michael-agent 1.0.1__py3-none-any.whl → 1.0.3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,139 @@
1
+ """
2
+ Job Description Generator Node
3
+ Generates detailed job descriptions using Azure OpenAI
4
+ """
5
+
6
+ import os
7
+ import logging
8
+ from typing import Dict, Any
9
+ from langchain_openai import AzureChatOpenAI
10
+ from dotenv import load_dotenv
11
+
12
+ # Import the JD creation utility (from your existing code)
13
+ import sys
14
+ import os
15
+ sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), "../../../")))
16
+
17
+ # Import config
18
+ from config import settings
19
+
20
+ # Configure logging
21
+ logging.basicConfig(level=logging.INFO)
22
+ logger = logging.getLogger(__name__)
23
+
24
+ def create_llm():
25
+ """Create and configure the LLM with Azure OpenAI"""
26
+ try:
27
+ api_key = settings.AZURE_OPENAI_KEY or settings.AZURE_OPENAI_API_KEY or settings.OPENAI_API_KEY
28
+ endpoint = settings.AZURE_OPENAI_ENDPOINT or settings.OPENAI_API_BASE
29
+ api_version = settings.AZURE_OPENAI_API_VERSION or settings.OPENAI_API_VERSION
30
+
31
+ return AzureChatOpenAI(
32
+ temperature=0.3,
33
+ deployment_name=settings.AZURE_OPENAI_DEPLOYMENT, # Using deployment_name instead of deployment
34
+ azure_endpoint=endpoint,
35
+ api_key=api_key,
36
+ api_version=api_version,
37
+ )
38
+ except Exception as e:
39
+ logger.error(f"Error initializing Azure OpenAI: {str(e)}")
40
+ return None
41
+
42
+ def get_jd_prompt(job_data: Dict[str, Any]) -> str:
43
+ """Generate the prompt for job description creation"""
44
+ position = job_data.get('position', 'Software Engineer') # Default to Software Engineer if position not provided
45
+ return f"""
46
+ You are an expert HR content writer specializing in job descriptions.
47
+ Create a comprehensive job description for a {position} role.
48
+
49
+ Include the following sections:
50
+
51
+ - Introduction to the role and company
52
+ - Work tasks and responsibilities
53
+ - Required qualifications and skills
54
+ - Preferred skills and experience
55
+ - Compensation and benefits information
56
+ - About the organization
57
+ - Application process information
58
+ - include only the required skills and preferred skills in the job description
59
+
60
+ Location: {job_data.get('location', 'Not specified')}
61
+ Business area: {job_data.get('business_area', 'Not specified')}
62
+ Employment type: {job_data.get('employment_type', 'Full-time')}
63
+ Experience level: {job_data.get('experience_level', 'Not specified')}
64
+ Work arrangement: {job_data.get('work_arrangement', 'Not specified')}
65
+
66
+ Required skills: {', '.join(job_data.get('required_skills', []))}
67
+ Preferred skills: {', '.join(job_data.get('preferred_skills', []))}
68
+
69
+ Write in professional English, be concise yet comprehensive, and highlight the value
70
+ proposition for potential candidates.
71
+ """
72
+
73
+ def generate_job_description(state: Dict[str, Any]) -> Dict[str, Any]:
74
+ """
75
+ LangGraph node to generate a job description
76
+
77
+ Args:
78
+ state: The current workflow state
79
+
80
+ Returns:
81
+ Updated workflow state with job description
82
+ """
83
+ logger.info("Starting job description generation")
84
+
85
+ # Check if job description already exists in state
86
+ if state.get("job_description") and state.get("job_description_text"):
87
+ logger.info("Job description already exists, skipping generation")
88
+ return state
89
+
90
+ try:
91
+ # Create the language model
92
+ llm = create_llm()
93
+ if not llm:
94
+ raise ValueError("Failed to initialize Azure OpenAI client")
95
+
96
+ # Prepare job data (use sample data if not provided)
97
+ job_data = state.get("job_description", {})
98
+ if not job_data:
99
+ # Use default job data if none provided
100
+ job_data = {
101
+ "position": "Software Engineer",
102
+ "location": "Remote",
103
+ "business_area": "Engineering",
104
+ "employment_type": "Full-time",
105
+ "experience_level": "Mid-level",
106
+ "work_arrangement": "Remote",
107
+ "required_skills": ["Python", "JavaScript", "API Development"],
108
+ "preferred_skills": ["Azure", "CI/CD", "TypeScript"]
109
+ }
110
+
111
+ # Generate the prompt
112
+ prompt = get_jd_prompt(job_data)
113
+
114
+ # Invoke the language model
115
+ response = llm.invoke(prompt)
116
+ generated_text = response.content
117
+
118
+ # Update the state with the generated job description
119
+ state["job_description"] = job_data
120
+ state["job_description_text"] = generated_text
121
+ state["status"] = "jd_generated"
122
+
123
+ logger.info("Job description generated successfully")
124
+
125
+ except Exception as e:
126
+ error_message = f"Error generating job description: {str(e)}"
127
+ logger.error(error_message)
128
+
129
+ # Add error to state
130
+ state["errors"].append({
131
+ "step": "jd_generator",
132
+ "error": error_message
133
+ })
134
+
135
+ # Set fallback job description text if needed
136
+ if not state.get("job_description_text"):
137
+ state["job_description_text"] = "Default job description text for fallback purposes."
