` is not of type int.
1833
- TypeError: If `interpolation` not of type int.
1834
- TypeError: If `fill_value` is not an int or a tuple of length 3.
1835
- RuntimeError: If given tensor shape is not <H, W, C>.
1833
+ ValueError: If `num_magnitude_bins` is less than 2.
1834
+ TypeError: If `interpolation` not of type :class:`mindspore.dataset.vision.Inter` .
1835
+ TypeError: If `fill_value` is not of type int or tuple[int, int, int].
1836
+ ValueError: If `fill_value` is not in range of [0, 255].
1837
+ RuntimeError: If shape of the input image is not <H, W, C>.
1836
1838
 
1837
1839
  Supported Platforms:
1838
1840
  ``CPU``
@@ -1868,13 +1870,13 @@ class RandomAdjustSharpness(ImageTensorOperation):
1868
1870
  Degree of 0.0 gives a blurred image, degree of 1.0 gives the original image,
1869
1871
  and degree of 2.0 increases the sharpness by a factor of 2.
1870
1872
  prob (float, optional): Probability of the image being sharpness adjusted, which
1871
- must be in range of [0, 1] (default=0.5).
1873
+ must be in range of [0.0, 1.0]. Default: 0.5.
1872
1874
 
1873
1875
  Raises:
1874
1876
  TypeError: If `degree` is not of type float.
1875
1877
  TypeError: If `prob` is not of type float.
1876
1878
  ValueError: If `degree` is negative.
1877
- ValueError: If `prob` is not in range [0, 1].
1879
+ ValueError: If `prob` is not in range [0.0, 1.0].
1878
1880
  RuntimeError: If given tensor shape is not <H, W> or <H, W, C>.
1879
1881
 
1880
1882
  Supported Platforms:
@@ -1906,7 +1908,7 @@ class RandomAffine(ImageTensorOperation, PyTensorOperation):
1906
1908
  If `degrees` is a number, the range will be (-degrees, degrees).
1907
1909
  If `degrees` is a sequence, it should be (min, max).
1908
1910
  translate (sequence, optional): Sequence (tx_min, tx_max, ty_min, ty_max) of minimum/maximum translation in
1909
- x(horizontal) and y(vertical) directions, range [-1.0, 1.0] (default=None).
1911
+ x(horizontal) and y(vertical) directions, range [-1.0, 1.0]. Default: None.
1910
1912
  The horizontal and vertical shift is selected randomly from the range:
1911
1913
  (tx_min*width, tx_max*width) and (ty_min*height, ty_max*height), respectively.
1912
1914
  If a tuple or list of size 2, then a translate parallel to the X axis in the range of
@@ -1915,18 +1917,18 @@ class RandomAffine(ImageTensorOperation, PyTensorOperation):
1915
1917
  (translate[0], translate[1]) and a translate parallel to the Y axis in the range of
1916
1918
  (translate[2], translate[3]) are applied.
1917
1919
  If None, no translation is applied.
1918
- scale (sequence, optional): Scaling factor interval, which must be non negative
1919
- (default=None, original scale is used).
1920
+ scale (sequence, optional): Scaling factor interval, which must be non negative.
1921
+ Default: None, original scale is used.
1920
1922
  shear (Union[float, Sequence[float, float], Sequence[float, float, float, float]], optional):
1921
1923
  Range of shear factor to select from.
1922
1924
  If float is provided, a shearing parallel to X axis with a factor selected from
1923
- (- `shear` , `shear` ) will be applied.
1925
+ ( `-shear` , `shear` ) will be applied.
1924
1926
  If Sequence[float, float] is provided, a shearing parallel to X axis with a factor selected
1925
1927
  from ( `shear` [0], `shear` [1]) will be applied.
1926
1928
  If Sequence[float, float, float, float] is provided, a shearing parallel to X axis with a factor selected
1927
1929
  from ( `shear` [0], `shear` [1]) and a shearing parallel to Y axis with a factor selected from
1928
1930
  ( `shear` [2], `shear` [3]) will be applied. Default: None, means no shearing.
1929
- resample (Inter, optional): An optional resampling filter (default=Inter.NEAREST).
1931
+ resample (Inter, optional): An optional resampling filter. Default: Inter.NEAREST.
1930
1932
  It can be any of [Inter.BILINEAR, Inter.NEAREST, Inter.BICUBIC, Inter.AREA].
1931
1933
 
1932
1934
  - Inter.BILINEAR, means resample method is bilinear interpolation.
@@ -1939,14 +1941,14 @@ class RandomAffine(ImageTensorOperation, PyTensorOperation):
1939
1941
 
1940
1942
  fill_value (Union[int, tuple[int]], optional): Optional fill_value to fill the area outside the transform
1941
1943
  in the output image. There must be three elements in tuple and the value of single element is [0, 255].
1942
- (default=0, filling is performed).
1944
+ Default: 0, filling is performed.
1943
1945
 
1944
1946
  Raises:
1945
1947
  TypeError: If `degrees` is not of type int, float or sequence.
1946
1948
  TypeError: If `translate` is not of type sequence.
1947
1949
  TypeError: If `scale` is not of type sequence.
1948
1950
  TypeError: If `shear` is not of type int, float or sequence.
1949
- TypeError: If `resample` is not of type :class:`mindspore.dataset.vision.Inter`.
1951
+ TypeError: If `resample` is not of type :class:`mindspore.dataset.vision.Inter` .
1950
1952
  TypeError: If `fill_value` is not of type int or tuple[int].
1951
1953
  ValueError: If `degrees` is negative.
1952
1954
  ValueError: If `translate` is not in range [-1.0, 1.0].
@@ -2044,11 +2046,11 @@ class RandomAutoContrast(ImageTensorOperation):
2044
2046
 
2045
2047
  Args:
2046
2048
  cutoff (float, optional): Percent of the lightest and darkest pixels to be cut off from
2047
- the histogram of the input image. The value must be in range of [0.0, 50.0) (default=0.0).
2049
+ the histogram of the input image. The value must be in range of [0.0, 50.0]. Default: 0.0.
2048
2050
  ignore (Union[int, sequence], optional): The background pixel values to be ignored, each of
2049
- which must be in range of [0, 255] (default=None).
2051
+ which must be in range of [0, 255]. Default: None.
2050
2052
  prob (float, optional): Probability of the image being automatically contrasted, which
2051
- must be in range of [0, 1] (default=0.5).
2053
+ must be in range of [0.0, 1.0]. Default: 0.5.
2052
2054
 
2053
2055
  Raises:
2054
2056
  TypeError: If `cutoff` is not of type float.
@@ -2056,7 +2058,7 @@ class RandomAutoContrast(ImageTensorOperation):
2056
2058
  TypeError: If `prob` is not of type float.
2057
2059
  ValueError: If `cutoff` is not in range [0.0, 50.0).
2058
2060
  ValueError: If `ignore` is not in range [0, 255].
2059
- ValueError: If `prob` is not in range [0, 1].
2061
+ ValueError: If `prob` is not in range [0.0, 1.0].
2060
2062
  RuntimeError: If given tensor shape is not <H, W> or <H, W, C>.
2061
2063
 
2062
2064
  Supported Platforms:
@@ -2092,7 +2094,7 @@ class RandomColor(ImageTensorOperation, PyTensorOperation):
2092
2094
  Args:
2093
2095
  degrees (Sequence[float], optional): Range of random color adjustment degrees, which must be non-negative.
2094
2096
  It should be in (min, max) format. If min=max, then it is a
2095
- single fixed magnitude operation (default=(0.1, 1.9)).
2097
+ single fixed magnitude operation. Default: (0.1, 1.9).
2096
2098
 
2097
2099
  Raises:
2098
2100
  TypeError: If `degrees` is not of type Sequence[float].
@@ -2138,19 +2140,19 @@ class RandomColorAdjust(ImageTensorOperation, PyTensorOperation):
2138
2140
  This operation supports running on Ascend or GPU platforms by Offload.
2139
2141
 
