metradar 0.1.3__py3-none-any.whl → 0.1.5__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,206 +0,0 @@
1
- '''
2
- 将雷达和自动站叠加绘图
3
- 朱文剑
4
- '''
5
-
6
- # %%
7
- import pandas as pd
8
- import warnings
9
- warnings.filterwarnings('ignore')
10
-
11
- from draw_radar_comp_func import DRAW_RADAR_OTHER,ini_params
12
- from multiprocessing import cpu_count, Pool,freeze_support
13
-
14
-
15
- def draw_all(params):
16
- # sourcepath,outpath,filename,start_lat,end_lat,start_lon,end_lon
17
- # 河南北部区域
18
- sourcepath = params['sourcepath']
19
- outpath = params['outpath']
20
- radfilename = params['radfilename']
21
- slat = params['slat']
22
- nlat = params['nlat']
23
- wlon = params['wlon']
24
- elon = params['elon']
25
-
26
- timestr = radfilename[5:13] + '.' + radfilename[14:20]
27
-
28
- fontname='resources/fonts/msyhbd.ttc'
29
-
30
- # 添加中文地名
31
-
32
- filename = 'resources/中文地理信息原始文件/吉林省所有站点信息.xls'
33
-
34
- data_guojia = pd.read_excel(filename, sheet_name = '国家站55',header=0,skiprows=0,index_col=None,)
35
- for jj in range(data_guojia.shape[0]):
36
- curidx = data_guojia['站名'][jj].find('国家')
37
- data_guojia['站名'][jj] = data_guojia['站名'][jj].replace( data_guojia['站名'][jj][curidx:],'')
38
- data_guojia['站名'][jj] = data_guojia['站名'][jj].replace( data_guojia['组织机构'][jj],'')
39
-
40
-
41
- data_guojiatianqi = pd.read_excel(filename, sheet_name = '国家天气站333',header=0,skiprows=0,index_col=None,)
42
-
43
- for jj in range(data_guojiatianqi.shape[0]):
44
- data_guojiatianqi['站名'][jj] = data_guojiatianqi['站名'][jj].replace('国家气象观测站','')
45
- data_guojiatianqi['站名'][jj] = data_guojiatianqi['站名'][jj].replace( data_guojiatianqi['组织机构'][jj],'')
46
- if data_guojiatianqi['站名'][jj].find('尔罗斯')>=0:
47
- data_guojiatianqi['站名'][jj] = data_guojiatianqi['站名'][jj].replace('尔罗斯','')
48
-
49
- data_quyuzhan = pd.read_excel(filename, sheet_name = '区域站1048',header=0,skiprows=0,index_col=None,)
50
- for jj in range(data_quyuzhan.shape[0]):
51
- data_quyuzhan['站名'][jj] = data_quyuzhan['站名'][jj].replace('气象观测站','')
52
-
53
- data_quyuzhan['站名'][jj] = data_quyuzhan['站名'][jj].replace(data_quyuzhan['组织机构'][jj],'')
54
- if data_quyuzhan['站名'][jj].find('尔罗斯')>=0:
55
- data_quyuzhan['站名'][jj] = data_quyuzhan['站名'][jj].replace('尔罗斯','')
56
-
57
-
58
-
59
- lat=[]
60
- lon=[]
61
- staname=[]
62
- for ng in range(len(data_guojia['经度'])):
63
- lon.append(data_guojia['经度'][ng])
64
- lat.append(data_guojia['纬度'][ng])
65
- staname.append(data_guojia['站名'][ng])
66
-
67
- for ng in range(len(data_guojiatianqi['经度'])):
68
- lon.append(data_guojiatianqi['经度'][ng])
69
- lat.append(data_guojiatianqi['纬度'][ng])
70
- staname.append(data_guojiatianqi['站名'][ng])
71
-
72
- # for ng in range(len(data_quyuzhan['经度'])):
73
- # lon.append(data_quyuzhan['经度'][ng])
74
- # lat.append(data_quyuzhan['纬度'][ng])
75
- # staname.append(data_quyuzhan['站名'][ng])
76
-
77
-
78
-
79
- # radfilepath='/Users/wenjianzhu/Downloads/ZZHN'