138
+
139
+ return state
@@ -0,0 +1,156 @@
1
+ """
2
+ JD Poster Node
3
+ Mock posts job descriptions to external platforms
4
+ """
5
+
6
+ import os
7
+ import json
8
+ import logging
9
+ import requests
10
+ import time
11
+ import uuid
12
+ from typing import Dict, Any, List
13
+ from datetime import datetime
14
+
15
+ # Import config
16
+ from config import settings
17
+
18
+ # Configure logging
19
+ logging.basicConfig(level=logging.INFO)
20
+ logger = logging.getLogger(__name__)
21
+
22
+ def mock_post_to_linkedin(job_data: Dict[str, Any]) -> Dict[str, Any]:
23
+ """Mock posting a job to LinkedIn"""
24
+ logger.info("Mocking job post to LinkedIn")
25
+ # Simulate API call delay
26
+ time.sleep(0.5)
27
+
28
+ return {
29
+ "platform": "LinkedIn",
30
+ "status": "success",
31
+ "post_id": f"li-{uuid.uuid4()}",
32
+ "timestamp": datetime.now().isoformat()
33
+ }
34
+
35
+ def mock_post_to_indeed(job_data: Dict[str, Any]) -> Dict[str, Any]:
36
+ """Mock posting a job to Indeed"""
37
+ logger.info("Mocking job post to Indeed")
38
+ # Simulate API call delay
39
+ time.sleep(0.5)
40
+
41
+ return {
42
+ "platform": "Indeed",
43
+ "status": "success",
44
+ "post_id": f"ind-{uuid.uuid4()}",
45
+ "timestamp": datetime.now().isoformat()
46
+ }
47
+
48
+ def mock_post_to_glassdoor(job_data: Dict[str, Any]) -> Dict[str, Any]:
49
+ """Mock posting a job to Glassdoor"""
50
+ logger.info("Mocking job post to Glassdoor")
51
+ # Simulate API call delay
52
+ time.sleep(0.5)
53
+
54
+ return {
55
+ "platform": "Glassdoor",
56
+ "status": "success",
57
+ "post_id": f"gd-{uuid.uuid4()}",
58
+ "timestamp": datetime.now().isoformat()
59
+ }
60
+
61
+ def save_job_description(job_id: str, job_data: Dict[str, Any], job_text: str) -> str:
62
+ """Save the job description to a file"""
63
+ # Ensure log directory exists
64
+ job_logs_dir = settings.JOB_DESCRIPTIONS_DIR
65
+ os.makedirs(job_logs_dir, exist_ok=True)
66
+
67
+ # Generate timestamp for filename if no job_id provided
68
+ if not job_id:
69
+ job_id = datetime.now().strftime("%Y%m%d%H%M%S")
70
+
71
+ # Create the job description file
72
+ file_path = os.path.join(job_logs_dir, f"{job_id}.json")
73
+
74
+ # Prepare data to save
75
+ data_to_save = {
76
+ "job_id": job_id,
77
+ "timestamp": datetime.now().isoformat(),
78
+ "job_data": job_data,
79
+ "job_description": job_text
80
+ }
81
+
82
+ # Save to file
83
+ with open(file_path, "w") as f:
84
+ json.dump(data_to_save, f, indent=2)
85
+
86
+ logger.info(f"Job description saved to {file_path}")
87
+ return file_path
88
+
89
+ def post_job_description(state: Dict[str, Any]) -> Dict[str, Any]:
90
+ """
91
+ LangGraph node to post job descriptions to job boards
92
+
93
+ Args:
94
+ state: The current workflow state
95
+
96
+ Returns:
97
+ Updated workflow state with posting results
98
+ """
99
+ logger.info("Starting job posting")
100
+
101
+ # Check if job description already exists in state
102
+ if not state.get("job_description") or not state.get("job_description_text"):
103
+ error_message = "No job description available for posting"
104
+ logger.error(error_message)
105
+
106
+ # Add error to state
107
+ state["errors"].append({
108
+ "step": "jd_poster",
109
+ "error": error_message
110
+ })
111
+
112
+ return state
113
+
114
+ try:
115
+ job_id = state.get("job_id", "")
116
+ job_data = state.get("job_description", {})
117