2140
2142
  Args:
2141
- brightness (Union[float, Sequence[float]], optional): Brightness adjustment factor (default=(1, 1)).
2143
+ brightness (Union[float, Sequence[float]], optional): Brightness adjustment factor. Default: (1, 1).
2142
2144
  Cannot be negative.
2143
2145
  If it is a float, the factor is uniformly chosen from the range [max(0, 1-brightness), 1+brightness].
2144
2146
  If it is a sequence, it should be [min, max] for the range.
2145
- contrast (Union[float, Sequence[float]], optional): Contrast adjustment factor (default=(1, 1)).
2147
+ contrast (Union[float, Sequence[float]], optional): Contrast adjustment factor. Default: (1, 1).
2146
2148
  Cannot be negative.
2147
2149
  If it is a float, the factor is uniformly chosen from the range [max(0, 1-contrast), 1+contrast].
2148
2150
  If it is a sequence, it should be [min, max] for the range.
2149
- saturation (Union[float, Sequence[float]], optional): Saturation adjustment factor (default=(1, 1)).
2151
+ saturation (Union[float, Sequence[float]], optional): Saturation adjustment factor. Default: (1, 1).
2150
2152
  Cannot be negative.
2151
2153
  If it is a float, the factor is uniformly chosen from the range [max(0, 1-saturation), 1+saturation].
2152
2154
  If it is a sequence, it should be [min, max] for the range.
2153
- hue (Union[float, Sequence[float]], optional): Hue adjustment factor (default=(0, 0)).
2155
+ hue (Union[float, Sequence[float]], optional): Hue adjustment factor. Default: (0, 0).
2154
2156
  If it is a float, the range will be [-hue, hue]. Value should be 0 <= hue <= 0.5.
2155
2157
  If it is a sequence, it should be [min, max] where -0.5 <= min <= max <= 0.5.
2156
2158
 
@@ -2231,20 +2233,20 @@ class RandomCrop(ImageTensorOperation, PyTensorOperation):
2231
2233
  If size is an integer, a square crop of size (size, size) is returned.
2232
2234
  If size is a sequence of length 2, an image of size (height, width) will be cropped.
2233
2235
  padding (Union[int, Sequence[int]], optional): The number of pixels to pad each border of the image.
2234
- The padding value(s) must be non-negative (default=None).
2236
+ The padding value(s) must be non-negative. Default: None.
2235
2237
  If padding is not None, pad image first with padding values.
2236
2238
  If a single number is provided, pad all borders with this value.
2237
- If a tuple or lists of 2 values are provided, pad the (left and top)
2238
- with the first value and (right and bottom) with the second value.
2239
+ If a tuple or lists of 2 values are provided, pad the (left and right)
2240
+ with the first value and (top and bottom) with the second value.
2239
2241
  If 4 values are provided as a list or tuple,
2240
2242
  pad the left, top, right and bottom respectively.
2241
2243
  pad_if_needed (bool, optional): Pad the image if either side is smaller than
2242
- the given output size (default=False).
2244
+ the given output size. Default: False.
2243
2245
  fill_value (Union[int, tuple[int]], optional): The pixel intensity of the borders, only valid for
2244
2246
  padding_mode Border.CONSTANT. If it is a 3-tuple, it is used to fill R, G, B channels respectively.
2245
2247
  If it is an integer, it is used for all RGB channels.
2246
- The fill_value values must be in range [0, 255] (default=0).
2247
- padding_mode (Border, optional): The method of padding (default=Border.CONSTANT). It can be any of
2248
+ The fill_value values must be in range [0, 255]. Default: 0.
2249
+ padding_mode (Border, optional): The method of padding. Default: Border.CONSTANT. It can be any of
2248
2250
  [Border.CONSTANT, Border.EDGE, Border.REFLECT, Border.SYMMETRIC].
2249
2251
 
2250
2252
  - Border.CONSTANT, means it fills the border with constant values.
@@ -2257,22 +2259,16 @@ class RandomCrop(ImageTensorOperation, PyTensorOperation):
2257
2259
  - Border.SYMMETRIC, means it reflects the values on the edge repeating the last
2258
2260
  value of edge.
2259
2261
 
2260
- Note:
2261
- The behavior when `padding` is a sequence of length 2 will change from padding left/top with
2262
- the first value and right/bottom with the second, to padding left/right with the first one
2263
- and top/bottom with the second in the future. Or you can pass in a 4-element sequence to specify
2264
- left, top, right and bottom respectively.
2265
-
2266
2262
  Raises:
2267
2263
  TypeError: If `size` is not of type int or Sequence[int].
2268
2264
  TypeError: If `padding` is not of type int or Sequence[int].
2269
2265
  TypeError: If `pad_if_needed` is not of type boolean.
2270
2266
  TypeError: If `fill_value` is not of type int or tuple[int].
2271
- TypeError: If `padding_mode` is not of type :class:`mindspore.dataset.vision.Border`.
2267
+ TypeError: If `padding_mode` is not of type :class:`mindspore.dataset.vision.Border` .
2272
2268
  ValueError: If `size` is not positive.
2273
2269
  ValueError: If `padding` is negative.
2274
2270
  ValueError: If `fill_value` is not in range [0, 255].
2275
- RuntimeError: If given tensor shape is not <H, W> or <H, W, C>.
2271
+ RuntimeError: If given tensor shape is not <H, W> or <..., H, W, C>.
2276
2272
 
2277
2273
  Supported Platforms:
2278
2274
  ``CPU``
@@ -2324,7 +2320,7 @@ class RandomCrop(ImageTensorOperation, PyTensorOperation):
2324
2320
 
2325
2321
  class RandomCropDecodeResize(ImageTensorOperation):
2326
2322
  """
2327
- A combination of `Crop`, `Decode` and `Resize`. It will get better performance for JPEG images. This operator
2323
+ A combination of `Crop` , `Decode` and `Resize` . It will get better performance for JPEG images. This operation
2328
2324
  will crop the input image at a random location, decode the cropped image in RGB mode, and resize the decoded image.
2329
2325
 
2330
2326
  Args:
@@ -2332,10 +2328,10 @@ class RandomCropDecodeResize(ImageTensorOperation):
2332
2328
  If size is an integer, a square crop of size (size, size) is returned.
2333
2329
  If size is a sequence of length 2, it should be (height, width).
2334
2330
  scale (Union[list, tuple], optional): Range [min, max) of respective size of the
2335
- original size to be cropped, which must be non-negative (default=(0.08, 1.0)).
2331
+ original size to be cropped, which must be non-negative. Default: (0.08, 1.0).
2336
2332
  ratio (Union[list, tuple], optional): Range [min, max) of aspect ratio to be
2337
- cropped, which must be non-negative (default=(3. / 4., 4. / 3.)).
2338
- interpolation (Inter, optional): Image interpolation mode for resize operator(default=Inter.BILINEAR).
2333
+ cropped, which must be non-negative. Default: (3. / 4., 4. / 3.).
2334
+ interpolation (Inter, optional): Image interpolation mode for resize operation. Default: Inter.BILINEAR.
2339
2335
  It can be any of [Inter.BILINEAR, Inter.NEAREST, Inter.BICUBIC, Inter.AREA, Inter.PILCUBIC].
2340
2336
 
2341
2337
  - Inter.BILINEAR, means interpolation method is bilinear interpolation.
@@ -2349,14 +2345,14 @@ class RandomCropDecodeResize(ImageTensorOperation):
2349
2345
  - Inter.PILCUBIC, means interpolation method is bicubic interpolation like implemented in pillow, input
2350
2346
  should be in 3 channels format.
2351
2347
 
2352
- max_attempts (int, optional): The maximum number of attempts to propose a valid crop_area (default=10).
2348
+ max_attempts (int, optional): The maximum number of attempts to propose a valid crop_area. Default: 10.
2353
2349
  If exceeded, fall back to use center_crop instead. The max_attempts value must be positive.
2354
2350
 
2355
2351
  Raises:
2356
2352
  TypeError: If `size` is not of type int or Sequence[int].
2357
2353
  TypeError: If `scale` is not of type tuple.
2358
2354
  TypeError: If `ratio` is not of type tuple.
2359
- TypeError: If `interpolation` is not of type :class:`mindspore.dataset.vision.Inter`.
2355
+ TypeError: If `interpolation` is not of type :class:`mindspore.dataset.vision.Inter` .
2360
2356
  TypeError: If `max_attempts` is not of type integer.
2361
2357
  ValueError: If `size` is not positive.
2362
2358
  ValueError: If `scale` is negative.
@@ -2415,19 +2411,19 @@ class RandomCropWithBBox(ImageTensorOperation):
2415
2411
  If size is an integer, a square crop of size (size, size) is returned.
2416
2412
  If size is a sequence of length 2, an image of size (height, width) will be cropped.
2417
2413
  padding (Union[int, Sequence[int]], optional): The number of pixels to pad the image
2418
- The padding value(s) must be non-negative (default=None).
2414
+ The padding value(s) must be non-negative. Default: None.
2419
2415
  If padding is not None, first pad image with padding values.
2420
2416
  If a single number is provided, pad all borders with this value.
2421
- If a tuple or lists of 2 values are provided, pad the (left and top)
2422
- with the first value and (right and bottom) with the second value.
2417
+ If a tuple or lists of 2 values are provided, pad the (left and right)
2418
+ with the first value and (top and bottom) with the second value.
2423
2419
  If 4 values are provided as a list or tuple, pad the left, top, right and bottom respectively.
2424
2420
  pad_if_needed (bool, optional): Pad the image if either side is smaller than
2425
- the given output size (default=False).
2421
+ the given output size. Default: False.
2426
2422
  fill_value (Union[int, tuple[int]], optional): The pixel intensity of the borders, only valid for
2427
2423
  padding_mode Border.CONSTANT. If it is a 3-tuple, it is used to fill R, G, B channels respectively.
2428
2424
  If it is an integer, it is used for all RGB channels.
2429
- The fill_value values must be in range [0, 255] (default=0).
2430
- padding_mode (Border, optional): The method of padding (default=Border.CONSTANT). It can be any of
2425
+ The fill_value values must be in range [0, 255]. Default: 0.
2426
+ padding_mode (Border, optional): The method of padding. Default: Border.CONSTANT. It can be any of
2431
2427
  [Border.CONSTANT, Border.EDGE, Border.REFLECT, Border.SYMMETRIC].
2432
2428
 
2433
2429
  - Border.CONSTANT, means it fills the border with constant values.
@@ -2441,18 +2437,12 @@ class RandomCropWithBBox(ImageTensorOperation):
2441
2437
 
2442
2438
  value of edge.
2443
2439
 
2444
- Note:
2445
- The behavior when `padding` is a sequence of length 2 will change from padding left/top with
2446
- the first value and right/bottom with the second, to padding left/right with the first one
2447
- and top/bottom with the second in the future. Or you can pass in a 4-element sequence to specify
2448
- left, top, right and bottom respectively.
2449
-
2450
2440
  Raises:
2451
2441
  TypeError: If `size` is not of type int or Sequence[int].
2452
2442
  TypeError: If `padding` is not of type int or Sequence[int].
2453
2443
  TypeError: If `pad_if_needed` is not of type boolean.
2454
2444
  TypeError: If `fill_value` is not of type int or tuple[int].
2455
- TypeError: If `padding_mode` is not of type :class:`mindspore.dataset.vision.Border`.
2445
+ TypeError: If `padding_mode` is not of type :class:`mindspore.dataset.vision.Border` .
2456
2446
  ValueError: If `size` is not positive.
2457
2447
  ValueError: If `padding` is negative.
2458
2448
  ValueError: If `fill_value` is not in range [0, 255].
@@ -2501,11 +2491,11 @@ class RandomEqualize(ImageTensorOperation):
2501
2491
 
2502
2492
  Args:
2503
2493
  prob (float, optional): Probability of the image being equalized, which
2504
- must be in range of [0, 1] (default=0.5).
2494
+ must be in range of [0.0, 1.0]. Default: 0.5.
2505
2495
 
2506
2496
  Raises:
2507
2497
  TypeError: If `prob` is not of type float.
2508
- ValueError: If `prob` is not in range [0, 1].
2498
+ ValueError: If `prob` is not in range [0.0, 1.0].
2509
2499
  RuntimeError: If given tensor shape is not <H, W> or <H, W, C>.
2510
2500
 
2511
2501
  Supported Platforms:
@@ -2531,10 +2521,11 @@ class RandomErasing(PyTensorOperation):
2531
2521
  """
2532
2522
  Randomly erase pixels within a random selected rectangle erea on the input numpy.ndarray image.
2533
2523
 
2534
- See `Random Erasing Data Augmentation <https://arxiv.org/pdf/1708.04896.pdf>`_.
2524
+ See `Random Erasing Data Augmentation <https://arxiv.org/pdf/1708.04896.pdf>`_ .
2535
2525
 
2536
2526
  Args:
2537
- prob (float, optional): Probability of performing erasing. Default: 0.5.
2527
+ prob (float, optional): Probability of performing erasing, which
2528
+ must be in range of [0.0, 1.0]. Default: 0.5.
2538
2529
  scale (Sequence[float, float], optional): Range of area scale of the erased area relative
2539
2530
  to the original image to select from, arranged in order of (min, max).
2540
2531
  Default: (0.02, 0.33).
@@ -2556,7 +2547,7 @@ class RandomErasing(PyTensorOperation):
2556
2547
  TypeError: If `value` is not of type integer, string, or sequence.
2557
2548
  TypeError: If `inplace` is not of type boolean.
2558
2549
  TypeError: If `max_attempts` is not of type integer.
2559
- ValueError: If `prob` is not in range of [0, 1].
2550
+ ValueError: If `prob` is not in range of [0.0, 1.0].
2560
2551
  ValueError: If `scale` is negative.
2561
2552
  ValueError: If `ratio` is negative.
2562
2553
  ValueError: If `value` is not in range of [0, 255].
@@ -2592,7 +2583,7 @@ class RandomErasing(PyTensorOperation):
2592
2583
  Execute method.
2593
2584
 
2594
2585
  Args:
2595
- np_img (numpy.ndarray): image in shape of (C, H, W) to be randomly erased.
2586
+ np_img (numpy.ndarray): image in shape of <C, H, W> to be randomly erased.
2596
2587
 
2597
2588
  Returns:
2598
2589
  numpy.ndarray, erased image.
@@ -2610,11 +2601,12 @@ class RandomGrayscale(PyTensorOperation):
2610
2601
  Randomly convert the input PIL Image to grayscale.
2611
2602
 
2612
2603
  Args:
2613
- prob (float, optional): Probability of performing grayscale conversion. Default: 0.1.
2604
+ prob (float, optional): Probability of performing grayscale conversion,
2605
+ which must be in range of [0.0, 1.0]. Default: 0.1.
2614
2606
 
2615
2607
  Raises:
2616
2608
  TypeError: If `prob` is not of type float.
2617
- ValueError: If `prob` is not in range of [0, 1].
2609
+ ValueError: If `prob` is not in range of [0.0, 1.0].
2618
2610
 
2619
2611
  Supported Platforms:
2620
2612
  ``CPU``
@@ -2663,11 +2655,12 @@ class RandomHorizontalFlip(ImageTensorOperation, PyTensorOperation):
2663
2655
  Randomly flip the input image horizontally with a given probability.
2664
2656
 