80
- radfilepath = sourcepath
81
- params['radarfile_path'] = radfilepath
82
- params['radarfile_name'] = radfilename
83
- params['pic_path'] = outpath
84
- params['timestr'] = timestr
85
- params['slat'] = slat
86
- params['nlat'] = nlat
87
- params['wlon'] = wlon
88
- params['elon'] = elon
89
- params['fontfile'] = fontname
90
- params['gis_lats'] = lat
91
- params['gis_lons'] = lon
92
- params['gis_name'] = staname
93
- params['breplace'] = True
94
- params['bdraw_crs'] = True
95
- params['ref_colorfile'] = '../common/gr2_colors/default_BR_PUP2.pal'
96
- params['vel_colorfile'] = '../common/gr2_colors/default_BV_PUP2.pal'
97
- params['figsize_width'] = 4
98
- params['fontsize_gis'] = 5
99
- params['fontsize_colorbar'] = 5
100
- params['fontsize_title'] = 6
101
- params['mapcolor'] = [0/255,0/255,0/255]
102
- params['dpi'] = 800
103
- params['pic_format'] = 'jpg'
104
- params['bdraw_title_ppi'] = False
105
-
106
- # params={'radarfile_path':radfilepath,
107
- # 'radarfile_name':radfilename,
108
- # 'mosaicfile_path':'',
109
- # 'mosaicfile_name':'',
110
- # 'pic_path':outpath,
111
- # 'timestr':timestr,
112
- # 'aws_min_file_path':'',
113
- # 'aws_min_file_name':'',
114
- # 'aws_hour_file_path':'',
115
- # 'aws_hour_file_name':'',
116
- # 'gis_name':staname,
117
- # 'gis_lats':lat,
118
- # 'gis_lons':lon,
119
- # 'slat':slat,
120
- # 'nlat':nlat,
121
- # 'wlon':wlon,
122
- # 'elon':elon,
123
- # 'ref_colorfile':'../common/gr2_colors/default_BR_PUP2.pal',
124
- # 'vel_colorfile':'../common/gr2_colors/default_BV_PUP2.pal',
125
- # 'fontfile':fontname,
126
- # 'dpi':800,
127
- # 'pic_format':'png',
128
- # 'figsize_width':4,
129
- # 'fontsize_gis':5,
130
- # 'fontsize_colorbar':5,
131
- # 'fontsize_title':6,
132
- # 'mapcolor':[0/255,0/255,0/255],
133
- # 'breplace':True, #如果图片文件已存在,是否重新绘制
134
- # 'bdraw_crs':False
135
- # }
136
-
137
- _draw_radar_other = DRAW_RADAR_OTHER(params)
138
-
139
- _draw_radar_other.read_vol_data()
140
-
141
- # _draw_radar_other.draw_ref_alone(subdir='回波强度',tilt=0,thred=-5)
142
- _draw_radar_other.draw_ref_alone(subdir='回波强度',tilt=1,thred=-5)
143
-
144
-
145
- # _draw_radar_other.draw_vel_alone(subdir='径向速度',tilt=0)
146
- # _draw_radar_other.draw_vel_alone(subdir='径向速度',tilt=1)
147
- # _draw_radar_other.draw_vel_alone(subdir='径向速度',tilt=2)
148
-
149
- # _draw_radar_other.draw_vel_pre()
150
- # _draw_radar_other.draw_vel_wind_barb()
151
- # _draw_radar_other.draw_vel_wind_quiver()
152
- # _draw_radar_other.draw_ref_pre()
153
- # _draw_radar_other.draw_ref_pre_wind_barb()
154
-
155
- # _draw_radar_other.get_cref_from_radar([_draw_radar_other.g_rad_lat,_draw_radar_other.g_rad_lon])
156
- # _draw_radar_other.get_cref_from_mosaicfile()
157
- # _draw_radar_other.get_cref_from_radar([35.6,114.0])
158
- # _draw_radar_other.draw_cref_pre()
159
- # _draw_radar_other.draw_cref_wind_barb()
160