+ job_text = state.get("job_description_text", "")
118
+
119
+ # Save job description to file
120
+ job_file_path = save_job_description(job_id, job_data, job_text)
121
+
122
+ # Ensure the file path is stored in state
123
+ state["job_file_path"] = job_file_path
124
+
125
+ # Mock post to job platforms
126
+ posting_results = []
127
+
128
+ # LinkedIn
129
+ linkedin_result = mock_post_to_linkedin(job_data)
130
+ posting_results.append(linkedin_result)
131
+
132
+ # Indeed
133
+ indeed_result = mock_post_to_indeed(job_data)
134
+ posting_results.append(indeed_result)
135
+
136
+ # Glassdoor
137
+ glassdoor_result = mock_post_to_glassdoor(job_data)
138
+ posting_results.append(glassdoor_result)
139
+
140
+ # Update state with results
141
+ state["job_posting_results"] = posting_results
142
+ state["status"] = "job_posted"
143
+
144
+ logger.info(f"Job posted successfully to {len(posting_results)} platforms")
145
+
146
+ except Exception as e:
147
+ error_message = f"Error posting job description: {str(e)}"
148
+ logger.error(error_message)
149
+
150
+ # Add error to state
151
+ state["errors"].append({
152
+ "step": "jd_poster",
153
+ "error": error_message
154
+ })
155
+
156
+ return state
@@ -0,0 +1,295 @@
1
+ """
2
+ Question Generator Node
3
+ Generates custom interview questions based on resume and job description
4
+ """
5
+
6
+ import logging
7
+ from typing import Dict, Any, List
8
+ from langchain_openai import AzureChatOpenAI
9
+
10
+ from config import settings
11
+
12
+ # Configure logging
13
+ logging.basicConfig(level=logging.INFO)
14
+ logger = logging.getLogger(__name__)
15
+
16
+ def create_llm():
17
+ """Create and configure the LLM with Azure OpenAI"""
18
+ try:
19
+ return AzureChatOpenAI(
20
+ temperature=0.7, # Higher temperature for more diverse questions
21
+ deployment_name=settings.AZURE_OPENAI_DEPLOYMENT,
22
+ azure_endpoint=settings.AZURE_OPENAI_ENDPOINT,
23
+ api_key=settings.AZURE_OPENAI_KEY,
24
+ api_version=settings.AZURE_OPENAI_API_VERSION,
25
+ )
26
+ except Exception as e:
27
+ logger.error(f"Error initializing Azure OpenAI: {str(e)}")
28
+ return None
29
+
30
+ def get_question_generation_prompt(resume_text: str, jd_text: str, relevance_score: float) -> str:
31
+ """Generate the prompt for interview question generation"""
32
+ return f"""
33
+ You are an expert technical interviewer and recruiter.
34
+
35
+ Generate a set of interview questions for a candidate based on their resume and the job description.
36
+ The questions should help assess the candidate's fit for the role.
37
+
38
+ Resume:
39
+ {resume_text[:2000]} # Limit to avoid token limits
40
+
41
+ Job Description:
42
+ {jd_text[:1000]}
43
+
44
+ The candidate's resume relevance score is {relevance_score:.2f} out of 1.0.
45
+
46
+ Generate 10 questions in the following JSON format:
47
+ ```json
48
+ {{
49
+ "technical_questions": [
50
+ {{
51
+ "question": "string",
52
+ "difficulty": "easy|medium|hard",
53
+ "category": "technical_skill|domain_knowledge|problem_solving",
54
+ "purpose": "brief explanation of what this question assesses"
55
+ }},
56
+ // 4 more technical questions...
57
+ ],
58
+ "behavioral_questions": [
59
+ {{
60
+ "question": "string",
61
+ "category": "teamwork|leadership|conflict_resolution|problem_solving|adaptability",
62
+ "purpose": "brief explanation of what this question assesses"
63
+ }},
64
+ // 4 more behavioral questions...