2665
2657
  Args:
2666
- prob (float, optional): Probability of the image being flipped, which must be in range of [0, 1] (default=0.5).
2658
+ prob (float, optional): Probability of the image being flipped,
2659
+ which must be in range of [0.0, 1.0]. Default: 0.5.
2667
2660
 
2668
2661
  Raises:
2669
2662
  TypeError: If `prob` is not of type float.
2670
- ValueError: If `prob` is not in range [0, 1].
2663
+ ValueError: If `prob` is not in range [0.0, 1.0].
2671
2664
  RuntimeError: If given tensor shape is not <H, W> or <H, W, C>.
2672
2665
 
2673
2666
  Supported Platforms:
@@ -2705,11 +2698,12 @@ class RandomHorizontalFlipWithBBox(ImageTensorOperation):
2705
2698
  Flip the input image horizontally randomly with a given probability and adjust bounding boxes accordingly.
2706
2699
 
2707
2700
  Args:
2708
- prob (float, optional): Probability of the image being flipped, which must be in range of [0, 1] (default=0.5).
2701
+ prob (float, optional): Probability of the image being flipped,
2702
+ which must be in range of [0.0, 1.0]. Default: 0.5.
2709
2703
 
2710
2704
  Raises:
2711
2705
  TypeError: If `prob` is not of type float.
2712
- ValueError: If `prob` is not in range [0, 1].
2706
+ ValueError: If `prob` is not in range [0.0, 1.0].
2713
2707
  RuntimeError: If given tensor shape is not <H, W> or <H, W, C>.
2714
2708
 
2715
2709
  Supported Platforms:
@@ -2736,11 +2730,12 @@ class RandomInvert(ImageTensorOperation):
2736
2730
  Randomly invert the colors of image with a given probability.
2737
2731
 
2738
2732
  Args:
2739
- prob (float, optional): Probability of the image being inverted, which must be in range of [0, 1] (default=0.5).
2733
+ prob (float, optional): Probability of the image being inverted,
2734
+ which must be in range of [0.0, 1.0]. Default: 0.5.
2740
2735
 
2741
2736
  Raises:
2742
2737
  TypeError: If `prob` is not of type float.
2743
- ValueError: If `prob` is not in range [0, 1].
2738
+ ValueError: If `prob` is not in range [0.0, 1.0].
2744
2739
  RuntimeError: If given tensor shape is not <H, W, C>.
2745
2740
 
2746
2741
  Supported Platforms:
@@ -2768,7 +2763,7 @@ class RandomLighting(ImageTensorOperation, PyTensorOperation):
2768
2763
  calculated from the imagenet dataset.
2769
2764
 
2770
2765
  Args:
2771
- alpha (float, optional): Intensity of the image, which must be non-negative (default=0.05).
2766
+ alpha (float, optional): Intensity of the image, which must be non-negative. Default: 0.05.
2772
2767
 
2773
2768
  Raises:
2774
2769
  TypeError: If `alpha` is not of type float.
@@ -2811,8 +2806,9 @@ class RandomPerspective(PyTensorOperation):
2811
2806
  Randomly apply perspective transformation to the input PIL Image with a given probability.
2812
2807
 
2813
2808
  Args:
2814
- distortion_scale (float, optional): Scale of distortion, in range of [0, 1]. Default: 0.5.
2815
- prob (float, optional): Probability of performing perspective transformation. Default: 0.5.
2809
+ distortion_scale (float, optional): Scale of distortion, in range of [0.0, 1.0]. Default: 0.5.
2810
+ prob (float, optional): Probability of performing perspective transformation, which
2811
+ must be in range of [0.0, 1.0]. Default: 0.5.
2816
2812
  interpolation (Inter, optional): Method of interpolation. It can be Inter.BILINEAR,
2817
2813
  Inter.NEAREST or Inter.BICUBIC. Default: Inter.BICUBIC.
2818
2814
 
@@ -2823,9 +2819,9 @@ class RandomPerspective(PyTensorOperation):
2823
2819
  Raises:
2824
2820
  TypeError: If `distortion_scale` is not of type float.
2825
2821
  TypeError: If `prob` is not of type float.
2826
- TypeError: If `interpolation` is not of type :class:`mindspore.dataset.vision.Inter`.
2827
- ValueError: If `distortion_scale` is not in range of [0, 1].
2828
- ValueError: If `prob` is not in range of [0, 1].
2822
+ TypeError: If `interpolation` is not of type :class:`mindspore.dataset.vision.Inter` .
2823
+ ValueError: If `distortion_scale` is not in range of [0.0, 1.0].
2824
+ ValueError: If `prob` is not in range of [0.0, 1.0].
2829
2825
 
2830
2826
  Supported Platforms:
2831
2827
  ``CPU``
@@ -2870,6 +2866,9 @@ class RandomPerspective(PyTensorOperation):
2870
2866
 
2871
2867
  class RandomPosterize(ImageTensorOperation):
2872
2868
  """
2869
+ Reduce the bit depth of the color channels of image with a given probability
2870
+ to create a high contrast and vivid color image.
2871
+
2873
2872
  Reduce the number of bits for each color channel to posterize the input image randomly with a given probability.
2874
2873
 
2875
2874
  Args:
@@ -2877,7 +2876,7 @@ class RandomPosterize(ImageTensorOperation):
2877
2876
  Bits values must be in range of [1,8], and include at
2878
2877
  least one integer value in the given range. It must be in
2879
2878
  (min, max) or integer format. If min=max, then it is a single fixed
2880
- magnitude operation (default=(8, 8)).
2879
+ magnitude operation. Default: (8, 8).
2881
2880
 
2882
2881
  Raises:
2883
2882
  TypeError: If `bits` is not of type integer or sequence of integer.
@@ -2908,8 +2907,8 @@ class RandomPosterize(ImageTensorOperation):
2908
2907
 
2909
2908
  class RandomResizedCrop(ImageTensorOperation, PyTensorOperation):
2910
2909
  """
2911
- This operator will crop the input image randomly,
2912
- and resize the cropped image using a selected interpolation mode :class:`mindspore.dataset.vision.Inter`.
2910
+ This operation will crop the input image randomly,
2911
+ and resize the cropped image using a selected interpolation mode :class:`mindspore.dataset.vision.Inter` .
2913
2912
 
2914
2913
  Note:
2915
2914
  If the input image is more than one, then make sure that the image size is the same.
@@ -2919,10 +2918,10 @@ class RandomResizedCrop(ImageTensorOperation, PyTensorOperation):
2919
2918
  If size is an integer, a square of size (size, size) will be cropped with this value.
2920
2919
  If size is a sequence of length 2, an image of size (height, width) will be cropped.
2921
2920
  scale (Union[list, tuple], optional): Range [min, max) of respective size of the original
2922
- size to be cropped, which must be non-negative (default=(0.08, 1.0)).
2921
+ size to be cropped, which must be non-negative. Default: (0.08, 1.0).
2923
2922
  ratio (Union[list, tuple], optional): Range [min, max) of aspect ratio to be
2924
- cropped, which must be non-negative (default=(3. / 4., 4. / 3.)).
2925
- interpolation (Inter, optional): Method of interpolation (default=Inter.BILINEAR).
2923
+ cropped, which must be non-negative. Default: (3. / 4., 4. / 3.).
2924
+ interpolation (Inter, optional): Method of interpolation. Default: Inter.BILINEAR.
2926
2925
  It can be any of [Inter.BILINEAR, Inter.NEAREST, Inter.BICUBIC, Inter.AREA, Inter.PILCUBIC].
2927
2926
 
2928
2927
  - Inter.BILINEAR, means interpolation method is bilinear interpolation.
@@ -2939,19 +2938,18 @@ class RandomResizedCrop(ImageTensorOperation, PyTensorOperation):
2939
2938
  - Inter.ANTIALIAS, means the interpolation method is antialias interpolation.
2940
2939
 
2941
2940
  max_attempts (int, optional): The maximum number of attempts to propose a valid
2942
- crop_area (default=10). If exceeded, fall back to use center_crop instead.
2941
+ crop_area. Default: 10. If exceeded, fall back to use center_crop instead.
2943
2942
 
2944
2943
  Raises:
2945
2944
  TypeError: If `size` is not of type int or Sequence[int].
2946
2945
  TypeError: If `scale` is not of type tuple or list.
2947
2946
  TypeError: If `ratio` is not of type tuple or list.
2948
- TypeError: If `interpolation` is not of type :class:`mindspore.dataset.vision.Inter`.
2947
+ TypeError: If `interpolation` is not of type :class:`mindspore.dataset.vision.Inter` .
2949
2948
  TypeError: If `max_attempts` is not of type int.
2950
2949
  ValueError: If `size` is not positive.
2951
2950
  ValueError: If `scale` is negative.
2952
2951
  ValueError: If `ratio` is negative.
2953
2952
  ValueError: If `max_attempts` is not positive.
2954
- RuntimeError: If given tensor shape is not <H, W> or <H, W, C>.
2955
2953
 
2956
2954
  Supported Platforms:
2957
2955
  ``CPU``
@@ -3013,10 +3011,10 @@ class RandomResizedCropWithBBox(ImageTensorOperation):
3013
3011
  If size is an integer, a square crop of size (size, size) is returned.
3014
3012
  If size is a sequence of length 2, it should be (height, width).
3015
3013
  scale (Union[list, tuple], optional): Range (min, max) of respective size of the original
3016
- size to be cropped, which must be non-negative (default=(0.08, 1.0)).
3014
+ size to be cropped, which must be non-negative. Default: (0.08, 1.0).
3017
3015
  ratio (Union[list, tuple], optional): Range (min, max) of aspect ratio to be
3018
- cropped, which must be non-negative (default=(3. / 4., 4. / 3.)).
3019
- interpolation (Inter, optional): Image interpolation mode (default=Inter.BILINEAR).
3016
+ cropped, which must be non-negative. Default: (3. / 4., 4. / 3.).
3017
+ interpolation (Inter, optional): Image interpolation mode. Default: Inter.BILINEAR.
3020
3018
  It can be any of [Inter.BILINEAR, Inter.NEAREST, Inter.BICUBIC].
3021
3019
 
3022
3020
  - Inter.BILINEAR, means interpolation method is bilinear interpolation.
@@ -3026,7 +3024,7 @@ class RandomResizedCropWithBBox(ImageTensorOperation):
3026
3024
  - Inter.BICUBIC, means interpolation method is bicubic interpolation.
3027
3025
 
3028
3026
  max_attempts (int, optional): The maximum number of attempts to propose a valid
3029
- crop area (default=10). If exceeded, fall back to use center crop instead.
3027
+ crop area. Default: 10. If exceeded, fall back to use center crop instead.
3030
3028
 
3031
3029
  Raises:
3032
3030
  TypeError: If `size` is not of type int or Sequence[int].
@@ -3072,7 +3070,7 @@ class RandomResizedCropWithBBox(ImageTensorOperation):
3072
3070
 
3073
3071
  class RandomResize(ImageTensorOperation):
3074
3072
  """
3075
- Resize the input image using :class:`mindspore.dataset.vision.Inter`, a randomly selected interpolation mode.
3073
+ Resize the input image using :class:`mindspore.dataset.vision.Inter` , a randomly selected interpolation mode.
3076
3074
 
3077
3075
  Args:
3078
3076
  size (Union[int, Sequence[int]]): The output size of the resized image. The size value(s) must be positive.
@@ -3164,7 +3162,7 @@ class RandomRotation(ImageTensorOperation, PyTensorOperation):
3164
3162
  degrees (Union[int, float, sequence]): Range of random rotation degrees.
3165
3163
  If `degrees` is a number, the range will be converted to (-degrees, degrees).
3166
3164
  If `degrees` is a sequence, it should be (min, max).
3167
- resample (Inter, optional): An optional resampling filter (default=Inter.NEAREST).
3165
+ resample (Inter, optional): An optional resampling filter. Default: Inter.NEAREST.
3168
3166
  It can be any of [Inter.BILINEAR, Inter.NEAREST, Inter.BICUBIC, Inter.AREA].
3169
3167
 
3170
3168
  - Inter.BILINEAR, means resample method is bilinear interpolation.
@@ -3173,18 +3171,18 @@ class RandomRotation(ImageTensorOperation, PyTensorOperation):
3173
3171
 
3174
3172
  - Inter.BICUBIC, means resample method is bicubic interpolation.
3175
3173
 
3176
- - Inter.AREA, means the interpolation method is area interpolation.
3174
+ - Inter.AREA, means the interpolation method is pixel area interpolation.
3177
3175
 
3178
- expand (bool, optional): Optional expansion flag (default=False). If set to True, expand the output
3176
+ expand (bool, optional): Optional expansion flag. Default: False. If set to True, expand the output
3179
3177
  image to make it large enough to hold the entire rotated image.
3180
3178
  If set to False or omitted, make the output image the same size as the input.
3181
3179
  Note that the expand flag assumes rotation around the center and no translation.
3182
- center (tuple, optional): Optional center of rotation (a 2-tuple) (default=None).
3180
+ center (tuple, optional): Optional center of rotation (a 2-tuple). Default: None.
3183
3181
  Origin is the top left corner. None sets to the center of the image.
3184
3182
  fill_value (Union[int, tuple[int]], optional): Optional fill color for the area outside the rotated image.
3185
3183
  If it is a 3-tuple, it is used to fill R, G, B channels respectively.
3186
3184
  If it is an integer, it is used for all RGB channels.
3187
- The fill_value values must be in range [0, 255] (default=0).
3185
+ The fill_value values must be in range [0, 255]. Default: 0.
3188
3186
 
3189
3187
  Raises:
3190
3188
  TypeError: If `degrees` is not of type integer, float or sequence.
@@ -3265,7 +3263,7 @@ class RandomSelectSubpolicy(ImageTensorOperation):
3265
3263
  Args:
3266
3264
  policy (list[list[tuple[TensorOperation, float]]]): List of sub-policies to choose from.
3267
3265
  A sub-policy is a list of tuple[operation, prob], where operation is a data processing operation and prob
3268
- is the probability that this operation will be applied, and the prob values must be in range [0, 1].
3266
+ is the probability that this operation will be applied, and the prob values must be in range [0.0, 1.0].
3269
3267
  Once a sub-policy is selected, each operation within the sub-policy with be applied in sequence according
3270
3268
  to its probability.
3271
3269
 
@@ -3312,7 +3310,7 @@ class RandomSharpness(ImageTensorOperation, PyTensorOperation):
3312
3310
  Args:
3313
3311
  degrees (Union[list, tuple], optional): Range of random sharpness adjustment degrees,
3314
3312
  which must be non-negative. It should be in (min, max) format. If min=max, then
3315
- it is a single fixed magnitude operation (default = (0.1, 1.9)).
3313
+ it is a single fixed magnitude operation. Default: (0.1, 1.9).
3316
3314
 
3317
3315
  Raises:
3318
3316
  TypeError : If `degrees` is not a list or a tuple.
@@ -3356,7 +3354,7 @@ class RandomSolarize(ImageTensorOperation):
3356
3354
  the subrange to (255 - pixel).
3357
3355
 