- # _draw_radar_other.draw_cref_wind_quiver()
161
- # _draw_radar_other.draw_cref_pre_wind_barb()
162
-
163
-
164
- # %%
165
- import os
166
- if __name__ == '__main__':
167
- pass
168
- freeze_support()
169
- # Pool不支持跨CPU的虚拟服务器,会出现页面不足的错误提示
170
-
171
- paramfilepath = '/Users/wenjianzhu/Downloads/雷达数据-王婷婷/绘图参数/回波强度'
172
- # paramfilepath = '/Users/wenjianzhu/Downloads/雷达数据-王婷婷/绘图参数/径向速度'
173
- # drawinfo = pd.read_csv(paramfilepath + os.sep + 'radardrawlist_20120612.csv',encoding='gb18030')
174
- # drawinfo = pd.read_csv(paramfilepath + os.sep + 'radardrawlist_20120701.csv',encoding='gb18030')
175
- # drawinfo = pd.read_csv(paramfilepath + os.sep + 'radardrawlist_20150608.csv',encoding='gb18030')
176
- # drawinfo = pd.read_csv(paramfilepath + os.sep + 'radardrawlist_20170905.csv',encoding='gb18030')
177
- drawinfo = pd.read_csv(paramfilepath + os.sep + 'radardrawlist_20210909.csv',encoding='gb18030')
178
- # drawinfo = pd.read_csv(paramfilepath + os.sep + 'radardrawlist_20190602.csv',encoding='gb18030')
179
-
180
- params = []
181
- nums=drawinfo.shape[0]
182
- # nums=1
183
- for nn in range(nums):
184
- pass
185
- curparam=ini_params()
186
- curparam['sourcepath'] = drawinfo['sourcepath'].iloc[nn]
187
- curparam['outpath'] = drawinfo['outpath'].iloc[nn]
188
- curparam['radfilename'] = drawinfo['filename'].iloc[nn]
189
- curparam['slat'] = drawinfo['start_lat'].iloc[nn]
190
- curparam['nlat'] = drawinfo['end_lat'].iloc[nn]
191
- curparam['wlon'] = drawinfo['start_lon'].iloc[nn]
192
- curparam['elon'] = drawinfo['end_lon'].iloc[nn]
193
- # aws_min_delta_t_file_path
194
- params.append(curparam)
195
-
196
- # MAXP = int(cpu_count()*0.5)
197
- MAXP=1#nums
198
- pools = Pool(MAXP)
199
-
200
- pools.map(draw_all, params)
201
- pools.close()
202
- pools.join()
203
-
204
-
205
-
206
-
@@ -1,219 +0,0 @@
1
- #!/bin/env python
2
- """
3
- Extrapolation nowcast
4
- =====================
5
-
6
- This tutorial shows how to compute and plot an extrapolation nowcast using
7
- Finnish radar data.
8
-
9
- """
10
-
11
- from datetime import datetime
12
- import matplotlib.pyplot as plt
13
- import numpy as np
14
- from pprint import pprint
15
- from pysteps import io, motion, nowcasts, rcparams, verification
16
- from pysteps.utils import conversion, transformation
17
- from pysteps.visualization import plot_precip_field, quiver
18
- import os
19
- import xarray as xr
20
- from draw_mosaic_new import draw_mosaic
21
- from datetime import datetime, timedelta
22
- import matplotlib
23
- matplotlib.use('MacOSX')
24
- ###############################################################################
25
- # Read the radar input images
26
- # ---------------------------
27
- #
28
- # First, we will import the sequence of radar composites.
29
- # You need the pysteps-data archive downloaded and the pystepsrc file
30
- # configured with the data_source paths pointing to data folders.