65
+ ],
66
+ "follow_up_areas": ["Area 1", "Area 2", "Area 3"] // Important areas to explore further based on resume gaps
67
+ }}
68
+ ```
69
+
70
+ Focus on questions that will reveal the candidate's true abilities related to the job requirements.
71
+ Include questions that address any potential gaps between the resume and job description.
72
+ """
73
+
74
+ def generate_interview_questions(state: Dict[str, Any]) -> Dict[str, Any]:
75
+ """Generate interview questions based on resume and job description."""
76
+ logger = logging.getLogger(__name__)
77
+ logger.info("Starting interview question generation")
78
+
79
+ resume_text = state.get("resume_text")
80
+ job_description_text = state.get("job_description_text")
81
+
82
+ # Add print statements to verify the input data
83
+ print(f"[QUESTION_GENERATOR] Resume text available: {resume_text is not None}, length: {len(resume_text) if resume_text else 0}")
84
+ print(f"[QUESTION_GENERATOR] Job description text available: {job_description_text is not None}, length: {len(job_description_text) if job_description_text else 0}")
85
+
86
+ if job_description_text:
87
+ print(f"[QUESTION_GENERATOR] JD First 200 chars: {job_description_text[:200]}...")
88
+
89
+ # Generate some basic questions even if we're missing job description
90
+ if not resume_text:
91
+ logger.error("Missing resume text or job description text for question generation")
92
+ # Generate generic questions when no data is available
93
+ questions = {
94
+ "technical_questions": [
95
+ {
96
+ "question": "Can you describe your experience with the technologies mentioned in your resume?",
97
+ "difficulty": "medium",
98
+ "category": "technical_skill",
99
+ "purpose": "Assess general technical experience and honesty"
100
+ },
101
+ {
102
+ "question": "How do you approach problem-solving in your work?",
103
+ "difficulty": "medium",
104
+ "category": "problem_solving",
105
+ "purpose": "Evaluate general problem-solving approach"
106
+ }
107
+ ],
108
+ "behavioral_questions": [
109
+ {
110
+ "question": "Can you tell me about a time when you had to work with a difficult team member?",
111
+ "category": "teamwork",
112
+ "purpose": "Assess interpersonal skills and conflict resolution"
113
+ },
114
+ {
115
+ "question": "Describe a situation where you had to learn something new quickly.",
116
+ "category": "adaptability",
117
+ "purpose": "Evaluate learning agility and adaptability"
118
+ }
119
+ ],
120
+ "follow_up_areas": [
121
+ "Technical skills verification",
122
+ "Past project details",
123
+ "Team collaboration"
124
+ ]
125
+ }
126
+
127
+ return {
128
+ "status": "completed_generate_interview_questions",
129
+ "interview_questions": questions,
130
+ "errors": [{"step": "question_generator", "error": "Missing resume text or job description text for question generation"}]
131
+ }
132
+
133
+ # Check if questions already exist in state
134
+ if state.get("interview_questions"):
135
+ logger.info("Interview questions already exist, skipping generation")
136
+ return state
137
+
138
+ # Check if required data exists
139
+ resume_text = state.get("resume_text")
140
+ jd_text = state.get("job_description_text")
141
+
142
+ if not resume_text or not jd_text:
143
+ error_message = "Missing resume text or job description text for question generation"
144
+ logger.error(error_message)
145
+
146
+ # Add error to state
147
+ state["errors"].append({
148
+ "step": "question_generator",
149
+ "error": error_message
150
+ })
151
+
152
+ # Set default questions
153
+ state["interview_questions"] = generate_default_questions()
154
+ return state
155
+
156
+ try:
157
+ # Create the language model
158
+ llm = create_llm()
159
+ if not llm:
160
+ raise ValueError("Failed to initialize Azure OpenAI client")
161
+
162
+ # Get resume score from state (default to 0.5 if missing)
163
+ relevance_score = state.get("relevance_score", 0.5)
164
+
165
+ # Generate the prompt
166
+ prompt = get_question_generation_prompt(resume_text, jd_text, relevance_score)
167
+ print(f"[QUESTION_GENERATOR] Created prompt with resume length {len(resume_text)} and JD length {len(jd_text)}")
168
+
169
+ # Invoke the language model
170
+ response = llm.invoke(prompt)
171
+ generated_text = response.content
172
+
173
