mg-pso-gui 0.1.95__py3-none-any.whl → 0.1.97__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: mg-pso-gui
3
- Version: 0.1.95
3
+ Version: 0.1.97
4
4
  Summary: GUI for MG-PSO
5
5
  Author: Robert Cordingly
6
6
  Author-email: <rcording@uw.ed>
@@ -40,14 +40,14 @@ mgpsogui/util/CTkToolTip/ctk_tooltip.py,sha256=SZMovpQIGvdpDRbqCKl9SHs92DrFCO2MO
40
40
  mgpsogui/util/recosu/__init__.py,sha256=T7_iigIlowGbPOHLO3hwihjw2kbwIg6olOMhFhNiL38,236
41
41
  mgpsogui/util/recosu/pso/__init__.py,sha256=PQ548aEKVOk6MMzxxDg7yMO_1hHfoEoYLLkGLeij73Y,247
42
42
  mgpsogui/util/recosu/pso/csip_access.py,sha256=jBli1MSShUUwQCMKOUvMaGuNwBViCrjXJi_FmSEJsZA,2721
43
- mgpsogui/util/recosu/pso/pso.py,sha256=dc45ZlysCnqhag5WFyxOMd87a5Xx5r4WDdWcGk_3VNw,12590
43
+ mgpsogui/util/recosu/pso/pso.py,sha256=8tvrZIBNxvWv4AXgLYIYdGwvslFNr_fcQsg1Y3CSRjU,12821
44
44
  mgpsogui/util/recosu/utils/__init__.py,sha256=TXz_TpNif2GeGu22pzTnkUQvaP-PmLQ9Sz4BgMIS6ig,196
45
45
  mgpsogui/util/recosu/utils/trace_writer.py,sha256=V9BJlOjCbNYGoXGEk3CF5wjifBxvarrMRXJMbDBWqI8,3023
46
46
  mgpsogui/util/recosu/utils/utils.py,sha256=QB8vftq3142ekG0ORjz0ZBHU5YknXbR0oTsrxrPAsF0,3951
47
47
  mgpsogui/util/recosu/utils/plot/__init__.py,sha256=h1KjM7_tNDv351pcwt8A6Ibb1jhwWyx5Gbu-zj-sI3Q,71
48
48
  mgpsogui/util/recosu/utils/plot/cost_steps.py,sha256=1Ce11AJyweWkmvjXPxEygzS-h8yVLmQEDLS53yjPLqQ,3779
49
- mg_pso_gui-0.1.95.dist-info/METADATA,sha256=P-Z2Vlr3KoV_aAGwE6TEDRjF2DDLsO2fdCgwyfUFScE,9458
50
- mg_pso_gui-0.1.95.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92
51
- mg_pso_gui-0.1.95.dist-info/entry_points.txt,sha256=jg82VOFjR1XDGrchs1wJSCqKYE4Ozv12aBcCSp--koA,117
52
- mg_pso_gui-0.1.95.dist-info/top_level.txt,sha256=y7JuS9xJN5YdxUsQ3PSVjN8MzQAnR146bP3ZN3PYWdE,9
53
- mg_pso_gui-0.1.95.dist-info/RECORD,,
49
+ mg_pso_gui-0.1.97.dist-info/METADATA,sha256=vAc6hAkrwVnkzpxa8mIafa61g-0oIv8mn1fI4iu_RQ4,9458
50
+ mg_pso_gui-0.1.97.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92
51
+ mg_pso_gui-0.1.97.dist-info/entry_points.txt,sha256=jg82VOFjR1XDGrchs1wJSCqKYE4Ozv12aBcCSp--koA,117
52
+ mg_pso_gui-0.1.97.dist-info/top_level.txt,sha256=y7JuS9xJN5YdxUsQ3PSVjN8MzQAnR146bP3ZN3PYWdE,9
53
+ mg_pso_gui-0.1.97.dist-info/RECORD,,
@@ -22,7 +22,7 @@ import datetime
22
22
  import queue
23
23
  import json
24
24
  import os
25
- from multiprocessing import Queue
25
+ from multiprocessing import Queue as MPQueue
26
26
 