31
-
32
- # Selected case
33
- # date = datetime.strptime("201609281600", "%Y%m%d%H%M")
34
- date = datetime.strptime("202304211800", "%Y%m%d%H%M")
35
- data_source = rcparams.data_sources["fmi"]
36
- n_leadtimes = 12
37
-
38
- ###############################################################################
39
- # Load the data from the archive
40
- # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
41
-
42
- root_path = data_source["root_path"]
43
- path_fmt = data_source["path_fmt"]
44
- fn_pattern = data_source["fn_pattern"]
45
- fn_ext = data_source["fn_ext"]
46
- importer_name = data_source["importer"]
47
- importer_kwargs = data_source["importer_kwargs"]
48
- timestep = data_source["timestep"]
49
-
50
- # Find the input files from the archive
51
- fns = io.archive.find_by_date(
52
- date, root_path, path_fmt, fn_pattern, fn_ext, timestep, num_prev_files=2
53
- )
54
-
55
- # Read the radar composites
56
- importer = io.get_method(importer_name, "importer")
57
- Z, _, metadata = io.read_timeseries(fns, importer, **importer_kwargs)
58
-
59
- # write Z to ds
60
- # set longitude and latitude coordinates
61
- slat = 33
62
- nlat = 37
63
- wlon = 109
64
- elon = 117
65
- lat = np.linspace(slat,nlat,Z.shape[1])
66
- lon = np.linspace(wlon,elon,Z.shape[2])
67
-
68
- # set time coordinates
69
- curtime = metadata['timestamps'][-1]
70
- curtime = np.array([curtime], dtype='datetime64[m]')
71
- # data = np.expand_dims(data, axis=0)
72
-
73
- # define coordinates
74
- time_coord = ('time', curtime)
75
- lon_coord = ('lon', lon, {
76
- 'long_name':'longitude', 'units':'degrees_east', '_CoordinateAxisType':'Lon'})
77
- lat_coord = ('lat', lat, {
78
- 'long_name':'latitude', 'units':'degrees_north', '_CoordinateAxisType':'Lat'})
79
-
80
- # create xarray
81
- varattrs = {'long_name': 'Composite Refelectivity',
82
- 'short_name': 'cref', 'units': 'dBZ',
83
- 'maxv':80,
84
- 'minv':0}
85
- data = xr.Dataset({'cref':(['lat', 'lon'], np.flipud(Z[-1]), varattrs)},
86
- coords={ 'lat':lat_coord, 'lon':lon_coord})
87
-
88
- outpath = 'pic'
89
-
90
- tstr = metadata['timestamps'][-1].strftime('%Y%m%d%H%M')
91
- outname = '%s_obs.png'%tstr
92
- dpi = 600
93
- thred=10
94
- # draw_mosaic(data.cref,data.lat.data,data.lon.data,slat,nlat,wlon,elon,outpath,outname,tstr,subtitle='实况',titlecolor='k',dpi=dpi,thred=thred)
95
- # print(outpath + os.sep + outname + ' done!')
96
- # Convert to rain rate
97
- # R, metadata = conversion.to_rainrate(Z, metadata)
98
-
99
- # # Plot the rainfall field
100
- # fig1 = plt.figure(figsize=(6, 6))
101
- # plot_precip_field(Z[-1, :, :], geodata=metadata)
102
- # # plt.show()
103
-
104
- # Store the last frame for plotting it later later
105
- # R_ = R[-1, :, :].copy()
106
-
107
- # Log-transform the data to unit of dBR, set the threshold to 0.1 mm/h,
108
- # set the fill value to -15 dBR
109
- # R, metadata = transformation.dB_transform(R, metadata, threshold=0.1, zerovalue=-15.0)
110
-
111
- # Nicely print the metadata
112
- # pprint(metadata)
113
-
114
- ###############################################################################
115
- # Compute the nowcast
116
- # -------------------
117
- #
118
- # The extrapolation nowcast is based on the estimation of the motion field,
119
- # which is here performed using a local tracking approach (Lucas-Kanade).
120
- # The most recent radar rainfall field is then simply advected along this motion
121
- # field in oder to produce an extrapolation forecast.