3358
3356
  Args:
3359
- threshold (tuple, optional): Range of random solarize threshold (default=(0, 255)).
3357
+ threshold (tuple, optional): Range of random solarize threshold. Default: (0, 255).
3360
3358
  Threshold values should always be in (min, max) format,
3361
3359
  where min and max are integers in the range [0, 255], and min <= max.
3362
3360
  If min=max, then invert all pixel values above min(max).
@@ -3389,11 +3387,12 @@ class RandomVerticalFlip(ImageTensorOperation, PyTensorOperation):
3389
3387
  Randomly flip the input image vertically with a given probability.
3390
3388
 
3391
3389
  Args:
3392
- prob (float, optional): Probability of the image being flipped. Default=0.5.
3390
+ prob (float, optional): Probability of the image being flipped, which
3391
+ must be in range of [0.0, 1.0]. Default: 0.5.
3393
3392
 
3394
3393
  Raises:
3395
3394
  TypeError: If `prob` is not of type float.
3396
- ValueError: If `prob` is not in range [0, 1].
3395
+ ValueError: If `prob` is not in range [0.0, 1.0].
3397
3396
  RuntimeError: If given tensor shape is not <H, W> or <H, W, C>.
3398
3397
 
3399
3398
  Supported Platforms:
@@ -3431,11 +3430,12 @@ class RandomVerticalFlipWithBBox(ImageTensorOperation):
3431
3430
  Flip the input image vertically, randomly with a given probability and adjust bounding boxes accordingly.
3432
3431
 
3433
3432
  Args:
3434
- prob (float, optional): Probability of the image being flipped (default=0.5).
3433
+ prob (float, optional): Probability of the image being flipped,
3434
+ which must be in range of [0.0, 1.0]. Default: 0.5.
3435
3435
 
3436
3436
  Raises:
3437
3437
  TypeError: If `prob` is not of type float.
3438
- ValueError: If `prob` is not in range [0, 1].
3438
+ ValueError: If `prob` is not in range [0.0, 1.0].
3439
3439
  RuntimeError: If given tensor shape is not <H, W> or <H, W, C>.
3440
3440
 
3441
3441
  Supported Platforms:
@@ -3459,7 +3459,7 @@ class RandomVerticalFlipWithBBox(ImageTensorOperation):
3459
3459
 
3460
3460
  class Rescale(ImageTensorOperation):
3461
3461
  """
3462
- Rescale the input image with the given rescale and shift. This operator will rescale the input image
3462
+ Rescale the input image with the given rescale and shift. This operation will rescale the input image
3463
3463
  with: output = image * rescale + shift.
3464
3464
 
3465
3465
  Note:
@@ -3474,7 +3474,7 @@ class Rescale(ImageTensorOperation):
3474
3474
  TypeError: If `shift` is not of type float.
3475
3475
 
3476
3476
  Supported Platforms:
3477
- ``CPU`` ``Ascend`` ``GPU``
3477
+ ``Ascend`` ``GPU`` ``CPU``
3478
3478
 
3479
3479
  Examples:
3480
3480
  >>> transforms_list = [vision.Decode(), vision.Rescale(1.0 / 255.0, -1.0)]
@@ -3495,14 +3495,14 @@ class Rescale(ImageTensorOperation):
3495
3495
 
3496
3496
  class Resize(ImageTensorOperation, PyTensorOperation):
3497
3497
  """
3498
- Resize the input image to the given size with a given interpolation mode :class:`mindspore.dataset.vision.Inter`.
3498
+ Resize the input image to the given size with a given interpolation mode :class:`mindspore.dataset.vision.Inter` .
3499
3499
 
3500
3500
  Args:
3501
3501
  size (Union[int, Sequence[int]]): The output size of the resized image. The size value(s) must be positive.
3502
3502
  If size is an integer, the smaller edge of the image will be resized to this value with
3503
3503
  the same image aspect ratio.
3504
3504
  If size is a sequence of length 2, it should be (height, width).
3505
- interpolation (Inter, optional): Image interpolation mode (default=Inter.BILINEAR).
3505
+ interpolation (Inter, optional): Image interpolation mode. Default: Inter.BILINEAR.
3506
3506
  It can be any of [Inter.BILINEAR, Inter.LINEAR, Inter.NEAREST, Inter.BICUBIC, Inter.AREA, Inter.PILCUBIC,
3507
3507
  Inter.ANTIALIAS].
3508
3508
 
@@ -3517,7 +3517,7 @@ class Resize(ImageTensorOperation, PyTensorOperation):
3517
3517
 
3518
3518
  Raises:
3519
3519
  TypeError: If `size` is not of type int or Sequence[int].
3520
- TypeError: If `interpolation` is not of type Inter.
3520
+ TypeError: If `interpolation` is not of type :class:`mindspore.dataset.vision.Inter` .
3521
3521
  ValueError: If `size` is not positive.
3522
3522
  RuntimeError: If given tensor shape is not <H, W> or <H, W, C>.
3523
3523
 
@@ -3569,38 +3569,39 @@ class Resize(ImageTensorOperation, PyTensorOperation):
3569
3569
 
3570
3570
  class ResizedCrop(ImageTensorOperation):
3571
3571
  """
3572
- Crop the input image at a specific location, and resize the cropped image using a selected interpolation mode.
3572
+ Crop the input image at a specific region and resize it to desired size.
3573
3573
 
3574
3574
  Args:
3575
- top (int): Horizontal ordinate of the upper left corner of the crop image.
3576
- left (int): Vertical ordinate of the upper left corner of the crop image.
3577
- height (int): Height of cropped image.
3578
- width (int): Width of cropped image.
3579
- size (Union[int, Sequence[int]]): The output size of the resized image. The size value(s) must be positive.
3580
- If size is an integer, a square of size (size, size) will be cropped with this value.
3581
- If size is a sequence of length 2, an image of size (height, width) will be cropped.
3582
- interpolation (Inter, optional): Image interpolation mode. Default: Inter.LINEAR.
3583
- It can be any of [Inter.LINEAR, Inter.NEAREST, Inter.BICUBIC, Inter.AREA, Inter.PILCUBIC].
3584
-
3585
- - Inter.LINEAR, means interpolation method is bilinear interpolation.
3586
-
3587
- - Inter.NEAREST, means interpolation method is nearest-neighbor interpolation.
3588
-
3589
- - Inter.BICUBIC, means interpolation method is bicubic interpolation.
3590
-
3591
- - Inter.AREA, means interpolation method is pixel area interpolation.
3592
-
3593
- - Inter.PILCUBIC, means interpolation method is bicubic interpolation like implemented in pillow, input
3594
- should be in 3 channels format.
3575
+ top (int): Horizontal ordinate of the upper left corner of the crop region.
3576
+ left (int): Vertical ordinate of the upper left corner of the crop region.
3577
+ height (int): Height of the crop region.
3578
+ width (int): Width of the cropp region.
3579
+ size (Union[int, Sequence[int, int]]): The size of the output image.
3580
+ If int is provided, the smaller edge of the image will be resized to this value,
3581
+ keeping the image aspect ratio the same.
3582
+ If Sequence[int, int] is provided, it should be (height, width).
3583
+ interpolation (Inter, optional): Image interpolation method. Default: Inter.BILINEAR.
3584
+ It can be Inter.LINEAR, Inter.NEAREST, Inter.BICUBIC, Inter.AREA or Inter.PILCUBIC.
3585
+
3586
+ - Inter.LINEAR, bilinear interpolation.
3587
+ - Inter.NEAREST, nearest-neighbor interpolation.
3588
+ - Inter.BICUBIC, bicubic interpolation.
3589
+ - Inter.AREA, pixel area interpolation.
3590
+ - Inter.PILCUBIC, cubic interpolation based on the implementation of Pillow
3595
3591
 
3596
3592
  Raises:
3597
3593
  TypeError: If `top` is not of type int.
3594
+ ValueError: If `top` is negative.
3598
3595
  TypeError: If `left` is not of type int.
3596
+ ValueError: If `left` is negative.
3599
3597
  TypeError: If `height` is not of type int.
3598
+ ValueError: If `height` is not positive.
3600
3599
  TypeError: If `width` is not of type int.
3601
- TypeError: If `size` is not of type int or Sequence[int].
3602
- TypeError: If `interpolation` is not of type :class:`mindspore.dataset.vision.Inter`.
3603
- RuntimeError: If given tensor shape is not <H, W> or <H, W, C>.
3600
+ ValueError: If `width` is not positive.
3601
+ TypeError: If `size` is not of type int or Sequence[int, int].
3602
+ ValueError: If `size` is not posotive.
3603
+ TypeError: If `interpolation` is not of type :class:`mindspore.dataset.vision.Inter` .
3604
+ RuntimeError: If shape of the input image is not <H, W> or <H, W, C>.
3604
3605
 
3605
3606
  Supported Platforms:
3606
3607
  ``CPU``
@@ -3640,7 +3641,7 @@ class ResizeWithBBox(ImageTensorOperation):
3640
3641
  If size is an integer, smaller edge of the image will be resized to this value with
3641
3642
  the same image aspect ratio.
3642
3643
  If size is a sequence of length 2, it should be (height, width).
3643
- interpolation (Inter, optional): Image interpolation mode (default=Inter.LINEAR).
3644
+ interpolation (Inter, optional): Image interpolation mode. Default: Inter.LINEAR.
3644
3645
  It can be any of [Inter.LINEAR, Inter.NEAREST, Inter.BICUBIC].
3645
3646
 
3646
3647
  - Inter.LINEAR, means interpolation method is bilinear interpolation.
@@ -3651,7 +3652,7 @@ class ResizeWithBBox(ImageTensorOperation):
3651
3652
 
3652
3653
  Raises:
3653
3654
  TypeError: If `size` is not of type int or Sequence[int].
3654
- TypeError: If `interpolation` is not of type Inter.
3655
+ TypeError: If `interpolation` is not of type :class:`mindspore.dataset.vision.Inter` .
3655
3656
  ValueError: If `size` is not positive.
3656
3657
  RuntimeError: If given tensor shape is not <H, W> or <H, W, C>.
3657
3658
 
@@ -3686,8 +3687,8 @@ class RgbToHsv(PyTensorOperation):
3686
3687
  Convert the input numpy.ndarray images from RGB to HSV.
3687
3688
 
3688
3689
  Args:
3689
- is_hwc (bool): If True, means the input image is in shape of (H, W, C) or (N, H, W, C).
3690
- Otherwise, it is in shape of (C, H, W) or (N, C, H, W). Default: False.
3690
+ is_hwc (bool): If True, means the input image is in shape of <H, W, C> or <N, H, W, C>.
3691
+ Otherwise, it is in shape of <C, H, W> or <N, C, H, W>. Default: False.
3691
3692
 
3692
3693
  Raises:
3693
3694
  TypeError: If `is_hwc` is not of type bool.
@@ -3734,32 +3735,32 @@ class Rotate(ImageTensorOperation):
3734
3735
  Args:
3735
3736
  degrees (Union[int, float]): Rotation degrees.
3736
3737
 
3737
- resample (Inter, optional): An optional resampling filter (default=Inter.NEAREST).
3738
+ resample (Inter, optional): An optional resampling filter. Default: Inter.NEAREST.
3738
3739
  It can be any of [Inter.BILINEAR, Inter.NEAREST, Inter.BICUBIC].
3739
3740
 
3740
3741
  - Inter.BILINEAR, means resample method is bilinear interpolation.
3741
3742
  - Inter.NEAREST, means resample method is nearest-neighbor interpolation.
3742
3743
  - Inter.BICUBIC, means resample method is bicubic interpolation.
3743
3744
 
3744
- expand (bool, optional): Optional expansion flag (default=False). If set to True, expand the output
3745
+ expand (bool, optional): Optional expansion flag. Default: False. If set to True, expand the output
3745
3746
  image to make it large enough to hold the entire rotated image.
3746
3747
  If set to False or omitted, make the output image the same size as the input.
3747
3748
  Note that the expand flag assumes rotation around the center and no translation.
3748
- center (tuple, optional): Optional center of rotation (a 2-tuple) (default=None).
3749
+ center (tuple, optional): Optional center of rotation (a 2-tuple). Default: None.
3749
3750
  Origin is the top left corner. None sets to the center of the image.
3750
3751
  fill_value (Union[int, tuple[int]], optional): Optional fill color for the area outside the rotated image.
3751
3752
  If it is a 3-tuple, it is used to fill R, G, B channels respectively.
3752
3753
  If it is an integer, it is used for all RGB channels.
3753
- The fill_value values must be in range [0, 255] (default=0).
3754
+ The fill_value values must be in range [0, 255]. Default: 0.
3754
3755
 
3755
3756
  Raises:
3756
3757
  TypeError: If `degrees` is not of type integer, float or sequence.
3757
- TypeError: If `resample` is not of type Inter.
3758
+ TypeError: If `resample` is not of type :class:`mindspore.dataset.vision.Inter` .
3758
3759
  TypeError: If `expand` is not of type bool.
3759
3760
  TypeError: If `center` is not of type tuple.
3760
3761
  TypeError: If `fill_value` is not of type int or tuple[int].
3761
3762
  ValueError: If `fill_value` is not in range [0, 255].
3762
- RuntimeError: If given tensor shape is not <H, W> or <H, W, C>.
3763
+ RuntimeError: If given tensor shape is not <H, W> or <..., H, W, C>.
3763
3764
 
3764
3765
  Supported Platforms:
3765
3766
  ``CPU``
@@ -3804,13 +3805,13 @@ class SlicePatches(ImageTensorOperation):
3804
3805
  number of output tensors is equal to num_height*num_width.
3805
3806
 
3806
3807
  Args:
3807
- num_height (int, optional): The number of patches in vertical direction, which must be positive (default=1).
3808
- num_width (int, optional): The number of patches in horizontal direction, which must be positive (default=1).
3809
- slice_mode (Inter, optional): A mode represents pad or drop (default=SliceMode.PAD).
3808
+ num_height (int, optional): The number of patches in vertical direction, which must be positive. Default: 1.
3809
+ num_width (int, optional): The number of patches in horizontal direction, which must be positive. Default: 1.
3810
+ slice_mode (SliceMode, optional): A mode represents pad or drop. Default: SliceMode.PAD.
3810
3811
  It can be any of [SliceMode.PAD, SliceMode.DROP].
3811
3812
  fill_value (int, optional): The border width in number of pixels in
3812
3813
  right and bottom direction if slice_mode is set to be SliceMode.PAD.
3813
- The fill_value must be in range [0, 255] (default=0).
3814
+ The `fill_value` must be in range [0, 255]. Default: 0.
3814
3815
 
3815
3816
  Raises:
3816
3817
  TypeError: If `num_height` is not of type integer.
@@ -3834,7 +3835,7 @@ class SlicePatches(ImageTensorOperation):
3834
3835
  >>> cols = ['img' + str(x) for x in range(num_h*num_w)]
3835
3836
  >>> image_folder_dataset = image_folder_dataset.map(operations=transforms_list,
3836
3837
  ... input_columns=["image"],
3837
- ... output_columns=cols, column_order=cols)
3838
+ ... output_columns=cols)
3838
3839
  """
3839
3840
 
3840
3841
  @check_slice_patches
@@ -3856,12 +3857,12 @@ class Solarize(ImageTensorOperation):
3856
3857
  Solarize the image by inverting all pixel values within the threshold.
3857
3858
 
3858
3859
  Args:
3859
- threshold (Union[float, tuple[float, float]]): Range of solarize threshold, should always
3860
+ threshold (Union[float, Sequence[float, float]]): Range of solarize threshold, should always
3860
3861
  be in (min, max) format, where min and max are integers in range of [0, 255], and min <= max.
3861
- If min=max, then invert all pixel values above min(max).
3862
+ If a single value is provided or min=max, then invert all pixel values above min(max).
3862
3863
 
3863
3864
  Raises:
3864
- TypeError: If `threshold` is not of type float or tuple[float, float].
3865
+ TypeError: If `threshold` is not of type float or Sequence[float, float].
3865
3866
  ValueError: If `threshold` is not in range of [0, 255].
3866
3867
 
3867
3868
  Supported Platforms:
@@ -3985,10 +3986,10 @@ class ToPIL(PyTensorOperation):
3985
3986
  Convert the input decoded numpy.ndarray image to PIL Image.
3986
3987
 
3987
3988
  Note:
3988
- The conversion mode will be determined by the data type using :class:`PIL.Image.fromarray`.
3989
+ The conversion mode will be determined by the data type using `PIL.Image.fromarray` .
3989
3990
 
3990
3991
  Raises:
3991
- TypeError: If the input image is not of type :class:`numpy.ndarray` or :class:`PIL.Image.Image`.
3992
+ TypeError: If the input image is not of type :class:`numpy.ndarray` or `PIL.Image.Image` .
3992
3993
 
3993
3994
  Supported Platforms:
3994
3995
  ``CPU``
@@ -4026,14 +4027,14 @@ class ToPIL(PyTensorOperation):
4026
4027
  class ToTensor(ImageTensorOperation):
4027
4028
  """
4028
4029
  Convert the input PIL Image or numpy.ndarray to numpy.ndarray of the desired dtype, rescale the pixel value
4029
- range from [0, 255] to [0.0, 1.0] and change the shape from (H, W, C) to (C, H, W).
4030
+ range from [0, 255] to [0.0, 1.0] and change the shape from <H, W, C> to <C, H, W>.
4030
4031
 
4031
4032
  Args:
4032
4033
  output_type (Union[mindspore.dtype, numpy.dtype], optional): The desired dtype of the output image.
4033
- Default: :class:`numpy.float32`.
4034
+ Default: `numpy.float32` .
4034
4035
 
4035
4036
  Raises:
4036
- TypeError: If the input image is not of type :class:`PIL.Image.Image` or :class:`numpy.ndarray`.
4037
+ TypeError: If the input image is not of type `PIL.Image.Image` or :class:`numpy.ndarray` .
4037
4038
  TypeError: If dimension of the input image is not 2 or 3.
4038
4039
 
4039
4040
  Supported Platforms:
@@ -4070,20 +4071,20 @@ class ToType(TypeCast):
4070
4071
  """
4071
4072
  Cast the input to a given MindSpore data type or NumPy data type.
4072
4073
 
4073
- It is the same as that of :class:`mindspore.dataset.transforms.TypeCast`.
4074
+ It is the same as that of :class:`mindspore.dataset.transforms.TypeCast` .
4074
4075
 
4075
4076
  Note:
4076
4077
  This operation supports running on Ascend or GPU platforms by Offload.
4077
4078
 
4078
4079
  Args:
4079
4080
  data_type (Union[mindspore.dtype, numpy.dtype]): The desired data type of the output image,
4080
- such as :class:`numpy.float32`.
4081
+ such as `numpy.float32` .
4081
4082
 
4082
4083
  Raises:
4083
- TypeError: If `data_type` is not of type :class:`mindspore.dtype` or :class:`numpy.dtype`.
4084
+ TypeError: If `data_type` is not of type :class:`mindspore.dtype` or :class:`numpy.dtype` .
4084
4085
 
4085
4086
  Supported Platforms:
4086
- ``CPU`` ``Ascend`` ``GPU``
4087
+ ``Ascend`` ``GPU`` ``CPU``
4087
4088
 
4088
4089
  Examples:
4089
4090
  >>> import numpy as np
@@ -4101,36 +4102,36 @@ class ToType(TypeCast):
4101
4102
 
4102
4103
  class TrivialAugmentWide(ImageTensorOperation):
4103
4104
  """
4104
- Apply TrivialAugmentWide data augmentation method based on
4105
- `TrivialAugmentWide: Tuning-free Yet State-of-the-Art Data Augmentation <https://arxiv.org/abs/2103.10158>`_.
4106
- This operation works only with 3-channel RGB images.
4105
+ Apply TrivialAugmentWide data augmentation method on the input image.
4106
+
4107
+ Refer to
4108
+ `TrivialAugmentWide: Tuning-free Yet State-of-the-Art Data Augmentation <https://arxiv.org/abs/2103.10158>`_ .
4109
+
4110
+ Only support 3-channel RGB image.
4107
4111
 
4108
4112
  Args:
4109
4113
  num_magnitude_bins (int, optional): The number of different magnitude values,
4110
4114
  must be greater than or equal to 2. Default: 31.
4111
- interpolation (Inter, optional): Image interpolation mode for Resize operator. Default: Inter.NEAREST.
4112
- It can be any of [Inter.NEAREST, Inter.BILINEAR, Inter.BICUBIC, Inter.AREA].
4113
-
4114
- - Inter.NEAREST: means interpolation method is nearest-neighbor interpolation.
4115
-
4116
- - Inter.BILINEAR: means interpolation method is bilinear interpolation.
4115
+ interpolation (Inter, optional): Image interpolation method. Default: Inter.NEAREST.
4116
+ It can be Inter.NEAREST, Inter.BILINEAR, Inter.BICUBIC or Inter.AREA.
4117
4117
 
4118
- - Inter.BICUBIC: means the interpolation method is bicubic interpolation.
4119
-
4120
- - Inter.AREA: means the interpolation method is area interpolation.
4118
+ - Inter.NEAREST, nearest-neighbor interpolation.
4119
+ - Inter.BILINEAR, bilinear interpolation.
4120
+ - Inter.BICUBIC, bicubic interpolation.
4121
+ - Inter.AREA, pixel area interpolation.
4121
4122
 
4122
- fill_value (Union[int, tuple[int, int, int]], optional): Pixel fill value for the area outside
4123
- the transformed image.
4124
- It can be an int or a 3-tuple. If it is a 3-tuple, it is used to fill R, G, B channels respectively.
4125
- If it is an integer, it is used for all RGB channels. The fill_value values must be in range [0, 255]
4126
- Default: 0.
4123
+ fill_value (Union[int, tuple[int, int, int]], optional): Pixel fill value for the area outside the
4124
+ transformed image, must be in range of [0, 255]. Default: 0.
4125
+ If int is provided, pad all RGB channels with this value.
4126
+ If tuple[int, int, int] is provided, pad R, G, B channels respectively.
4127
4127
 
4128
4128
  Raises:
4129
4129
  TypeError: If `num_magnitude_bins` is not of type int.
4130
4130
  ValueError: If `num_magnitude_bins` is less than 2.
4131
- TypeError: If `interpolation` is not of type Inter.
4132
- TypeError: If `fill_value` is not an integer or a tuple of length 3.
4133
- RuntimeError: If given tensor shape is not <H, W, C>.
4131
+ TypeError: If `interpolation` not of type :class:`mindspore.dataset.vision.Inter` .
4132
+ TypeError: If `fill_value` is not of type int or tuple[int, int, int].
4133
+ ValueError: If `fill_value` is not in range of [0, 255].
4134
+ RuntimeError: If shape of the input image is not <H, W, C>.
4134
4135
 
4135
4136
  Supported Platforms:
4136
4137
  ``CPU``
@@ -4225,7 +4226,7 @@ class VerticalFlip(ImageTensorOperation):
4225
4226
  Flip the input image vertically.
4226
4227
 
4227
4228
  Raises:
4228
- RuntimeError: If given tensor shape is not <H, W> or <H, W, C>.
4229
+ RuntimeError: If given tensor shape is not <H, W> or <..., H, W, C>.
4229
4230
 
4230
4231
  Supported Platforms:
4231
4232
  ``CPU``