27
27
 
28
28
  def eval_cost(x, iteration, step_param_names, step_objfunc, calib_params, req_queue, files, url, param, conf: Dict, rnd,
@@ -82,7 +82,7 @@ def eval_cost(x, iteration, step_param_names, step_objfunc, calib_params, req_qu
82
82
  def global_best(steps: Dict, rounds: Tuple, args: Dict, n_particles: int, iters: int, options: Dict,
83
83
  oh_strategy: Dict = None, n_threads: int = 4, rtol: float = 0.001, ftol: float = -np.inf,
84
84
  ftol_iter: int = 1, full_trace: List = None, rtol_iter: int = 1,
85
- conf: Dict = None, metainfo: Dict = None, cost_target: float = -np.inf, result_queue: Queue = None) -> Tuple:
85
+ conf: Dict = None, metainfo: Dict = None, cost_target: float = -np.inf, result_queue: MPQueue = None) -> Tuple:
86
86
  """Performs a stepwise particle swarm optimization PSO using a global best approach.
87
87
 
88
88
  Parameters
@@ -182,11 +182,15 @@ def global_best(steps: Dict, rounds: Tuple, args: Dict, n_particles: int, iters:
182
182
  with open(step_file, "w") as fo:
183
183
  json.dump(step_trace, fo)
184
184
 
185
+ print("Wrote step trace")
186
+
185
187
  # best round cost
186
188
  best_round_cost = np.inf
187
189
 
188
190
  # request queue for worker
189
191
  req_queue = queue.Queue()
192
+
193
+ print("Created queue")
190
194
 
191
195
  conf = conf or {}
192
196
  done = False
@@ -199,6 +203,8 @@ def global_best(steps: Dict, rounds: Tuple, args: Dict, n_particles: int, iters:
199
203
  thread_pool.append(worker)
200
204
  worker.start()
201
205
 
206
+ print("Started worker threads")
207
+
202
208
  r_below = 0
203
209
  early_exit = False
204
210
  start_time = datetime.datetime.now()
@@ -222,6 +228,8 @@ def global_best(steps: Dict, rounds: Tuple, args: Dict, n_particles: int, iters:
222
228
  args['req_queue'] = req_queue
223
229
  args['conf'] = conf
224
230
 
231
+ print("Calling global best..")
232
+
225
233
  # create optimizer in the first round.
226
234
  if optimizer[s] is None:
227
235
  optimizer[s] = GlobalBestPSO(step.get('n_particles', n_particles),
@@ -232,21 +240,27 @@ def global_best(steps: Dict, rounds: Tuple, args: Dict, n_particles: int, iters:
232
240
  ftol=step.get('ftol', ftol),
233
241
  ftol_iter=step.get('ftol_iter', ftol_iter),
234
242
  cost_target=step.get('cost_target', cost_target))
235
- print('\n>>>>> R{}/S{} particle params: {} calibrated params: {}\n'.format(r + 1, s + 1, param_names,
236
- args['calib_params']))
243
+
244
+ print('\n>>>>> R{}/S{} particle params: {} calibrated params: {}\n'.format(r + 1, s + 1, param_names, args['calib_params']))
237
245
 
238
- if result_queue is not None:
239
- result_queue.put('\n>>>>> R{}/S{} particle params: {} calibrated params: {}\n'.format(r + 1, s + 1, param_names, args['calib_params']))
246
+ #if result_queue is not None:
247
+ # result_queue.put('\n>>>>> R{}/S{} particle params: {} calibrated params: {}\n'.format(r + 1, s + 1, param_names, args['calib_params']))
248
+
249
+ print("Filled request queue...")
240
250
 
241
251
  args['rnd'] = r + 1
242
252
  args['step'] = s + 1
243
253
 
254
+ print("Evaluating cost...")
255
+
244
256
  # perform optimization
245
257
  cost, pos = optimizer[s].optimize(eval_cost, iters=step.get('iters', iters), **args)
246
258
  if cost is None:
247
259
  early_exit = True
248
260
  break
249
261
 
262
+ print("Finished evaluation...")
263
+
250
264
  # capture the best cost
251
265
  # if cost < best_cost[s] and np.abs(cost - best_cost[s]) > rtol:
252
266
  if cost < best_cost[s]: