mg-pso-gui 0.1.240__py3-none-any.whl → 0.1.241__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: mg-pso-gui
3
- Version: 0.1.240
3
+ Version: 0.1.241
4
4
  Summary: GUI for MG-PSO
5
5
  Author: Robert Cordingly
6
6
  Author-email: <rcording@uw.ed>
@@ -2,7 +2,7 @@ mgpsogui/__init__.py,sha256=q7AfBjeJABnFtbsZnsObpUwaXKPDVYtz46G6MKXLF74,42
2
2
  mgpsogui/mgpsogui.py,sha256=NIZmyNcbwC8EgSwf1ubdMUSJscrIEgoD4jLYziqHQ-k,148
3
3
  mgpsogui/start.yaml,sha256=ZjCVLb-MLqAxrGRm9kA7_SDpa-45EuKIELNQ2QqCAiU,4713
4
4
  mgpsogui/gui/HomePage.py,sha256=6Tt1dnSsuYk888Da0RLbJpxEgtgxk-dg72Qphi85Cns,23231
5
- mgpsogui/gui/OptionManager.py,sha256=vLVwIvKMt08-Yr3BNYsWFxfrZcuiay_yZv6_o8_Qmmg,18111
5
+ mgpsogui/gui/OptionManager.py,sha256=n-dCyUo337VF1hFDW92MYEpaOSmxO7AlgZe4ZAXDqa4,18493
6
6
  mgpsogui/gui/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
7
7
  mgpsogui/gui/PlatformTab/PlatformTab.py,sha256=-YdSvNFr-ybTuvsB9WNTEy0rRmDuCTiVf9jBHu_8CNk,10939
8
8
  mgpsogui/gui/PlatformTab/ServiceParametersView.py,sha256=jzv-kPNVo-aAflpi-xPz1yltv2P87wR0iOUf6b_fwMg,2760
@@ -64,8 +64,8 @@ mgpsogui/util/recosu/utils/trace_writer.py,sha256=V9BJlOjCbNYGoXGEk3CF5wjifBxvar
64
64
  mgpsogui/util/recosu/utils/utils.py,sha256=QB8vftq3142ekG0ORjz0ZBHU5YknXbR0oTsrxrPAsF0,3951
65
65
  mgpsogui/util/recosu/utils/plot/__init__.py,sha256=h1KjM7_tNDv351pcwt8A6Ibb1jhwWyx5Gbu-zj-sI3Q,71
66
66
  mgpsogui/util/recosu/utils/plot/cost_steps.py,sha256=1Ce11AJyweWkmvjXPxEygzS-h8yVLmQEDLS53yjPLqQ,3779
67
- mg_pso_gui-0.1.240.dist-info/METADATA,sha256=F7xHFn6Tbj4ryic8_F6Wk_Ig0bElTIYNCniQM-M26gk,9456
68
- mg_pso_gui-0.1.240.dist-info/WHEEL,sha256=cVxcB9AmuTcXqmwrtPhNK88dr7IR_b6qagTj0UvIEbY,91
69
- mg_pso_gui-0.1.240.dist-info/entry_points.txt,sha256=jg82VOFjR1XDGrchs1wJSCqKYE4Ozv12aBcCSp--koA,117
70
- mg_pso_gui-0.1.240.dist-info/top_level.txt,sha256=y7JuS9xJN5YdxUsQ3PSVjN8MzQAnR146bP3ZN3PYWdE,9
71
- mg_pso_gui-0.1.240.dist-info/RECORD,,
67
+ mg_pso_gui-0.1.241.dist-info/METADATA,sha256=2_vJxpZwTUMkrdKm2ph9eermihk2LOrK_Z8hUJNPrcg,9456
68
+ mg_pso_gui-0.1.241.dist-info/WHEEL,sha256=cVxcB9AmuTcXqmwrtPhNK88dr7IR_b6qagTj0UvIEbY,91
69
+ mg_pso_gui-0.1.241.dist-info/entry_points.txt,sha256=jg82VOFjR1XDGrchs1wJSCqKYE4Ozv12aBcCSp--koA,117
70
+ mg_pso_gui-0.1.241.dist-info/top_level.txt,sha256=y7JuS9xJN5YdxUsQ3PSVjN8MzQAnR146bP3ZN3PYWdE,9
71
+ mg_pso_gui-0.1.241.dist-info/RECORD,,
@@ -94,78 +94,81 @@ class OptionManager():
94
94
  "open": False}
95
95
  obj["name"].set("Group " + str(len(self.steps) + 1))
96
96
 