122
-
123
- # Estimate the motion field with Lucas-Kanade
124
- # st = time.time()
125
- oflow_method = motion.get_method("LK")
126
- V = oflow_method(Z[-3:, :, :])
127
-
128
- # Extrapolate the last radar observation
129
- extrapolate = nowcasts.get_method("extrapolation")
130
- # R[~np.isfinite(R)] = metadata["zerovalue"]
131
- Z_f = extrapolate(Z[-1, :, :], V, n_leadtimes)
132
- for nn in range(len(Z_f)):
133
- fsttime = metadata['timestamps'][-1] + timedelta(minutes=10*(nn+1))
134
- tstr = fsttime.strftime('%Y%m%d%H%M')
135
- # set time coordinates
136
- fsttime = np.array([fsttime], dtype='datetime64[m]')
137
- # data = np.expand_dims(data, axis=0)
138
-
139
- # define coordinates
140
- time_coord = ('time', fsttime)
141
- lon_coord = ('lon', lon, {
142
- 'long_name':'longitude', 'units':'degrees_east', '_CoordinateAxisType':'Lon'})
143
- lat_coord = ('lat', lat, {
144
- 'long_name':'latitude', 'units':'degrees_north', '_CoordinateAxisType':'Lat'})
145
-
146
- # create xarray
147
- varattrs = {'long_name': 'Composite Refelectivity',
148
- 'short_name': 'cref', 'units': 'dBZ',
149
- 'maxv':80,
150
- 'minv':0}
151
- data = xr.Dataset({'cref':(['lat', 'lon'], np.flipud(Z_f[nn]), varattrs)},
152
- coords={ 'lat':lat_coord, 'lon':lon_coord})
153
-
154
- outpath = 'pic'
155
-
156
-
157
- outname = '%s_fst.png'%tstr
158
- dpi = 600
159
- thred=10
160
- draw_mosaic(data.cref,data.lat.data,data.lon.data,slat,nlat,wlon,elon,outpath,outname,tstr,subtitle='预报',titlecolor='r',dpi=dpi,thred=thred,add_title=1,prefix_title='雷达组合反射率拼图')
161
- # print(outpath + os.sep + outname + ' done!')
162
-
163
- pass
164
- # Back-transform to rain rate
165
- # R_f = transformation.dB_transform(R_f, threshold=-10.0, inverse=True)[0]
166
-
167
- # et = time.time()
168
- # print("Execution time(s): ", et - st)
169
- # Plot the motion field
170
- # fig2 = plt.figure(figsize=(6, 6))
171
- # plot_precip_field(Z_f[-1,:,:], geodata=metadata)
172
- # quiver(V, geodata=metadata, step=50)
173
- # plt.show()
174
-
175
- ###############################################################################
176
- # Verify with FSS
177
- # ---------------
178
- #
179
- # The fractions skill score (FSS) provides an intuitive assessment of the
180
- # dependency of skill on spatial scale and intensity, which makes it an ideal
181
- # skill score for high-resolution precipitation forecasts.
182
-
183
- # Find observations in the data archive
184
- fns = io.archive.find_by_date(
185
- date,
186
- root_path,
187
- path_fmt,
188
- fn_pattern,
189
- fn_ext,
190
- timestep,
191
- num_prev_files=0,
192
- num_next_files=n_leadtimes,
193
- )
194
- # Read the radar composites
195
- Z_o, _, metadata_o = io.read_timeseries(fns, importer, **importer_kwargs)
196
- # R_o, metadata_o = conversion.to_rainrate(R_o, metadata_o, 223.0, 1.53)
197
-
198
- # Compute fractions skill score (FSS) for all lead times, a set of scales and 1 mm/h
199
- fss = verification.get_method("FSS")
200
- scales = [2, 4, 8, 16, 32, 64, 128]
201
- thr = 5.0
202
- score = []
203
- for i in range(n_leadtimes):
204
- score_ = []
205
- for scale in scales:
206
- score_.append(fss(Z_f[i, :, :], Z_o[i + 1, :, :], thr, scale))
207
- score.append(score_)
208
-
209
- # plt.figure()
210
- # fig3 = plt.figure(figsize=(6, 6))
211
- # x = np.arange(1, n_leadtimes + 1) * timestep
212
- # plt.plot(x, score)
213
- # plt.legend(scales, title="Scale [km]")
214
- # plt.xlabel("Lead time [min]")
215
- # plt.ylabel("FSS ( > 5 dBZ ) ")
216
- # plt.title("Fractions skill score")
217
- # plt.show()
218
-
219
- # sphinx_gallery_thumbnail_number = 3
@@ -1,197 +0,0 @@
1
- '''
2
- prepare for radar_draw_aws.py
3
-
4
- '''
5
-
6
- import os
7
- import sys
8
- import pandas as pd
9
-
10
- #递归查找
11
- def show_files(path, all_files,allpaths):
12
- # 首先遍历当前目录所有文件及文件夹
13
- file_list = os.listdir(path)
14
- # 准备循环判断每个元素是否是文件夹还是文件,是文件的话,把名称传入list,是文件夹的话,递归
15
- for file in file_list:
16
- # 利用os.path.join()方法取得路径全名,并存入cur_path变量,否则每次只能遍历一层目录
17
- cur_path = os.path.join(path, file)
18
-
19
- if file.startswith('.') or file.startswith('..'):
20
- continue
21
-
22
- # 判断是否是文件夹
23
- if os.path.isdir(cur_path):
24
- show_files(cur_path, all_files,allpaths)
25
- else:
26
- all_files.append(file)
27
- allpaths.append(path)
28
-
29
- return all_files
30
-
31
- def mainfunc(dic_param):
32
-
33
- allfiles = []
34
- allpaths = []
35
- show_files(dic_param['filepath'],allfiles,allpaths)
36
-
37
- start_lat=[]
38
- end_lat=[]
39
- start_lon=[]
40
- end_lon=[]
41
- alloutpaths=[]
42
-
43
- for nn in range(len(allfiles)):
44
- curout = dic_param['rootout'] + os.sep + allpaths[nn].split(os.sep)[-1]
45
- # print(curout)
46
-
47
- # alloutpaths.append(curout)
48
- # start_lat.append('')
49
- # end_lat.append('')
50
- # start_lon.append('')
51
- # end_lon.append('')
52
-
53
- alloutpaths.append(curout)
54
- start_lat.append(dic_param['startlat'])
55
- end_lat.append(dic_param['endlat'])
56
- start_lon.append(dic_param['startlon'])
57
- end_lon.append(dic_param['endlon'])
58
-
59
- outdic = {
60
- 'sourcepath':allpaths,
61
- 'outpath':alloutpaths,
62
- 'filename':allfiles,
63
- 'start_lat':start_lat,
64
- 'end_lat':end_lat,
65
- 'start_lon':start_lon,
66
- 'end_lon':end_lon,
67
- }
68
-
69
- outpd = pd.DataFrame(outdic)
70
- newpd = outpd.sort_values(by='filename')
71
- newpd.to_csv(dic_param['outname'],encoding='gb18030')
72
- print(dic_param['outname'] + ' done!')
73
-
74
- if __name__ == "__main__":
75
-
76
- # dic_param={}
77
- # dic_param['filepath'] = '/Users/wenjianzhu/Downloads/雷达数据-王婷婷/ar2v/20190602-辽源'
78
- # dic_param['rootout']='/Users/wenjianzhu/Downloads/雷达数据-王婷婷/pic'
79
- # dic_param['outname'] = 'radardrawlist_20190602.csv'
80
-
81
- # dic_param['startlon'] = 124.2
82
- # dic_param['endlon'] = 126
83
- # dic_param['startlat'] = 43.5
84
- # dic_param['endlat'] = 44.4
85
-
86
- # mainfunc(dic_param=dic_param)
87
-
88
- type = '强度'
89
-
90
- if type == '强度':
91
- outpath = '/Users/wenjianzhu/Downloads/雷达数据-王婷婷/绘图参数/回波强度'
92
- elif type == '速度':
93
- outpath = '/Users/wenjianzhu/Downloads/雷达数据-王婷婷/绘图参数/径向速度'
94
-
95
- if not os.path.exists(outpath):
96
- os.makedirs(outpath)
97
-
98
-
99
- #==================================================================================
100
- # dic_param={}
101
- # dic_param['filepath'] = '/Users/wenjianzhu/Downloads/雷达数据-王婷婷/ar2v/20120612-白城'
102
- # dic_param['rootout']='/Users/wenjianzhu/Downloads/雷达数据-王婷婷/pic'
103
- # dic_param['outname'] = outpath + os.sep + 'radardrawlist_20120612.csv'
104
-
105
- # if type == '强度':
106
- # dic_param['startlon'] = 122.37
107
- # dic_param['endlon'] = 122.97
108
- # dic_param['startlat'] = 45.34
109
- # dic_param['endlat'] = 45.89
110
- # elif type == '速度':
111
- # dic_param['startlon'] = 122.6
112
- # dic_param['endlon'] = 122.83
113
- # dic_param['startlat'] = 45.58
114
- # dic_param['endlat'] = 45.76
115
-
116
- # mainfunc(dic_param=dic_param)
117
-
118
-
119
- # dic_param={}
120
- # dic_param['filepath'] = '/Users/wenjianzhu/Downloads/雷达数据-王婷婷/ar2v/20120701-白城'
121
- # dic_param['rootout']='/Users/wenjianzhu/Downloads/雷达数据-王婷婷/pic'
122
- # dic_param['outname'] = outpath + os.sep + 'radardrawlist_20120701.csv'
123
-
124
- # if type == '强度':
125
- # dic_param['startlon'] = 123.1
126
- # dic_param['endlon'] = 124.32
127
- # dic_param['startlat'] = 45.11
128
- # dic_param['endlat'] = 45.97
129
- # elif type == '速度':
130
- # dic_param['startlon'] = 123.65
131
- # dic_param['endlon'] = 124.32
132
- # dic_param['startlat'] = 45.45
133
- # dic_param['endlat'] = 45.97
134
-
135
- # mainfunc(dic_param=dic_param)
136
-
137
-
138
- # dic_param={}
139
- # dic_param['filepath'] = '/Users/wenjianzhu/Downloads/雷达数据-王婷婷/ar2v/20150608-白城'
140
- # dic_param['rootout']='/Users/wenjianzhu/Downloads/雷达数据-王婷婷/pic'
141
- # dic_param['outname'] = outpath + os.sep + 'radardrawlist_20150608.csv'
142
-
143
- # if type == '强度':
144
- # dic_param['startlon'] = 122.3
145
- # dic_param['endlon'] = 124.3
146
- # dic_param['startlat'] = 44.2
147
- # dic_param['endlat'] = 45.5
148
- # elif type == '速度':
149
- # dic_param['startlon'] = 122.7
150
- # dic_param['endlon'] = 123.5
151
- # dic_param['startlat'] = 44.3
152
- # dic_param['endlat'] = 44.95
153
-
154
- # mainfunc(dic_param=dic_param)
155
-
156
-
157
- # dic_param={}
158
- # dic_param['filepath'] = '/Users/wenjianzhu/Downloads/雷达数据-王婷婷/ar2v/20170905-松原'
159
- # dic_param['rootout']='/Users/wenjianzhu/Downloads/雷达数据-王婷婷/pic'
160
- # dic_param['outname'] = outpath + os.sep + 'radardrawlist_20170905.csv'
161
-
162
- # if type == '强度':
163
- # dic_param['startlon'] = 125.2
164
- # dic_param['endlon'] = 126.2
165
- # dic_param['startlat'] = 44.9
166
- # dic_param['endlat'] = 45.7
167
- # elif type == '速度':
168
- # dic_param['startlon'] = 125.4
169
- # dic_param['endlon'] = 126.2
170
- # dic_param['startlat'] = 45
171
- # dic_param['endlat'] = 45.5
172
-
173
- # mainfunc(dic_param=dic_param)
174
-
175
-
176
- dic_param={}
177
- dic_param['filepath'] = '/Users/wenjianzhu/Downloads/雷达数据-王婷婷/ar2v/20210909-长春'
178
- dic_param['rootout']='/Users/wenjianzhu/Downloads/雷达数据-王婷婷/pic'
179
- dic_param['outname'] = outpath + os.sep + 'radardrawlist_20210909.csv'
180
-
181
- if type == '强度':
182
- # dic_param['startlon'] = 124.5
183
- # dic_param['endlon'] = 125.8
184
- # dic_param['startlat'] = 43.3
185
- # dic_param['endlat'] = 44.2
186
-
187
- dic_param['startlon'] = 124.9
188
- dic_param['endlon'] = 125.6
189
- dic_param['startlat'] = 43.6
190
- dic_param['endlat'] = 44.1
191
- elif type == '速度':
192
- dic_param['startlon'] = 124.9
193
- dic_param['endlon'] = 125.6
194
- dic_param['startlat'] = 43.6
195
- dic_param['endlat'] = 44.1
196
-
197
- mainfunc(dic_param=dic_param)