+ # Extract JSON from response (in case there's surrounding text)
174
+ import re
175
+ import json
176
+
177
+ json_match = re.search(r'```json\s*(.*?)\s*```', generated_text, re.DOTALL)
178
+ if json_match:
179
+ json_str = json_match.group(1)
180
+ else:
181
+ # If no markdown code block, try to find JSON directly
182
+ json_match = re.search(r'({[\s\S]*})', generated_text)
183
+ if json_match:
184
+ json_str = json_match.group(1)
185
+ else:
186
+ raise ValueError("Could not extract JSON from LLM response")
187
+
188
+ # Parse the JSON
189
+ questions = json.loads(json_str)
190
+
191
+ # Update the state with the generated questions
192
+ state["interview_questions"] = questions
193
+ state["status"] = "questions_generated"
194
+
195
+ # Save a snapshot of the state with the questions
196
+ save_snapshot(state)
197
+
198
+ logger.info("Interview questions generated successfully")
199
+
200
+ except Exception as e:
201
+ error_message = f"Error generating interview questions: {str(e)}"
202
+ logger.error(error_message)
203
+
204
+ # Add error to state
205
+ state["errors"].append({
206
+ "step": "question_generator",
207
+ "error": error_message
208
+ })
209
+
210
+ # Use default questions as fallback
211
+ state["interview_questions"] = generate_default_questions()
212
+
213
+ return state
214
+
215
+ def generate_default_questions():
216
+ """Generate default interview questions as fallback"""
217
+ return {
218
+ "technical_questions": [
219
+ {
220
+ "question": "Can you describe your experience with the technologies mentioned in your resume?",
221
+ "difficulty": "medium",
222
+ "category": "technical_skill",
223
+ "purpose": "Assess general technical experience and honesty"
224
+ },
225
+ {
226
+ "question": "How do you approach problem-solving in your work?",
227
+ "difficulty": "medium",
228
+ "category": "problem_solving",
229
+ "purpose": "Evaluate general problem-solving approach"
230
+ }
231
+ ],
232
+ "behavioral_questions": [
233
+ {
234
+ "question": "Can you tell me about a time when you had to work with a difficult team member?",
235
+ "category": "teamwork",
236
+ "purpose": "Assess interpersonal skills and conflict resolution"
237
+ },
238
+ {
239
+ "question": "Describe a situation where you had to learn something new quickly.",
240
+ "category": "adaptability",
241
+ "purpose": "Evaluate learning agility and adaptability"
242
+ }
243
+ ],
244
+ "follow_up_areas": ["Technical skills verification", "Past project details", "Team collaboration"]
245
+ }
246
+
247
+ def save_snapshot(state: Dict[str, Any]) -> None:
248
+ """Save a snapshot of the state to a JSON file for dashboard access"""
249
+ try:
250
+ import os
251
+ import json
252
+ import time
253
+
254
+ job_id = state.get("job_id")
255
+ if not job_id:
256
+ logger.warning("No job ID found in state, cannot save snapshot")
257
+ return
258
+
259
+ # Create a timestamped snapshot filename
260
+ timestamp = time.strftime("%Y%m%d%H%M%S")
261
+ snapshot_dir = os.path.join("./logs", "snapshots")
262
+ os.makedirs(snapshot_dir, exist_ok=True)
263
+
264
+ snapshot_path = os.path.join(snapshot_dir, f"{timestamp}_{job_id}_after_question_generator.json")
265
+
266
+ # Create a clean version of state for saving
267
+ save_state = {
268
+ "job_id": job_id,
269
+ "timestamp": time.strftime("%Y-%m-%dT%H:%M:%S.%f"),
270
+ "status": state.get("status", "unknown"),
271
+ "resume_path": state.get("resume_path", ""),
272
+ "errors": state.get("errors", []),
273
+ }
274
+
275
+ # Add candidate name and email if available
276
+ if "candidate_name" in state:
277
+ save_state["candidate_name"] = state["candidate_name"]
278
+
279
+ if "candidate_email" in state:
280
+ save_state["candidate_email"] = state["candidate_email"]
281
+
282
+ # Add interview questions if available
283
+ if "interview_questions" in state:
284
+ save_state["interview_questions"] = state["interview_questions"]
285
+
286
+ # Save the snapshot
287
+ with open(snapshot_path, 'w') as f:
288
+ json.dump(save_state, f, indent=2)
289
+
290
+ logger.info(f"Saved question generator snapshot to {snapshot_path}")
291
+
292
+ except Exception as e:
293
+ logger.error(f"Error saving state snapshot: {str(e)}")
294
+ import traceback
295
+ logger.error(traceback.format_exc())