97
- for param in step["param"]:
98
- param_obj = {
99
- "name": sv(),
100
- "bounds": (sv(), sv()),
101
- "default_value": sv(),
102
- "optimal_value": sv(),
103
- "type": sv(),
104
- "calibration_strategy": sv()
105
- }
106
- param_obj["name"].set(param["name"])
107
- if "bounds" in param:
108
- param_obj["bounds"][0].set(param["bounds"][0])
109
- param_obj["bounds"][1].set(param["bounds"][1])
110
- else:
111
- param_obj["bounds"][0].set(0)
112
- param_obj["bounds"][1].set(1)
113
-
114
- if "type" in param:
115
- param_obj["type"].set(param["type"])
116
- else:
117
- param_obj["type"].set("float")
118
-
119
- if "default_value" in param:
120
- param_obj["default_value"].set(param["default_value"])
121
- else:
122
- param_obj["default_value"].set(1)
123
-
124
- if "optimal_value" in param:
125
- param_obj["optimal_value"].set(param["optimal_value"])
126
- else:
127
- param_obj["optimal_value"].set(0)
128
-
129
- if "calibration_strategy" in param:
130
- param_obj["calibration_strategy"].set(param["calibration_strategy"])
131
- else:
132
- param_obj["calibration_strategy"].set("none")
133
-
134
- obj["param"].append(param_obj)
97
+ if "param" in step:
98
+ for param in step["param"]:
99
+ param_obj = {
100
+ "name": sv(),
101
+ "bounds": (sv(), sv()),
102
+ "default_value": sv(),
103
+ "optimal_value": sv(),
104
+ "type": sv(),
105
+ "calibration_strategy": sv()
106
+ }
107
+ param_obj["name"].set(param["name"])
108
+ if "bounds" in param:
109
+ param_obj["bounds"][0].set(param["bounds"][0])
110
+ param_obj["bounds"][1].set(param["bounds"][1])
111
+ else:
112
+ param_obj["bounds"][0].set(0)
113
+ param_obj["bounds"][1].set(1)
114
+
115
+ if "type" in param:
116
+ param_obj["type"].set(param["type"])
117
+ else:
118
+ param_obj["type"].set("float")
119
+
120
+ if "default_value" in param:
121
+ param_obj["default_value"].set(param["default_value"])
122
+ else:
123
+ param_obj["default_value"].set(1)
124
+
125
+ if "optimal_value" in param:
126
+ param_obj["optimal_value"].set(param["optimal_value"])
127
+ else:
128
+ param_obj["optimal_value"].set(0)
129
+
130
+ if "calibration_strategy" in param:
131
+ param_obj["calibration_strategy"].set(param["calibration_strategy"])
132
+ else:
133
+ param_obj["calibration_strategy"].set("none")
134
+
135
+ obj["param"].append(param_obj)
135
136
 
136
- for override in step["overrideparam"]:
137
- override_obj = {"name": sv(), "value": sv()}
138
- override_obj['name'].set(override['name'])
139
- override_obj['value'].set(override['value'])
140
- obj['overrideparam'].append(override_obj)
137
+ if "overrideparam" in step:
138
+ for override in step["overrideparam"]:
139
+ override_obj = {"name": sv(), "value": sv()}
140
+ override_obj['name'].set(override['name'])
141
+ override_obj['value'].set(override['value'])
142
+ obj['overrideparam'].append(override_obj)
141
143
 
142
- for objfunc in step["objfunc"]:
143
- objfunc_obj = {"name": sv(),
144
- "of": sv(),
145
- "weight": sv(),
146
- "custom_function": sv(),
147
- "custom_function_goal": sv(),
148
- "custom_function_value": sv(),
149
- "data": (sv(), sv())}
150
- objfunc_obj["name"].set(objfunc["name"])
151
- objfunc_obj["of"].set(objfunc["of"])
152
- objfunc_obj["custom_function_goal"].set("Positive Best")
153
-
154
- if ("weight" in objfunc):
155
- objfunc_obj["weight"].set(objfunc["weight"])
156
- else:
157
- objfunc_obj["weight"].set(1)
144
+ if "objfunc" in step:
145
+ for objfunc in step["objfunc"]:
146
+ objfunc_obj = {"name": sv(),
147
+ "of": sv(),
148
+ "weight": sv(),
149
+ "custom_function": sv(),
150
+ "custom_function_goal": sv(),
151
+ "custom_function_value": sv(),
152
+ "data": (sv(), sv())}
153
+ objfunc_obj["name"].set(objfunc["name"])
154
+ objfunc_obj["of"].set(objfunc["of"])
155
+ objfunc_obj["custom_function_goal"].set("Positive Best")
158
156
 
159
- if ("custom_function" in objfunc):
160
- objfunc_obj["custom_function"].set(objfunc["custom_function"])
161
- if ("custom_function_goal" in objfunc):
162
- objfunc_obj["custom_function_goal"].set(objfunc["custom_function_goal"])
163
- if ("custom_function_value" in objfunc):
164
- objfunc_obj["custom_function_value"].set(objfunc["custom_function_value"])
157
+ if ("weight" in objfunc):
158
+ objfunc_obj["weight"].set(objfunc["weight"])
159
+ else:
160
+ objfunc_obj["weight"].set(1)
161
+
162
+ if ("custom_function" in objfunc):
163
+ objfunc_obj["custom_function"].set(objfunc["custom_function"])
164
+ if ("custom_function_goal" in objfunc):
165
+ objfunc_obj["custom_function_goal"].set(objfunc["custom_function_goal"])
166
+ if ("custom_function_value" in objfunc):
167
+ objfunc_obj["custom_function_value"].set(objfunc["custom_function_value"])
165
168
 
166
- objfunc_obj["data"][0].set(objfunc["data"][0])
167
- objfunc_obj["data"][1].set(objfunc["data"][1])
168
- obj["objfunc"].append(objfunc_obj)
169
+ objfunc_obj["data"][0].set(objfunc["data"][0])
170
+ objfunc_obj["data"][1].set(objfunc["data"][1])
171
+ obj["objfunc"].append(objfunc_obj)
169
172
 
170
173
  self.steps.append(obj)
171
174